
Corso di Sistemi Distribuiti e Cloud Computing
A.A. 2024/25

Valeria Cardellini

Laurea Magistrale in Ingegneria Informatica

Distributed System Architectures

Macroarea di Ingegneria
Dipartimento di Ingegneria Civile e Ingegneria Informatica

Software vs. system architecture of DS

• Software architecture: logical organization and
interaction of software components that constitute the
DS

• System architecture: final instantiation (including
deployment) of a software architecture
– Software components need to be placed on system resources
– E.g., a container containing a microservice needs to be

instantiated on a machine

• Let’s first focus on software architectures for DS

Valeria Cardellini - SDCC 2024/25 1

Architectural styles for DS
• Architectural style: set of design decisions concerning

sw architecture
– Mainly defined in terms of components and connectors

• Component
– Modular unit with well-defined interfaces
– Replaceable within its environment

• Connector
– Mechanism for interaction among components, mediating

communication, coordination or cooperation
– Example: mechanisms for (remote) procedure call, messaging

• Plus:
– How components are connected to each other
– Data exchanged between components
– How components and connectors are jointly configured into a

system

Valeria Cardellini - SDCC 2024/25 2

Main architectural styles for DS

• Layered style

• Service-oriented style
– Object-oriented
– Microservices
– RESTful

• Publish-subscribe style

Valeria Cardellini - SDCC 2024/25 3

Layered style

• Components are organized in layers

• Component at layer i invokes
component at layer j (with j<i)

• Components communicate by
message exchange

- Request/response downcall

✓ Separation of concerns among
components

- E.g., web app based on MVC design

Valeria Cardellini - SDCC 2024/25 4

Layered style

• Different layered organizations

Valeria Cardellini - SDCC 2024/25 5

Application layering
• Traditional layered architecture: presentation,

business, persistence, database
– In some cases, business and persistence layers are

combined into a single business layer
– Found in many distributed information systems, using

traditional DB technology and accompanying applications

Valeria Cardellini - SDCC 2024/25 6

Application layering: example

• A simple Web search engine

Valeria Cardellini - SDCC 2024/25 7

Service-oriented style

• A collection of separate, independent entities
• Each entity encapsulates a service
• Entity = service, object, or microservice
• Includes

– Object-based architectural style
– Microservices architectural style
– RESTful architectural style

Valeria Cardellini - SDCC 2024/25 8

Object-based style

• Component = object:
encapsulates data and
offers methods on data
– Encapsulation and

information hiding reduce
management complexity

– Reusability among different
apps

– Wrapping of legacy
components

• Communication between
components through RPC

Valeria Cardellini - SDCC 2024/25 9

Microservices style

• A “new” emerging architectural style for distributed
apps that structures an application as a collection of
loosely coupled services

• Address how to build, manage, and evolve
architectures out of small, self-contained and
independently-scalable services that communicate
over well-defined APIs
– Modularization: decompose app into a set of independently

deployable services, that are loosely coupled and cooperating
and can be rapidly deployed and scaled

• See upcoming lessons

Valeria Cardellini - SDCC 2024/25 10

Microservices style: example
• A social-media microservice architecture

Valeria Cardellini - SDCC 2024/25 11https://github.com/delimitrou/DeathStarBench

RESTful style
• DS as a collection of resources, individually managed

by components
• Representational State Transfer (REST): proposed

by Roy Fielding, co-author of HTTP/1.1
– Resources may be added, removed, retrieved, and modified

by (remote) applications (HTTP methods)
– Resources are identified through a single naming scheme

(Uniform Resource Identifier, URI)
URI = scheme:[//authority]path[?query][#fragment]
authority = [userinfo@]host[:port]

• Components expose a uniform interface
• Messages sent to/from component are self-described
• Interactions are stateless

– State must be transferred from clients to servers

Valeria Cardellini - SDCC 2024/25 12

REST operations
• Basic operations

– Use HTTP methods: GET, PUT, POST and
DELETE

Valeria Cardellini - SDCC 2024/25 13

Example: S3 REST API
• S3: cloud storage service by AWS, organized as a

key-based object store
• Objects (files) are stored into buckets (directories)

– Flat structure: no directory hierarchy
• Logical hierarchy simulated by using object names with directory

structure: photos/puppy.jpg
– Object objectname stored in bucket bucketname is uniquely

referred to by its URI:
https://bucketname.s3.Region.amazonaws.com/objectname

e.g., https://example-bucket.s3.us-west-
2.amazonaws.com/photos/puppy.jpg

• Operations carried out through HTTP requests:
– Create bucket/object: PUT, along with its URI
– List objects in bucket: GET on bucket
– Read object: GET on full URI

Valeria Cardellini - SDCC 2024/25 14

Example: S3 REST API
• Retrieve object from bucket (GetObject)
GET /photos/puppy.jpg HTTP/1.1
Host: example-bucket.s3.us-west-2.amazonaws.com
Date: date
Authorization: authorization string

• Add object to bucket (PutObject)
PUT /photos/puppy.jpg HTTP/1.1
Host: example-bucket.s3.us-west-2.amazonaws.com
Date: date
Authorization: authorization string

See Amazon S3 REST API
https://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
Notes:

– HTTP Authorization header to authenticate S3 request
– You need permission for operations (e.g., WRITE permission

on bucket): use IAM to create roles and manage permissions
Valeria Cardellini - SDCC 2024/25 15

Decoupling
• Strong dependencies between components introduce

limitations

• Solution: let components indirectly communicate
through some intermediary
– Clean separation between computation and coordination

• Decoupling: enabling factor to
– Achieve greater flexibility

– Define architectural styles that allow to better exploit
distribution, scalability, and elasticity

Valeria Cardellini - SDCC 2024/25 16

“All problems in computer science can be
solved by another level of indirection”

(David Wheeler, Titan project)

Decoupling properties

• Space (or referential) decoupling
– Anonymous components: do not need to know

each other in order to communicate and cooperate

• Time (or temporal) decoupling
– Interacting components do not need to be present

at the same time when communication occurs

• Synchronization decoupling
– Interacting components do not need to wait each

other and are not reciprocally blocked

Valeria Cardellini - SDCC 2024/25 17

Synchronous vs. asynchronous interaction

Valeria Cardellini - SDCC 2024/25 18

Synchronous

Asynchronous

Decoupling: pros and cons

✓ Thanks to decoupling, DS can be flexible while
dealing with changes and provide more dependable
and elastic services
– Space decoupling: components can be replaced, updated,

replicated or migrated
– Time decoupling: allows to manage volatility (senders and

receivers can come and go)
– Synchronization decoupling: no blocking

✗ Indirection can add performance overhead

Valeria Cardellini - SDCC 2024/25 19

Architectural style evolution
• Introducing decoupling, alternative architectural

styles where components communicate indirectly

Data-oriented

Publish-subscribe

Event-driven

Valeria Cardellini - SDCC 2024/25 20

Event-driven style
• Components communicate

through an event bus
– Event: significant change in state

(e.g., change in temperature, door
opening)

• Components
– Publish events
– Subscribe to events they are

interested in being notified
– Receive notifications about events

• Communication
– Anonymous
– Based on message exchange
– Asynchronous
– Multicast

• Example: Java Swing

Valeria Cardellini - SDCC 2024/25 21

Which decoupling?

Data-oriented style

Valeria Cardellini - SDCC 2024/25 22

• Communication among components happens through
shared data space: passive, sometimes (pro)active

Which decoupling?

How to implement
shared space?

⎼ Data added to or removed from
shared space

• Shared data space API

– write, take, read and variants
(takeIfExists, readIfExists)

– If active space: notify or push (avoid
polling)

– Concurrency control

• Examples of shared data spaces

– GigaSpaces https://tinyurl.com/bdtc5yk6,
TIBCO ActiveSpaces
https://tinyurl.com/bkkxm768

Publish-subscribe style
• Publishers (aka producers) generate events (publish)

and are not interested in their delivery to subscribers
(aka consumers)

• Consumers register as interested to events (subscribe)
and are notified (notify) of their occurrence

• Full decoupling among components

P

Publish-subscribe middleware

P

publish

publish

Storage and
management of

subscriptions

notify()

S

S

S

subscribe

subscribe()
unsubscribe()

unsubscribe

notify

Publisher

Publisher

Subscriber

Subscriber

Subscriber

Valeria Cardellini - SDCC 2024/25 23

Publish-subscribe and decoupling

P

S

S

S

publish

notify
notify

notify

notify

Space decoupling

Time decoupling

P Spublish

P Snotify
notify

Synchronization decoupling P S
publish notify

notify

t

Eugster et al., The many faces of publish/subscribe, ACM Comput. Surv., 2003

Pub-sub
middleware

Middleware
publish/subscribe

Pub-sub
middleware

Pub-sub
middleware

Valeria Cardellini - SDCC 2024/25 24

Publish-subscribe: subscription
• Issue: how to match events

– Assume events are described by (attribute,value) pairs

• Topic-based subscription
– Specify a “attribute = value” series
✗ Expressiveness is limited

• Content-based subscription
– Specify a “attribute ∈ range” series, i.e., subscribers specify

filters
✗ May easily have serious scalability problems, why?

Valeria Cardellini - SDCC 2024/25 25

Choosing an architectural style

• No single solution: can tackle same problem with
different architectural styles

• Choice depends often on extra-functional
requirements:
– Costs (resource usage, development effort needed)
– Scalability and elasticity (effects of scaling and amount of

available resources)
– Performance (e.g., response time, latency)
– Reliability and fault tolerance
– Maintainability (extending system with new components)
– Usability (ease of configuration and usage)
– Reusability

Valeria Cardellini - SDCC 2024/25 26

System architecture of DS

Valeria Cardellini - SDCC 2024/25 27

• Runtime instantiation of DS software
architecture
– Which components?
– How do they interact with each other?
– Where to deploy them?

• Types of system architectures
– Centralized architectures
– Decentralized architectures
– Hybrid architectures

Centralized system architectures

• Request/reply model
• Communication

– based on message exchange
– often synchronous and blocking

• Strong coupling: e.g., coexistence of interacting entities

• Basic client-server model
– Two groups: servers offer services

and clients use services
– Clients and servers can be on

different machines
– E.g., Web clients and servers

Valeria Cardellini - SDCC 2024/25 28

Multi-tiered client-server architectures

• How to map logical levels (layers) into physical levels
(tiers)?
– Two-tiered architectures
– Three-tiered architectures

• Different configurations, depending on distribution of:
1. presentation layer
2. logic (aka application, business, processing) layer
3. data layer

Valeria Cardellini - SDCC 2024/25 29

Multi-tiered client-server architectures

• Example: two-tiered configurations

• More than three tiers?

Valeria Cardellini - SDCC 2024/25 30

From multi-tiered architectures to…

Valeria Cardellini - SDCC 2024/25 31

• Vertical distribution
– Divide distributed applications

into 3 logical layers and run
each layer on a different tier

• Horizontal distribution
– Distribute each layer on

multiple servers
– Balance load among multiple

servers through a load
balancer

– E.g.,: distributed Web cluster

Example: Web application in AWS
• Web application with horizontal distribution in AWS

Valeria Cardellini - SDCC 2024/25 32

https://medium.com/@aaloktrivedi/buil
ding-a-3-tier-web-application-
architecture-with-aws-eb5981613e30

– Elasticity: tiers can
scale out/in

– High availability:
replication in different
availability zones

– Security: tiers
communicate with
private IP

Example: 3-tier serverless architecture

Valeria Cardellini - SDCC 2024/25 33

https://docs.aws.amazon.com/whitepapers/latest/serverless-multi-tier-architectures-api-
gateway-lambda/three-tier-architecture-overview.html

• Horizontal distribution is not visible: AWS Lambda has
elastic scalability already built in

Decentralized system architectures

• Peer-to-peer (P2P) systems

• P2P: class of systems and applications that use
distributed resources to perform functions (even
critical) in a decentralized way
– “P2P is a class of applications that takes advantage of

resources available at the edges of the Internet” (Shirny, 2000)

• Shared resources: files, storage space, computing
power, bandwidth
– Give and receive resources from community of peers

Valeria Cardellini - SDCC 2024/25 34

P2P systems: features
• Peers are roughly symmetric in roles, privileges and

responsibilities
– Autonomous nodes located at network edge
– With the exception of super-peer (more functionalities than

other nodes)

• No centralized control
– A peer behaves as client and server and shares resources and

services (symmetric functionality: servent = server + client)

• Highly distributed
– Up to hundreds of thousands of nodes
– Highly dynamic and autonomous nodes

• Node can enter or exit the P2P network at any time
(join/leave operations)

– Redundancy of information

Valeria Cardellini - SDCC 2024/25 35

P2P: applications
• Content distribution and storage

– Content: file, video streaming, …
– Networks, protocols and clients for file sharing (P2P “killer

application”): Gnutella, eMule, Kademlia, BitTorrent, uTorrent, …
– Video streaming: PPLive, …
– File storage: Freenet, …

• Computing resource sharing
– SETI@home (search for extraterrestrial intelligence),

Folding@home (protein folding)
• Voice/video telephony

– e.g., Chat/IRC, Instant Messaging, XMPP, Skype, …
• Blockchain

Valeria Cardellini - SDCC 2024/25 36

P2P: challenges

• Heterogeneity in peer resources
– Hardware, software and network heterogeneity

• Scalability
– System scaling related to performance and bandwidth

• Location
– Data location, data locality, network proximity, and

interoperability

• Fault tolerance
– Failure management

• Performance
– Routing efficiency, load balancing, self-organization

• Free-riding avoidance
– Free-rider: selfish peer, unwilling to contribute anything

Valeria Cardellini - SDCC 2024/25 37

• Anonymity and privacy
– Onion routing for anonymous communications

• Trust and reputation management
– Lack of trust among peers who are unknown to each other

• Network threats and defense against attacks
• Churn resilience

– Peers come, leave and even fail at random
– Resources are dynamically added or removed

Valeria Cardellini - SDCC 2024/25 38

P2P: challenges

Main tasks of a P2P node

• Let’s consider file sharing
• P2P node performs the operations:
1. Bootstrap: how a new peer who intends to join a

P2P system discover contact information for other
peers in the network
– Solutions: static configuration, pre-existing caches, well-

known nodes

2. Resource lookup: how to locate resources
3. Resource retrieval: how to get localized resource
• We focus on resource lookup

Valeria Cardellini - SDCC 2024/25 39

P2P overlay

• P2P networks are commonly called overlays
• Overlay network: logical network connecting peers

laid over the IP network
– Based on underlying physical network
– Logical links between peers, not corresponding to physical

connections
– Provides a resource location service by means of

application-level routing

Valeria Cardellini - SDCC 2024/25 40

Application-level abstraction

Overlay routing

• Basic idea:
– The P2P system finds the path to reach a resource

• Compared to traditional routing
– Resource: no network node address, but files, available

CPUs, free disk space, ...

• We focus on routing
• Once resource has been localized, easy to retrieve it

– Retrieval typically occurs with a direct interaction between
peers, e.g., using HTTP

Valeria Cardellini - SDCC 2024/25 41

Tasks of overlay network

• Besides routing of requests to resources, an overlay
network also allows to:
– Insert and delete resources
– Add and remove nodes
– Identify resources and nodes

• How to identify resources?
– Globally Unique IDentifier (GUID): obtained by applying a

secure hash function to some of (or all) resource’s state
• How to identify peers?

– Again, usually computed through a secure hash function

Valeria Cardellini - SDCC 2024/25 42

P2P overlay classification

• How to manage resources and nodes?
– Depends on overlay network’s type

Unstructured overlay networks

Structured overlay networks

Valeria Cardellini - SDCC 2024/25 43

Unstructured overlay network
• Overlay network built on random graphs

– No structure of overlay network by design
– Peers are arbitrarily connected: each peer joins the network

following some simple and local rule
– A joining node contacts a set of neighbors, somehow selected
– No control over resource placement on nodes

• Goal: manage nodes with highly dynamic behavior

• Examples: Gnutella, Bitcoin

• Pros and cons:
✓ Easy maintenance because insertion and deletion of nodes

and resources are easily managed

✓ Highly resilient

✗ High lookup cost: resource location is complicated by the lack
of structure

Valeria Cardellini - SDCC 2024/25 44

Unstructured overlay network: routing

• Let’s classify unstructured overlays according to
distribution of peer-resource index (directory)

• Centralized unstructured overlay:
central directory (e.g., Napster)

• Decentralized unstructured overlay:
distributed directory (e.g., Gnutella)

• Hybrid unstructured overlay: semi-
centralized directory
⎼ Routing limited to super-peers

Valeria Cardellini - SDCC 2024/25 45

Centralized unstructured overlay

• Directory server responsible for resource-peer index:
lookup(resource name) → {list of peers}

✗ Expensive management of centralized directory
✗ Single directory server: performance bottleneck

(limited scalability) and SPOF (technical and legal
reasons)

Napster server
Index1. File location

2. List of peers

request

offering the file

peers

3. File request

4. File delivered
5. Index update

Napster server
Index

Valeria Cardellini - SDCC 2024/25 46

✓ Simple: search is
centralized on a single
directory server

✓Directory server is a
single point of control:
provides definitive answer
to query

Decentralized unstructured overlay

• Fully decentralized approach to lookup
resources

• How to lookup resources?
– Query flooding

– Random walk

– Gossiping (upcoming lesson)

Valeria Cardellini - SDCC 2024/25 47

Query flooding
• Originator sends lookup query to its neighboring

peers

• Each peer either responds if it owns the resource or
forwards the query to its neighbors (excluding the
neighbor from whom it received the query)

• Optimization #1: avoid indefinite query forwarding

– Use Time-to-Live (TTL) to limit search range

– At each forwarding, decrease TTL by 1; when TTL=0, lookup
query is no longer forwarded

• Optimization #2: avoid cyclic paths

– Assign unique query ID so to not process lookup query again

• Lookup cost: O(N), N = number of nodes in P2P
network

48Valeria Cardellini - SDCC 2024/25

Query flooding: example

Valeria Cardellini - SDCC 2024/25 49

Query flooding

• Options for sending response back to query
originator

1. Direct routing: from peer that owns the resource to
query originator

2. Backward routing
– Response is forwarded back along the same path followed

by lookup query until it reaches its originator
– Query ID can be used to locate backward path
– Which pros wrt direct routing?

Valeria Cardellini - SDCC 2024/25 50

Query flooding: cons

• Communication overhead
– Large number of messages
– Unsuccessful messages consume network bandwidth

• High lookup cost
– How to choose TTL value?

• Denial-of-service attacks are possible
– Black-hole nodes in case of congestion

• False negatives
– No guarantee that (all) nodes that own the resource will be

queried

• Lack of relationship between overlay and physical
network topology
– How far apart are “neighbor” peers?

Valeria Cardellini - SDCC 2024/25 51

Random walk
• In standard random walk, the originator forwards the

lookup query to one randomly chosen neighbor
– This neighbor randomly chooses one of its neighbors and

forwards the request to that neighbor
– This procedure continues until the resource is found

• With respect to flooding
✓ Message traffic is cut down
✗ Lookup time increases

• To decrease lookup time, the querying peer can start
k random walks simultaneously
– With k random walks the originator forwards k copies of the

query to k randomly selected neighbors
– Then, each request takes its own random walk

Valeria Cardellini - SDCC 2024/25 52

Structured overlay networks
• Lookup query is forwarded using a well-defined set of

information about other peers in the network
• Overlay network is structured

– Constraints on how resources and peers are positioned on
network

– Overlay network topology: ring, tree, hypercube, grid, ...

Valeria Cardellini - SDCC 2024/25 53

Structured overlay networks

• Goals: improve scalability by lowering lookup cost
and reduce communication overhead with respect to
unstructured overlays
– Efficient key-based resource lookup

• Overlay structure keeps lookup cost limited
– Complexity guarantees also for peer join and leave

• Cons: peer join and leave become more expensive
operations
– Topology structure must be maintained

Valeria Cardellini - SDCC 2024/25 54

Routing in structured overlays
• Basic ideas

– Each peer is responsible for some resources and knows some
peers according to the overlay structure

– Each resource is assigned a GUID
– Each peer is assigned a GUID
– GUIDs are computed using a hash function
– Same large identifier space used for peers and resources

GUIDs
– Lookup query is routed to the peer whose GUID is the "closest"

to the resource GUID
• Closest: according to some distance metric

Valeria Cardellini - SDCC 2024/25 55

• Routing is based on Distributed
Hash Table (DHT): a distributed
key-value data store

Distributed Hash Table
• Distributed abstraction of conventional hash table

(HT) that maps keys to values
• Recall conventional HT

– Table of (key, value) tuples of size M
– Key lookup: hash function maps keys to range 0 ... M-1
– Lookup is very efficient: O(1)
– Need to handle collisions because multiple keys may hash to

same value

• DHT
– Lookup similar to conventional HT: map resource key to find

bucket (or slot) containing that resource
– But DHT buckets are spread across multiple nodes (peers):

how to map resource key to find the peer responsible of the
bucket?

Valeria Cardellini - SDCC 2024/25 56

Distributed Hash Table: API
• Key-value pairs (key K, value V) stored in DHT

– K is the key that identifies the resource (contained in V) and
corresponds to the resource GUID

• API for accessing DHT (common to many DHT-based
systems)
– V = get(K): retrieve V associated with K from the node that

stores it
– put(K, V): store the resource V in the node responsible for the

resource identified by K
– remove(K): delete the reference to K and the associated V

Valeria Cardellini - SDCC 2024/25 57

Distributed Hash Table

Distributed application
get(K) V

Node 1 Node 2 Node N….

put(K, V)

…

Why might DHT design be hard?

• Decentralized: no central authority
• Scalable: low network traffic overhead
• Efficient: find items quickly (latency)
• Dynamic: nodes fail, new nodes join

Valeria Cardellini - SDCC 2024/25 58

Designing a DHT
• Resources and nodes are mapped onto the same

identifier space using a hash function
– GUID composed of m bits (usually m = 128 or 160)
– E.g., SHA-1 cryptographic hash function
– Hash function applied on metadata and/or data of resources

(name, creation date, content, ...) and nodes

• Resources are partitioned among nodes: each node
manages a portion of the resources stored in DHT
– Each node is assigned a contiguous portion of keys and stores

information about resources mapped to its own portion of keys

• Routing in DHT: given K, map it into the GUID of the
node “closest” to K

• Resource replication can be exploited to improve
availability

Valeria Cardellini - SDCC 2024/25 59

Issues related to DHTs
• Avoid hotspots by evenly distributing key

responsibility among peers
• Avoid remapping all keys if DHT size changes (i.e.,

when peers join or leave)
– Consistent hashing to address these issues

• Only directly support exact-match search
– Since each resource is identified only by its key, to lookup

for a resource we need to know its key
– Easy to make exact-match search queries, e.g. based on

resource name
– Difficult and expensive to support more complex queries

• E.g., wildcard query, range query
– We will consider only exact-match

Valeria Cardellini - SDCC 2024/25 60

P2P systems based on DHTs

• Characterized by high scalability with respect to
system size (i.e., N)

• Several proposals for DHT-based P2P systems
– How do they differ?

1. Definition of identifier space (and therefore network topology)
2. Selection of peers to communicate with (i.e., distance metric)

– More than 20 protocols and implementations for structured
P2P networks, including:

• Chord (MIT)
• Pastry (Rice Univ., Microsoft)
• Tapestry (Berkeley Univ.)
• CAN (Berkeley Univ.)
• Kademlia (NY Univ.)

Valeria Cardellini - SDCC 2024/25 61

Why Chord?

• Elegant resource lookup algorithm for DHT
• Efficient: O(log N) message per lookup
• Scalable: O(log N) state per node
• Robust: survives massive failures
• Simple to analyze

Valeria Cardellini - SDCC 2024/25 62

Chord
• Nodes (peers) and resources are

mapped onto a ring using
consistent hashing

• Each node is responsible for the
keys placed between itself and
the preceding node in counter-
clockwise direction
– Resource with key K is managed by

the node whose identifier is the
smallest id ≥ K

– This node is called succ(K),
successor of key K

• E.g., succ(1)=1, succ(10)=12

https://github.com/sit/dht/wiki

Valeria Cardellini - SDCC 2024/25 63

Stoica et al., Chord: A Scalable Peer-to-peer Lookup Protocol for Internet
Applications, IEEE/ACM TON, 2003

• Distance metric: based on linear difference between
identifiers

Consistent hashing
• A special hashing technique

– Both items (resources) and buckets (nodes) are uniformly
mapped on the same identifier space (ring) using a standard
hash function (e.g., SHA-1, MD5)

– Each node manages an interval of consecutive hash keys,
not a set of sparse keys

• Original devised by Karger et al. at MIT for distributed
caching
Consistent hashing and random trees: Distributed caching protocols for
relieving hot spots on the World Wide Web, STOC 1997

• Gave birth to Akamai https://www.akamai.com/

• Some details and Java implementation
https://tom-e-white.com/2007/11/consistent-hashing.html

• Repurposed for new technologies and largely used in real
systems, e.g., Amazon Dynamo and Memcached
https://memcached.org

Valeria Cardellini - SDCC 2024/25 64

Chord: consistent hashing

Valeria Cardellini - SDCC 2024/25 65

• Consistent hashing is integral to Chord robustness and
performance
1. In case of DHT resizing (adding or removing a bucket): most

keys will hash to the same bucket as before
• Practical impact: peers can join and leave the network with

minimal disruption

2. All buckets get roughly the same number of keys: load
balancing among nodes

Chord: towards routing
• The simplest approach: lookup can be performed

by traversing the ring, going one node at a time
• Can we do better than O(N) lookup?

• Simple approach for great performance
– Have all nodes know about each other

• When a peer gets a query, it searches its table of nodes for
the node that owns that key

• Gives us O(1) performance
– Join/leave node operations must inform everyone
– Maybe not a good solution if we have lots of peers (large

tables)

• Chord uses a compromise to avoid large tables at
each node: finger table
– A partial list of nodes, progressively more distant

Valeria Cardellini - SDCC 2024/25 66

Chord: finger table

• Finger table (FT): routing table of each node
– FT has m rows, with m = # GUID bits
– If FTp is the FT of node p, then FTp[i] = succ(p + 2i-1) mod 2m,

1 ≤ i ≤ m
• succ(p+1), succ(p+2), succ(p+4), succ(p+8), succ(p+16), …

• Example with m=3
– Finger table of node 0?

100

000

101 011

010

001

110

111
FT0[1]=0+20=1
FT0[2]=0+21=2
FT0[3]=0+22=4

Valeria Cardellini - SDCC 2024/25 67

Chord: FT’s characteristics

• Each node stores information about only a small
number of other nodes
– Only m rows

• Each node knows more about nodes closely following
it than about nodes farther away

• However, a node’s FT generally does not contain
enough information to directly determine the
successor of any key
– We need a routing algorithm to map each key K into succ(K)

Valeria Cardellini - SDCC 2024/25 68

Chord: routing algorithm
• How to map key K into succ(K) starting from node p

– If K belongs to the ring portion managed by p, lookup ends

– If p < K ≤ FTp[1], p forwards the request to its successor

– Else p forwards the request to node q with index j in FTp by
considering the clockwise ordering

FTp[j] ≤ K < FTp[j+1]

q is the farthest node from p whose key is less than or equal
to K

• Features
– It quickly reaches the vicinity of the searched point, and then

proceeds with gradually smaller jumps

– Lookup cost: O(log N), being N the number of nodes
… not as cool as O(1) but way better than O(N)

Valeria Cardellini - SDCC 2024/25 69

Chord: routing algorithm example

Lookup for key 26 from node 1

Lookup for key 12 from node 28

In the example:
• m=5
• Keys from 0 to 25-1

Valeria Cardellini - SDCC 2024/25 70

Chord: node join and leave
• In addition to successor pointer, each node also keeps

the pointer to its predecessor (i.e., linked list) so to
simplify ring maintenance operations
⎯ Predecessor of node p is the first node met in counter-

clockwise direction starting at p-1
⎯ When a node joins or leaves, successor and predecessor

pointers should be updated

Valeria Cardellini - SDCC 2024/25 71

Chord: node join and leave
• When node p joins the overlay network, it has to find its

place in the Chord ring:
– Asks to a node to find its successor succ(p+1) on the ring
– Joins the ring linking to its successor and informs its successor

of its presence
– Initialize its FT looking for succ(p + 2i-1), 2 ≤ i ≤ m
– Informs its predecessor to update the FT
– Transfers from its successor to itself the keys for which it

becomes responsible
• Example: node 7 joins

– Node 7 successor is node 9
– Node 9 predecessor changes to node 7
– Node 4 successor changes to node 7
– Keys 5, 6 and 7 are transferred to node 7

Valeria Cardellini - SDCC 2024/25 72

Chord: node join and leave

Valeria Cardellini - SDCC 2024/25 73

• When node p voluntary leaves the overlay network:
– Transfers the keys it is responsible for to its successor
– Updates the predecessor pointer held by its successor to the

node that precedes p
– Updates the successor pointer of its predecessor to its

successor

• Example: node 11 leaves
– Keys 10 and 11 are transferred to node 14
– Node 14 predecessor changes to node 9
– Node 9 successor changes to node 14

• Join/leave operations require O(log2 N)
• To keep the finger tables updated, each node

periodically executes a ring stabilization procedure
– Nodes can also leave the network abruptly because of failure

Chord: fault tolerance

• Nodes might crash
– (K, V) data should be replicated
– Create R replicas, storing each one at R-1

successor nodes in the ring
• Need to know multiple successors

– A node needs to know how to find its successor’s
successor (or more)

• Easy only if it knows all nodes!

Valeria Cardellini - SDCC 2024/25 74

Original data

Backup #1

Backup #2

– When a node is back up, it needs to:
• Check with successors for updates of data it

owns
• Check with predecessors for updates of data

it stores as backups

Chord: summing up
• Pros

✓ Simple and elegant
✓ Load balancing

• Keys are evenly distributed among nodes
✓ Scalability

• Efficient lookup operations: O (log (N))
✓ Robustness

• Periodically update of nodes finger tables to reflect changes in
the network

• Cons
✗ Proximity in the underlying Internet is not considered
✗ Expensive support for searches without exact matching
✗ Original Chord ring-maintenance protocol is not correct

• Reasoning about Identifier Spaces: How to Make Chord
Correct, IEEE TSE, 2017 https://arxiv.org/pdf/1610.01140.pdf

Valeria Cardellini - SDCC 2024/25 75

DHTs: summing up
• DHTs in retrospective

– Seem promising for finding data in large P2P systems
– Decentralization is good for load balancing and fault

tolerance
– But: security problems are difficult
– But: churn is a problem, particularly if log(N) is big
– DHTs have not had the hoped-for impact

• However, DHTs got right for
– Consistent hashing: elegant way to spread load across

machines (e.g., used in Amazon Dynamo, Cassandra)
– Incremental scalability: add nodes, capacity increases
– Replication for high availability, efficient recovery after node

failures
– Self-management: minimal configuration
– No single server to shut down/monitor

Valeria Cardellini - SDCC 2024/25 76

Hybrid architectures
• So far we have considered centralized and

decentralized architectures
• In hybrid architectures, elements from centralized

and decentralized organizations are combined
• Goal: take the benefits of both
• 3 examples of hybrid architectures (with different

degree of decentralization)
– Super-peer network
– BitTorrent
– Blockchain

Valeria Cardellini - SDCC 2024/25 77

Hybrid architectures: super-peer network

Valeria Cardellini - SDCC 2024/25 78

• It is sometimes sensible to break the symmetry in pure
P2P networks: super peers

• Super peers (index servers) improve lookup
performance

• Issues to address
– Static or dynamic association of peer-super peer
– How to select super peers

Hybrid architectures: BitTorrent
• Unstructured P2P system for file sharing
• Steps to search for file F

1. User clicks on download link
– BT client gets torrent file containing tracker reference
– Tracker: a server keeping an accurate account of active nodes

that have (chunks of) F; bootstrapping node for the torrent
2. BT client contacts tracker

– Tracker replies with a list of peers who have (chunks of) F

Valeria Cardellini - SDCC 2024/25 79

Hybrid architectures: BitTorrent
3. BT client downloads chunks of F from peers, joining a

swarm of downloaders, who in parallel get file chunks but
also distribute downloaded chunks amongst each other

• BitTorrent incentivizes peers to exchange data
– Chunk selection based on rarest piece first
– Bandwidth allocation based on tit-for-tat

• Rarest piece first
– Chunks that are most uncommon in the network are preferably

selected for download
– Goal: make file exchange more robust against node churn

• Tit-for-tat
– Peers decide to whom they upload data based on downloaded

data from a peer
– Goal: prevent peers from only downloading without providing

any resources to others

Valeria Cardellini - SDCC 2024/25 80

Blockchain
• A transaction (e.g., Alice transfers €10 to Bob) needs

to be validated and then stored for auditing purposes
– Validation: verify that transaction is legal (not malicious, no

double spending, …)
– How to validate transactions and where to store transactions?

• Which kind of transactions?
– Not only transfer of cryptocurrency (e.g., Bitcoin)
– Also identification documents, resource usage and allocation,

electronic voting, health records, etc.

• A blockchain provides a kind of collaborative data
store of transactions replicated among untrusted
peers and guarantees a consistent view of all
transactions by peers
– A type of distributed ledger

Valeria Cardellini - SDCC 2024/25 81

Blockchain: working principle

• Each peer stores a local replica of the ledger

Valeria Cardellini - SDCC 2024/25 82

Blockchain: blocks
• Transactions are grouped into blocks

– Block: header + body (set of transactions)

• Blocks are organized into an unforgeable append-
only chain
– A block is connected to the previous one by including a

unique identifier (hash) based on previous block
– Changing a block invalidates all subsequent blocks

• Each block in the blockchain is immutable ⇒ massive
replication

Valeria Cardellini - SDCC 2024/25 83

Blockchain: the key aspect

• Which validator is allowed to append a block of
validated transactions to the chain?

• Deciding on which validator can move ahead requires
(distributed) consensus

Valeria Cardellini - SDCC 2024/25 84

Appending a block: (distributed) consensus

• Centralized solution
– A trusted single entity decides on which validator can go

ahead and append a block
✗ Does not fit the design goals of blockchain (no central

authority)

Valeria Cardellini - SDCC 2024/25 85

Appending a block: distributed consensus

• Distributed solution (permissioned blockchain)
– A selected, relatively small group of servers jointly reach

consensus on which validator can go ahead
– None of these servers needs to be trusted, as long as

roughly 2/3 behave according to their specifications
• In practice, only a few tens of servers can be accommodated

Valeria Cardellini - SDCC 2024/25 86

Appending a block: distributed consensus

• Decentralized solution (permission-less blockchain)
– All nodes collectively participate to validate transactions and

engage in a leader election. Only the elected leader is
allowed to append a block of validated transactions

– E.g., Bitcoin, Ethereum
✗ Large-scale, decentralized leader election that is fair, robust,

secure, energy-efficient and so on, is far from trivial
• We will study proof-of-work and proof-of-stake

Valeria Cardellini - SDCC 2024/25 87

References

• Chapter 2 and Section 6.2.3 of van Steen & Tanenbaum book
• The many faces of publish/subscribe

https://www.cs.ru.nl/~pieter/oss/manyfaces.pdf
• Looking up data in P2P systems

http://www.nms.lcs.mit.edu/papers/p43-balakrishnan.pdf
• Chord: a scalable peer-to-peer lookup protocol for Internet

applications
https://www.cs.unc.edu/~jasleen/Courses/COMP631/papers/chord-
ton.pdf

• Consistent hashing and random trees: Distributed caching
protocols for relieving hot spots on the World Wide Web
https://dl.acm.org/doi/pdf/10.1145/258533.258660

• Blockchain technology overview
https://nvlpubs.nist.gov/nistpubs/ir/2018/nist.ir.8202.pdf

Valeria Cardellini - SDCC 2024/25 88

