
Hands-on Cloud Computing Services
Lezione 2

Gabriele Russo Russo
University of Rome Tor Vergata, Italy

A.A. 2024/25



Recap

▶ Amazon Web Services: regions, services, ...
▶ Elastic Compute Cloud (EC2)

▶ Instance, AMI, Security Group
▶ SSH, public/private keys

▶ Example web app: Photogallery

2



Deploying Photogallery on EC2

Running Photogallery

$ export FLASK_APP=galleryApp.py
$ flask run -h 0.0.0.0 -p <numero di porta>
$ # Note: \-- requires root privileges for port 80

or, using the script run.sh:

$ bash run.sh

▶ Create a new EC2 instance to deploy the app
▶ Connect via SSH to the instance:

$ ssh -i <file.pem> ec2-user@<Public IP/Public DNS>

3



Deploying Photogallery on EC2 (contd.)

▶ Install the required software:

$ sudo yum install python-pip
$ sudo pip install flask

▶ Copy the app files from your PC using scp:

$ scp -i <chiaveprivata.pem> -r <cartellalocale> \
ec2-user@<istanza ec2>:/home/ec2-user/

▶ Start the application:
$ cd photogallery/
$ bash run.sh

▶ Open http://EC2-PUBLIC-IP/ in a browser

4



Replicating App Instances

▶ Current configuration is neither scalable or fault-tolerant
▶ Let’s run multiple replicas of the web server
▶ We need a load balancer

5



Preliminary Tasks

▶ We run the app as a systemd service, automatically started at boot

/etc/systemd/system/photogallery.service

[Unit]
Description=Simple systemd service for Photogallery.

[Service]
Type=simple
WorkingDirectory=/home/ec2-user/photogallery
ExecStart=/bin/bash /home/ec2-user/photogallery/run.sh

[Install]
WantedBy=multi-user.target

6



Preliminary Tasks (contd.)

Starting and enabling the service

$ sudo systemctl daemon-reload
$ sudo systemctl start photogallery.service
$ sudo systemctl enable photogallery.service

Register an AMI
We also create an AMI using a snapshot of the running instance. We will be able to re-use
the AMI to create new instances where the application is already installed and configured
to start.

7



Preliminary Tasks (contd.)

Note: each AMI is associated with a snapshot of the root ELB volume attached to the
instance. Keeping this snapshot has a (small) cost: https:
//aws.amazon.com/premiumsupport/knowledge-center/ebs-snapshot-billing/

8

https://aws.amazon.com/premiumsupport/knowledge-center/ebs-snapshot-billing/
https://aws.amazon.com/premiumsupport/knowledge-center/ebs-snapshot-billing/


Run Commands at Launch: cloud-init and User Data

▶ Creating a custom AMI allowed us to create new EC2 instances without manually
configuring the application every time

▶ Any smarter approaches?
▶ Cloud providers allow you to run commands when instances are launched:

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/user-data.html
▶ In AWS, you can use the User Data option to specify:

▶ a Bash script
▶ cloud-init directives (https://cloudinit.readthedocs.io/en/latest/)

9

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/user-data.html
https://cloudinit.readthedocs.io/en/latest/


Test

▶ Create a new EC2 instance with the custom AMI

10



Next step

11



Amazon VPC

▶ Provision logically isolated sections of the AWS cloud
▶ Define virtual networks (IP ranges, subnets, gateways,. . . )
▶ May create a Virtual Private Network (VPN) connection between your own datacenter

and your VPC (hybrid cloud)
▶ No additional charges for creating and using the VPC itself.
▶ So far, we have used the default VPC

12



Amazon VPC: main building blocks

▶ In each AZ, we can define one or more subnets
▶ Routing Tables attached to subnets
▶ Internet Gateway

13



VPC Configuration: the hard way

▶ Create a new Virtual Private Cloud (VPC)
▶ We associate a block of (private) IP addresses to the VPC

▶ Subnets will be created within this block of addressess
▶ We can pick, e.g., 10.0.0.0/16

▶ We can create subnets: each subnet is associated with an Availability Zone (AZ)
▶ Let’s pick an AZ and create a subnet (e.g., 10.0.1.0/24)
▶ If you want (for debugging), you can require that EC2 instances in the subnet are also

assigned a public IP address
▶ Create an Internet Gateway (IG) to allow instances in the VPC to reach Internet;

associate it with the VPC
▶ Create a Route Table for the VPC and attach it to the subnet(s)
▶ Add a new rule in the table: 0.0.0.0\0 – target: IG
▶ Repeat the above steps for each subnet you want.

14



VPC Configuration: the easy way

▶ AWS released a new UI to ease VPC configuration
▶ Most the elements you need automatically created along with the VPC

▶ Subnets
▶ Routing Tables
▶ Internet Gateway (for public subnets)

15



Test

▶ Create a new EC2 instance in one of the newly created public subnets
▶ Start with the custom AMI
▶ Make sure to enable the assignment of a public IP address

16



Elastic Load Balancing (ELB)

▶ ELB automatically distributes incoming traffic across multiple targets (e.g., EC2
instances, containers, and IP addresses) in one or more Availability Zones

▶ It monitors the health of its registered targets and routes traffic only to the healthy
targets

▶ 4 types of ELB:
▶ Application Load Balancer (layer 5)
▶ Network Load Balancer (layer 4)
▶ Gateway Load Balancer (layer 3)
▶ Classic Load Balancer (legacy)

▶ We’ll use the Application LB today

17



ELB Configuration

▶ Create an ELB instance listening for HTTP requests on port 80
▶ ELB needs a security group: configure one to accept traffic on port 80
▶ We must also create a target group, to which ELB forwards requests

▶ Health check: use HTTP requests on port 80 with path /

▶ Create a few EC2 instances using our custom AMI in our subnets
▶ Register the instances with the target group
▶ Wait a few minutes (DNS...) and then try to connect at the ELB URL with the browser

Note:
▶ EC2 instances don’t need a public IP address any more
▶ EC2 instances can now use a stricter security group:

▶ Allowed source: 0.0.0.0/0 → <ID of ELB sec group>

18



ELB: Advanced Rules

▶ An ELB can have multiple rules associated to distribute requests
▶ Each rule can have one or more matching conditions
▶ e.g., you may use different rules for different types of HTTP requests

19



Auto scaling

▶ We want to dynamically provision the number of active instances
▶ Let’s use the Auto Scaling service of EC2

20



Auto Scaling + Photogallery

▶ Before starting, terminate manually launched instances
▶ Create a Launch Template for Photogallery
▶ Create an Auto Scaling Group that uses the new Launch Template
▶ Specify the VPC and the subnets where new instances should be launched
▶ Enable load balancing, associating the group with our ELB
▶ Set minimum and maximum number of instances (e.g., 2 and 5)
▶ Set an auto scaling policy
▶ Verify that new instances are automatically created

21


