
Corso di Sistemi Distribuiti e Cloud Computing
A.A. 2023/24

Valeria Cardellini

Laurea Magistrale in Ingegneria Informatica

Container-based virtualization: Docker

Macroarea di Ingegneria
Dipartimento di Ingegneria Civile e Ingegneria Informatica

Case study: Docker

• Lightweight, open and secure container-based
virtualization
– Container includes an application and its dependencies, but

shares OS kernel with other containers

– Container runs as isolated process in user space on host OS

– Container is not tied to any specific infrastructure

Valeria Cardellini - SDCC 2023/24
1

Docker features

• Portable deployment across machines
• Versioning, i.e., git-like capabilities
• Component reuse
• Shared libraries, see Docker Hub
• Supports Open Container Initiative

(OCI), a set of standards for containers

Valeria Cardellini - SDCC 2023/24
2

Docker internals
• Written in Go
• Exploits Linux kernel mechanisms such as cgroups

and namespaces
– First versions were based on Linux Containers (LXC)

– Then based on libcontainer, a container runtime which

provides a native Go implementation for creating containers

with namespaces, cgroups, capabilities, and filesystem

access controls and allows you to manage the lifecycle of

the container

– libcontainer is ow included in runc: CLI tool for spawning

and running containers according to OCI specification

Valeria Cardellini - SDCC 2023/24
3

Docker Engine
• Docker Engine acts a

client-server application
composed by:
– Server, called Docker

daemon (dockerd), which

listens for Docker API

requests and manages

Docker objects such as

images, containers,

networks, and volumes

– REST API which specifies

interfaces that programs

Valeria Cardellini - SDCC 2023/24
4

See docs.docker.com/get-started/overview/#docker-architecture

can use to control and interact with the daemon

– Command line interface (CLI) client

Docker architecture
• Docker uses a client-server architecture

– The Docker client talks to the Docker daemon, which builds,

runs, and distributes Docker containers

– Client and daemon communicate via sockets or REST API

Valeria Cardellini - SDCC 2023/24 5

Docker image
• Read-only template used to create a Docker container
• Build component of Docker

– Enables apps distribution with their runtime environment

• Incorporates all the dependencies and configuration necessary to
apps to run, eliminating the need to install packages and
troubleshoot

– Target machine must be Docker-enabled

• Docker can build images automatically by reading
instructions from a Dockerfile
– A text file with simple, well-defined syntax

• Images can be pulled and pushed towards a
public/private registry

• Image name: [registry/][user/]name[:tag]
– Default for tag is latest

Valeria Cardellini - SDCC 2023/24
6

Docker image: Dockerfile
• Image created from Dockerfile and context

– Dockerfile: instructions to assemble the image

– Context: set of files (e.g., application, libraries)

– Often, an image is based on a parent image (e.g., alpine)

• Dockerfile syntax
Comment

INSTRUCTION arguments

• Instructions in Dockerfile run in order
• Some instructions

FROM: to specify parent image (mandatory)

RUN: to execute any command in a new layer on top of current

image and commit results

ENV: to set environment variables

EXPOSE: container listens on specified network ports at runtime

CMD: to provide defaults for executing container
7Valeria Cardellini - SDCC 2023/24

Docker image: Dockerfile
• Example: Dockerfile to build the image of a container

that will run as application a simple todo list manager
written in Node.js

8
Valeria Cardellini - SDCC 2023/24

See docs.docker.com/get-started/02_our_app

Directory with app code

Docker image: build

• Build image from Dockerfile and context
– Build's context is the set of files located in the specified

PATH or URL

⎼ E.g., to build the image for Node.js app (see previous slide)

$ docker build -t getting-started .

⎼ If the name of the Dockerfile is not Dockerfile use –f, e.g.,

$ docker build -t getting-started –f myDockerfile .

Valeria Cardellini - SDCC 2023/24
9

$ docker build [OPTIONS] PATH | URL | -

See docs.docker.com/engine/reference/commandline/build/

Docker image: layers
• Each image consists of a series of layers
• Docker uses union file systems to combine these

layers into a single unified view
– Layers are stacked on top of each other to form a base for

a container’s root file system

– Based on copy-on-write (CoW) strategy

Valeria Cardellini - SDCC 2023/24
10

Docker image: layers
• Layering pros

- Enable layer sharing and reuse, installing common layers

only once and saving bandwidth and storage space

- Manage dependencies and separate concerns

- Facilitate software specializations

See docs.docker.com/storage/storagedriver

11
Valeria Cardellini - SDCC 2023/24

Docker image: layers and Dockerfile
• Each layer represents an instruction in Dockerfile

– Except CMD instruction, which specifies what command to run

within container: it only modifies image’s metadata, without

producing an image layer

• Each layer except the very last one is read-only
• Writable layer on top (aka container layer) is added

when container is created
– Changes made to running container (e.g., writing a file) are

written to writable layer

– Does not persist after container is deleted

– Suitable for storing ephemeral data generated at runtime

• To inspect an image, including image layers
$ docker inspect imageid

Valeria Cardellini - SDCC 2023/24
12

Docker image: storage
• Containers are usually stateless (why? easier to

scale, restart from failure, migrate)
– Very little data written to container’s writable layer

– Data usually written on Docker volumes
– Nevertheless: some workloads require to write data to

container’s writable layer

• Storage driver controls how images and containers
are stored and managed on Docker host

• Multiple choices for storage driver
- Including Overlay2 (at file level, preferred for all Linux

distros), Device Mapper, btrfs and zfs (at block level)

- Storage driver’s choice can affect performance of

containerized apps: optimized for space efficiency, but write

speeds can be lower than native file system performance

See docs.docker.com/storage/storagedriver/select-storage-driver
Valeria Cardellini - SDCC 2023/24

13

Docker container and registry
• Docker container: runnable instance of Docker image

– Run component of Docker

– Run, start, stop, move, or delete a container using Docker API

or CLI commands

• Docker registry: stateless server-side application that
stores and lets you distribute Docker images
- Distribute component of Docker

- Open library of images

- Docker-hosted registries: Docker Hub, Docker Store (open

source and enterprise verified images)

Valeria Cardellini - SDCC 2023/24 14

- Docker containers are stateless:

when a container is deleted, any

data written not stored in a data

volume is deleted

Docker: run command

• When you run a container whose image is not yet
installed but is available on Docker Hub

Valeria Cardellini - SDCC 2023/24
15

Courtesy of “Docker in Action” by J. Nickoloff

State transitions of Docker containers

Valeria Cardellini - SDCC 2023/24
16

Courtesy of “Docker in Action” by J. Nickoloff

Commands: Docker info

• Obtain system-wide info on Docker installation
$ docker info

including:
– How many images, containers and their status

– Storage driver

– Operating system, architecture, total memory

– Docker registry

17
Valeria Cardellini - SDCC 2023/24

Commands: image handling
• List images on host (i.e., local repository)

$ docker images

alternatively, $ docker image ls

• List every image, including intermediate image layers
$ docker image ls –a

• Options to list images by name and tag, to list image
digests (sha256), to filter images, to format the output
- E.g., to list untagged images (<none>) that have no

relationship to any tagged images (no longer used but

consume disk space)

$ docker images --filter "dangling=true"

• Remove an image
$ docker rmi imageid
alternatively, $ docker image rm imageid

18
Valeria Cardellini - SDCC 2023/24

can also use imagename
instead of imageid

Command: run

• Most common options
--name assign a name to container

-d detached mode (run container in background)

-i interactive (keep STDIN open even if not attached)

-t allocate a pseudo-tty

--expose expose a port or range of ports inside container

-p publish container's port or range of ports to host

-v bind and mount a volume

-e set environment variables

--link add link to another container

19

$ docker run [OPTIONS] IMAGE [COMMAND] [ARGS]

Valeria Cardellini - SDCC 2023/24

See docs.docker.com/engine/reference/commandline/run/

Commands: containers management
• List containers

– Only running containers: $ docker ps

alternatively, $ docker container ls

– All containers (including stopped or killed containers):

$ docker ps -a

• Manage container lifecycle
– Stop running container

$ docker stop containerid
– Start stopped container

$ docker start containerid
– Kill running container

$ docker kill containerid
– Remove container (need to stop it before attempting removal)

$ docker rm containerid

20

can also use containername
instead of containeridValeria Cardellini - SDCC 2023/24

Commands: containers management

21
Valeria Cardellini - SDCC 2023/24

• Stop and remove a running container
$ docker ps
$ docker stop containerid
$ docker ps -a
$ docker rm containerid

• Stop all containers
$ for i in $(docker ps -q); do docker stop $i; done

• Execute command in a running container
$ docker exec [OPTIONS] CONTAINER [COMMAND] [ARGS]

Commands: containers management
• Inspect a container

– Most detailed view of the environment in which a container

was launched

$ docker inspect containerid

• Copy files from and to container
$ docker cp containerid:path localpath
$ docker cp localpath containerid:path

22
Valeria Cardellini - SDCC 2023/24

Docker networking
• Container networking: ability for containers to connect

to and communicate with each other or to non-Docker
workloads

• Published ports
– In docker run, use --publish or -p flag to make port

available to services outside of Docker

– E.g.: -p 8080:80 map port 8080 on host to TCP port 80 in

container

– Issue: publishing container ports is insecure by default

• Include localhost IP address so that only host can access
container port, e.g.: -p 127.0.0.1:8080:80

• IP address and hostname
– Container receives IP address out of network IP subnet

– Docker daemon performs dynamic subnetting and IP address

allocation for containers

– Container hostname defaults to be container ID in Docker
Valeria Cardellini - SDCC 2023/24 23

Docker networking: network drivers
• Docker's networking is pluggable using drivers
• Several network drivers, including

– bridge: default network driver, used when application

runs in a container that needs to communicate with other

containers on the same host

• Software bridge which lets containers connected to same
bridge network communicate, while providing isolation from
containers that are not connected to that bridge network

– host: remove network isolation between container and

host and use host networking directly

Valeria Cardellini - SDCC 2023/24
24

Docker volumes

• Preferred mechanism for persisting data generated
by and used by Docker containers
– New directory is created within Docker’s storage directory on

host machine, and Docker manages directory’s content

• On Linux storage directory is /var/lib/docker/volumes/
– Volume does not need to exist on host, it is created on

demand if it does not yet exist

Valeria Cardellini - SDCC 2023/24 25

Docker volumes
• To mount a volume to a container, use -v (or --

volume) flag with docker run
$ docker run … -v source:destination:[options]
– Use ro option to mount a read-only volume

– If a container is started with a volume that does not yet exist,

Docker creates the volume

• Commands to manage volumes:
– Create volume: $ docker volume create volumename
– List volumes: $ docker volume ls

– Inspect volume: $ docker volume inspect volumename
– Remove volume: $ docker volume rm volumename

• Volume can be declared in Dockerfile using VOLUME
• How to load data into a volume? Can use docker cp

Valeria Cardellini - SDCC 2023/24 26

See docs.docker.com/engine/reference/commandline/

Docker volumes: pros
✓ Completely managed by Docker
✓ Easy to back up or migrate
✓ Managed using Docker CLI or API
✓ Work on both Linux and Windows containers
✓ Can be shared among multiple containers
✓ Content can be encrypted
✓ Content can be pre-populated
✓ Better choice than persisting data in container’s

writable layer
– A volume does not increase container size and its contents

exist outside container lifecycle

• Tip: use volumes for write-heavy application (e.g., a
write-intensive DB)

Valeria Cardellini - SDCC 2023/24 27

Hands-on: hello world

• Download and install Docker
– Available on multiple platforms

docs.docker.com/get-docker

docs.docker.com/get-started

• Test Docker version
$ docker --version

• Test Docker installation by running hello-world
Docker image
$ docker run hello-world

Valeria Cardellini - SDCC 2023/24
28

Hands-on: hello world

• Run “Hello World” container with a command
$ docker run alpine /bin/echo 'Hello world'

- alpine: lightweight Linux distro with reduced image size

• Use commands to:
⎼ List containers and container images

⎼ Remove containers and container images

Valeria Cardellini - SDCC 2023/24
29

Hands-on: networking
• Run nginx Web server inside a container

- Bind container port to host port

$ docker run -dp 80:80 --name web nginx

Option -p: publish container port (80) to host port (80)

Option -d: detached mode

1. Send HTTP request through Web browser
- First retrieve hostname of host machine (e.g., localhost)

2. Send HTTP request to nginx from interactive
container using a bridge network

$ docker network create –d bridge my_net
$ docker run -dp 80:80 --name web --network=my_net nginx
$ docker run -i -t --network=my_net --name web_test busybox
/ # wget -O - http://web:80/
/ # exit

30
Valeria Cardellini - SDCC 2023/24

Hands-on: from Dockerfile
• Running Apache web server with minimal index page

1. Define container image with Dockerfile

• Define image starting from Ubuntu, install and configure Apache
• Incoming port set to 80 using EXPOSE instruction

Va
le

ria
 C

ar
de

llin
i -

SD
C

C
 2

02
3/

24

31

FROM ubuntu:18.04

Install dependencies

RUN apt-get update -y

RUN apt-get -y install apache2

Install apache and write hello world message

RUN echo 'Hello World!' > /var/www/html/index.html

Configure apache

RUN echo '. /etc/apache2/envvars' > /root/run_apache.sh

RUN echo 'mkdir -p /var/run/apache2' >> /root/run_apache.sh

RUN echo 'mkdir -p /var/lock/apache2' >> /root/run_apache.sh

RUN echo '/usr/sbin/apache2 -D FOREGROUND' >> /root/run_apache.sh

RUN chmod 755 /root/run_apache.sh

EXPOSE 80

CMD /root/run_apache.sh

Hands-on: from Dockerfile

2. Build container image from Dockerfile

$ docker build -t hello-apache .

3. Run container and bind

$ docker run -dp 80:80 hello-apache

4. Execute an interactive shell in running container

$ docker exec --it hello-apache /bin/bash

• To reduce container’s image size let’s avoid adding
unnecessary layers
– E.g., in Dockerfile update and install multiple packages in a

single RUN instruction

• Use \ to type out the command in multiple lines

Valeria Cardellini - SDCC 2023/24
32

Hands-on: from Dockerfile

33

FROM ubuntu:18.04

Install dependencies

RUN apt-get update –y && \

apt-get -y install apache2

Install apache and write hello world message

RUN echo 'Hello World!' > /var/www/html/index.html

Configure apache

RUN echo '. /etc/apache2/envvars' > /root/run_apache.sh && \

echo 'mkdir -p /var/run/apache2' >> /root/run_apache.sh && \

echo 'mkdir -p /var/lock/apache2' >> /root/run_apache.sh && \

echo '/usr/sbin/apache2 -D FOREGROUND' >> /root/run_apache.sh && \

chmod 755 /root/run_apache.sh

EXPOSE 80

CMD /root/run_apache.sh

Valeria Cardellini - SDCC 2023/24

Hands-on: volumes
• Run nginx container with volume

$ docker volume create my-vol

$ docker volume ls

$ docker volume inspect my-vol

$ docker run -d \

--name devtest \

-v my-vol:/app \

nginx:latest

– my-vol is the source, /app is the target inside container

$ docker inspect devtest

– Inspect container to verify that Docker created the volume

and it mounted correctly

Valeria Cardellini - SDCC 2023/24
34

Docker: reduce image size
• Optimize Docker images

– Especially important for DevOps engineers at every stage

of CI/CD process

– Not only to reduce image disk space, reduce image transfer

and deploy time, but also to improve security

– Best practice employed by Google and other tech giants

• Techniques
1. Use minimal base images (e.g., alpine, minideb) or

distroless base images

• Distroless images contain only application and its runtime
dependencies; do not contain package managers, shells or
any other programs available in standard Linux distro

2. Minimize number of image layers

Valeria Cardellini - SDCC 2023/24 35

Docker: reduce image size
• Techniques

3. Multistage builds

• Use intermediate images (build stages) to compile code,
install dependencies, and package files; after that, only
necessary files required to run app are used in another image
with only the required libraries

4. Exploit image layers’ caching

• Add the lines which are used for installing dependencies and
packages earlier inside Dockerfile, before COPY commands

5. Use .dockerignore file

• Configuration file that describes files and directories that you
want to exclude when building a Docker image

6. Keep application data in a volume, not inside the

container

• Tools to minimize image size, e.g., Slim
See devopscube.com/reduce-docker-image-size/

Valeria Cardellini - SDCC 2023/24 36

Configure container memory and CPU
• By default, a container has no resource constraints

– Can use as much resource as host’s kernel scheduler allows

• Docker provides ways to control how much memory
or CPU a container can use by setting runtime
configuration flags of docker run
docs.docker.com/config/containers/resource_constraints

– Docker Engine implements configuration changes by

modifying settings of container’s cgroup

Valeria Cardellini - SDCC 2023/24
37

Configure container memory

• Avoid running out of memory (OOM)
– Individual containers can be killed (Docker daemon has

lower OOM priority, containers default one)

• Docker can enforce hard or soft memory limits
– Hard limit: container cannot use more than a given amount

of user or system memory; --memory flag

– Soft limit: container can use as much memory as it needs

unless certain conditions are met, such as when kernel

detects contention or low memory on host machine

– Example: limit container to use at most 500 MB of memory

(hard limit) and specify also a soft limit

$ docker run –it --memory-reservation="300m" \
--memory="500m" ubuntu /bin/bash

Valeria Cardellini - SDCC 2023/24
38

Configure container CPU
• Various constraints to limit container usage of host

machine’s CPU cycles
• Some options

--cpus=<value>: limit how many CPU resources a container

can use (hard limit)

--cpu-quota=<value>: set CPU Completely Fair Scheduler

(CFS) quota on container

--cpuset-cpus: limit specific CPUs or cores a container can use

--cpu-shares: set to value >/< 1024 to increase/reduce

container’s weight, and give it access to greater/less proportion of

CPU cycles (soft limit)

– Example: limit container to use at most 50% of CPU every

second

$ docker run -it --cpus=".5" ubuntu /bin/bash
Alternatively, $ docker run -it --cpu-period=100000 \

--cpu-quota=50000 ubuntu /bin/bash
39Valeria Cardellini - SDCC 2023/24

Multi-container Docker applications

• How to run multi-container Docker apps?
• Docker Compose

– Deployment only on single host

• Docker Swarm
– Native orchestration tool for Docker

– Deployment on multiple hosts

• Kubernetes
– Deployment on multiple hosts

– See next lesson

Valeria Cardellini - SDCC 2023/24
40

Docker Compose

• A tool for defining and running multi-container Docker
applications docs.docker.com/compose/

• Bundled within Docker Desktop
docs.docker.com/compose/install/

• Allows to coordinate a composition of multiple
containers which run on a single host (i.e., on a
single Docker engine)
– Easily express the containers to be instantiated at once and

their relationships

– Docker Compose automatically sets up a network and

attaches all deployed containers to it

– To deploy containers on multiple nodes, use either Docker

Swarm or Kubernetes

41
Valeria Cardellini - SDCC 2023/24

Docker Compose: how to use
• To get started: specify how to compose containers in a

YAML file named compose.yaml
• Then, manage the whole lifecycle of containerized

application through Compose

• To start Docker composition (background -d):
$ docker compose up -d

– By default, Docker Compose looks for compose.yaml in

working directory

• Can specify a different file using -f flag

$ docker compose –f composefile up –d

• To stop running containers:
$ docker compose stop

• To bring composition down, removing everything
$ docker compose down

Valeria Cardellini - SDCC 2023/24 42

Docker Compose: Compose file
• Compose file allows to configure Docker application’s

services, networks, volumes, and more
– Different versions of Compose file format

docs.docker.com/compose/compose-file/

– Latest: Compose V2 implements format defined by Compose

Specification and includes legacy versions 2.x and 3.x

• What inside compose.yaml (or compose.yml or
docker-compose.yml)?

• YAML file which defines: version (optional), services
(required), networks, volumes, configs, secrets

See docs.docker.com/compose/compose-file/03-compose-file/

43Valeria Cardellini - SDCC 2023/24

Docker Compose: Compose file
• Service: abstract definition of computing resource

within application which can be scaled or replaced
independently from other components
– Services are backed by a set of containers

– Compose file must declare a services top-level element

• Each service
– may also include a build section, which defines how to create

service image

– may also specify container_name, startup and shutdown

dependencies between services (depends_on), exposed

containers ports, CPU and memory limits, volumes that are

accessible to service containers

– and many other settings, see

docs.docker.com/compose/compose-file/05-services/

44Valeria Cardellini - SDCC 2023/24

Docker Compose: Compose file
• Example: Compose file for Apache Storm, a

distributed data stream processing framework
– Master-worker architecture (Nimbus is master) using

Zookeeper

– Let’s define a Storm cluster with 3 containers: master,

worker and Zookeeper

Valeria Cardellini - SDCC 2023/24 45

Docker Compose: full example
• Simple Python web app running on Docker Compose

– 2 containers: Python web app and Redis

– Use Flask framework and maintain hit counter in Redis

– Redis: in-memory, key-value data store

See docs.docker.com/compose/gettingstarted/

46Valeria Cardellini - SDCC 2023/24

FROM python:3.7-alpine

WORKDIR /code

ENV FLASK_APP=app.py

ENV FLASK_RUN_HOST=0.0.0.0

RUN apk add --no-cache gcc musl-dev linux-headers

COPY requirements.txt requirements.txt

RUN pip install -r requirements.txt

EXPOSE 5000

COPY . .

CMD ["flask", "run"]

• Steps:
1. Write Python app

2. Define Python container

image with its Dockerfile

Docker Compose: full example
• Steps (cont’d):

4. Build and run app with Compose

$ docker compose up –d

5. Send HTTP requests using curl or browser (counter is

increased)

6. List local images $ docker image ls

7. Stop Compose, bringing everything down

$ docker compose down

47Valeria Cardellini - SDCC 2023/24

services:
web:

build: .
ports: - 8000:5000"

redis:
image: "redis:alpine"

3. Define services in Compose

file

• Two services: web (image
defined by Dockerfile) and
redis (official image pulled
from Docker Hub)

Docker Compose: full example

• Add volume for app code, so that code can be
modified on the fly without rebuilding the image

• Specify restart policy for containers in Compose file
– Options: on-failure[:max-retries], always, unless-stopped

• Start multiple replicas of same service using deploy
specification, e.g.,

48Valeria Cardellini - SDCC 2023/24

Kafka as Docker containers
• Different packages already available, e.g.,

– bitnami.com/stack/kafka/containers

• Single container, Docker Compose with Zookeeper or KRaft

– www.conduktor.io/kafka/how-to-start-kafka-using-docker

• Docker Compose with Zookeeper, single and multiple
Zookeeper and Kafka brokers

Valeria Cardellini - SDCC 2023/24 49

Docker Swarm
• Swarm mode: advanced feature of Docker to natively

manage a cluster of Docker engines called a swarm
docs.docker.com/engine/swarm/

• Tasks: containers running in a service
• Main features:

– Cluster management integrated with Docker
– Declarative service model
– Scaling: number of tasks for each service (no auto-scaling)

– State reconciliation: Swarm monitors cluster state and

reconciles any difference wrt desired state

– Multi-host networking: can specify overlay network for

services

– Load balancing: can expose service ports to an external load

balancer; internally, the swarm lets you specify how to

distribute containers among nodes

– Secure: TLS authentication and encryption 50

Va
le

ria
 C

ar
de

llin
i -

SD
C

C
 2

02
3/

24

Docker Swarm: architecture
• A swarm consists of multiple Docker engines which

run in swarm mode
• Node: instance of Docker engine

– Manager node(s): handles cluster management, including

scheduling tasks to worker nodes

• Multiple managers to improve fault tolerance
• Raft as consensus algorithm to manage global cluster state

– Worker nodes execute tasks

51Valeria Cardellini - SDCC 2023/24

Docker Swarm: Swarm cluster
• Create swarm: start with manager node

• Create swarm: add worker node(s)

• Inspect swarm status

52Valeria Cardellini - SDCC 2023/24

$ docker swarm init --advertise-addr <manager-ip>
Swarm initialized: current node (<nodeid>) is now a manager.
To add a worker to this swarm, run the following command:

docker swarm join --token <token> <manager-ip>:port

$ docker swarm join --token <token> <manager-ip>:port

$ docker info

$ docker node ls

ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS
<node.id1> * manager1 Ready Active Leader
<node.id2> worker1 Ready Active

Docker Swarm: Swarm cluster
• Leave swarm

– If the node is a manager node, warning about maintaining

the quorum (to override warning, --force flag)

• After a node leaves the swarm, you can run
docker node rm on a manager node to remove
the node from the node list

53Valeria Cardellini - SDCC 2023/24

$ docker swarm leave

$ docker node rm <node-id>

Docker Swarm: manage services
• Deploy a service to swarm (from manager node)

– Deploy service helloworld with 2 replicas; arguments

alpine ping docker.com define service as an Alpine Linux

container that executes ping docker.com

• List running services

54Valeria Cardellini - SDCC 2023/24

$ docker service create -d --replicas 2 \
--name helloworld alpine ping docker.com

$ docker service ls

ID NAME REPLICAS IMAGE COMMANDS
<service-id> helloworld 2/2 alpine ping docker.com

Docker Swarm: manage services
• Inspect service

• Inspect container

55Valeria Cardellini - SDCC 2023/24

$ docker ps <cont-id>

Manager node

CONTAINER ID IMAGE COMMAND CREATED STATUS ... NAMES
<cont.id1> alpine:latest "ping docker.com" 2 min ago Up 2 min helloworld.1.iuk1sj…

Worker node
CONTAINER ID IMAGE COMMAND CREATED STATUS ... NAMES
<cont.id2> alpine:latest "ping docker.com" 2 min ago Up 2 min helloworld.2.skfos4…

$ docker service inspect --pretty <service-id>
$ docker service ps <service-id>

ID NAME IMAGE NODE DESIRED ST CURRENT ST ERROR PORTS
<cont.id1> helloworld.1 alpine:latest manager1 Running Running …
<cont.id2> helloworld.2 alpine:latest worker1 Running Running …

Docker Swarm: manage services
• Scale number of containers in service

– Swarm manager will enact the updates

• Apply rolling updates (i.e., update without downtime)
to service

• Roll back an update to previous version of service

• Remove service

56Valeria Cardellini - SDCC 2023/24

$ docker service update --limit-cpu 2 redis
$ docker service update --replicas 3 helloworld

$ docker service rm <service-id>

$ docker service rollback [options] <service-id>

$ docker service scale <service-id>=<number-of-tasks>

References

• Docker Docs

• Nickoloff and Kuenzli, Docker in Action 2nd Edition, 2019

Valeria Cardellini - SDCC 2023/24 57

