TOR VERGATA Macroarea di Ingegneria

CNiveRsitA prorssronror noms Dipartimento di Ingegneria Civile e Ingegneria Informatica

Consistency and Replication

Corso di Sistemi Distribuiti e Cloud Computing
A.A. 2023/24

Valeria Cardellini

Laurea Magistrale in Ingegneria Informatica

Pros of replication
Why replicate data?

« To increase DS availability when servers fail or
network is partitioned
— p = probability that 1 server fails
— p" = probability that n servers fail

— 1-p" = availability of service/system with n servers
* p=5% and n=1 => service is available 95% of time
* p=5% and n=3 => service is available 99.9875% of time

 To increase DS fault tolerance

— Under the fail-stop model, if up to k of k+1 servers crash, at
least one is alive and can be used

— Protect against corrupted data

« To improve DS performance through scalability
— Scale with size and geographical areas

Valeria Cardellini - SDCC 2023/24 1

Cons of replication

« What does data replication entail?
— Having multiple copies of the same data

* We need to keep replicas consistent
— When one copy is updated we need to ensure that the other

copies are updated as well; otherwise the replicas will no longer

be the same
You (Roma) % >
x.write(5)
Friend (NY) e >
x.write(2)
/JI OOOOOOOOOO

DDDDDD

DC in North Carolina
Valeria Cardellini - SDCC 2023/24

Consistency issues

« Consistency maintenance is itself an issue
 How and when to update replicas?

» How to avoid significant performance loss due
to consistency, especially in large scale DS?

— Remember that latency is non-negligible...

* Inter-data center latency: from 10 ms to 250 ms

https://medium.com/@sachinkagarwal/public-cloud-inter-reqgion-
network-latency-as-heat-maps-134e22a5ff19

 Even inside data center: ~1 ms

— and may seriously impact on performance

* Amazon said: just an extra one tenth of second (i.e., 100
ms) on the response times will cost 1% in sales
» Google said: a half a second (i.e., 500 ms) increase in
latency will cause traffic to drop by a fifth
Valeria Cardellini - SDCC 2023/24

Consistency: what we need

» To keep replicas consistent, we generally need to
ensure that all conflicting operations on the same data
are done in the the same order everywhere

« Conflicting operations (from transactions world):

— Read-write conflict: a read operation and a write
operation act concurrently
— Write-write conflict: two concurrent write operations

« Guaranteeing global ordering on conflicting operations
may be a costly operation (since requires global
synchronization), thus downgrading scalability

« Solution: weaken consistency requirements so that
hopefully global synchronization can be avoided and we
get a “consistent” and efficient system

Different consistency models

Valeria Cardellini - SDCC 2023/24

Consistency models

» Distributed data store: distributed collection of
storage, physically distributed and replicated across
multiple processes

— E.g., distributed database, distributed file system, Cloud

storage Process Process Process
Local copy

Distributed data store

» Consistency model (or consistency semantics)

— Contract between a distributed data store and processes, in
which the data store specifies precisely what the results of

read and write operations are in the presence of concurrency
Valeria Cardellini - SDCC 2023/24

Consistency models

 All consistency models try to return the last write
operation on the data as a result of data read
operation

* A range of consistency models: differ in how the last
write operation is determined/defined and with
respect fto whom

« Data-centric consistency models
— Goal: provide a system-wide view of a consistent data store

» Client-centric consistency models

— Goal: provide a view of a consistent data store at a single
client level

— Faster but less accurate consistency management than
data-centric consistency
Valeria Cardellini - SDCC 2023/24

Choosing a consistency model

» No right or wrong consistency model
— There is no unique general solution (i.e., consistency model
that fits well all situations) but rather multiple solutions, that are
suitable to applications with different consistency requirements
» Non-trivial trade-off among easy of programmability,
cost/efficiency, consistency and availability

— Low consistency is cheaper but it might result in higher
operational cost because of, e.g., overselling of products in a

Web shop
* Not all data need to be treated at the same level of
consistency

— Consider a Web shop: credit card and account balance
information require higher consistency levels, whereas user
preferences (e.g., “users who bought this item also bought... ”)
can be handled at lower consistency levels

Valeria Cardellini - SDCC 2023/24

Data-centric consistency models

« Consistency models describe how and when different
data store replicas see operations order

— Replicas must agree on the global ordering of operations
before making them persistent

Valeria Cardellini - SDCC 2023/24

Data-centric consistency models we study

« Main consistency models based on ordering of read
and write operations on shared and replicated data

Slower read and Strict Stronger consistency
write operations models
Linearizability
Sequential
Faster read and Causal Weaker consistency
write operations ‘ Eventual models

« Strict consistency: the strongest model

 Linearizability, sequential, causal and eventual
consistency: progressive weakening of strict
consistency

Valeria Cardellini - SDCC 2023/24

Modelli di consistenza: notazione

« Rappresentiamo il comportamento dei processi che
eseguono operazioni di lettura o scrittura sui dati
condivisi

— W,)(x)a: operazione di scrittura da parte del processo P; sul
dato x con valore scritto a

— Ri(x)b: operazione di lettura da parte del processo P; sul dato x
con valore letto b

P1: W(x)a
P2: R(x)a

Valeria Cardellini - SDCC 2023/24

Consistenza stretta: il modello ideale

10

Qualsiasi read su un dato x ritorna un valore
corrispondente al risultato piu recente della write su x

Consistenza stretta Violazione della consistenza stretta
P1: W(x)a P1: W(x)a |

P2: R(x)a P2: W R(x)a

» Write eseguita su tutte le repliche come singola
operazione atomica

- E’ come se ci fosse una copia unica, ovvero la write € vista
istantaneamente da tutti i processi

» La consistenza stretta impone un ordinamento
temporale assoluto di tutti gli accessi all’archivio di dati
e richiede un clock fisico globale

- Nessuna ambiguita su “piu recente”

Valeria Cardellini - SDCC 2023/24

1

Implementing strict consistency

P1: W(x)a
P2: R(x)a

 To achieve it, one would need to ensure:

— Each read must be aware of, and wait for, each write
* Ry(x)a aware of W,(x)a
* Real-time clocks must be strictly synchronized

— But time between instructions << communication time
» Therefore, strict consistency is tough to implement
efficiently
 Solution: linearizability and sequential consistency

— Slightly weaker models than strict consistency

— Still provide the illusion of single copy

» From the outside observer, the system should (almost) behave
as if there’s only a single copy

Valeria Cardellini - SDCC 2023/24

Consistenza sequenziale

12

Il risultato di una qualunque esecuzione e uguale a
quello ottenuto se le operazioni (di read e write) da parte
di tutti i processi sull’archivio di dati fossero esequite

— secondo un ordine sequenziale

— e le operazioni di ogni singolo processo apparissero in questa
sequenza nell’ordine specificato dal suo programma

* Quando i processi sono in esecuzione concorrente,
qualunque alternanza (interleaving) di operazioni €
accettabile (purché rispetti 'ordine di programma), ma
tutti i processi vedono la stessa alternanza di
operazioni

Valeria Cardellini - SDCC 2023/24

13

Sequential consistency: example

» A sequentially consistent data store

P1: W(x)a

P2: W(x)b

P3: R(x)b R(x)a
P4: R(x)b R(x)a

» Allowable operation interleavings that satisfy the
program order of each process
Wa(x)b R3(x)b Ry(x)b W(x)a Ra(x)a Rs(x)a
Wa(x)b Ra(x)b Ra(x)b W4(x)a Re(x)a Rs(x)a
Wa(x)b R3(x)b Ry(x)b W(x)a Rs(x)a Ra(x)a
Wa(x)b R4(x)b Ra(x)b W(x)a Rs(x)a Ra(x)a

Valeria Cardellini - SDCC 2023/24 14

Sequential consistency: example

« A data store that is not sequentially consistent

P1: W(x)a

P2: W(x)b

P3: R(x)b R(x)a
P4: Rix)a R(x)b

\

P3 and P4 read write
operations performed by P1
and P2 in a different order

« We cannot find an allowable interleaving, e.g.,

— W, (x)a Rs(x)a Rs(x)a Wy(x)b R3(x)b R4(x)b violates P3
program order

— Wy(x)b R3(x)b R4(x)b W,(x)a Rs(x)a R,(x)a violates P4
program order

Valeria Cardellini - SDCC 2023/24 15

Sequential consistency: properties

« Weaker model than strict consistency
— No global clock

 Read/write should behave as if there were

— a single client making all the (combined) requests in a given
sequential order

— over a single copy

Valeria Cardellini - SDCC 2023/24

Linearizability

16

Each operation should appear to take effect
instantaneously at some point between its start and
completion

» All operations (OP = read, write) receive a global
timestamp using a synchronized clock (e.g., NTP)
sometime during their execution

» Requirements for sequential consistency, plus
operations are ordered according to a wall-clock time

— Timestamp-based ordering: if tsop1(X) < tsor2(y), then OP1(x)
appears before OP2(y) in the order

» Therefore, linearizability is weaker than strict
consistency, but stronger than sequential consistency

Strict > Linearizability > Sequential

Valeria Cardellini - SDCC 2023/24

17

Linearizability

» Linearizability (like sequential consistency) provides
single-client, single-copy semantics
— Plus: a read returns the most recent write, regardless of the

clients, according to their actual-time ordering
W(x)a
Server 1
]W \ Ack when “committed
Client 1 Write appears everywhere
Server 2 R(X)NIL | R(x)a

* However, linearizability does not mandate any
particular order for overlapping operations

- You can implement a particular ordering strategy

- As long as there is a single, interleaving ordering for
overlapping operations, it’s fine
Valeria Cardellini - SDCC 2023/24

Linearizability vs sequential consistency

18

« Both provide single-client, single-copy semantics

» With sequential consistency: freedom to interleave
operations coming from different clients, as long as
ordering from each client is preserved

« With linearizability: interleaving across all clients is
pretty much determined on the basis of time

Valeria Cardellini - SDCC 2023/24

19

Performance of linearizability

You (Roma) °

x.write(5)
Friend (NY)

A 4

@ o
x.write(2) read(x) > 5

* How to implement linearizability?

— Clients send all read/write requests to Ireland datacenter
(primary)

v

— lIreland datacenter propagates write to North Carolina datacenter

— Read never returns until propagation is done
— Correctness (linearizability)? Yes
— Performance? No, must wait for WAN write

 Linearizability typically requires complete synchronization

of multiple copies before a write operation returns

« It makes less sense in global setting, but still makes
sense in local setting (e.g., within a single datacenter)

Valeria Cardellini - SDCC 2023/24

Performance of sequential consistency

20

» Sequential consistency is programmer-friendly, but
difficult to implement efficiently

— Writes should be applied in the same order across different
copies to give the illusion of a single copy

* How to implement sequential consistency? Using:
— A global sequencer (centralized)
— A totally ordered multicast protocol (decentralized)

» We will study its implementation (i.e., primary-based
and replicated-write protocols)

Valeria Cardellini - SDCC 2023/24

21

Casual and eventual consistency

» Even more relaxed consistency models are often
used in order to achieve better performance, lower
cost and better availability

— Causal consistency
— Eventual consistency

» But we lose the illusion of a single copy

» Causal consistency

— We care about ordering causally-related write operations
correctly (e.g., Facebook post-like pairs)

» Eventual consistency

— As long as we can say all replicas converge to the same
copy eventually, we're fine

Valeria Cardellini - SDCC 2023/24 22

Casual consistency: informal example

» Consider these posts on a social network:
1. Oh no! My cat just jumped out the window.
2. [a few minutes later] Whew, the catnip plant broke her fall.
3. [reply from a friend] | love when that happens to cats!

il
Sr {

» Causality violation could result someone else reads:
1. Oh no! My cat just jumped out the window.
2. [reply from a friend] | love when that happens to cats!
3. Whew, the catnip plant broke her fall.

Valeria Cardellini - SDCC 2023/24
23

Consistenza causale

Operazioni di write che sono potenzialmente in relazione
di causa/effetto devono essere viste da tutti processi nello
stesso ordine. Operazioni di write concorrenti possono
essere viste in ordine differente da processi differenti

— In relazione di causal/effetto:

» read seguita da write sullo stesso processo: write &
(potenzialmente) causalmente correlata con read

» write di un dato seguita da read dello stesso dato su processi
diversi: read € (potenzialmente) causalmente correlata con write

» Si applica la proprieta transitiva: se P1 scrive x e P2 legge x e usa
il valore letto per scrivere y, la lettura di x e la scrittura di y sono
causalmente correlate

— Se due processi scrivono simultaneamente, le due write non
sono causalmente correlate (write concorrenti)

» Indebolimento della consistenza sequenziale

— Distingue tra operazioni che sono potenzialmente in relazione di
Valeria Cardellin GBUSaBHetto e quelle che non lo sono

24

Consistenza causale: esempi

« Esempio di sequenza valida in un archivio di dati
causalmente consistente, ma non in un archivio
sequenzialmente consistente

— W,(x)b e W,(x)c sono write concorrenti: possono essere
viste dai processi in ordine differente

— W;(x)a e W5(x)b sono write in relazione di causa/effetto

e < wiae)
IIZ; V&Ha—éwgg)/

R(x)a R(x)c R(x)b :
P4: R(x)a i R(x)b R(x)c

No consistenza sequenziale

Valeria Cardellini - SDCC 2023/24
25

Causal consistency: examples

« Example 1: sequence of operations which is not valid
in a causally consistent data store

— W,(x)a and W,(x)b are causally related: must be seen in
same order by all processes

P1yW(x)a

P2: R(xa W(x)b

P3: TRXb RXa :

P4: ‘Rxa Rxpb : Different order

« Example 2: sequence of operations which is valid in
a causally consistent data store

— W;(x)a and W,(x)b are concurrent: can be seen in different
order

— But not valid in a sequentially consistent data store
Pm
P2: S~ W(x)b)

Valeria Cardellini - SDCC 2023/24 P3:
P4: R(x)a R(x)b 26

Implementing causal consistency

» We lose the illusion of a single copy

— Concurrent writes can be applied in different orders
across copies

— Causally-related writes do need to be applied in the same
order for all copies
» Thanks to relaxed requirements, latency is more
tractable than in sequential consistency

» However, we need a mechanism to keep track of
causally-related writes (i.e., which processes have
seen which writes)

— Build and maintain a dependency graph showing which
operations depend on which other operations

— Or use vector clocks: more amenable for computation

Valeria Cardellini - SDCC 2023/24
27

Sintesi dei modelli di consistenza

« Modelli di consistenza data-centrici basati
sull’ordinamento delle operazioni

Consistenza

Descrizione

Stretta

Tutti i processi vedono gli accessi condivisi nello
stesso ordine assoluto di tempo

Linearizzabile

Tutti i processi vedono gli accessi condivisi nello
stesso ordine: gli accessi sono ordinati in base ad un
timestamp globale (non unico)

Sequenziale Tutti i processi vedono gli accessi condivisi nello
stesso ordine; gli accessi non sono ordinati
temporalmente

Causale Tutti i processi vedono gli accessi condivisi correlati

causalmente nello stesso ordine

Valeria Cardellini - SDCC 2023/24

Relaxing consistency even further

28

» Let’s just do best effort to make things consistent:
eventual consistency
— Popularized by CAP theorem

Consistenza finale

* |n un archivio di dati distribuito caratterizzato da:

— Mancanza di aggiornamenti simultanei (conflitti write-write)
o comungue loro facile soluzione in caso di conflitto

— Forte prevalenza di letture rispetto alle scritture (mostly
read)

* si puo adottare un modello di consistenza rilassato,
detto consistenza finale (eventual consistency)

— Cosa garantisce: se non si verificano aggiornamenti, tutte
le repliche (distribuite geograficamente) diventano
gradualmente consistenti entro una finestra temporale
(detta inconsistency window)

— In assenza di fallimenti, 'ampiezza dell'inconsistency
window dipende da: latenza di comunicazione, numero di
repliche, carico del sistema

Valeria Cardellini - SDCC 2023/24

30

Eventual consistency vs. strong consistency

Data Center 1 Data Center 2 _ Eventual Cons|stency
T___Tu Replicate .
VA e l - Replicas are always
__________ S available to read
e e _
N | Xod | - But some replica (e.g., C)
o Jd Jd may be inconsistent with
* * o the latest write

Data Center 1 Data Center 2

Strong consistency (e.qg., m—) oo
linearizability) E e |
- Replicas are always 0L £
i | k f | lock fe
consistent e g A
- But replicas are not J J Resders e ke
available until the update |—_—, I:l |:|
completes —_— —_—

Valeria Cardellini - SDCC 2023/24

31

Consistenza finale: vantaggi e svantaggi

« Vantaggi:

- Modello di consistenza semplice e poco costoso da
implementare

- Letture e scritture veloci sulla replica locale

- Ad es. usato nel DNS: il name server autoritativo aggiorna
un dato resource record, altri name server lo memorizzano
per la durata del TTL

» Svantaggi
- No illusione di avere una singola copia

- Possibile inconsistenza (staleness) dei dati causata da
scritture conflittuali: occorre risolvere il conflitto tramite un
algoritmo di riconciliazione

Valeria Cardellini - SDCC 2023/24

Consistenza finale: vantaggi e svantaggi

32

» Svantaggi

» Costo di garantire un modello di consistenza piu forte ricade
sullo sviluppatore dell’applicazione

- Lo sviluppatore deve sapere quale grado di consistenza viene
offerto dal sistema sottostante I'applicazione

- Con la consistenza finale, pud accadere che una read non
restituisca il valore della write piu recente: lo sviluppatore deve
decidere se tale inconsistenza & accettabile per I'applicazione

Valeria Cardellini - SDCC 2023/24

33

Eventual consistency: reconciliation

» Which strategy to decide how to reconcile conflicting
versions of the same data that have diverged due to
concurrent updates?

— A widespread strategy is last write wins

» Tag data with vector clock as timestamp and use vector clock
to capture causality between different versions of data

* Popular solution in many systems (e.g., Cassandra)
— An alternative is to push the complexity of conflict resolution
to the application itself (e.g., Amazon Dynamo) which
invokes a user-specified conflict handler

 When to reconcile?

— Usually on read (e.g., Amazon Dynamo) so to provide an
“always-writable” experience (but slows down read)

— Alternatives are: on write (reconcile during write, slowing
down it) and asynchronous repair (correction is not part of
read or write op)

Valeria Cardellini - SDCC 2023/24

Consistenza finale e SD

34

» Modello di consistenza frequentemente adottato in
sistemi distribuiti a larga scala per servizi di storage e
data store NoSQL

- Es.: Amazon Dynamo, AWS S3, CouchDB, Dropbox, git,
iPhone sync

V. Wogels, Eventually consistent, ACM Communications, 2009.
Valeria Cardellini - SDCC 2023/24

35

Consistency and network partitions

» Main problem is network partitions

Client + front end Client + front end

Network
withdraw(B, 4) . T partition
deposit(B,3);

Replica managers

Valeria Cardellini - SDCC 2023/24

Consistency and network partitions

36

« Dilemma with network partitions

— To keep replicas consistent, you need to block
waiting for replicas update
* To outside observer, system appears to be unavailable

— If you don'’t block and still serve requests from the
two partitions, then replicas will diverge
+ System is available, but weaker consistency

* Which choice? CAP theorem explains this
dilemma

Valeria Cardellini - SDCC 2023/24

37

CAP theorem

» Which kind of consistency in a large scale distributed
system?

e CAP theorem

— Conjecture first proposed by E. Brewer in 2000 and formally
proved by S. Gilbert and N. Lynch in 2002 under certain
conditions

* Any networked shared-data system can have at most
two of the three desirable properties at any given time:
- Consistency (C): have a single up-to-date copy of data
“All the clients see the same view, even in presence of updates.”
- Availability (A) of that data (for updates)
“All clients can find some replica of data, even in presence of failure.”
- Tolerance to network partitions (P)
“The system property holds even if the system is partitioned.”
Brewer’s talk at PODC 2000 http://bit.ly/2sVsYYv

E. Brewer, “CAP twelve years later: how the “rules” have changed”, IEEE Comp.,
Feb. 2012. Valeria Cardellini - SDCC 2023/24 38

CAP theorem

onsistency vailability

Tolerance to network Theorem: You can have at
artitions most two of these properties
for any shared-data system

PODC Keynote, July 19, 2000

Valeria Cardellini - SDCC 2023/24
39

Why is partition-tolerance important?

* Network partitions can occur across data centers
when Internet gets disconnected

- Internet router outages As result of partition, network can lose

- Under-sea cables cut arbitrarily many messages sent from one

_ DNS not working node to another

* Network partitions can also occur within a datacenter
(e.g., rack switch outage), but less frequently

« Still desire distributed system to continue functioning
normally under network partitions — fix P

» Therefore, consistency and availability cannot be
achieved at the same time when partition occurs
» Which one to give up? Consistency or Availability?
It's a design choice

Valeria Cardellini - SDCC 2023/24
40

CAP and network partitions

« If consistency is priority, forfeit
availability: CP system

« If availability is priority, forfeit
consistency: AP system

— Use a relaxed consistency model:
eventual consistency

Valeria Cardellini - SDCC 2023/24
41

CAP and network partitions

« When using CP and AP systems, the developer
needs to be aware of what system is offering

» CP system: may not be available to take a write

— If write fails because of system unavailability, the developer
has to decide what to do with the data to be written

« AP system: may always accept a write, but under
certain conditions a read will not reflect the result of
a recently completed write

— The developer has to decide whether the client requires
access to the absolute latest update all the time

Valeria Cardellini - SDCC 2023/24

CAP: example

42

» The booking system of Ace Hotel in New York uses a
replicated database with master server located in
Mumbai and replica server in London

* Ann is trying to book a room on the server located in
London

» Pathin is trying to do the same on the server located
in Mumbai

» There is only a room available and the network link
between the two servers breaks

Ann E -E‘Pathin
e d
W S~

Valeria Cardellini - SDCC 2023/24

43

CAP: example

» CA system: neither user can book any hotel room
— No tolerance to network partitions

» CP system:
— Pathin can book the room
— Ann can see the room information but cannot book it

» AP system: both servers accept the room booking
— Overbooking!

 Remember that CAP choice depends on application
requirements
— Blog different from financial exchange or shopping cart

Valeria Cardellini - SDCC 2023/24

ACID vs BASE

44

» ACID and BASE: two design philosophies at
opposite ends of the CA spectrum
« ACID (Atomicity, Consistency, Isolation, Durability)
- Pessimistic approach: prevent conflicts from occurring

- Traditional approach in relational DBMSs: Postgres,
MySQL, ... are examples of CA systems

- But ACID does not scale well when handling petabytes of
data (remember of latency!)

Valeria Cardellini - SDCC 2023/24

45

BASE

« BASE (Basically Available, Soft state, Eventual
consistency)

Optimistic approach: let conflicts occur, but detect them and
take action to sort them out
Basically available: the system is available most of the time
and there could exist a subsystem temporarily unavailable
Soft state: data is not durable in the sense that its persistence
is in the hand of the developer that must take care of
refreshing it

» Datais durable if its changes survive failures and recoveries
Eventually consistent. the system eventually converges to a
consistent state

« Soft state and eventual consistency work well in the
presence of partitions and thus promote availability

» BASE is often adopted in NoSQL data stores

Valeria Cardellini - SDCC 2023/24

46

