
Corso di Sistemi Distribuiti e Cloud Computing
A.A. 2023/24

Valeria Cardellini

Laurea Magistrale in Ingegneria Informatica

Virtualization

Macroarea di Ingegneria
Dipartimento di Ingegneria Civile e Ingegneria Informatica

Valeria Cardellini - SDCC 2023/24

Virtualization
• High-level abstraction to hide details of underlying

implementation
• Abstraction of computing resources

– Logical view different from physical one

• How? Decouple user-perceived architecture and
behavior of hw and sw resources from their physical
realization

• Goals:
– Agility, flexibility, performance, reliability, security, …

1

Virtualization of resources

• System (hw and sw) resources virtualization
– Virtual machines, containers, unikernels, …

• Storage virtualization
– Storage Area Network (SAN), …

• Network virtualization
– Virtual LAN (VLAN), Virtual Private Network (VPN), …

• Data center virtualization

Valeria Cardellini - SDCC 2023/24
2

Our
focus

Components of virtualized environment

• 3 major components:
– Guest
– Host
– Virtualization layer

• Guest: interacts with
virtualization layer rather
than with host

• Host: original
environment where
guest is supposed to be
managed

Valeria Cardellini - SDCC 2023/24 3

• Virtualization layer: responsible for recreating same or
different environment where guest will operate

Taxonomy of virtualization techniques

• Execution environment virtualization is the oldest,
most popular and developed area ⇒ our focus

Valeria Cardellini - SDCC 2023/24 4

Valeria Cardellini - SDCC 2023/24

Virtual Machine
• A virtual machine (VM) is a complete compute

environment with its own isolated processing
capabilities, memory, and communication channels

• Allows to represent hw/sw resources of a physical
machine differently from their reality
– E.g., VM hw resources (CPU, network card, ...) different from

physical resources of the real machine
– E.g., VM sw resources (OS, …) different from sw resources

of the real machine

• A single physical machine can be used to host
several VMs

5

Virtualization layer

VM1 VM2 VM3

Hardware

Valeria Cardellini - SDCC 2023/24

Virtualization: a brief history
• Virtualization and VMs are an “old” idea in

computer science
– Dates back to the 1960s in a centralized context
– Designed to allow legacy (existing) software to run on

expensive mainframes and transparently share (scarce)
physical resources

– E.g., IBM System/360-67 mainframe

• In the 1980s, with the transition to PCs, the
problem of transparently sharing computing
resources was solved by multitasking OSs
– Virtualization became less of an issue

6

Valeria Cardellini - SDCC 2023/24

Virtualization: a brief history
• At the end of the 1990s, interest in virtualization

revamped to make programming special-purpose hw
less burdensome
– VMware founded in 1998

• Moreover, management costs and under-utilization of
hw and sw platforms exacerbate the need for
virtualization solutions
– Hw changes faster than sw (middleware and applications)
– Management costs increase and application portability

decreases
– Sharing underutilized computing resources becomes

important again to reduce infrastructure costs

• Nowadays, virtualization is one the enabling
technologies for cloud computing

7

Virtualization: pros

• Facilitates compatibility, portability, interoperability
and migration of applications and environments
– Hw independence: create once, run everywhere
– Legacy VMs: run old OSs or applications on new platforms

Valeria Cardellini - SDCC 2023/24 8

Virtualization: pros
• Allows server consolidation in data center, with

economic, management and energy advantages
– How? Multiplexing multiple VMs on same physical server
– Goal: reduce number of physical servers and use them

efficiently
✓ Reduce costs, energy consumption and occupied space
✓ Simplify server management, maintenance and upgrade
✓ Reduce downtime through live migration of VMs

Valeria Cardellini - SDCC 2023/24 9

Virtualization: pros
• Allows to isolate application components that are

malfunctioning or under security attacks, thus
increasing applications reliability and security
– VMs running different components cannot access each

other’s resources
– Software bugs, crashes, viruses in a VM cannot harm other

VMs running on the same physical machine

• Allows to isolate performance of different VMs
– By scheduling shared physical resources among different

VMs running on the same physical machine
• Allows to balance load on physical machines

– By migrating VMs from a physical machine to another

Valeria Cardellini - SDCC 2023/24 10

Valeria Cardellini - SDCC 2023/24

Reasons to use virtualization

• Personal and educational
– Run several OSs simultaneously on the same physical

machine
– Simplify sw installation
– Develop, test and debug applications
– Simulate a distributed environment on a single machine

• Enterprise
– Consolidate data center infrastructure and ensure

business continuity
– Encapsulate entire systems in single files (system images)

that can be replicated, migrated or reinstalled on any
server

– Enable DevOps

11

Hardware

Operating System

ISA

Libraries

ABI

API

System calls

Applications

System ISA User ISA

A1

A2

A3

Interfaces in computer system

Valeria Cardellini - SDCC 2023/24 12

Applications:
• use library functions (A1)
• make system calls (A2)
• execute machine instructions (A3)

Valeria Cardellini - SDCC 2023/24

Interfaces in computer system and virtualization
At which level can virtualization be realized?
• Strictly related to computer system interfaces

– Hw/sw interface (system ISA: primarily for system resource
management, privileged instructions executed only by OS)
[interface 3]

– Hw/sw interface (user-level ISA: primarily for computation, non-
privileged instructions executed by any program) [interface 4]

– System calls [interface 2]
• ABI (Application Binary Interface):

interface 2 + interface 4
– Library calls (API) [interface 1]

• Essence of virtualization: mimic
behavior of these interfaces

Smith and Nair, The architecture of virtual machines, IEEE Computers, 2005
13

Valeria Cardellini - SDCC 2023/24

Implementation levels of virtualization

• Virtualization can be implemented at various
operational levels:
– ISA level

– Hardware level (aka system VMs)

– Operating system level (aka containers)

– Library level

– User application level (aka process VMs)

14

Our
focus

Valeria Cardellini - SDCC 2023/24

Implementation levels of virtualization

• ISA level
– Goal: emulate a given ISA by ISA of host machine

• E.g., MIPS binary code can run on x86-based host with
help of ISA emulation

– ISA emulation can be done through code
interpretation or dynamic binary translation

• Code interpretation is slow: every source instruction is
interpreted by emulator in order to execute native ISA
instructions

• Dynamic binary translation is faster: converts in blocks
rather than instruction by instruction

15

Valeria Cardellini - SDCC 2023/24

• Hardware level (aka system VMs)
– Goal: virtualize host resources, such as its

processors, memory, and I/O devices
– Based on Virtual Machine Monitor (VMM), aka

hypervisor
• VMM handles interaction with underlying hw platform for

CPU, memory, and I/O resource access

16

Implementation levels of virtualization

Valeria Cardellini - SDCC 2023/24

Implementation levels of virtualization
• Hardware level (aka system VMs)

– Provides a complete environment in which
multiple VMs can coexist

• VMM manages hardware resources and shares them
among multiple VMs and provide isolation and
protection of VMs

• When a VM performs a privileged instruction or
operation that directly interacts with shared hw, VMM
intercepts the instruction, checks it for correctness, and
performs it

– Examples: VMware, KVM,
Xen, Parallels, VirtualBox

Multiple instances of combinations
<applications, OS>

17

Valeria Cardellini - SDCC 2023/24

Implementation levels of virtualization

• Operating system level (aka containers)
– Goal: create multiple isolated containers
– Examples: Docker, Linux Containers, Podman

• Library level
– Goal: create execution environment to run apps in a

host environment that does not suite native apps
• Rather than creating a VM to run full OS and apps

– Examples:
• Wine: runs Windows apps on top of POSIX-compliant OS

by translating Windows API calls into POSIX calls on-the-fly
• Cygwin: “Get that Linux feeling – on Windows”

18

Valeria Cardellini - SDCC 2023/24

Implementation levels of virtualization
• User application level (aka process VMs)

– Virtual platform that executes a single process
– Provides virtual ABI or API to user application
– Application is compiled into intermediary, portable

code (e.g., Java bytecode) and executed in runtime
environment provided by process VM

– Examples: JVM, .NET CLR
Multiple instances of combinations
<application, runtime system>

19

Valeria Cardellini - SDCC 2023/24

Implementation levels of virtualization: summing up

20

• Relative merits of virtualization at different levels

System-level virtualization: terminology

• Let’s focus on system-level virtualization
(achieved through VMM or hypervisor)

• Host: base platform on top of which VMs are
executed; made of:
– Physical machine
– Possible host OS
– VMM

• Guest: everything inside a single VM
– Guest OS and applications executed inside the VM

Valeria Cardellini - SDCC 2023/24
21

System-level virtualization: taxonomy

• Let’s classify system-level virtualization
solutions according to:
1. Where to deploy VMM

• System VMM (aka type-1, native or bare-
metal hypervisor)

• Hosted VMM (aka type-2 hypervisor)

2. How to virtualize instruction execution
• Full virtualization

– Software-assisted
– Hardware-assisted

• Paravirtualization
Valeria Cardellini - SDCC 2023/24

22

System-level virtualization: taxonomy

Valeria Cardellini - SDCC 2023/24
23

Virtualization

OS level Hardware level

Type-2 Full virtualizationPara-virtualizationType-1

Micro-kernelMonolithic Sw-assistedHw-assisted

Where? How?

Valeria Cardellini - SDCC 2023/24

System vs. hosted VMM

System VMM Hosted VMM

ho
st

guest host

In which level of the system architecture is VMM deployed?
– Directly on hardware: system (or native) VMM
– On top of host OS: hosted VMM

gu
es

t

24

System vs. hosted VMM
• System VMM (type-1): runs directly on hw, offers

virtualization features integrated into a simplified OS
– VMM can have microkernel (only basic functions, no device

drivers) or monolithic architecture
– Examples: Xen, KVM, VMware ESXi, Hyper-V

• Hosted VMM (type-2): runs on top of host OS, accesses
hw resources via host OS system calls
– Interacts with host OS via ABI and emulates virtual hw ISA for

guest OS
✓ Can use host OS to manage devices and use low-level services

(e.g., resource scheduling)
✓ No need to change guest OS
✗ Performance degradation with respect to system VMM
– Examples: Bochs, Parallels Desktop, VirtualBox

Valeria Cardellini - SDCC 2023/24
25

Valeria Cardellini - SDCC 2023/24

Full virtualization vs paravirtualization

How to manage the interaction between VMs and VMM
in order to access to physical resources, i.e., how to
manage the execution of privileged instructions that
require direct access to hardware or other privileged
resources?

– Full virtualization
– Paravirtualization

• For a comparison of platform virtualization software
en.wikipedia.org/wiki/Comparison_of_platform_virtualization_software

26

Valeria Cardellini - SDCC 2023/24

Full virtualization vs paravirtualization
• Full virtualization

– VMM exposes to each VM simulated hw interfaces that are
functionally identical to those of the underlying physical
machine

– VMM intercepts requests for privileged access to the
hardware (e.g., I/O instructions) and emulates the expected
behavior

– Examples: KVM, VMware ESXi, Microsoft Hyper-V

• Paravirtualization
– The VMM exposes to each VM simulated hw interfaces that

are functionally similar (but not identical) to those of the
underlying physical machine

– Hardware is not emulated, but a minimal software layer
(Virtual Hardware API) is created to ensure VM management
and their isolation

– Examples: Xen, Oracle VM, PikeOS

27

Full virtualization vs paravirtualization

• Full virtualization pros and cons
✓Run unmodified guest OS
✓Complete isolation between VM instances:

security, ease of emulating different architectures

✗VMM is more complex
✗Require collaboration with processor to make

virtualization more efficient: why?

Valeria Cardellini - SDCC 2023/24 28

Issues to address for system-level virtualization
• Non-virtualized processor

architecture operates according to
at least 2 protection levels (rings):
supervisor and user
– Ring 0: most privileged (unrestricted

access to system resources)
– Ring 3: least privileged

Valeria Cardellini - SDCC 2023/24 29

• With virtualization
– VMM operates in supervisor mode (ring 0)
– Guest OS and applications (i.e., VM) operate in user mode

(guest OS in ring 1 or 3)
– Ring deprivileging problem: guest OS operates in a ring

which is not its own ⇒ cannot execute privileged instructions
(e.g., lidt in x86 to load interrupt descriptor table)

– Ring compression problem: since applications and guest OS
run at the same level, guest OS space must remain protected

x86 architecture w/o virtualization

How to address ring deprivileging
• Trap-and-emulate

– When guest OS attempts to execute a privileged instruction
(which can run only in supervisor mode), an exception (trap)
must be notified to VMM and control must be transferred to it;
VMM performs a safety check on the requested operation,
executes (“emulates”) its behavior and returns the result to
guest OS

– Instead non-privileged instructions (all?) run by guest OS do
not trap and are directly executed

Valeria Cardellini - SDCC 2023/24 30

Popek and Goldberg virtualization requirements
• Popek and Goldberg (1974) defined a set of conditions

sufficient for a computer architecture to support
system virtualization efficiently

• They classified ISA instructions into 3 groups:
1. Privileged instructions: do not trap when the processor is in

supervisor mode, but trap when in user mode
• Privileged state: determines resource allocation (privilege mode,

addressing context, exception vectors, ...)
2. Sensitive instructions: change underlying resources (e.g., do

I/O or change page tables) or observe information that
indicates current privilege level (thus exposing that guest OS
does not run on bare metal); can be
• Control sensitive: change privileged state
• Behavior sensitive: expose privileged state

3. Innocuous instructions: not sensitive

Valeria Cardellini - SDCC 2023/24 31

Popek and Goldberg virtualization requirements

• Necessary condition: For any conventional computer,
a virtual machine monitor may be constructed if the
set of sensitive instructions for that computer is a
subset of the set of privileged instructions

• Problem: condition is not always satisfied
– There may be sensitive but non-privileged instructions that

are executed in user mode without causing a trap to OS

Valeria Cardellini - SDCC 2023/24 32

blog.acolyer.org/2016/02/19/formal-requirements-for-virtualizable-third-generation-architectures

Condition for virtualization
• Common architectures are non-virtualizable according

to Popek and Goldberg’s condition
– x86: many instructions are non-virtualizable, because are

sensitive but non-privileged
• E.g., pushf (push flags) is non-privileged

– MIPS: mostly virtualizable, but...
• Kernel registers $k0, $k1 (needed to save/restore state) are user-

accessible
– ARM: mostly virtualizable, but

• Some instructions are undefined in user-mode

Valeria Cardellini - SDCC 2023/24 33

Condition for virtualization
• From Popek and Popek and Goldberg’s condition:

– Privileged and sensitive but non-privileged instructions that are
executed in user mode must be virtualized

• Issue:
– Privileged instructions result in traps: ok
– Sensitive but non-privileged do not result in traps, how can we

virtualize them?

• 1st solution: trap-and-emulate
– Privileged and non-privileged sensitive instructions trap and

divert control to VMM
– Seems easy but … how to implement it?

• 2nd solution: paravirtualization
– Modify guest OS, by either preventing non-privileged sensitive

instructions or making them non-sensitive (i.e., changing the
context)

Valeria Cardellini - SDCC 2023/24 34

Full virtualization: solutions

• How to realize the trap mechanism?

– At hardware level if processor supports virtualization
! hardware-assisted CPU virtualization

– At software level if processor does not support virtualization
! fast binary translation

• The elder solution

Valeria Cardellini - SDCC 2023/24 35

Hardware-assisted CPU virtualization
• Hardware-assisted CPU virtualization (Intel VT-x and

AMD-V) provides two new CPU operating modes
(root mode and non-root mode), each supporting all 4
x86 protection rings

Valeria Cardellini - SDCC 2023/24

- VMM runs in root mode
(Root-Ring 0), while guest
OSs run in guest mode in
their original privilege levels
(Non-Root Ring 0): no
longer ring deprivileging
and ring compression
issues

- VMM can control guest
execution through VM
control data structures in
memory

36

x86 architecture with full virtualization
and hardware-assisted CPU
virtualization

Hardware-assisted CPU virtualization: VT-x

Valeria Cardellini - SDCC 2023/24 37

• VMX root: intended for hypervisor operations (like x86
without VT-x)

• VMX non-root: intended to support VMs
• When executing VMEntry operation, processor state is

loaded from guest-state of VM scheduled to run, then
control is transferred from hypervisor to VM

• VMExit saves processor state in guest-state area of
running VM; it loads processor state from host-state,
then transfers control to hypervisor

Fast binary translation

• VMM trap mechanism for privileged instructions is offered
by processors with hardware support for virtualization
– How to achieve full virtualization without hw support?

• Fast binary translation: VMM scans code before its
execution to replace blocks containing privileged
instructions with functionally equivalent blocks containing
instructions for notifying exception to VMM

Valeria Cardellini - SDCC 2023/24

x86 architecture with full virtualization
and fast binary translation

- Translated blocks are
directly executed on hw and
stored in a cache for future
reuse

✗ Higher complexity and lower
performance wrt to hw-
assisted virtualization

38

Paravirtualization

Valeria Cardellini - SDCC 2023/24

• Non-transparent virtualization solution
- Guest OS kernel must be modified to let it invoke the virtual

API exposed by VMM

• Non-virtualizable instructions are replaced by
hypercalls that communicate directly with hypervisor
- Hypercall: software trap from guest OS to hypervisor, just as

syscall is software trap from app to kernel
hypercall : hypervisor = syscall : kernel

x86 architecture with paravirtualization
39

Paravirtualization: hypercall execution

Valeria Cardellini - SDCC 2023/24

• When application running in VM issues a guest OS system call,
through the hypercall the control flow jumps to hypervisor, which then
passes control back to guest OS

Source: “The Definitive Guide to XEN hypervisor”

40

Paravirtualization: pros & cons

Valeria Cardellini - SDCC 2023/24

• Pros (vs full virtualization):
✓ Relatively easier and more practical implementation
✓ Less overhead wrt fast binary translation
✓ Does not require virtualization extensions from host CPU as

hw-assisted virtualization does

• Cons (vs full virtualization):
✗ Requires source code availability of OS to modify guest OS

and make it paravirtualized
✗ Cost of maintaining paravirtualized OSs

• Paravirtualized OS cannot run directly on hardware

41

Summing up different approaches

Valeria Cardellini - SDCC 2023/24 42

Fast Binary Translation

VMM reference architecture
• 3 main modules

– Dispatcher: VMM entry point that reroutes privileged
instructions issued by VMs to one of the other two modules

– Allocator (or scheduler): decides about the system
resources to be provided to VM

– Interpreter: executes a proper routine when VM executes a
privileged instruction

43Valeria Cardellini - SDCC 2023/24

VMM reference architecture: scheduler

Valeria Cardellini - SDCC 2023/24 44

• VMM scheduler: additional scheduling layer with
respect to traditional CPU scheduling

• How to schedule virtual CPUs on physical CPUs?

Memory virtualization
• In a non-virtualized environment

– One-level memory mapping: from virtual memory to physical
memory provided by page tables

– MMU and TLB hardware components to optimize virtual memory
performance

• In a virtualized environment
– All VMs share the same machine memory and VMM needs to

partition it among VMs
– Two-level memory mapping: from guest virtual memory to

guest physical memory to host physical memory

• Some terms
– Guest virtual memory: memory visible to apps; continuous virtual

address space presented by guest OS to apps
– Guest physical memory: memory visible to guest OS
– Host/machine physical memory: actual hw memory visible to

VMM
Valeria Cardellini - SDCC 2023/24 45

Two-level memory mapping

Valeria Cardellini - SDCC 2023/24

• Going from guest virtual memory to host physical memory
requires two-level memory mapping
GVA (guest virtual address) è GPA (guest physical
address) è HMA (host machine address)

• Guest physical address ≠ host machine address: why?
- Hints: many VMs; what does guest OS expect about its memory?

46

Shadow page tables
• To avoid unbearable performance drop due to extra

memory mapping, VMM maintains shadow page tables
(SPTs) and uses them to accelerate address mapping
– So to achieve direct mapping from GVA to HPA

Valeria Cardellini - SDCC 2023/24 47

• SPT directly maps GVA to HPA
– Guest OS creates and manages page tables (PTs)

for its virtual address space without modification
• But these PTs are not used by MMU hardware

– VMM creates and manages PTs that map virtual
pages directly to machine pages

• These VMM PTs are the shadow page tables and
are loaded into MMU

– VMM needs to keep SPTs consistent with changes
made by each guest OS to its PTs

Memory mapping with SPTs

Valeria Cardellini - SDCC 2023/24

• VMM uses TLB hardware to map virtual memory directly
to machine memory to avoid the two levels of translation
on every access (red arrow)

48

Shadow page tables consistency

• When guest OS changes its PTs, VMM needs to
update SPTs to enable a direct lookup

• How?
– VMM maps guest OS PTs as read only
– When guest OS writes to PTs, trap to VMM
– VMM applies write to SPT and guest OS PT, then returns
– Aka memory tracing
– Adds overhead

Valeria Cardellini - SDCC 2023/24 49

Challenges in memory virtualization with SPT

Valeria Cardellini - SDCC 2023/24

• Address translation
– Guest OS expects contiguous,

zero-based physical memory, but
underlying machine memory may
be non contiguous: VMM must
preserve this illusion

• Page table shadowing
– SPT implementation is complex
– VMM intercepts paging operations

and constructs copy of PTs

• Overheads
– SPTs consume significant host

memory
– SPTs need to be kept consistent

with guest PTs
– VM exits add to execution time

50

Hw support for memory virtualization

Valeria Cardellini - SDCC 2023/24

• Second Level Address
Translation (SLAT) is the
hardware-assisted solution
for memory virtualization
(Intel EPT and AMD RVI) to
translate GVA into HPA

• Using SLAT significant
performance gain with
respect to SPT: around 50%
for MMU intensive
benchmarks

51

• SPT is a software-managed solution: let’s consider
a more efficient hardware solution

Case study: Xen
• The most notable example of paravirtualization

www.xenproject.org (initially developed at Cambridge Univ.)
– Open-source type-1 (system VMM) hypervisor with microkernel

design
– Offers to guest OS a virtual interface (hypercall API) to whom

guest OS must refer to access machine physical resources
– Supports both paravirtualization (PV) and hardware-assisted

virtualization (HVM)
• With paravirtualization Xen requires PV-enabled guest OSs and

PV drivers (part of Linux kernel and other OSs)
– OSs ported to Xen: Linux, NetBSD, FreeBSD

• With HVM also unmodified guest OSs (e.g., Windows)
– Foundation for commercial virtualization products (e.g.,

XenServer, Oracle VM)
– Also embedded Xen distros
– Powers IaaS providers (e.g., Alibaba, Amazon, Rackspace)

52Valeria Cardellini - SDCC 2023/24

Valeria Cardellini - SDCC 2023/24

Xen: pros and cons
✓ Thin hypervisor model

– 300K lines of code on x86, 65K on Arm
– Small footprint and interface (around 1MB in size)
– Scalable: up to 4,095 host CPUs with 16Tb of RAM
– More robust and secure than other hypervisors, see

youtu.be/sjQnAIJji4k
– But still vulnerable to attacks xenbits.xen.org/xsa

✓ Continuously improved
✓ Flexibility in management

– Tuning for performance

✓ Low overhead (within 2%) with respect to bare metal
machine without virtualization

✓ Supports VM live migration
✗ I/O performance still remains challenging

53

Valeria Cardellini - SDCC 2023/24

Xen architecture
• Goal of Cambridge Univ. group who designed Xen (late

1990s, first release in 2003)
- Design hypervisor capable of scaling to ~100 VMs running

applications without any modifications to ABI

• Microkernel design

• What can be paravirtualized?
- Privileged instructions

• Privileged instructions issued by guest OS are replaced with
hypercalls

- Page tables (memory access)

- Disk access and I/O devices

- Interrupts and timers

54

Xen architecture

wiki.xenproject.org/wiki/Xen_Project_Software_Overview

Valeria Cardellini - SDCC 2023/24
55

Xen architecture: hypervisor
• In charge of scheduling, memory management,

interrupt and device control
• Per-domain and per-vCPU info management

Valeria Cardellini - SDCC 2023/24
56

Valeria Cardellini - SDCC 2023/24

Xen architecture: domains
• 2 kinds of domains: control domain that starts and

manages all the others unprivileged domains
• Guest domains: DomU (unprivileged)

- Represent VM instances, each running its OS and apps
- Run on virtual CPUs (vCPUs)
- Totally isolated from hw (i.e., no privilege to access hw or I/O

functionality)

• Dom0 (control domain): specialized VM having special
privileges that is, capability to access hw directly,
handles all access to system’s I/O functions and
interacts with the other VMs
- Mandatory, initial domain started by Xen on boot
- Contains drivers for all devices and systems services: Device

Emulation (DS), XenStore/XenBus (XS), and Toolstack (TS)

57

Dom0 components: XenStore and Toolstack
• XenStore: information storage space shared between

domains managed by xenstored daemon
– Stores configuration and status information
– Implemented as hierarchical key-value storage

• When values are changed in the store, a watch function notifies listeners
(e.g., drivers) of changes of the key they have subscribed to

– Communicates with guest VMs via shared memory using Dom0
privileges

• Toolstack: allows a user to manage VM lifecycle (create,
shutdown, pause, migrate) and configuration
– To create a new VM, a user provides a configuration file describing

memory and CPU allocation and device configurations
– Toolstack parses this file and writes this information in XenStore
– Takes advantage of Dom0 privileges to map guest memory, to load

kernel and virtual BIOS and to set up initial communication channels
with XenStore and with virtual console when a new VM is created

Valeria Cardellini - SDCC 2023/24 58

CPU scheduler in Xen
• Hypervisor scheduler decides, among all the virtual

CPUs (vCPUs) of the various VMs, which ones should
execute on the physical CPUs (pCPUs)
- Further scheduling level with respect to those provided by OS

(scheduling of processes and scheduling of user-level threads
within processes)

• Xen allows to choose among different CPU schedulers
– Credit scheduler is the default

• Scheduling algorithm goals:
– Make sure that domains get fair share of CPU

• Proportional share algorithm: allocates pCPU in proportion to the
number of shares (weights) assigned to vCPUs

– Keep the CPU busy
• Work-conserving algorithm: does not allow pCPU to be idle when

there is work to be done
– Schedule with low latency

59Valeria Cardellini - SDCC 2023/24

Credit scheduler
• Proportional fair share and work-conserving scheduler
• Each domain (including Domain0) is assigned a weight

and a cap (tunable parameters)
– Weight: relative pCPU allocation per domain (default 256)
– Cap: maximum amount of CPU a domain can use

• cap = 0 (default): vCPU can receive any extra CPU (i.e., work-
conserving)

• cap ≠ 0: limits amount of pCPU that vCPU receives (i.e., non work-
conserving); expressed as % of pCPU (e.g., 100 = 1 pCPU, 50 =
0.5 pCPU)

• The scheduler transforms the weight into a credit
allocation for each vCPU
– The credit value represents the pCPU share that the domain is

expected to have
– As a vCPU runs, it consumes credit
– If its credit value is negative, the domain is in OVER priority;

otherwise, in UNDER priority 60wiki.xenproject.org/wiki/Credit_SchedulerVa
le

ria
 C

ar
de

llin
i -

SD
C

C
 2

02
3/

24

Credit scheduler: algorithm
• For each pCPU, the scheduler maintains a queue of

vCPUs, with all the vCPUs in UNDER priority first,
followed by vCPUs in OVER priority
– Round-robin ordering within UNDER and OVER priorities
– Scheduler picks the vCPU at the head of the queue
– Selected vCPU receives 30 ms time slice before being

preempted to run another vCPU
– VCPUs in OVER priority cannot be scheduled unless there is

no UNDER VCPUs in the queue
• The scheduler load balances vCPUs across pCPUs on

SMP (symmetric multi-processor) host
– Before a pCPU goes idle, it considers other pCPUs in order

to find any UNDER credit vCPU: no pCPU is idle when there
is runnable work in the system

61Valeria Cardellini - SDCC 2023/24

Performance comparison of hypervisors

• Developments in virtualization techniques and CPU
architectures have reduced the performance cost of
virtualization but still some overhead
– Especially when multiple VMs compete for hw resources

• We consider two performance comparison studies
– Papers available on course site
– “Old” studies but overall message is still valid

• Take-home message
– No one-size-fits-all solution exists
– Different hypervisors show different performance

characteristics for varying workloads

Valeria Cardellini - SDCC 2023/24
62

Performance comparison of hypervisors
A component-based performance comparison of four
hypervisors (IM 2013)

– Microsoft Hyper-V, KVM, VMware vSphere and Xen, all with
hardware-assisted virtualization

– Analyzed components: CPU, memory, disk I/O and network I/O

• Results
– Performance depends on type of virtualized hw resource, but no

single hypervisor always outperforms the others
• vSphere performs the best, but the others perform respectably
• CPU and memory: lowest levels of overhead
• I/O and network: Xen overhead for small disk operations

• Takeaway: consider application type because different
hypervisors may be best suited for different workloads

Valeria Cardellini - SDCC 2023/24
63

Performance comparison of hypervisors
Performance overhead among three hypervisors: an
experimental study using Hadoop benchmarks (BigData
2013)
• Use Hadoop MapReduce apps to evaluate and

compare the performance impact of three hypervisors
– Commercial one (undisclosed), Xen, and KVM

• Results
– For CPU-intensive benchmarks, negligible performance

difference among hypervisors
– For I/O-intensive benchmarks significant performance

variations
• Commercial hypervisor best at disk writing, KVM best for disk

reading
• Xen best when combination of disk reading and writing with

CPU-intensive computation

Valeria Cardellini - SDCC 2023/24
64

VM portability
• VM image: a single file for each VM which contains a

bootable OS, data files, and applications
• Virtual machine images come in different formats
• How to import and export VM images and avoid

vendor lock-in?
• Open Virtualization Format (OVF)

– Open industry standard (ISO 17203) for packaging and
distributing VMs

• Virtual-platform agnostic

– Image stored in .ova file (Open Virtual Appliance)
– VM configuration specified in XML format within a .ovx file
– Supported by many virtualization products including Hyper-V,

VMware, VirtualBox, XenServer

Valeria Cardellini - SDCC 2023/24 65

VM resizing and migration

• Useful techniques to deploy and manage
large-scale virtualized environments
– Dynamic resizing for vertical scaling (scale up,

scale down) of VMs
– Live migration of VMs

• Move VM between different physical machines (or
even data centers) without stopping it

Valeria Cardellini - SDCC 2023/24 66

VM dynamic resizing
• Fine-grain mechanism with respect to migrating or

rebooting VMs
– Example: app running on a VM consumes a lot of resources,

thus VM starts running out of RAM and CPU
– Solution: dynamically resize VM (aka warm resizing)

✓ More cost-effective and faster than VM reboot
✗ Not supported by all virtualization products and guest

OSs
• What can be resized without stopping and rebooting

the VM?
– Number of virtual CPUs
– Memory

Valeria Cardellini - SDCC 2023/24 67

VM dynamic resizing: CPU
• Add or remove virtual CPUs (without turning off VM)
• Linux supports CPU hot-plug/hot-unplug

www.kernel.org/doc/html/latest/core-api/cpu_hotplug.html
– Uses information in virtual file system sysfs (processor info is

in /sys/devices/system/cpu)
– /sys/devices/system/cpu/cpuX for cpuX (X = 0, 1, 2, …)
– To turn on cpu #5:

echo 1 > /sys/devices/system/cpu/cpu5/online
– To turn off cpu #5:

echo 0 > /sys/devices/system/cpu/cpu5/online

• VM CPU resizing can be managed using virsh
– virsh: command line tool to configure and manage virtual

machines, available with some hypervisors (KVM, Xen)
– E.g., set the number of vCPUs while VM is running (cannot

exceed max. number of vCPUs)
virsh setvcpus <vm_name> <vcpu_count> --current

Valeria Cardellini - SDCC 2023/24 68

VM dynamic resizing: memory
• Based on memory ballooning

– Mechanism used by hypervisors (e.g., KVM, Xen and
VMware) to pass memory back and forth between hypervisor
and guest OSs

– In KVM: virtio_balloon driver

Valeria Cardellini - SDCC 2023/24

• When balloon deflates:
more memory for the VM
– Anyway, VM memory size

cannot exceed
maxMemory

• When balloon inflates
– Swap memory pages to

disk

69

VM migration

• Pros
– Useful in clusters and virtual data centers to:

✓Consolidate infrastructure
✓Add failover flexibility
✓Balance load

• Cons
✓Requires VMM support
✓Migration overhead is non-negligible
✓WAN migration is scarcely supported

Valeria Cardellini - SDCC 2023/24 70

VM migration
• Approaches to migrate VM instances between physical

machines:
– Stop and copy: shutdown source VM and transfer VM image to

destination host, but downtime can be too long
• VM image can be large and network bandwidth limited

– Live migration: source VM is running during migration
• Largely used by Google: > 1M migrations per month

Valeria Cardellini - SDCC 2023/24 71

Our focus

VM live migration
• Preliminary steps before starting VM live migration

– Setup phase: determine source host, destination host and
VM to migrate (goals of load balancing, energy efficiency,
server consolidation)

• What to migrate? Memory, storage, network
connections

• How? In a transparent way wrt applications running
inside the VM
– But migration transparency is hard to achieve, live migration

still causes application downtime: how to limit it?

Valeria Cardellini - SDCC 2023/24 72

VM live migration: storage
• Let’s first focus on VM migration within a cluster

environment

• To migrate storage
– Can use network-accessible and shared storage system

• SAN (Storage Area Network) or cheaper NAS (Network Attached
Server) or distributed file system (e.g., NFS, GlusterFS, CEPH)

– Without shared storage: source VMM stores all source VM
data in an image file, which is transferred to destination host

73Valeria Cardellini - SDCC 2023/24

VM live migration: network
• To migrate network connections

– Source VM has its own virtual IP address, which can be
distinct from IP address of source host; can also have its own
distinct virtual MAC address

• VMM maintains a mapping of virtual IP and MAC addresses to
their corresponding VMs

– If source and destination hosts are connected to a single
switched LAN, an unsolicited ARP reply from source host is
provided, advertising that the IP has moved to a new location

• A few in-flight packets might be lost
– Alternatively, use forwarding mechanisms on source host

74Valeria Cardellini - SDCC 2023/24

VM live migration: memory
• To migrate memory (including CPU and device state):

1. Pre-copy phase: VMM copies in an iterative way the memory
pages from source VM to destination VM while source VM is
running
• During iteration n those pages dirtied during iteration n-1 are copied

2. Stop-and-copy phase: source VM is suspended and the last
dirty pages are copied, as well as CPU and device drivers
states; VM applications do not run
• Downtime: from some msec to sec, depending on memory size,

application memory workload and network bandwidth
3. Commitment and reactivation phases: destination VM is

activated and recovers application execution; source VM is
removed (and source host may be turned off)

• Known as pre-copy approach
– Memory is copied before VM execution resumes at destination
– Popular solution (e.g, KVM, VMWare, Xen, Google CE)

Valeria Cardellini - SDCC 2023/24 75

VM live migration: overall process

Valeria Cardellini - SDCC 2023/24 76
Clark et al., Live Migration of Virtual Machines, NSDI 2005

VM live migration: alternatives for memory
• Pre-copy cannot migrate in a transparent manner

memory-intensive apps
– E.g., for write-intensive memory app, pre-copy is unable to

transfer memory faster than memory is dirtied by running app

• Two alternative approaches
– Post-copy
– Hybrid

• Post-copy
– CPU and device state are transferred immediately to

destination host followed by transfer of execution control to
destination host

– Memory is fetched on-demand if needed by the running VM
on the destination host (pull approach)

✓ Reduces downtime and total migration time
✗ Incurs app degradation due to page faults which must be

resolved over the network
Valeria Cardellini - SDCC 2023/24 77

VM live migration: alternatives for memory
• Hybrid

– Special case of post-copy migration: post-copy preceded by
a bounded pre-copy stage

– Idea: transfer a subset of the most frequently accessed
memory pages before VM execution is switched to
destination, so to reduce app performance degradation due
to memory transfer after VM is resumed

✓ Pre-copy stage reduces the number of future network-bound
page faults as a large portion of VM memory is already pre-
copied

• No standard implementation of post-copy and hybrid
approaches in current hypervisors

Valeria Cardellini - SDCC 2023/24 78

VM live migration: alternatives for memory

Valeria Cardellini - SDCC 2023/24 79

• Summary of approaches to migrate memory

VM live migration and hypervisors

• VM live migration is supported by open-source and
commercial hypervisors
– E.g., KVM, Hyper-V, Xen, VirtualBox

• Can be managed using virsh with different options
$> virsh migrate --live [--undefinesource] \
[--copy-storage-all] [--copy-storage-inc] domain desturi
$> virsh migrate-setmaxdowntime domain downtime
$> virsh migrate-setspeed domain bandwidth
$> virsh migrate-getspeed domain

Valeria Cardellini - SDCC 2023/24 80

VM migration in WAN

• How to achieve VM live migration across multiple
geo-distributed data centers?
– Key challenge: maintain network connectivity and preserve

open connections during and after migration
– Limited support in open-source and commercial hypervisors

Valeria Cardellini - SDCC 2023/24 81

VM migration in WAN: storage
• Approaches to migrate storage in WAN

– Shared storage
✗Storage access time can be too slow

– On-demand fetching
• Transfer only some blocks to destination and then fetch

remaining blocks from source only when requested
✗Does not work if source crashes

– Pre-copy plus write throttling
• Pre-copy VM disk image to destination whilst VM continues to

run, keep track of write operations on source (delta) and then
apply delta on destination

• If write rate at source is too fast, use write throttling to slow down
the VM so that migration can proceed

Valeria Cardellini - SDCC 2023/24 82

VM migration in WAN environments: network
• Approaches to migrate network connections in WAN

– IP tunneling
• Set up an IP tunnel between old IP address at source VM and

new IP address at destination VM
• Use tunnel to forward all packets that arrive at source VM for

old IP address
• Once migration has completed and VM can respond at its new

location, update the DNS entry with new IP address
• Tear down the tunnel when no connections remain that use the

old IP address
✗Does not work if source VM crashes

– Virtual Private Network (VPN)
• Use MPLS VPN to create the abstraction of a private network

and address space shared by multiple data centers
– Software-Defined Networking (SDN)

• Change control plane, no need to change IP address!

Valeria Cardellini - SDCC 2023/24 83

OS-level virtualization

• So far system-level virtualization
• Let’s now consider operating system (OS) level

virtualization (or container-based virtualization)
• Allows to run multiple isolated (sandboxed) user-

space instances on top of a single OS
– Such instances are called:

• containers
• jails
• zones
• virtual environments

Valeria Cardellini - SDCC 2023/24
84

OS-level virtualization
• OS kernel allows the existence of multiple isolated

user-space instances, called containers
• Each container has:

- Its own set of processes, file systems, users, network
interfaces with IP addresses, routing tables, firewall rules, …

• Containers share the same OS kernel (e.g., Linux)

85
Valeria Cardellini - SDCC 2023/24

OS-level virtualization: mechanisms
• Which kernel mechanisms to manage containers?

– Need to isolate processes from each other in terms of sw
and hw (CPU, memory, …) resources

• Main mechanisms offered by Unix-like OS kernel
– chroot (change root directory)

• Allows to change the apparent root folder for the current
running process and its children

– cgroups (Linux-specific)
• Manage resources for groups of processes

– namespaces (Linux-specific)
• Per-process resource isolation

Valeria Cardellini - SDCC 2023/24 86

Mechanisms: namespaces
• Feature of Linux kernel that allows to isolate what a

set of processes can see in the operating
environment (processes, ports, files, ...)

• Kernel resources are partitioned so that one set of
processes sees one set of resources, while another
set of processes sees a different set of resources

• Different types of namespaces

Valeria Cardellini - SDCC 2023/24 87

Mechanisms: namespaces
• mnt: isolates mount points seen by a container

– Virtually partitions the file system: processes running in
separate mount namespaces cannot access files outside of
their mount point

• pid: isolates PID space, so that each process only
sees itself and its children (PID 1, 2, 3, …)

• network: allows each container to have its dedicated
network stack
– Its own private routing table, set of IP addresses, socket

listing, firewall, and other network-related resources

• user: isolates user and group IDs
– E.g., allows a non-root user on host to be mapped with root

user within container, without having actual root access to
host

Valeria Cardellini - SDCC 2023/24
88

Mechanisms: namespaces
• uts (Unix timesharing): provides dedicated host and

domain names
– Allows processes to think they are running on differently

named servers

• ipc: provides dedicated shared memory for IPC, e.g.,
different Posix message queues

Valeria Cardellini - SDCC 2023/24
89

Mechanisms: cgroups
• cgroups: control groups
• Allows to limit, measure and isolate the use of hw

resources (CPU, memory, block I/O, network) of a set
of processes

• Low-level filesystem interface similar to sysfs and
procfs
– By default mounted on /sys/fs/cgroup/ directory

• Mechanisms in a nutshell:
– namespaces implements information isolation: what a

container can see
– cgroups implements resource isolation: how much resources

a container can use

Valeria Cardellini - SDCC 2023/24
90

OS-level virtualization: pros
• VMM-based vs container-based virtualization

Valeria Cardellini - SDCC 2023/24
91

In a nutshell: lightweight vs. heavyweight

OS-level virtualization: pros
With respect to VMM-based virtualization (type-1)
✓ Minimal performance degradation

– Apps invoke system calls directly, without VMM indirection

✓ Minimum startup and shutdown times
– Seconds (even msec) per container, minutes per VM

✓ High density
– Hundreds of containers on a single physical machine (PM)

✓ Smaller image (footprint)
– Does not include OS kernel

✓ Ability to share memory pages among multiple
containers running on same PM

✓ Increased portability and interoperability
✓ Containerized apps independent of execution

environment
Valeria Cardellini - SDCC 2023/24 92

OS-level virtualization: cons
With respect to VMM-based virtualization (type-1)
✗ Less flexibility

– Cannot run different OS kernels simultaneously on same PM

✗ Only native applications for supported OS kernel
– E.g., native app for Linux

✗ Less isolation and higher performance interference
on shared system resources
– Process-level isolation

✗ Higher risk of vulnerability and more threats
– Vulnerability in OS kernel can compromise entire system
– Since containers share OS kernel, a single compromised

container could comprise host OS and other containers

Valeria Cardellini - SDCC 2023/24
93

OS-level virtualization: some products

Valeria Cardellini - SDCC 2023/24 94

• Docker
– The most popular container engine
– Provides application containers
– Supports Open Container Initiative

(OCI), a set of standards for containers

• LXC (LinuX Containers)
– Supported by mainline Linux kernel
– Provides system containers (full OS image)

• Podman
– Supports OCI
– Docker compatible CLI

• FreeBSD Jail
• OpenVZ (for Linux)
• Virtuozzo Containers

OS-level virtualization: only Linux?

• Windows and OS X also support container-based
virtualization
– E.g., Docker Desktop

• Alternative: install a VM with Linux as guest OS and
then install a container-based virtualization product
inside VM
✗ Performance loss because of nested virtualization

Valeria Cardellini - SDCC 2023/24
95

Containers, DevOps and CI/CD

• Containers help in the shift to DevOps and CI/CD
(Continuous Integration and Continuous Deployment)

96

• DevOps = Development and
Operations
– Development methodology with a

set of practices aimed at bridging
the gap between Development and
Operations, emphasizing
communication and collaboration,
continuous integration, quality
assurance and delivery with
automated deployment

Valeria Cardellini - SDCC 2023/24

Containers, DevOps and CI/CD

97

• CI/CD = Continuous Integration and Continuous
Delivery/Deployment
– Continuous integration: sw development practice that

merges work of all developers working on same project
– Continuous delivery: ensures reliable and frequent

releases
• In DevOps culture, the two practices are combined

to enable teams to ship software releases
effectively, reliably, and frequently

Valeria Cardellini - SDCC 2023/24

Containers, DevOps and CI/CD

• Containers are become a standard to build, package,
share, and deploy apps and all their dependencies
– Containers (more than VMs) allow developers to build code

collaboratively by sharing images while simplifying
deployment to different environments without further
configuration

98
Valeria Cardellini - SDCC 2023/24

Containers, DevOps and CI/CD

Valeria Cardellini - SDCC 2023/24
99

• Some tools for DevOps

Containers, microservices, and serverless

• Using containers
- App and all its dependencies into single package that can

run almost anywhere
- Using fewer resources than traditional VMs

• Containers are a key enabling technology for
microservices and serverless computing
– Wrap microservices and functions in containers

Valeria Cardellini - SDCC 2023/24
100

Docker

• Let’s go into Docker details
www.ce.uniroma2.it/courses/sdcc2324/slides/Docker.pdf

Valeria Cardellini - SDCC 2023/24
101

Container resizing

• As for VMs, we can resize and migrate containers

• Resizing (CPU, memory, I/O) changes dynamically
container limits
– Not supported for Windows
$docker update [OPTIONS] CONTAINER [CONTAINER...]
– Some example
$ docker update --cpu-shares 512 containerID
$ docker update --cpu-shares 512 -m 300M containerID

Valeria Cardellini - SDCC 2023/24 102

Live migration of containers

• As for VM migration, we need to:
– Save state
– Transfer state
– Restore from state

• State saving, transferring and restoring happen with
frozen app: migration downtime
– Use memory pre-copy or memory post-copy

• No native support in container engines, requires
additional tool

• We also need to migrate container image (and
volumes) and network connections

Valeria Cardellini - SDCC 2023/24 103

Live migration of containers

Valeria Cardellini - SDCC 2023/24 104

• Use CRIU tool to support live migration (in Docker
and other container engines) through checkpointing
and restoration
– During checkpoint, CRIU freezes running container at source

host and collects information about its CPU state, memory
content, and process tree

– Collected information is passed on to destination host, and
container is resumed

– How to with Docker

Container security
• Where attacks come from in a containerized

environment?

• Example of attack: container escape and privilege
escalation
– Attacker can leverage containerized app’s vulnerabilities to

breach its isolation boundary, gaining access to host
system’s resources

– Once attacker accesses host, it can escalate its privilege to
access other containers or run harmful code on host

Valeria Cardellini - SDCC 2023/24 105

Container orchestration
• Sw platforms for managing the deployment of multi-

container packaged applications in large-scale
clusters

• Allow to configure, provision, deploy, monitor, and
dynamically control containerized apps
– Used to integrate and manage containers at scale

• Examples
– Docker Swarm (see Docker slides)
– Kubernetes (next lesson)
– Marathon
– Amazon Elastic Container Service
– Google Kubernetes Engine

106
Valeria Cardellini - SDCC 2023/24

Fully managed Cloud services

Containers in Cloud

• Containers and container platforms as first-class
Cloud services

• Container-as-a-Service (CaaS)
– Amazon Elastic Container Service

• Multiple deployments, including EC2, AWS Local Zones, Fargate
– Azure Container
– Google Cloud Run

Valeria Cardellini - SDCC 2023/24
107

Hypervisors and containers in Cloud

• Which virtualization technology for IaaS providers?
✓ Hypervisor-based virtualization: greater security, isolation,

and flexibility (different OSs on same PM)
✓ Container-based virtualization: smaller-size deployment and

thus larger density, reduced startup and shutdown times

• Some questions
– Containers on VMs or on top of bare metal?
– Are containers replacing VMs?

Valeria Cardellini - SDCC 2023/24
108

New lightweight virtualization approaches

• Deployment strategies examined so far

Valeria Cardellini - SDCC 2023/24 109

?

New lightweight approaches to virtualization
• Microservices, serverless computing, edge/fog

computing, compute continuum demand for low-
overhead (or lightweight) virtualization techniques,
even lighter than containers
– Additional requirement: improve security

• MicroVM, lightweight OSs and unikernels
– Overall idea: reduce OS overhead and attack surface
– OS overhead: services and tools coming with common OSs

(shells, editors, core utils, and package managers) are not
needed

– Attack surface: images contain only the code that is strictly
necessary for app to run, thus resulting in minimal attack
surface

Valeria Cardellini - SDCC 2023/24
110

MicroVM runtimes
• Tiny, specialized VMMs that run lightweight VMs

(microVMs)
• Goal: reduce memory footprint and improve security of

virtualization layer
• Firecracker: VMM purpose-built by Amazon for creating

and managing secure, efficient and multi-tenant
microVMs

Va
le

ria
 C

ar
de

llin
i-

SD
C

C
 2

02
3/

24

111Agache et al., Firecracker: Lightweight virtualization for serverless applications, NSDI 2020

– Why? To enable AWS Lambda and AWS Fargate
– Based on KVM but with minimalist design (exclude

unnecessary devices and guest functionality)
– Open source, written in Rust
– Runs app in microVM: < 125 ms startup time and

<5 MB memory footprint
– Scales to thousands of multi-tenant microVMs
– Supported OS guests inside microVM: Linux and OSv

Lightweight operating systems
• Minimal, container-focused OSs, typically with

monolithic kernel architecture
– Special-purpose OSs to run containerized apps

– E.g., Fedora CoreOS, Rancher OS

• Fedora CoreOS
– Minimal, monolithic and compact Linux distribution

• Only minimal functionalities required for deploying apps inside
containers, together with built-in mechanisms for service
discovery, container management and configuration sharing

– Goal: provide the best container host to run containerized
workloads securely and at scale

– Can be installed on hypervisor or bare metal
– Fast bootstrap and small memory footprint: ~5 ms on

Firecracker using 11 MB of memory
– Includes Docker and podman by default

Valeria Cardellini - SDCC 2023/24 112

Unikernels

Valeria Cardellini - SDCC 2023/24 113

VM container
unikernel

• Specialized, small, lightweight, single-address-space
operating system with kernel included as library
within application (aka library OS)
– Sort of very lightweight VM specialized to single app:

executable directly into kernel, resulting in monolithic
process that runs entirely in kernel mode

– Built by compiling high-level language directly into
specialized machine image that runs directly on hypervisor

– Goal: isolation benefits of hypervisor without overhead of
guest OS

Unikernels: pros and cons
• Pros from specialized = high performance

✓ Lightweight and small (minimal memory footprint)
✓ Fast app execution (no context switching)
✓ Fast boot (measured in ms)
✓ Secure (reduced attack surface)

• Cons:
✗ Engineering effort in order to port app to unikernel
✗ Limited debugging tools
✗ Single language runtime
✗ Early unikernel frameworks required to write app from

scratch
See www.youtube.com/watch?v=oHcHTFleNtg

• Good news: cons almost solved with recent
unikernel frameworks

Valeria Cardellini - SDCC 2023/24 114

Unikernels: frameworks
• Frameworks (and programming language):

– MirageOS (OCaml)
– OSv (C, C++, Go, Python, Java, Rust, …)
– Unikraft
– Unikernel Linux: integrate unikernel optimization

techniques in Linux (others are clean slate)

• OSv
– Unikernel designed to run single unmodified Linux

application securely as microVM on top of hypervisor (e.g.,
KVM, Xen, VMWare, Virtualbox, Firecracker)

– Linux binary compatible unikernel
– To run app on OSv, one needs to build an image by fusing

OSv kernel and app files together (Capstan tool)
– Open-source and fast

• Can boot in ~5 ms on Firecracker using 11 MB of memory
Valeria Cardellini - SDCC 2023/24

115

Unikernels: frameworks

• Unikraft
– Fast, secure and open-source Unikernel Development Kit
– Goal: build unikernels easily, quickly and without time-

consuming expert work
– Supports multiple hypervisors (e.g., Xen and KVM) and CPU

architectures
– Ability to run wide range of apps (even complex: Redis,

Nginx, Memcached) and languages
– POSIX compliant
– Written in C

Valeria Cardellini - SDCC 2023/24
116

Kuenzer et al., Unikraft: fast, specialized unikernels the easy way, EuroSys 2021

Unikernels: frameworks

Valeria Cardellini - SDCC 2023/24 117

• Unikraft

Performance of virtualization approaches

118

My VM is lighter (and safer) than your container, SOSP’17
Valeria Cardellini - SDCC 2023/24

• VM boot times grow linearly with VM size

• Difficulties in securing containers due to growth of Linux syscall API

Performance of virtualization approaches
• Performance studies compare hypervisor vs.

lightweight virtualization
• Overall result: overhead introduced by containers is

almost negligible
– Fast instantiation time
– Small per-instance memory footprint
– High density

•… but paid in terms of security

Valeria Cardellini - SDCC 2023/24
119

Virtualization Boot time Image size Memory
footprint

Programming
language
dependance

Live
migration
support

VM ~5/10 sec ~1 GB ~100 MB No Yes

Container ~0.8/1 sec ~50 MB ~5 MB No Non-native

Unikernel <10 msec <20 MB ~10 MB Partially No

From: Consolidate IoT edge computing with lightweight virtualization, 2018

Performance of virtualization approaches
• Lightweight virtualization methods are needed for

edge computing and compute continuum
• Overall result: no clearly winning solution so far, each

one has its own strengths and weaknesses

Valeria Cardellini - SDCC 2023/24
120

Source: A functional and performance benchmark of lightweight virtualization
platforms for edge computing, EDGE 2022

Even newer: WebAssembly
• WebAssembly (Wasm): portable, binary instruction

format for a stack-based VM
– Enables memory-safe, sandboxed execution
– Designed as a portable compilation target for programming

languages, enabling deployment on web for client and server
apps

• Born as alternative to execute JavaScript code in browsers
– Allows to write in a variety of languages, compile them to

Wasm, and execute them in a Wasm runtime
– Efficiency: executes at near-native speed
– Security: Wasm uses software-based fault isolation

techniques to sandbox the executing module
• Wasm interacts with the host system via the WebAssembly

System Interface (WASI)
• Wasm module cannot directly perform an OS system call due

to sandboxing, but imports equivalent WASI functions instead
Valeria Cardellini - SDCC 2023/24

121

WebAssembly: an example
• Factorial function written in C and its corresponding

WebAssembly code after compilation
– In .wat text format (human-readable textual representation of

Wasm) and in .wasm binary format

Valeria Cardellini - SDCC 2023/24 122

References
• Section 3.2 of van Steen & Tanenbaum book
• Smith and Nair, The architecture of virtual machines, IEEE

Computer, 2005
• Bugnion et al., Hardware and software support for virtualization,

2017
• Hwang et al., Virtual machines and virtualization of clusters and

data centers, 2011
• Agache et al., Firecracker: Lightweight virtualization for serverless

applications, 2020
• Kuenzer et al., Unikraft: fast, specialized unikernels the easy way,

2021
• Morabito et al., Consolidate IoT edge computing with lightweight

virtualization, 2018

Valeria Cardellini - SDCC 2023/24
123

