
Hands-on Cloud Computing Services
Lezione 4

Gabriele Russo Russo
University of Rome Tor Vergata, Italy

A.A. 2023/24



Beyond AWS CLI

▶ AWS CLI enables faster interaction than the web console
▶ Commands can be arranged into scripts to solve tasks
▶ Complex use cases may need a more powerful approach

2



Boto: Python API for AWS

▶ Boto: AWS SDK for Python
▶ Enables developers to create, configure, and manage AWS services
▶ Easy to use, object-oriented API
▶ Similar APIs available for other languages as well
▶ We’ll use boto3: https://boto3.amazonaws.com/v1/

documentation/api/latest/index.html

3

https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html


Configuring boto3

▶ Boto shares the same configuration of AWS CLI (default region, . . . )
▶ If CLI has been configured on your PC, boto3 works out-of-the-box
▶ Can be overridden using environment variables or hard-coded

settings
▶ Important issue: providing credentials to Boto

▶ Especially important when using boto within deployed applications
▶ Several ways to provide credentials (and configs):

https://boto3.amazonaws.com/v1/documentation/api/
latest/guide/credentials.html

4

https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html


Examples

1. List objects in our bucket: s3list.py

2. List EC2 instances: ec2list.py

5



Example: Photogallery

▶ Extend PhotoGallery with the following features:
▶ display pictures stored in a S3 bucket, along with their upload time
▶ users can upload pictures

6



Solution

▶ Source code: photogallery_v2
▶ How to provide credentials to boto3 to access the bucket?

▶ Create a IAM Role for EC2
▶ Attach the pre-defined S3FullAccess policy
▶ Associate the EC2 instance(s) with the new role

▶ (Check alternative methods in the previous slides)

7



CloudFront

▶ CDN provided by AWS
▶ Easy to integrate with S3 buckets and ELBs

How to use it in Photogallery:
▶ Create a distribution for our S3 bucket
▶ Replace picture URLs as follows:

http://bucketname.s3.amazonaws.com/imagename.jpg
http://distributionname.cloudfront.net/imagename.jpg

Note: to delete a distribution, you need to Disable it first (and wait a
couple of minutes)

8



Cloud Automation

We have introduced a few tools for automation:
▶ Ansible (with dynamic inventories)
▶ AWS CLI
▶ AWS SDK (e.g., boto3)

Enough for infrastructure management?

9



Infrastructure-as-Code (IaC)

▶ Define and manage the infrastructure by means of a set of text
files, instead of a user interface (CLI, Web, . . . )

▶ Use simple text files to describe your resources (e.g., VMs, security
groups, networks)

▶ Update the files to update the infrastructure
▶ Benefits:

▶ Reduced costs
▶ Reduced risks
▶ Faster operations
▶ Important to enable DevOps practices

10



Terraform

▶ Free multi-platform tool for IaC (www.terraform.io)
▶ Can be used to configure several target platforms (AWS, Azure,

VMWare, CloudFlare, . . . )
▶ Infrastructure defined using the HashiCorp Configuration Language

(HCL)
▶ Key concepts: Providers + Resources

Terraform stopped being open-source in 2023. An open alternative
exists: OpenTofu

11

www.terraform.io


Terraform + AWS

Requirements:
▶ AWS CLI installed and configured
▶ Terraform installed (I am using Terraform 1.6)

We create example.tf and run:
▶ $ terraform init
▶ $ terraform validate # check syntax
▶ $ terraform apply
▶ $ terraform show
▶ $ terraform apply # nothing to do

12



Terraform + AWS

We now update example.tf adding a tag to the instance:
▶ Edit example.tf adding a tag to the instance
▶ $ terraform apply
▶ Edit example.tf changing the instance type
▶ $ terraform apply
▶ Let’s destroy all the created resources: terraform destroy

13



Terraform: beyond this example

▶ Resource definitions not limited to EC2 instances!
▶ Remote storage for tf.state
▶ Versioning Terraform code (e.g., git repo)
▶ Variables to make code more reusable

14



AWS CloudFormation

▶ IaC code solution by AWS
▶ Stack + Template (YAML/JSON) + Resources
▶ https://docs.aws.amazon.com/AWSCloudFormation/latest/

UserGuide/GettingStarted.Walkthrough.html

15

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/GettingStarted.Walkthrough.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/GettingStarted.Walkthrough.html


AWS CloudFormation: Example

{
"AWSTemplateFormatVersion" : "2010-09-09",
"Description" : "A sample template",
"Resources" : {

"MyEC2Instance" : {
"Type" : "AWS::EC2::Instance",
"Properties" : {

"ImageId" : "ami-0ff8a91507f77f867",
"InstanceType" : "t2.micro",
"KeyName" : "testkey",
"BlockDeviceMappings" : [

{
"DeviceName" : "/dev/sdm",
"Ebs" : {

"VolumeType" : "io1",
...

}
}

]
}

}
}

}

16



AWS: Database Services

AWS provides several database-oriented services. Among them:

▶ DynamoDB (Key-Value NoSQL tables)
▶ Aurora (relational DBMS)
▶ ElastiCache (in-memory databases: Memcached, Redis)
▶ Neptune (graph database)
▶ Timestream (for time series)
▶ RDS (Relational Database Service): easily deploy MariaDB, Aurora,

PostgreSQL, . . .

We’ll use DynamoDB to store picture metadata in PhotoGallery

17



DynamoDB

▶ Schemaless
▶ Tables, Items, Attributes
▶ Primary Key + (optional) Sorting Key
▶ 2 pricing models:

▶ provisioned capacity (default)
▶ on-demand

▶ 2 consistency models:
▶ eventual
▶ strong

Example: dynamodb_example/

18



Photogallery + DynamoDB

▶ Exercise: Use DynamoDB to store image tags

19



Photogallery + DynamoDB: Solution

▶ Solution: photogallery_v3

20


