
Corso di Sistemi Distribuiti e Cloud Computing
A.A. 2023/24

Valeria Cardellini

Laurea Magistrale in Ingegneria Informatica

Introduction to Go

Macroarea di Ingegneria
Dipartimento di Ingegneria Civile e Ingegneria Informatica

What is Go?

• ‘‘An open source programming language that makes
it easy to build simple, secure, and scalable systems’’
go.dev

• Conceived in 2007 at Google by R. Griesemer, R.
Pike and K. Thompson, and announced in 2009

• Goals of language and its tools:
– To be expressive, efficient in both compilation and

execution, and effective in writing reliable and robust
programs

– Fast, statically typed, compiled language that feels like a
dynamically typed, interpreted language

• Go’s ancestors: mainly C and CSP (communicating
sequential processes) formal language by T. Hoare

Valeria Cardellini - SDCC 2023/24 1

Go and C

• Go: “C-like language” or “C for the 21st

century”

• From C, Go inherited

– Expression syntax
– Control-flow statements
– Basic data types
– Call-by-value parameter passing
– Pointers
– Run-time efficiency
– Static typing

Valeria Cardellini - SDCC 2023/24 2

Go and other languages

• New and efficient facilities for concurrency

• Flexible approach to data abstraction and

object-oriented programming

• Automatic memory management (garbage
collection)

• Readability and usability

Valeria Cardellini - SDCC 2023/24 3

Go and distributed systems

• Go allows programmers to focus on

distributed system problems

– good support for concurrency
– good support for RPC
– garbage-collected (no use-after-freeing problems)
– type safe

• Simple language to learn

Valeria Cardellini - SDCC 2023/24 4

Go and cloud

• Also language for cloud native applications
• E.g., Go Cloud: library and tools for open cloud

development in Go
– Goal: allow application developers to seamlessly deploy

cloud applications on any combination of cloud providers
– E.g., read from blob storage

Valeria Cardellini - SDCC 2023/24 5

Editor plugins and IDEs

• vim-go plugin for vim

• GoLand by JetBrains

• Go extension for Visual Studio Code

• Can be integrated with gopls
– Official Go language server

Valeria Cardellini - SDCC 2023/24 6

Hello world example

package main

import "fmt"

func main() {

fmt.Println("Hello, 世界")

}

Valeria Cardellini - SDCC 2023/24 7

Some notes on the first example

• No semicolon at the end of statements or
declarations

• Go natively handles Unicode
• Every Go program is made up of packages (similar to

C libraries or Python packages)
– Package: one or more .go source files in a single directory

• Source file begins with package declaration (which
package the file belongs to), followed by list of other
imported packages
– Programs start running in main
– fmt package contains functions for printing formatted output
and scanning input

Valeria Cardellini - SDCC 2023/24 8

Go tool

• Go is a compiled language
• Go tool: fetch, build, and install Go packages and

commands
– A zero configuration tool

• To run the program: go run

• To build the program into binary: go build

Valeria Cardellini - SDCC 2023/24 9

Packages

• Go program is made up of packages
• Programs start running in package main
• Packages contain type, function, variable, and

constant declarations
• Packages can even be very small or very large
• Case determines visibility: a name is exported if it

begins with a capital letter
– Foo is exported, foo is not
– E.g., fmt.Println(math.pi)

./prog.go:9:19: undefined: math.pi

Valeria Cardellini - SDCC 2023/24 10

Imports

• Import statement: groups imports into a
parenthesized, “factored” statement

package main
import (

"fmt"
"math")

func main() {
fmt.Printf("Now you have %g problems.\n", math.Sqrt(7))

}

Valeria Cardellini - SDCC 2023/24 11

Functions

• Function can take zero or more arguments
func add(x int, y int) int {

return x + y

}

– add takes as input two arguments of type int

• Type comes after variable name
• Shorter version for input arguments:

func add(x, y int) int {

• Function can return any number of results
func swap(x, y string) (string, string) {

return y, x

}

– Also useful to return both result and error values

Valeria Cardellini - SDCC 2023/24 12

Functions

package main

import "fmt"

func swap(x, y string) (string, string) {

return y, x

}

func main() {

a, b := swap("hello", "world")

fmt.Println(a, b)

}

Valeria Cardellini - SDCC 2023/24 13

Functions

• Return values may be named
package main

import "fmt"

func split(sum int) (x, y int) {
x = sum * 4 / 9
y = sum - x
return // same as return x, y

}

func main() {
fmt.Println(split(17))

}

Valeria Cardellini - SDCC 2023/24 14

Variables
• var statement: declares a list of variables

– Type is last

• Can be at package or function level
package main
import "fmt"

var c, python, java bool

func main() {

var i int
fmt.Println(i, c, python, java)

}

• Can include initializers, one per variable
– If initializer is present, type can be omitted

• Variables declared without an explicit initial value are
given their zero value

• Short variable declaration using := (use only inside
functions)

15Valeria Cardellini - SDCC 2023/24

Types

• Usual basic types
– bool, string, int, uint, float32, float64, …

• Type conversion
var i int = 42

var f float64 = float64(i)

– Unlike in C, in Go assignment between items of different
type requires an explicit conversion

• Type inference
– Variable's type inferred from value on right hand side
var i int

j := i // j is an int

Valeria Cardellini - SDCC 2023/24 16

Flow control statements

• for, if (and else), switch
• defer

Valeria Cardellini - SDCC 2023/24 17

Looping construct
• Go has only one looping construct: for loop
• 3 components

– Init statement
– Condition expression
– Post statement

sum := 0

for i := 0; i < 10; i++ {

sum += i

}

• No parentheses surrounding the 3 components of for
statement

• Braces { } are always required

Valeria Cardellini - SDCC 2023/24 18

Looping construct

• Init and post statements are optional: for is Go's
“while”
sum := 1

for sum < 1000 {

sum += sum

}

• If you omit condition, infinite loop
for {

}

Valeria Cardellini - SDCC 2023/24 19

Example: echo

// Echo prints its command-line arguments.
package main
import (

"fmt"
"os"

)
func main() {

var s, sep string
for i := 1; i < len(os.Args); i++ {

s += sep + os.Args[i]
sep = " "

}
fmt.Println(s)

}

Valeria Cardellini - SDCC 2023/24 20

os.Args is a slice of
strings (see next slides)

s and sep implicitly initialized
to empty strings

Conditional statements: if
• Go's if (and else) statement is like for loop:

– Expression is not surrounded by parentheses ()
– Braces { } are always required

if v := math.Pow(x, n); v < limit {

return v

} else {

fmt.Printf("%g >= %g\n", v, limit)

}

– Remember that } else must be on the same line
– Variable v is in scope only within the if statement

• if...else if...else statement to combine
multiple if...else statements

Valeria Cardellini - SDCC 2023/24 21

Conditional statements: switch

• switch statement selects one of many cases to be
executed
– Cases evaluated from top to bottom, stopping when a case

succeeds

• Differences from C
– Go only runs the selected case, not all the cases that follow

(i.e., C’s break is provided automatically in Go)
– Switch cases need not be constants, and values involved

need not be integers

Valeria Cardellini - SDCC 2023/24 22

Defer statement
• New mechanism to defer the execution of a function

until the surrounding function returns
– Deferred call's arguments are evaluated immediately, but

function call is not executed until surrounding function that
contains defer has terminated

package main
import "fmt"

func main() {
defer fmt.Println("world")
fmt.Println("hello")

}

• Deferred function calls pushed onto a stack
– Deferred calls executed in LIFO order

• Great for cleanup things, like closing files or
connections!

23

hello
world

Valeria Cardellini - SDCC 2023/24

Pointers
• Pointer: value that contains the address of a variable

– Usual operators * and &: & operator yields the address of a
variable, and * operator retrieves the variable that the pointer
refers to

var p *int

i := 1

p = &i // p, of type *int, points to i

fmt.Println(*p) // "1"

*p = 2 // equivalent to i = 2

fmt.Println(i) // "2"

• Unlike C, Go has no pointer arithmetic
• Zero value for a pointer is nil
• Safe for a function to return the address of a local

variable, because local variable will survive function
scope

Valeria Cardellini - SDCC 2023/24 24

Composite data types: structs and array
• Aggregate data types: structs and arrays
• Struct: typed collection of fields

– Syntax similar to C, fixed size
type Vertex struct {

X int

Y int

}

– Struct fields are accessed using dot notation, e.g.,
fmt.Println(v.X)

– Can also be accessed through a struct pointer

• Array: [n]T is an array of n values of type T
– Fixed size (cannot be resized)
var a [2]string

a[0] = "Hello"
Valeria Cardellini - SDCC 2023/24 25

Composite data types: slices

• []T is a slice with elements of type T: dynamically-
sized, flexible view into the elements of an array
– Create a slice by slicing an existing array or slice
– Specify two indices, a low and high bound, separated by a

colon: s[i : j]

– Slice includes the first element, but excludes the last
primes := [6]int{2, 3, 5, 7, 11, 13}

var s []int = primes[1:4]

• Slice: section of underlying array
– Change slice element: modify corresponding element of

underlying array
Valeria Cardellini - SDCC 2023/24 26

[3 5 7]

• Slice: key data type in Go, more
powerful than array

Slices: operations

• Length of slice s: number of elements it contains, use
len(s)

• Capacity of slice s: number of elements in the
underlying array, counting from the first element in the
slice, use cap(s)

• Compile or run-time error if array length is exceeded:
Go performs bounds check (memory-safe language)

• Slices can also be created using make
– Length and capacity can be specified

Valeria Cardellini - SDCC 2023/24 27

Slices: operations

• Let’s create an empty slice

package main
import "fmt"
func main() {

a := make([]int, 0, 5) // len(s)=0, cap(s)=5
printSlice("a", a)

}

func printSlice(s string, x []int) {
fmt.Printf("%s len=%d cap=%d %v\n", s, len(x), cap(x), x)

}

Valeria Cardellini - SDCC 2023/24 28

a len=0 cap=5 []

Slices: operations
• New items can be appended to a slice using append

func append(slice []T, elems ...T) []T

– When append a slice, slice may be enlarged if necessary
func main() {

var s []int
printSlice(s)

s = append(s, 0) // works on nil slices
printSlice(s)

s = append(s, 1) // slice grows as needed
printSlice(s)

s = append(s, 2, 3, 4) // more than one element
printSlice(s)

}
Valeria Cardellini - SDCC 2023/24 29

Composite data types: maps
• map maps keys to values

– Map type map[K]V is a reference to a hash table where K
and V are the types of its keys and values

– Use make to create a map
m = make(map[string]Vertex)

m["Bell Labs"] = Vertex{

40.68433, -74.39967,

}

• Operations on map: insert or update element, retrieve
element, delete element, test if key is present

Valeria Cardellini - SDCC 2023/24 30

m[key] = element // insert or update

elem = m[key] // retrieve

delete(m, key) // delete

elem, ok = m[key] // test

Range

• range iterates over entries in a variety of data
structures
– range on arrays and slices provides both index and value

for each entry
– range on map iterates over key/value pairs

package main
import "fmt"

var pow = []int{1, 2, 4, 8, 16, 32, 64, 128}

func main() {
for i, v := range pow {

fmt.Printf("2**%d = %d\n", i, v)
}

}

Valeria Cardellini - SDCC 2023/24 31

Range: example
func main() {

nums := []int{2, 3, 4}

sum := 0

for _, num := range nums {

sum += num

}

fmt.Println("sum:", sum)

for i, num := range nums {

if num == 3 {

fmt.Println("index:", i)

}

}

kvs := map[string]string{"a": "apple", "b": "banana"}

for k, v := range kvs {

fmt.Printf("%s -> %s\n", k, v)

}

for k := range kvs {

fmt.Println("key:", k)

}

}Valeria Cardellini - SDCC 2023/24 32

$ go run range2.go
sum: 9
index: 1
a -> apple
b -> banana
key: a
key: b

Skip index or value by assigning to _

Go spec. specifies that the first value is
the key, the second variable is the value,
but doesn't have to be present

Anonymous functions and closures
• Go functions can be anonymous

– Useful when you want to define a function inline without
having to name it

• Go functions can be closures
– Go closure: anonymous nested function which retains

bindings to variables defined outside the body of the closure
– Closure can hold a unique state of its own; the state then

becomes isolated as you create new function instances
– Example: gobyexample.com/closures

• See 5 Useful Ways to Use Closures in Go
– In particular, middleware pattern to independently acts on a

request before or after the normal request handler (e.g., to
wrap the handler of a HTTP request and measure its
processing time)

Valeria Cardellini - SDCC 2023/24 33

Closure: example
package main

import "fmt"

// fibonacci is a function that returns

// a function that returns an int.

func fibonacci() func() int {

x, y := 1, 0

return func() int {

x, y = y, x+y

return x

}

}

func main() {

f := fibonacci()

for i := 0; i < 10; i++ {

fmt.Println(f())

}

} Valeria Cardellini - SDCC 2023/24 34

Methods

• Go does not have classes, but supports methods
defined on struct types

• A method is a function with a special receiver
argument (extra parameter before function name)
– The receiver appears in its own argument list between func

and method name

type Vertex struct {
X, Y float64

}

func (v Vertex) Abs() float64 {
return math.Sqrt(v.X*v.X + v.Y*v.Y)

}

Valeria Cardellini - SDCC 2023/24 35

Interfaces
• Interface type: named collection of method signatures
• Any type (struct) that implements the required

methods, implements that interface
– Instead of designing the abstraction in terms of what kind of

data our type can hold, you design the abstraction in terms
of what actions your type can execute

• A type is not explicitly declared to be of a certain
interface, it is implicit
– Just implement the required methods

• Let’s code a basic interface for geometric shapes

Valeria Cardellini - SDCC 2023/24 36

Interface: example
package main

import "fmt"
import "math"

// A basic interface for geometric shapes
type geometry interface {

area() float64
perim() float64

}

// For example, implement this interface on rect and circle types
type rect struct {

width, height float64
}
type circle struct {

radius float64
}

Valeria Cardellini - SDCC 2023/24 37

Interface: example
// To implement an interface in Go, you just need to
// implement all the methods in the interface.

// Here you implement geometry on rect
func (r rect) area() float64 {

return r.width * r.height
}
func (r rect) perim() float64 {

return 2*r.width + 2*r.height
}

// Here you implement geometry on circle
func (c circle) area() float64 {

return math.Pi * c.radius * c.radius
}
func (c circle) perim() float64 {

return 2 * math.Pi * c.radius
}

Valeria Cardellini - SDCC 2023/24 38

Interface: example
// If a variable has an interface type, then you can call
// methods that are in the named interface. Here's a
// generic measure function taking advantage of this
// to work on any geometry
func measure(g geometry) {

fmt.Println(g)
fmt.Println(g.area())
fmt.Println(g.perim())

}
func main() {

r := rect{width: 3, height: 4}
c := circle{radius: 5}

// The circle and rect struct types both implement the
// geometry interface so you can use instances of these
// structs as arguments to measure
measure(r)
measure(c)

}
39

$ go run interfaces.go
{3 4}
12
14
{5}
78.53981633974483
31.41592653589793

Valeria Cardellini - SDCC 2023/24

Concurrency in Go

• Go provides concurrency features as part of the core
language

• Goroutines and channels
– Support CSP concurrency model

• Can be used to implement different concurrency
patterns

Valeria Cardellini - SDCC 2023/24 40

Goroutines

• Goroutine: a lightweight thread managed by Go
runtime

• Very easy to use: just prefix go to function call
go f(x, y, z) // start a new goroutine running

// f(x, y, z)

• Goroutines run in the same address space, so access
to shared memory must be synchronized

• Be careful: when main function returns, program exits
without waiting for other (non-main) goroutines to
complete

Valeria Cardellini - SDCC 2023/24 41

Goroutines
• Are goroutines threads?

– No, they are lightweight abstractions over threads
• Scheduled over OS threads by Go scheduler
• A single OS thread can run many goroutines

– Goroutine creation and destruction are cheaper as compared to
OS threads (at least 5x) and less memory consuming (~500x)

• Are goroutines called in the declared order?
– No, since goroutines are abstractions over threads, they all

have the same priority and you therefore cannot control the
order in which they run

• How to control goroutine performance?
– You can set an environment variable (GOMAXPROCS) which

determines how many threads your program will use
simultaneously

• Normally set to number of virtual CPU cores
dev.to/gophers/what-are-goroutines-and-how-are-they-scheduled-2nj3

Valeria Cardellini - SDCC 2023/24 42

Channels

• Communication mechanism that lets one

goroutine sends values to another goroutine

– Channel: thread-safe queue managed by Go and its runtime

• Hides a lot of pain of inter-thread communication
– Internally, a channel uses mutexes and semaphores just as

one might expect

• Multiple senders can write to the same channel
– Useful for notifications, multiplexing, etc.
– And it’s totally thread-safe!

• But be careful: only one can close channel, and
can’t send after close (panic!)

Valeria Cardellini - SDCC 2023/24 43

Channels

• Channel: a typed conduit through which a goroutine
can send and receive values using the channel
operator <-
ch <- v // Send v to channel ch

v := <- ch // Receive from ch, and

// assign value to v

• A conduit for values of a particular type (e.g., int,
struct)

• Create channel with make before using it
ch := make(chan int)

• Sends and receives block until the other side is ready
– Goroutines can synchronize without explicit locks or

condition variables
– See gobyexample.com/channel-synchronization

Valeria Cardellini - SDCC 2023/24 44

Data flows in the
direction of the arrow

Channels: example
import "fmt"
func sum(s []int, c chan int) {

sum := 0
for _, v := range s {

sum += v
}
c <- sum // send sum to c

}

func main() {
s := []int{7, 2, 8, -9, 4, 0}
c := make(chan int)
go sum(s[:len(s)/2], c)
go sum(s[len(s)/2:], c)
x, y := <-c, <-c // receive from c
fmt.Println(x, y, x+y)

}
Valeria Cardellini - SDCC 2023/24 45

• Distributed sum: sum is
distributed between two
goroutines

• An example of applying the
common SPMD pattern for
parallelism

Channels: example
package main
import "fmt"
func fib(c chan int) {

x, y := 0, 1
for {

c <- x
x, y = y, x+y

}
}
func main() {

c := make(chan int)
go fib(c)
for i := 0; i < 10; i++ {

fmt.Println(<-c)
}

}

Valeria Cardellini - SDCC 2023/24 46

• Fibonacci sequence: iterative
version using channel

Elegant and efficient!

Buffered channels
• By default (i.e., unbuffered channel), channel ops block

– Go spec.: If the capacity is zero or absent, the channel is
unbuffered and communication succeeds only when both a
sender and receiver are ready

– If the channel is unbuffered, the sender blocks until the receiver
has received the value

• Buffered channels do not block if they are not full or not
empty
– Specify buffer capacity as make’s second argument

ch := make(chan int, 100)
• If the capacity is zero or absent, the channel is unbuffered

– Send to a buffered channel blocks only when buffer is full
– Receive from a buffered channel blocks only when buffer is

empty (no data to receive)

Valeria Cardellini - SDCC 2023/24 47Buffered channel

More on channels: close and range
• Close channel

– Use close function to close a channel
– Receiver can test whether a channel has been closed by

assigning a second value to receive
v, ok := <- ch
• ok is false if there are no more values to receive and the

channel has been closed

– Only sender should close a channel, never receiver
• Sending on a closed channel will cause a run-time panic

panic: send on closed channel
– See example gobyexample.com/closing-channels

• Use range to receive values from channel repeatedly
until it is closed
for elem := range ch {

fmt.Println(elem)

}
Valeria Cardellini - SDCC 2023/24 48

More on channels: select

• The select statement lets a goroutine wait on
multiple communication operations
– Blocks until one of its cases can run, then executes that

case
– One at random if multiple cases are ready

Go spec.: If one or more of the communications can proceed, a
single one that can proceed is chosen via a uniform pseudo-
random selection. Otherwise, if there is a default case, that case
is chosen. If there is no default case, the "select" statement
blocks until at least one of the communications can proceed.

select {
case mgs1 := <-ch1: // receive on ch1

// ...
case msg2 := <-ch2: // receive on ch2

// ...use x...
}

Valeria Cardellini - SDCC 2023/24 49

Using select: example

package main
import "fmt"

func fibonacci(c, quit chan int) {
x, y := 0, 1
for {

select {
case c <- x:

x, y = y, x+y
case <- quit:

fmt.Println("quit")
return

}
}

}
Valeria Cardellini - SDCC 2023/24 50

• Fibonacci sequence: iterative version using two channels, the
latter being used to quit

Using select: example
func main() {

c := make(chan int) // c is an unbuffered channel
quit := make(chan int)
go func() { // anonymous function

for i := 0; i < 10; i++ {
fmt.Println(<-c)

}
quit <- 0

}()
fibonacci(c, quit)

}

Valeria Cardellini - SDCC 2023/24 51

More on channels: select
• You can use select with a default clause to

implement non-blocking sends, receives, and even
non-blocking multi-way selects

select {
case mgs1 := <-ch1: // receive

// ...
case msg2 := <-ch2: // receive

// ...use x...
case ch3 <-msg3: // send

// ...
default:

// ...
}

See example with non-blocking channel operations
gobyexample.com/non-blocking-channel-operations

Valeria Cardellini - SDCC 2023/24 52

Timers

• You can implement timeouts by using a timer channel
– You tell the timer how long you want to wait, and it provides

a channel that will be notified at that time
// to wait 2 seconds
timer := time.NewTimer(time.Second * 2)

<- timer.C
– <-timer.C blocks on timer’s channel C until it sends a value

indicating that the timer fired
– Timer can be canceled before it fires using Stop()
– See example gobyexample.com/timers

Valeria Cardellini - SDCC 2023/24 53

A few more things

• Modules
• Variadic functions
• Error handling
• Go tools
• Testing and benchmarking
• RPC in Go

www.ce.uniroma2.it/courses/sdcc2324/slides/DS_Communication1.pdf

• There are many others, but this is just an introduction
to Go!
– E.g., support for HTTP clients and servers in net/http

package

Valeria Cardellini - SDCC 2023/24 54

Go modules
• Module: collection of related Go packages stored in

a file tree with a go.mod file at its root
• go.mod file defines:

– module path, which is also the import path used for root
directory

– minimum version of Go required by module
– its dependency requirements, which are the other modules

needed for a successful build with their minimum version

Valeria Cardellini - SDCC 2023/24 55

• To generate go.mod file:
$ go mod init <module_name>

• To add missing (and remove
unused) module requirements:
$ go mod tidy

See go.dev/doc/tutorial/create-module
www.digitalocean.com/community/tutorials/how-to-use-go-modules

$ go run variadic-functions.go
[1 2] 3
[1 2 3] 6
[1 2 3 4] 10

Variadic functions
• Go functions can be called with a varying number of

arguments: variadic functions
– E.g., fmt.Println is a variadic function

package main

import "fmt"

func sum(nums ...int) {

fmt.Print(nums, " ")

total := 0

for _, num := range nums {

total += num

}

fmt.Println(total)

}

Valeria Cardellini - SDCC 2023/24 56

func main() {

sum(1, 2)
sum(1, 2, 3)

nums := []int{1, 2, 3, 4}
sum(nums...)

}

Error handling
• Go code uses error values to indicate abnormal state
• Errors are communicated via explicit, separate return value

– By convention, the last return value of a function
– nil value in the error position: no error
– “Error handling [in Go] does not obscure the flow of control.” (R. Pike)

result, err := SomeFunction()
if err != nil {

// handle error
}

• Built-in error interface type in package errors
type error interface {

Error() string
}

– errors.New constructs a basic error value with the given error
message

Valeria Cardellini - SDCC 2023/24 57

See go.dev/blog/error-handling-and-go

Common errors and recommended tools
• Go can be somewhat picky

– Unused variables raise errors, not warnings
• Use blank identifier “_” for variables you don’t care about (e.g.,

the loop index when you need only the value)
– In if-else statement { must be placed at the end of the

same line, e.g.
} else {
} else if … {

– Unused imports raise errors

• Recommended command-line tools:
– Use gofmt to format Go code

$ gofmt -w yourcode.go

– Use goimports command to automatically add/remove
imports

– Use godoc for quickly browsing package documentation
Valeria Cardellini - SDCC 2023/24 58

Testing and benchmarking in Go

• Go testing package provides tools to write unit tests
• To run tests:

$ go test

• Code to be tested is in a given source file (e.g.,
math.go)

• Test file for it ends _test.go (e.g., math_test.go)
– Call func TestXxx(*testing.T) where Xxx is the name of

the tested function
func TestAbs(t *testing.T) {

got := Abs(-1)
if got != 1 {

t.Errorf("Abs(-1) = %d; want 1", got)
}

}

Valeria Cardellini - SDCC 2023/24 59

Testing and benchmarking in Go
• Use benchmarking to measure code performance
• Benchmark tests are in _test.go files and are

named beginning with Benchmark
• The testing runner executes each benchmark

function several times, increasing b.N on each run
until it collects a precise measurement
– A benchmark runs a function in a loop b.N times

func BenchmarkXxx(b *testing.B) {
for i := 0; i < b.N; i++ {

Xxx(…)
}

}

• To run benchmarks
$ go test -bench=.

• Example: let’s benchmark make vs. append on slice
Valeria Cardellini - SDCC 2023/24 60

References

• go.dev
• Online Go tutorial go.dev/tour

• Go Playground go.dev/play

• Go by Examples gobyexample.com

• Go standard library pkg.go.dev/std

• Donovan and Kernighan, The Go Programming Language,
Addison-Wesley, 2016

• Learn Go Programming: 7 hours video on Youtube
• More resources: go.dev/learn/

• DigitalOcean, How to Code in Go
www.digitalocean.com/community/tutorial-series/how-to-code-in-go

Valeria Cardellini - SDCC 2023/24 61

