
Corso di Sistemi Distribuiti e Cloud Computing
A.A. 2023/24

Valeria Cardellini

Laurea Magistrale in Ingegneria Informatica

Communication in Distributed Systems
Part 2

Macroarea di Ingegneria
Dipartimento di Ingegneria Civile e Ingegneria Informatica

Message-oriented communication

• RPC improves distribution transparency with respect
to socket programming

• But still synchrony between interacting entities
– Over time: caller waits the reply
– In space: shared data
– Functionality and communication are coupled

• Which communication models to improve decoupling
and flexibility?

• Message-oriented communication
– Transient

• Berkeley socket
• Message Passing Interface (MPI): see "Sistemi di calcolo

parallelo e applicazioni" course
– Persistent

• Message Oriented Middleware (MOM)

Valeria Cardellini – SDCC 2023/24 1

Message-oriented middleware
• Communication middleware that supports sending

and receiving messages in a persistent way
– MOM offers intermediate-term storage capacity for

messages

• Loose coupling among system/app components
– Decoupling in time and space
– Can also support synchronization decoupling
– Goals: increase performance, scalability and reliability
– Typically used in serverless and microservice architectures

• Two patterns:
– Message queue
– Publish-subscribe (pub/sub)

• And two related types of system:
– Message queue system (MQS)
– Pub/sub system

Valeria Cardellini – SDCC 2023/24 2

Queue message pattern

• Messages sent to the queue are stored until they are
retrieved by the consumer

• Multiple producers can send messages to queue

• Multiple consumers can receive messages from queue

• But communication is one-to-one: each message from
a producer is delivered to a single consumer

• When to use a message queue
– Examples: task scheduling, load balancing, logging or tracing

Valeria Cardellini – SDCC 2023/24 3

Queue message pattern

Valeria Cardellini – SDCC 2023/24 4

A sends a message to B B issues a response message back to A

Message queue API

• Typical interface in MQS:
– put: non-blocking send

• Insert a message to the specified queue

– get: blocking receive
• Block until the specified queue is nonempty and receive a

message
• Variant: allow searching for specific message in queue

– poll: non-blocking receive
• Check the specified queue and receive message if

available
• Never block

– notify: non-blocking receive
• Install a handler (callback function) to be automatically

called when a message is put into the specified queue

Valeria Cardellini – SDCC 2023/24 5

Publish/subscribe pattern

Valeria Cardellini – SDCC 2023/24 6

• Application components can publish asynchronous
messages (e.g., event notifications), and/or declare
their interest in message topics by issuing a
subscription

• Each message can be delivered to multiple consumers

Publish/subscribe pattern

Valeria Cardellini – SDCC 2023/24 7

• Multiple consumers can subscribe to topic with or
without filters

• Subscriptions are collected by an event dispatcher
component, responsible for routing events to all
matching subscribers
– For scalability reasons, its implementation is distributed

• High degree of decoupling among components
– Easy to add and remove components: appropriate for

dynamic environments

Publish/subscribe pattern

• A sibling of message queue pattern but further
generalizes it by delivering a message to multiple
consumers
– Message queue: delivers messages to only one receiver,

i.e., one-to-one communication
– Pub/sub channel: delivers messages to multiple receivers,

i.e., one-to-many communication

Valeria Cardellini – SDCC 2023/24 8

Publish/subscribe API

• Calls that capture the core of any pub/sub system:
– publish(event): to publish an event

• Events can be of any data type supported by the given
implementation languages and may also contain meta-data

– subscribe(filter expr, notify_cb, expiry) → sub handle: to
subscribe to an event

• Takes a filter expression, a reference to a notify callback for
event delivery, and an expiry time for the subscription
registration.

• Returns a subscription handle
– unsubscribe(sub handle)
– notify_cb(sub_handle, event): called by the pub/sub system to

deliver a matching event

Valeria Cardellini – SDCC 2023/24 9

MOM functionalities
• MOM handles the complexity of addressing,

routing, availability of communicating application
components (or applications), and message
format transformations

Cloud Computing Patterns,
www.cloudcomputingpatterns.org/message_oriented_middleware

Valeria Cardellini – SDCC 2023/24 10

MOM functionalities

• Let us analyze
– Delivery semantics

– Message routing

– Message transformations

Valeria Cardellini – SDCC 2023/24 11

Delivery semantics in MOM

At-least-once delivery

How can MOM ensure that messages are received
successfully?

– By sending ack for each retrieved message and resending
message if ack is not received

– Design your application to be idempotent (not be affected
adversely when processing the same message more than
once)

Valeria Cardellini – SDCC 2023/24 12

Delivery semantics in MOM

Exactly-once delivery

How can MOM ensure that a message is delivered only
exactly once to a receiver?

– By filtering possible message duplicates automatically
• Upon creation, each message is associated with a unique ID,

which is used to filter message duplicates during their traversal
from sender to receiver

– In addition, messages must survive MOM components’
failures

Valeria Cardellini – SDCC 2023/24 13

Delivery semantics in MOM

Transaction-based delivery
How can MOM ensure that messages are only deleted
from a message queue if they have been received
successfully?

– MOM and message receiver participate in a transaction:
read and delete operations are performed within a
transaction, thus guaranteeing ACID behavior

Valeria Cardellini – SDCC 2023/24 14

Delivery semantics in MOM

Timeout-based delivery
How can MOM ensure that messages are only deleted
from a message queue if they have been received
successfully at least once?

– Message is not deleted immediately from queue, but marked
as being invisible until visibility timeout expires

– Invisible message cannot be read by another receiver
– After receiver’s ack of message receipt, message is deleted

from queue

Valeria Cardellini – SDCC 2023/24 15

Message routing: general model
• Queues are managed by queue managers (QMs)

– An application can put messages only into a local queue
– Getting a message is possible by extracting it from a local

queue only

• QMs need to route messages
– Work as message-queuing “relays” that interact with

distributed applications and each other
– Form an overlay network
– There can also be special QMs that operate only as routers

Valeria Cardellini – SDCC 2023/24 16

Message routing: overlay network

• Overlay network is used to route messages
– By using routing tables
– Routing tables are stored and managed by QMs

Valeria Cardellini – SDCC 2023/24

• Overlay network needs to
be maintained over time
– Routing tables are often set

up and managed manually:
easier but …

– Dynamic overlay networks
require to dynamically
manage mapping between
queue names and their
location

17

Message transformation: message broker

• New/existing apps that need to be integrated into a
single, coherent system rarely agree on a common
data format

• How to handle data heterogeneity?
⎼ We have already examined different solutions in the context

of RPC

• Let’s focus on message broker
– Message broker: component that usually takes care of

application heterogeneity in a MOM

Valeria Cardellini – SDCC 2023/24 18

Message broker: general architecture
• Message broker handles application heterogeneity

– Converts incoming messages to target format providing
access transparency

– Very often acts as an application gateway
– Manages a repository of conversion rules and programs to

transform a message of one type to another
– May provide subject-based routing capabilities
– To be scalable and reliable can be implemented in a

distributed way

Valeria Cardellini – SDCC 2023/24 19

MOM frameworks

• Main MOM systems and libraries
– Apache ActiveMQ activemq.apache.org
– Apache Kafka
– Apache Pulsar pulsar.apache.org
– IBM MQ
– NATS nats.io
– RabbitMQ
– ZeroMQ zeromq.org

• Clear distinction between queue message and
pub/sub patterns is often lacking
– Some frameworks support both (e.g., Kafka, NATS)
– Others not (e.g., pub/sub in Redis redis.io/topics/pubsub)

Valeria Cardellini – SDCC 2023/24 20

MOM frameworks

• Also as Cloud services
– Amazon Simple Queue Service (SQS)
– Amazon Simple Notification Service (SNS)
– CloudAMQP: RabbitMQ as a Service
– Google Cloud Pub/Sub
– Microsoft Azure Service Bus

Valeria Cardellini – SDCC 2023/24 21

Amazon Simple Queue Service (SQS)
• Reliable, highly-scalable Cloud-based message

queue service based on polling model
– Goal: decouple application components, which can run

independently and asynchronously and be developed with
different technologies and languages

• Features
– Message queues are fully managed by AWS
– SQS servers are replicated within a single region: SQS

stores copies of messages on multiple servers for HA

22Valeria Cardellini – SDCC 2023/24

Amazon SQS: Features
• Consumer must delete message from queue

– A queue is a temporary holding location
– Configurable message retention period (max 14 days)

• SQS provides timeout-based delivery
– Received message remains in queue but is locked during

consumer processing (visibility timeout)
– If processing fails, lock expires and message is available again

23Valeria Cardellini – SDCC 2023/24

Amazon SQS: Features

• Consumers use polling to receive messages from a
queue
– Short polling: SQS queries only a subset of servers
– Long polling: SQS queries all servers for messages

• SQS queue type can be standard or FIFO

• Standard queue (default)
– Best-effort ordering, thus occasionally out-of-order delivery

might occur
– Duplicates can be received

• FIFO queue
– In-order delivery, i.e., messages are received and processed

in the same order in which they were transmitted
– Avoids duplicates
✗ Reduced throughput

24Valeria Cardellini – SDCC 2023/24

Amazon SQS: API

• CreateQueue, ListQueues, DeleteQueue
– Create, list, delete queues

• SendMessage
– Add message to the specified queue (message size up to 256

KB)
– How to send message payload larger than 256 KB?

• Store payload on S3 and send a reference to it in the message

• ReceiveMessage
– Retrieve message from the specified queue
– Can’t specify which messages to retrieve, only maximum

number of messages (up to 10)

• DeleteMessage
– Remove the specified message from the specified queue

docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/Welcome.html

Valeria Cardellini – SDCC 2023/24 25

Amazon SQS: API

• ChangeMessageVisibility
– Change visibility timeout of the specified message in a queue

(when received, message remains in the queue upon it is
explicitly deleted by receiver)

– Default visibility timeout is 30 sec.

• SetQueueAttributes, GetQueueAttributes
– Control queue settings, get information about a queue

Valeria Cardellini – SDCC 2023/24 26

Amazon SQS: example

Valeria Cardellini – SDCC 2023/24

• Cloud app for photo processing service

– Let’s use SQS to achieve decoupling between app front-end and
back-end, load balancing and fault tolerance

– App front-end sends to queue a message with S3 link to image

– A pool of EC2 instances takes a request from queue and resizes
image

• In case of failure during processing, message is again visible in queue
• Back-end EC2 instances can be scaled horizontally according to

number of queued messages

27
S3 bucket

Autoscaling group

SQS queue

Autoscaling group
Message count

RabbitMQ

Valeria Cardellini – SDCC 2023/24 28

• Popular open-source message broker www.rabbitmq.com

• Uses a push model

• Offers FIFO ordering guarantee at queue level

• Supports multiple messaging protocols
– AMQP, STOMP and MQTT

• Runs on many operating systems and cloud
environments

• Provides a wide range of developer tools for most
popular languages (Java, Go, Python, …)

RabbitMQ: architecture
• Messages are not

published directly to a
queue

• Producer sends messages
to an exchange, which
routes messages to
different queues with the
help of bindings and
routing keys
– Binding: link between a

queue and an exchange

Valeria Cardellini – SDCC 2023/24 29

Message flow in RabbitMQ

• RabbitMQ broker can be distributed, e.g., forming a
cluster www.rabbitmq.com/distributed.html
– Supports quorum queue: durable, replicated FIFO queue

based on Raft consensus algorithm

RabbitMQ: use cases

1. Store and forward messages which
are sent by a producer and received
by a consumer (message queue
pattern)

2. Distribute tasks among multiple
workers (competing consumers
pattern)

3. Deliver messages to many
consumers at once (pub/sub pattern)
using a message exchange

4. Receive messages selectively:
producer sends messages to
an exchange, that selects the queue

5. Run a function on a remote node
and wait for the result (request /reply
pattern)

Valeria Cardellini – SDCC 2023/24 30

www.rabbitmq.com/getstarted.html

RabbitMQ and Go

• Let’s use RabbitMQ, Go and AMQP (messaging
protocol) for:

Ex. 1: Message queue pattern
www.rabbitmq.com/tutorials/tutorial-one-go.html

Ex. 2: Competing consumers pattern
www.rabbitmq.com/tutorials/tutorial-two-go.html

Valeria Cardellini – SDCC 2023/24 31

Code available on course site:
rabbitmq-go.zip

RabbitMQ and Go
• Preliminary steps:
1. Install RabbitMQ and start a RabbitMQ server on localhost on

default port www.rabbitmq.com/download.html
$ rabbitmq-server
– RabbitMQ CLI tool: rabbitmqctl

$ rabbitmqctl status
$ rabbitmqctl shutdown
Some useful commands for rabbitmqctl
list_channels
list_consumers
list_queues
stop_app
reset

– Also web UI for management and monitoring
2. Install Go AMQP client library

$ go get github.com/rabbitmq/amqp091-go
See pkg.go.dev/github.com/rabbitmq/amqp091-go for details on Go
package ampq

Valeria Cardellini – SDCC 2023/24 32

RabbitMQ and Go: example 1
1. Message queue pattern

– Run with single producer/single consumer, multiple
producers/multiple consumers

– Note that:
• Message is delivered to only one consumer
• Delivery is push-based

Valeria Cardellini – SDCC 2023/24 33

RabbitMQ brokersend.go receive.go

RabbitMQ and Go: example 2
2. Competing consumers (i.e., workers) pattern

– Version 1 (new_task_v1.go and worker_v1.go):
• Use multiple consumers to see how queue can be used to

distribute tasks among consumers in round-robin fashion
• If consumer crashes after RabbitMQ delivers the message but

before completing the task, the message is lost (i.e., cannot be
delivered to another consumer)
auto-ack=true: message is considered to be successfully
delivered immediately after it is sent (“fire-and-forget”)

– Version 2 (new_task_v1.go and worker_v2.go):
• Set auto-ack=false in Consume and add explicit ack in

consumer to tell RabbitMQ that message has been received,
processed and that RabbitMQ can safely discard it

• Let’s shutdown and restart RabbitMQ: what happens to
pending messages?

• Which is the delivery semantics with explicit acks?

Valeria Cardellini – SDCC 2023/24 34

RabbitMQ and Go: example 2
2. Competing consumers (i.e., workers) pattern

– Version 3 (new_task_v3.go and worker_v3.go):
• Use a durable queue so it is persisted to disk and survives

RabbitMQ crash and restart
• Define a new queue and set durable=true in QueueDeclare

– Version 4 (new_task_v3.go and worker_v4.go):
• Improve task distribution among consumers by looking at

number of unacknowledged messages for each consumer, so
to not dispatch a new message to a consumer until it has
processed and acknowledged the previous one

• Use channel prefetch setting (Qos)

Valeria Cardellini – SDCC 2023/24 35

RabbitMQ broker
new_task_v1.go
new_task_v3.go

worker_v1.go
worker_v2.go
worker_v3.go
worker_v4.go

Apache Kafka
• General-purpose, distributed pub/sub system

• Originally developed in 2010 by LinkedIn

• Used at scale by tech giants (Netflix, Uber, LinkedIn, …)

• Written in Scala

• Horizontally scalable

• Fault-tolerant

• High throughput ingestion
– Billions of messages

• Not only messaging, also
data processing
⎼ We focus on messaging

kafka.apache.org/documentation
Kreps et al., Kafka: A Distributed Messaging System for Log Processing,
NetDB’11

36Valeria Cardellini – SDCC 2023/24

Kafka at a glance

• Kafka stores feeds of messages (or records) in categories
called topics
– A topic can have 0, 1, or many consumers subscribing to data written to it

• Producers: publish messages to a Kafka topic

• Consumers: subscribe to Kafka topics and process the
feed of published messages

• Kafka cluster: distributed log of data over servers known
as brokers
– A broker is responsible for receiving and storing published dataVa

le
ria

 C
ar

de
llin

i –
SD

C
C

 2
02

3/
24

37

Kafka: topic and partitions

• Topic: category to which a message is published

• For each topic, Kafka cluster maintains a partitioned log

• Log (as data structure): append-only, totally-ordered
sequence of messages ordered by time

• Partitioned log: each topic is split into a pre-defined
number of partitions

– Partition: unit of parallelism for topic (allows for parallel
access)

38Valeria Cardellini – SDCC 2023/24

Kafka: partitions

• Producers publish (write) their messages to a topic
partition

• Consumers read records published on a topic

• Each partition is an ordered, numbered, immutable
sequence of records that is continually appended to
– Like a commit log

• Each record is associated with a monotonically
increasing sequence number, called offset

Valeria Cardellini – SDCC 2023/24 39

Kafka: partitions and design choices
• To improve scalability: partitions are distributed across

brokers
– By distributing partitions on multiple brokers, I/O throughput

increases
– Parallel reads and writes on partitions of the same topic

• Multiple producers can write in parallel
• Multiple consumers can read in parallel

• To improve fault tolerance: each topic partition can be
replicated across a configurable number of brokers
– Driven by replication-factor (equal to total number of replicas

including the leader)
– If replication-factor = N, up to N-1 brokers can fail before

losing access to data
– Each partition has one leader broker and 0 or more followers

• followers > 0 in case of replication
Valeria Cardellini – SDCC 2023/24 40

Kafka: partition leader and followers

Valeria Cardellini – SDCC 2023/24 41

Kafka: partitions and design choices

• To simplify data consistency management: leader
handles read and write requests
– Producers read from leader, consumers write to leader
– Followers replicate the leader and act as backups
– Followers can be in-sync (i.e., fully updated replica) with

leader or out-of-sync

• To share responsibility and balance load: each broker
is leader for some of its partitions and follower for
others
– Brokers can rely on Apache Zookeeper or KRaft for

coordination

Valeria Cardellini – SDCC 2023/24 42

Kafka: producers

• Producers = data sources

• Publish data to topics of their choice
– Producer sends data directly (i.e., without any routing tier) to

the broker that is the leader for the partition

• Producer is responsible for choosing which message
to assign to which partition within the topic: how?
– Key-based partitioned, i.e., the producer uses a partition key

to direct messages to a specific partition
• E.g., if user id is the key, all data for a given user will be published in

the same partition

– Round-robin (default, if key is not specified)

• Multiple producers can write to the same partition

Valeria Cardellini – SDCC 2023/24 43

Design choice for consumers

• Push or pull model for consumers?

• Push model
– Broker actively pushes messages to consumers
– Challenging for broker to deal with different types of

consumers as it controls the rate at which data is transferred
– Need to decide whether to send a message immediately or

accumulate more data and then send

• Pull model
– Consumer is in charge of retrieving messages from broker
– Consumer has to maintain an offset to identify the next

message to be transmitted and processed
✓ Better scalability (less burden on brokers) and flexibility

(different consumers with diverse needs and capabilities)
✗ In case broker has no data, consumers may end up busy

waiting for data to arrive

Valeria Cardellini – SDCC 2023/24 44

Kafka: consumers
• Kafka uses a pull approach for consumers

kafka.apache.org/documentation.html#design_pull

• Consumer uses the offset to keep track of which
messages it has already consumed

• A partition can be consumed by
more consumers, each reading
at different offsets

• How can consumer read in a fault-tolerant way?
– Once the consumer reads message, it stores its committed

offset in a safe place (a special Kafka topic called
__consumer_offsets)

– After recovering from crash, consumer can replay messages
using committed offset

– By default, auto-commit is enabled
Valeria Cardellini – SDCC 2023/24 45

Kafka: brokers

• Kafka brokers store messages reliably on disk

• Differently from traditional queue message and
pub/sub systems, Kafka does not delete messages
after delivery

• Topics are configured with a retention time that
specifies how long messages should be stored on
disk
– Topic retention can also be specified in bytes instead of time

Valeria Cardellini – SDCC 2023/24 46

Hands-on Kafka
• Preliminary steps:

– Download and install Kafka kafka.apache.org/downloads
• Zookeeper comes included with Kafka
• Configure Kafka properties in server.properties (e.g.,
listeners and advertised.listeners)

– Start Kafka environment
Start ZooKeeper (default port: 2181)
$ zookeeper-server-start zookeeper.properties

Alternatively $ zKserver start
Start Kafka broker (default port: 9092)
$ kafka-server-start server.properties

Valeria Cardellini – SDCC 2023/24 47

Hands-on Kafka
• Let’s use Kafka CLI tools to create a topic, publish

and consume some events to/from topic and delete it

• Create a topic named test with 1 partition and non-
replicated
– bootstrap_server: specify one Kafka broker

$ kafka-topics --create --bootstrap-server localhost:9092
--replication-factor 1 --partitions 1 --topic test

• Write some events into topic

$ kafka-console-producer --bootstrap-server localhost:9092
--topic test

> first message

> another message

• Read events from beginning of topic
$ kafka-console-consumer --bootstrap-server localhost:9092
--topic test --from-beginning

Valeria Cardellini – SDCC 2023/24 48

Hands-on Kafka

• Read events from a given offset (e.g., 2) and a
specific topic partition

$ kafka-console-consumer --bootstrap-server localhost:9092
--topic test --offset 2 --partition 0

• List available topics
$ kafka-topics --list --bootstrap-server localhost:9092

• Delete topic
$ kafka-topics --delete --bootstrap-server localhost:9092
--topic test

• Stop Kafka and Zookeeper
$ kafka-server-stop
$ zookeeper-server-stop

Alternatively $ zKserver stop

Valeria Cardellini – SDCC 2023/24 49

Kafka: consumer group

• Consumer Group: set of consumers which cooperate to
consume data from some topic and share a group ID
– A Consumer Group maps to a logical subscriber
– Topic partitions are divided among consumers in the group for

load balancing and can be reassigned in case of consumer
join/leave

– Every message will be delivered to only one consumer in group
– Every group maintains its offset per topic partition

Valeria Cardellini – SDCC 2023/24 50

Kafka: consumer group

Valeria Cardellini – SDCC 2023/24 51

• How to have many consumers reading the same
messages from the topic?
– Need to use different group IDs

• Example: microservices communicate using Kafka

• How to scale?

Kafka: ordering guarantees

• Messages published by producer to topic partition will
be appended in the order they are sent

• Consumer sees records in the order they are stored
in the partition

• Strong guarantee about ordering only within a
partition
– Total order over messages within a partition, i.e., per-

partition ordering

– Kafka does not preserve message order between different
topic partitions

• However, per-partition ordering plus ability to partition
messages by key among topic partitions, is sufficient
for most applications

Valeria Cardellini – SDCC 2023/24 52

Kafka: delivery semantics

• Delivery guarantees supported by Kafka
– At-least-once (default): guarantees no message loss, but

messages may be duplicated and out-of-order (with respect
to producer)

• Producer: wait for ack from partition leader; if none, retry
• How? Set acks=1
• Consumer: commit offset after processing the message

Valeria Cardellini – SDCC 2023/24 53

acks=1

Kafka: delivery semantics
• Delivery guarantees supported by Kafka

– Exactly-once: guarantees no message loss, no duplicates
and partition-level ordering, at the cost of higher latency and
lower throughput

• Producer: wait for ack from all in-sync partition replicas
• How? Set acks=all on producer
• Requires also producer ID and message sequence number in

each message sent from producer (aka idempotent producer),
to detect and avoid duplicates and maintain log order

• Requires also committed offsets and in-sync replicas
• Not fully exactly-once

Valeria Cardellini – SDCC 2023/24 54

acks=all

Kafka: delivery semantics

• Delivery guarantees supported by Kafka
– User can also implement at-most-once: messages may be

lost but are never re-delivered
• Producer: disable retries (i.e., acks=0)
• Consumer: commit offset before processing the message

• Take-away message: you need to choose the
semantic that makes sense for your application
context

See kafka.apache.org/documentation/#semantics

Valeria Cardellini – SDCC 2023/24 55

Kafka: fault tolerance

• Kafka replicates topic partitions for fault tolerance
– Leader coordinates to update followers when new

messages arrive
– The set of in-sync replicas is known as ISR

• In case of leader crash, a follower can be elected
as new leader with the help of Zookeeper or KRaft

Valeria Cardellini – SDCC 2023/24 56

Kafka: fault tolerance

• Kafka makes a message available for consumption
only after all replicas in the ISR for that partition
have applied it to their log
– Messages may not be immediately available for

consumption: tradeoff between consistency and availability

• Producers have the option of either waiting for the
message to be committed or not (by setting acks)
– Tradeoff between latency and durability

• Kafka retains messages for a configured period of
time
– To free up disk space, messages have a retention time;

upon expiry, messages are marked for deletion
– Alternatively, retention can be based on message size

Valeria Cardellini – SDCC 2023/24 57

Kafka and ZooKeeper
• Zookeeper: hierarchical, distributed key-value store

zookeeper.apache.org
– Coordination service for distributed systems, which provides

facilities for supporting various coordination tasks, including
locking, leader election, monitoring

– ZooKeeper maintains a namespace, organized as a tree
– Simple operations on the tree: creating and deleting nodes,

as well as reading and updating the data contained in a node
– Used within many open-source distributed systems

• Kafka uses ZooKeeper for metadata management

- List of brokers in Kafka cluster

- Configuration for topics and permissions

- Leader election: to determine the leader of a given partition

- Zookeeper allows Kafka to know about changes (e.g., new
topic, deleted topic, broker crashes, broker restarts)

Valeria Cardellini – SDCC 2023/24 58

From ZooKeeper to KRaft

• Zookeeper cons
✗ Different system for metadata management and consensus
✗ Can become bottleneck as Kafka cluster grows

• New release: Zookeeper Apache Kafka Raft (KRaft)
– Kafka cluster metadata is stored in Kafka cluster itself
✓ Simpler architecture
✓ Faster and more scalable metadata update operations
– Metadata is also replicated to all brokers, making failover

from failure faster
– Consensus protocol based on Raft

Valeria Cardellini – SDCC 2023/24 59

Kafka: APIs

• 5 core APIs (Java and Scala only)

• Producer API: to publish data to
Kafka topics

• Consumer API: to read data from
Kafka topics

• Kafka Connect API: to build and
run reusable connectors
(producers or consumers) that
connect Kafka topics to apps or
external systems (source or sink)

Valeria Cardellini – SDCC 2023/24

⎼ Many pre-built connectors you can directly use: AWS S3,
RabbitMQ, MySQL, Postgres, AWS Lambda, …

kafka.apache.org/documentation/#api

60

Kafka: APIs

• Kafka Streams API: allows transforming streams of
data from input topics to output topics
– Kafka is an event streaming platform (not only pub-sub)

• Admin API: to manage and inspect topics, brokers,
and other Kafka objects

Valeria Cardellini – SDCC 2023/24 61

Kafka: client library

• Kafka officially provides only SDK for Java

• For other languages, implementations of client library
provided by community, including
– Go

github.com/confluentinc/confluent-kafka-go
github.com/segmentio/kafka-go

– Python
github.com/confluentinc/confluent-kafka-python

Valeria Cardellini – SDCC 2023/24 62

Messaging protocols

• Not only systems but also open standard protocols
for message queues
– AMQP Advanced Message Queueing Protocol

• Binary protocol
– MQTT Message Queue Telemetry Transport

• Binary protocol
– STOMP Simple (or Streaming) Text Oriented Messaging

Protocol
• Text-based protocol

• Goals:
– Platform- and vendor-agnostic
– Provide interoperability between different MOMs

Valeria Cardellini – SDCC 2023/24 63

Messaging protocols and IoT

• Often used in Internet of Things (IoT)
– Use message queueing protocol to send data from sensors

to services that process those data

– Exploit all MOM advantages seen so far:
• Decoupling
• Resiliency: MOM provides a temporary message storage
• Traffic spikes handling: data will be persisted in MOM and

processed eventually

Valeria Cardellini – SDCC 2023/24 64

AMQP: characteristics
• Open-standard protocol for MOM, supported by

industry
– Current version: 1.0 docs.oasis-open.org/amqp/core/v1.0/amqp-core-

complete-v1.0.pdf

– Approved in 2014 as ISO and IEC International Standard

• Binary, application-level protocol
– Based on TCP protocol with additional reliability

mechanisms (delivery semantics)

• Programmable protocol
– Entities and routing schemes are primarily defined by apps

• Implementations
– Apache ActiveMQ, RabbitMQ, Apache Qpid, Azure Event

Hubs, Pika (Python implementation), …

Valeria Cardellini – SDCC 2023/24 65

AMQP: model
• AMQP architecture involves 3 main actors:

– Publishers, subscribers, and brokers

• AMQP entities (within broker): queues, exchanges and
bindings
– Messages are published to exchanges (like post offices or

mailboxes)
– Exchanges distribute message copies to queues using rules

called bindings

– AMQP brokers either push messages to consumers
subscribed to queues, or consumers pull messages from
queues on demand

Valeria Cardellini – SDCC 2023/24
www.rabbitmq.com/tutorials/amqp-concepts.html

66

AMQP: routing
• Different types of

exchanges that route
messages differently
– Direct exchange: delivers

messages to queues based
on message routing key

– Fanout exchange: delivers
messages to all queues that
are bound to it

Valeria Cardellini – SDCC 2023/24 67

AMQP: routing

• Different types of exchanges that route messages
differently
– Topic exchange: delivers messages to one or many queues

based on topic matching
• Often used to implement various publish/subscribe pattern

variations
• Commonly used for multicast routing of messages
• Example use: distributing data relevant to specific geographic

location (e.g., points of sale)
– Headers exchange: delivers messages based on multiple

attributes expressed as headers
• To route on multiple attributes that are more easily expressed as

message headers than routing key

Valeria Cardellini – SDCC 2023/24 68

AMQP: messages

• AMQP defines two types of messages:
– Bare messages, supplied by sender
– Annotated messages, seen at receiver and added by

intermediaries during transit

• Message header conveys delivery parameters
– Including durability requirements, priority, time to live

Valeria Cardellini – SDCC 2023/24

Annotated message

69

Multicast communication

• Multicast communication: group communication
pattern in which data is sent to multiple receivers (but
not all) at once
– Can be one-to-many or many-to-many
– Broadcast communication: special case of multicast, in which

data is sent to all receivers
– Examples of one-to-many multicast apps: video/audio resource

distribution, file distribution
– Examples of many-to-many multicast apps : conferencing tools,

multiplayer games, interactive distributed simulations

• Cannot be implemented as unicast replication (source
sends as many copies as the number of receivers): lack
of scalability
– Solution: replicate only when needed

Valeria Cardellini – SDCC 2023/24 70

Types of multicast

• How to realize multicast?
– Network-level multicast (IP-level)

• Packet replication and routing managed by network
routers: IP Multicast

✗Limited usage

– Application-level multicast
• Replication and routing managed by hosts

Valeria Cardellini – SDCC 2023/24 71

Application-level multicast

• Basic idea:
– Organize nodes into an overlay network
– Use overlay network to disseminate data
– Can be structured or unstructured

• Structured application-level multicast
– Explicit communication paths
– How to build structured overlay network?

• Tree: only one path between each pair of nodes
• Mesh: multiple paths between each pair of nodes

• Unstructured application-level multicast

– Based on flooding or random walk
– Based on gossiping

Valeria Cardellini – SDCC 2023/24 72

Structured application-level multicast: tree
• Let’s consider how to build an application-level

multicast tree in Scribe
– Scribe: pub/sub system with decentralized architecture and

based on Pastry (but we use Chord as DHT)
– Assume a node wants to start a multicast session
1. Multicast initiator node generates multicast identifier mid
2. Initiator lookups succ(mid) using DHT
3. Request is routed to succ(mid), which becomes root of

multicast tree
4. If node P wants to join the tree, it executes lookup(mid)
5. When request arrives at Q:

• Q has not seen a join request for mid before ⇒ Q becomes
forwarder, P becomes Q’s child; join request is forwarded by Q

• Q knows about tree ⇒ P becomes Q’s child; no need to forward
join request anymore

Castro et al., Scribe: A large-scale and decentralised application-level multicast
infrastructure, IEEE JSAC, 2002

Valeria Cardellini – SDCC 2023/24 73

Structured application-level multicast: tree

root

join(mid)

forwarder
forwarder

Valeria Cardellini – SDCC 2023/24 74

root

forwarder
forwarder

join(mid)

Q knows about tree ⇒ P becomes Q’s
child; no need to forward join request

Q has not seen a join request for mid before ⇒
Q becomes forwarder, P becomes Q’s child;
join request is forwarded by Q

PQ

Q

P

Unstructured application-level multicast

• How to realize unstructured application-level
multicast?
✓ Flooding

• Node P sends multicast message m to all its neighbors
• In its turn, each neighbor will forward that messag (except

to P) and only if it had not seen m before
✓ Random walk

• With respect to flooding, m is sent only to one randomly
chosen node

!Gossiping

Valeria Cardellini – SDCC 2023/24 75

Gossip-based protocols

• Gossip-based protocols (or algorithms) are
probabilistic (aka epidemic algorithms)
– Gossiping effect: information can spread within a group just

as it would be in real life
– Strongly related to epidemics, by which a disease is spread

by infecting members of a group, which in turn can infect
others

• Allow information dissemination in large-scale
networks through random choice of successive
receivers among those known to sender
– Each node sends the message to a randomly chosen

subset of nodes in the network
– Each node that receives it will send a copy to another

subset, also chosen at random, and so on

Valeria Cardellini – SDCC 2023/24 76

Origin of gossip-based protocols

• Gossiping protocols proposed in 1987 by Demers et
al. in a work on data consistency in replicated
databases composed of hundreds of servers
– Basic idea: assume there are no write conflicts (i.e.,

independent updates)
– Update operations are initially performed at one replica

server
– A replica passes its updated state to only a few neighbors
– Update propagation is lazy, i.e., not immediate
– Eventually, each update should reach every replica

Demers et al., Epidemic Algorithms for Replicated Database Maintenance,
Proc. of 6th Symp. on Principles of Distributed Computing, 1987.

Valeria Cardellini – SDCC 2023/24 77

Why gossiping in large-scale DSs?

• Several attractive properties of gossip-based
information dissemination for large-scale distributed
systems
– Simplicity of gossiping algorithms
– No centralized control or management (and related

bottleneck)
– Scalability: each node sends only a limited number of

messages, independently from system size
– Reliability and robustness: thanks to message redundancy

Valeria Cardellini – SDCC 2023/24 78

Who uses gossiping? Examples

• AWS S3 “uses a gossip protocol to quickly spread
information throughout the S3 system. This allows
Amazon S3 to quickly route around failed or
unreachable servers, among other things”

• Amazon’s Dynamo uses a gossip-based failure
detection service

• BitTorrent uses a gossip-based basic information
exchange

• Cassandra uses gossip protocol for group
membership and failure detection of cluster nodes

• See gossip dissemination pattern
martinfowler.com/articles/patterns-of-distributed-systems/gossip-
dissemination.html

Valeria Cardellini – SDCC 2023/24 79

Strategies to spread updates

• Let’s consider the two principle operations

1. Anti-entropy: a node regularly picks another node
randomly and exchanges updates (i.e., state
differences), aiming to have identical states at both
afterwards

2. Rumor spreading: periodically a node which has
new or updated information (i.e., has been
contaminated) selects F (F >= 1) other peers to send
updates to (contaminating them)

Valeria Cardellini – SDCC 2023/24 80

Anti-entropy

• Goal: increase node state similarity, thus decreasing
“disorder” (reason for name!)

• Node P selects node Q randomly: how does P
update Q?

• 3 different update strategies:
choice

data

Valeria Cardellini – SDCC 2023/24 81

choice

data

choice

data

P Q

– push: P only pushes its own updates to Q

– pull: P only pulls in new updates from Q

– push-pull: P and Q send updates to each
other, i.e., P and Q exchange updates

Anti-entropy: performance

• Push-pull
– Fastest strategy: takes O(log2 N) rounds to disseminate

updates to N nodes
– Round (or gossip cycle): time interval in which every node

takes the initiative to start an exchange

Valeria Cardellini – SDCC 2023/24 82

Rumor spreading

83Valeria Cardellini – SDCC 2023/24

• A node P, having an update to report, contacts a
randomly chosen node Q and forwards the update
message to it

• If Q was already updated, P may lose interest in spreading
the update any further and with probability pstop stops
contacting other nodes

• The fraction s of oblivious nodes (that have not been
updated) is

• To improve information dissemination (especially when
pstop is high), combine rumor spreading with anti-entropy

General schema of gossiping protocol
• Two nodes P and Q, where P selects Q to exchange

information with
– P runs at each round (every Δ time units)

Active thread (node P): Passive thread (node Q):
(1) selectPeer(&Q); (1)
(2) selectToSend(&bufs); (2)
(3) sendTo(Q, bufs); -----> (3) receiveFromAny(&P, &bufr);
(4) (4) selectToSend(&bufs);
(5) receiveFrom(Q, &bufr); <----- (5) sendTo(P, bufs);
(6) selectToKeep(cache, bufr); (6) selectToKeep(cache, bufr);
(7) processData(cache); (7) processData(cache)

selectPeer: randomly select a neighbor
selectToSend: select some entries from local cache
selectToKeep: select which received entries to store into local cache;
remove repeated entries

Kermarrec and van Steen, Gossiping in Distributed Systems, ACM
Operating System Review, 2007

Valeria Cardellini – SDCC 2023/24 84

Framework of gossip-based protocols

• Simple? Not quite getting into the details…

• Some crucial aspects
– Peer selection

• E.g., Q can be uniformly chosen from set of currently available
(i.e., alive) nodes

– Data exchanged
• Exchange is highly application-dependent
• Choice of update strategy

– Data processing
• Again, highly application-dependent

Valeria Cardellini – SDCC 2023/24 85

Gossiping vs flooding: example
• Information dissemination is the classic and most

popular application of gossiping protocols in DSs
– Gossiping is more efficient than flooding

• Flooding-based information dissemination
– Each node that receives message forwards it to its

neighbors (let’s consider all neighbors, including the sender)
– Message is eventually discarded when TTL=0

Round 1 Round 2 Round 3

Sent messages: 18
Reached nodes: 8 out of 9Valeria Cardellini – SDCC 2023/24 86

Gossiping vs flooding: example

• Let’s use only rumor spreading
– Message is sent to neighbors with probability p
for each msg m

if random(0,1) < p then send m

p

p

p

p

p

p p

p

p p

p
Round 1 Round 2 Round 3

Sent messages: 11
Reached nodes: 7 out 9

Valeria Cardellini – SDCC 2023/24 87

Gossiping vs flooding
• Gossiping features

– Probabilistic
– Takes a localized decision but results in a global state
– Lightweight
– Fault-tolerant

• Flooding has some advantages
– Universal coverage and minimal state information
– … but it floods the networks with redundant messages

• Gossiping goals
– Reduce the number of redundant transmissions that occur with

flooding while trying to retain its advantages
– … but due to its probabilistic nature, gossiping cannot

guarantee that all the peers are reached and it requires more
time to complete than flooding

Valeria Cardellini – SDCC 2023/24 88

Other application domains of gossiping
• Besides information dissemination…

• Peer sampling
– How to provide every node with a list of peers to exchange

information with

• Resource management, including monitoring, in
large-scale distributed systems
– E.g., failure detection

• Distributed computations to aggregate data in very
large distributed systems (e.g., sensor networks)
– Computation of aggregates e.g., sum, average, maximum

and minimum values
– E.g., to compute average value

• Let v0,i and v0,j be the values at time t=0 stored by nodes i and j
• Upon gossip, i and j exchange their local value vi and vj and

adjust it to
v1,i, v1,j ←(v0,i + v0,j)/2

Valeria Cardellini – SDCC 2023/24 89

Two algorithms

• Let’s consider a gossiping protocol

Blind counter rumor mongering

• And a reliable multicast protocol that exploits
gossiping to achieve reliability

Bimodal multicast

Valeria Cardellini – SDCC 2023/24 90

Blind counter rumor mongering

• Why such name for this gossiping protocol?
– Rumor mongering (def: “the act of spreading rumors”, also

known as gossip): a node with “hot rumor” will periodically
infect other nodes

– Blind: loses interest regardless of message recipient (why)
– Counter: loses interest after some contacts (when)

• Two parameters to control gossiping
– B: max number of neighbors a message is forwarded to
– F: number of times a node forwards the same message to its

neighbors

Valeria Cardellini – SDCC 2023/24 91

Portman and Seneviratne, The cost of application-level broadcast in a
fully decentralized peer-to-peer network, ISCC 2002

Blind counter rumor mongering
• Gossip protocol
A node n initiates a broadcast by sending message m to B of its

neighbors, chosen at random
When node p receives a message m from node q
If p has received m no more than F times
p sends m to B uniformly randomly chosen neighbors that p
knows have not yet seen m
– Note that p knows if its neighbor r has already seen the

message m only if p has sent it to r previously, or if p
received the message from r

• Performance (B=F=2) with respect to flooding
– Lower number of messages (~50%)
– Not complete coverage (~90%)
– Slower (~2x)

Valeria Cardellini – SDCC 2023/24 92

Bimodal multicast

• Aka pbcast (probabilistic broadcast)

• Composed by two phases:
1. Message distribution: a process sends a multicast

message with no particular reliability guarantees
2. Gossip repair: after a process receives a message, it

begins to gossip about the message to a set of peers
• Gossip occurs at regular intervals and offers the processes a

chance to compare their states and fill any gaps in the
message sequence

• Used by Fastly CDN for cache invalidation

Birman et al., Bimodal multicast, ACM Trans. Comput. Syst., 1999
Valeria Cardellini – SDCC 2023/24 93

Bimodal multicast: message distribution

• Start by using unreliable multicast to rapidly distribute
messages

• Partial distribution of multicast messages may occur

– Some message may not get through

– Some process may be faulty

Send messages

: failed
messages

p1

p2

p3

p4

p5

p6
time

Valeria Cardellini – SDCC 2023/24 94

Bimodal multicast: gossip repair

• Periodically (e.g., every 100 ms) each
process sends a digest describing its state to
some randomly selected process

• Digest only identifies messages, without
including them

Send digests
p1

p2

p3

p4

p5

p6

Valeria Cardellini – SDCC 2023/24 95

Bimodal multicast: gossip repair

• Recipient checks gossip digest against its
own history and solicits a copy of any missing
message from the process that sent the
gossip

Solicit message copies
p1

p2

p3

p4

p5

p6

Valeria Cardellini – SDCC 2023/24 96

Bimodal multicast: gossip repair

• Processes reply to solicitations received
during a gossip round by retransmitting the
requested message

• Some optimizations (not examined)

Send message copies

p1

p2

p3

p4

p5

p6

Valeria Cardellini – SDCC 2023/24 97

Bimodal multicast: why “bimodal”?
• Are there two phases?

• Nope; description of dual “modes” of result

Pbcast bimodal delivery distribution

1.E-30

1.E-25

1.E-20

1.E-15

1.E-10

1.E-05

1.E+00

0 5 10 15 20 25 30 35 40 45 50

number of processes to deliver pbcast

p{
#p

ro
ce

ss
es

=k
}

1. pbcast is almost always
delivered to most or to
few processes and
almost never to some
processes
Atomicity = almost all or
almost none

2. A second bimodal
characteristic is due to
delivery latencies, with
one distribution of very
low latencies (messages that arrive without loss in the first
phase) and a second distribution with higher latencies
(messages that had to be repaired in the second phase)

Either sender
fails…

… or data gets
through with

high probability

Valeria Cardellini – SDCC 2023/24 98

Publish-subscribe: subscription

• A subscriber specifies in which events it is interested
(subscription S)

• When a publisher publishes a notification N we need
to see whether S matches N

• Challenge: implement the match function in a
scalable manner

Valeria Cardellini - SDCC 2023/24 99

Distributed event matching:
centralized architecture

• Naive solution: centralized architecture
– Centralized server handles all subscriptions and

notifications

• Centralized server:
– Handles subscriptions from subscribers
– Receives events from publishers
– Checks events against subscriptions
– Notifies matching subscribers

✓ Simple to realize and feasible for small-scale
deployments

✗ Scalability

✗ SPOF

Valeria Cardellini – SDCC 2023/24 100

Distributed event matching:
distributed architecture

• How can we address scalability through distribution?

• Simple solution: partitioning

• Master/worker pattern (i.e., hierarchical architecture):
master distributes matching across multiple workers
– Each worker stores and handles a subset of subscriptions
– How to partition?

• Simple for topic-based pub/sub: use hashing on topics’ names
for mapping subscriptions and events to workers

✗ Single master

• Alternatively, avoid single master and use a set of
distributed servers among which work is spread
– Organized in a flat architecture, hashing can still be used
– Example: Kafka

Valeria Cardellini – SDCC 2023/24 101

Distributed event matching:
distributed architecture

• Other solutions: decentralized servers organized into
an overlay network

• How to route notifications to subscribers?

1. Unstructured overlay: use flooding or gossiping to
disseminate notifications
– Store a subscription only at one server, while disseminating

notifications to all servers: in this way, matching is distributed
across the servers

– Selective routing may help to avoid disseminating
notifications to all servers

2. Structured overlay
– Example: Scribe

Valeria Cardellini – SDCC 2023/24 102

References
• Chapter 4 and Section 5.6 of van Steen & Tanenbaum book

• RabbitMQ, www.rabbitmq.com
• RabbitMQ tutorials, www.rabbitmq.com/tutorials

• Apache Kafka documentation, kafka.apache.org/documentation
• Kreps et al., Kafka: A Distributed Messaging System for Log

Processing, NetDB’11
• Sax, Apache Kafka, Encyclopedia of Big Data Technologies,

Springer, 2018

• Eugster et al., From epidemics to distributed computing, IEEE
Computer, 2004

• Birman et al., Bimodal multicast, ACM TCS 1999
• Portmann and Seneviratne, The cost of application-level

broadcast in a fully decentralized peer-to-peer network, ISCC
2002

Valeria Cardellini - SDCC 2023/24 103

