
Corso di Sistemi Distribuiti e Cloud Computing
A.A. 2024/25

Valeria Cardellini

Laurea Magistrale in Ingegneria Informatica

Communication in Distributed Systems:
RPC

Macroarea di Ingegneria
Dipartimento di Ingegneria Civile e Ingegneria Informatica

Communication in distributed systems

• Based on message passing
– Send and receive messages

• To allow for message passing, parties must agree on
many low-level communication details
– How many volts to signal a 0 bit and how many for a 1 bit?
– How many bits for an integer?
– How does the receiver know which is the last bit of the

message?
– How can the receiver find if a message has been corrupted

and what to do then?
• … we don’t care about them

Valeria Cardellini - SDCC 2024/25 1

Basic networking model and its adaptation

• We already know the solution: divide network
communication in layers
– The well known ISO/OSI reference model
– We don’t care about low-level details: for distributed systems,

the lowest-level interface is that of the network layer

• Adapted layering scheme for distributed systems

Valeria Cardellini - SDCC 2024/25 2

Middleware layer
• Middleware provides common services and protocols

that can be used by many different distributed
applications and systems
– General-purpose
– Application-independent

• Some examples of middleware services and protocols:
– Communication: remote procedures/methods, queue

messages, multicasting
– Naming: to allow easy sharing of resources
– Security: to allow applications to communicate securely
– Distributed consensus, including distributed commit
– Distributed locking: to protect a shared resource against

simultaneous access by a collection of distributed processes
(e.g., multiple clients update a file in shared storage)

– Data consistency

Valeria Cardellini - SDCC 2024/25 3

Types of communication

• Let’s distinguish

– Persistency
• Transient versus persistent communication

– Synchronization
• Synchronous vs. asynchronous communication

– Time dependence
• Discrete vs. streaming communication

Valeria Cardellini - SDCC 2024/25 4

Persistent vs. transient communication

• Persistent communication
– Message is stored by middleware as long as it takes to

deliver it to receiver
– Sender does not need to continue execution after submitting

message
– Receiver does not need to be executing when message is

submitted
• Transient communication

– Message is stored by middleware only as long as sender
and receiver are executing: sender and receiver have to be
active at time of communication

– If delivery is not possible, message is discarded
– Transport-layer example: routers store and forward, but

discard if forward is not possible

Valeria Cardellini - SDCC 2024/25 5

Synchronous communication…

• Once message has been submitted, sender is
blocked until operation is completed

• Send and receive are blocking operations
• Places for synchronization:

1. At request submission
2. At request delivery
3. After request processing

1 2 3

Valeria Cardellini - SDCC 2024/25 6

… vs asynchronous communication

• Once message has been submitted, sender
continues its processing: message is temporarily
stored by middleware until it is transmitted

• Send is non-blocking, receive can be blocking or non-
blocking

Valeria Cardellini - SDCC 2024/25 7

Discrete vs. streaming communication

• Discrete communication
– Each message forms a complete unit of information

• Streaming communication
– Involves sending multiple messages, in temporal relationship

or related to each other by sending order, which is needed to
reconstruct complete information

– E.g., audio, video

Valeria Cardellini - SDCC 2024/25 8

Combining communication types

• Combining persistence and synchronization
a) Persistent asynchronous communication

– E.g., email, Teams chat, message-oriented middleware

b) Persistent synchronous communication
– Sender is blocked until message is delivered to receiver

Valeria Cardellini - SDCC 2024/25 9

Combining communication types

• Combining persistence and synchronization
c) Transient asynchronous communication

– Sender does not wait but message can be lost if receiver is
unreachable (e.g., UDP)

Valeria Cardellini - SDCC 2024/25 10

Combining communication types

• Alternatives for transient synchronous communication
d) Receipt-based synchronous: sender is blocked until message

is in receiver space (e.g., asynchronous RPC)
e) Delivery-based synchronous: sender is blocked until message

is delivered to receiver

Valeria Cardellini - SDCC 2024/25 11

Combining communication types

• Alternatives for transient synchronous communication
f) Response-based synchronous: sender is blocked until it

receives a reply message from receiver (e.g., synchronous
RPC)

Valeria Cardellini - SDCC 2024/25 12

What happens when a client calls a RPC

Valeria Cardellini - SDCC 2024/25

• Which failures can happen?

13

Failures during communication

• Different communication failures between sender
(client) and receiver (server): what can go wrong?

1. Request or reply message is lost or delayed,
connection is reset
– Pitfall: Network is reliable

2. Server crashes
a) before performing service

b) after performing service

– Client cannot distinguish between a) and b)

3. Client crashes after sending request

Valeria Cardellini - SDCC 2024/25 14

a)

b)

Failure semantics during communication

• In a DS, which is the semantics of

communication in the presence of failures?

– May-be semantics
– At-least-once semantics
– At-most-once semantics
– Exactly-once semantics

• Failure semantics applies both to service

processing (e.g., RPC) and message delivery

(e.g., MOM)

– Let’s focus on service processing for now
• Sender -> client, receiver -> server

Valeria Cardellini - SDCC 2024/25 15

More guarantees,
more complexity

Failure semantics in a nutshell

• Maybe: no guarantee that service has been executed
or not by server

• At-least-once: service, if executed, has been
executed at least once (perhaps more than once)
– If client does not receive the reply: service might have been

executed (or it might not, or it might have been executed
more than once)

• At-most-once: service, if executed, has been
executed at most once
– If client receives the reply, it has been processed by server

only once

• Exactly-once: service has been executed precisely
once

Valeria Cardellini - SDCC 2024/25 16

Basic mechanisms for implementation

• 3 basic mechanisms to implement failure semantics
1. Client side: Request Retry (RR1)

– Client keeps trying until it gets a reply or is confident about
server failure after a certain number of failed retries

2. Server side: Duplicate Filtering (DF)
– Server discards any duplicate request from same client

3. Server side: Result Retransmit (RR2)
– Server keeps result (reply) so that it can be retransmitted

without being computed again when server receives duplicate
requests

Valeria Cardellini - SDCC 2024/25 17

May-be semantics

• No guarantee that service has been executed or not
by server

• No action is taken to ensure reliable communication:
no mechanism (among RR1, DF, RR2) is used

• E.g., best-effort in UDP

Client Server
Send request Request message

Execute
Send reply

LOST

Reply message

Valeria Cardellini - SDCC 2024/25

Client Server
Send request Request message

Execute
CRASH

18

At-least-once semantics

• Service, if executed, has been executed at least once
– Perhaps more than once, because of request duplication due

to retransmissions

• Client uses RR1, server uses neither DF nor RR2
• Upon reply receipt, client does not know how many

times its request has been processed by server:
client does not know about server status
– Server may have executed the service but crashed before

sending the reply: when timeout expires, client resends the
request, server processes it again and sends the reply to
client

• Suitable for idempotent services
– Idempotent service: when applied multiple times to same

input, service produces same output as if it were applied only
once

• E.g., get(key) or put(key, value) in KV store
Valeria Cardellini - SDCC 2024/25 19

At-least-once semantics

Client Server
Send request Request message

LOST

ti
m

eo
ut

Retransmit request message

Execute
Send replyReply message

LOST

ti
m

eo
ut

Send request

Send request Retransmit request message

Reply message

ti
m

eo
ut Execute

Send reply

Valeria Cardellini - SDCC 2024/25 20

At-most-once semantics

• Service, if executed, has been executed at most once
– Client knows that, if it receives the reply, it has been

processed by server only once
– In case of failure, no information (at-most-once: response has

been calculated at most once, but possibly also none)

• All basic mechanisms (RR1, DF, RR2) are used
– Client retransmits request when timeout expires
– Server maintains some state to identify duplicate requests and

avoid processing the same request more than once
• Suitable also for non-idempotent services
• No constraint on consequent actions

– No strict coordination between client and server: in case of
failure, client does not know if server run the service, while
server ignores if client knows that the service run

Valeria Cardellini - SDCC 2024/25 21

At-most-once semantics

Client Server
Send request Request message

LOST

ti
m

eo
ut

Retransmit request message

Log request
Execute
Send reply
Log reply

Reply message

LOST

ti
m

eo
ut

Send request

Send request Retransmit request message

Filter duplicate
Send replyReply message

ti
m

eo
ut

Valeria Cardellini - SDCC 2024/25 22

At-most-once semantics: implementation
• Server detects duplicate requests and returns saved

reply instead of re-running service handler()
• How to detect duplicate request?

– Client includes a unique ID (xid) with each request and uses
same xid when retransmitting request

• Issues to address
– How to ensure unique xid?

– How to handle duplicate requests while original one is still
executing? Add a pending flag for each executing RPC

Server:
if seen[xid]

r = old[xid]

else

r = handler()

old[xid] = r

seen[xid] = true

– Server must eventually discard info about
saved responses: when is discard safe?
• Use sliding windows and sequence numbers

• Discard information older than maximum
lifetime

Valeria Cardellini - SDCC 2024/25 23

Idempotent Receiver pattern https://martinfowler.com/articles/patterns-of-
distributed-systems/idempotent-receiver.html

Exactly-once semantics
• Strongest and hardest guarantee to implement,

especially in large-scale DS
• Requires full agreement on interaction between client

and server
– Service is run only once or not run at all: all-or-nothing

semantics
• If everything goes well: service runs only once, duplicates are

found
• If something goes wrong: client or server knows if service has

run (once - all) or not (never - nothing)

• Semantics with concordant knowledge of each
other's state and without constraint on maximum
duration of interaction protocol between client and
server
– No constraint on maximum duration: barely practical in real

systems!
Valeria Cardellini - SDCC 2024/25 24

Exactly-once semantics: more mechanisms

• Server-side basic mechanisms (RR1, DF,

RR2) are not enough

• Need more mechanisms to tolerate server-

side faults

– Transparent server replication
– Write-ahead logging
– Recovery

• Mechanisms to recover from whatever state failed server
left behind and begin processing from a safe point

• Snapshot: captures a consistent state of server (more
complex if server is distributed)

• State checkpointing: saves a snapshot of server state on
persistent storage

Valeria Cardellini - SDCC 2024/25 25

Write-ahead logging (WAL) pattern
• aka Commit log
• Goal

– Provide durability guarantee by persisting every state change
as command to append-only log

• How
– Each state change is stored as log entry in file on disk and log

is appended sequentially
– File can be read on every restart and state can be recovered

by replaying all log entries
WAL pattern https://martinfowler.com/articles/patterns-of-distributed-
systems/wal.html

Valeria Cardellini - SDCC 2024/25 26

Summing up failure semantics

• At-least once and at-most once semantics are
feasible and widely used in DS

• We often choose the lesser of two evils, i.e., at-least-
once semantics
– Also easier to scale

Valeria Cardellini - SDCC 2024/25 27

Distributed systems are all about trade-offs!

Distributed application programming

• You know explicit network programming
– Operating system constructs based on socket API and

explicit management of message exchange
– Used in most network applications (e.g. web browser, web

server)
✗ Distribution is not transparent and requires developer effort

• How to increase abstraction level of distributed
programming? By means of communication
middleware between OS and applications
– Hide complexity of underlying hw and sw layers
– Free developer from automatable tasks
– Improve software quality by reusing known, correct, and

efficient solutions

Valeria Cardellini - SDCC 2024/25 28

Distributed application programming
• Implicit network programming

– Language-level constructs
– Remote Procedure Call (RPC)

• Distributed app is realized through procedure calls, but
caller (client) and callee (server) are located on remote
machines and communication details are hidden to
developer

– Remote method invocation (Java RMI)
• Distributed app in Java is realized by invoking object

methods running on remote machines
Applications, services

Middleware
layers

request-reply protocol

marshalling and external data representation

UDP and TCP

This
chapter

RMI and RPC

Valeria Cardellini - SDCC 2024/25 29

Remote Procedure Call (RPC)
• Idea (by Birrel and Nelson, 1984): use client/server

model to call procedures executed on other machines
– Process on machine A calls procedure on machine B
– Calling process on A is suspended
– Called procedure is execute on B
– Input and output parameters are transported into messages
– No message passing is visible to developer

Valeria Cardellini - SDCC 2024/25 30

Why RPC

• Used in many distributed systems, including cloud
computing ones

• Developed and employed in many languages and
frameworks, among which:
– C (Sun RCP)

– Java (Java RMI)

– Python (RPyC)

– Go

– gRPC

– Distributed Ruby https://github.com/ruby/drb

– Ice https://zeroc.com/ice

– Microsoft .NET https://dotnet.microsoft.com/

– JSON-RPC https://www.jsonrpc.org

Valeria Cardellini - SDCC 2024/25

Our case studies

31

Local procedure call

• Caller pushes to stack
input parameters (data,
dbList) and return
address

• When callee returns,
control is back to caller

• Example of local procedure call:
newlist = append(data, dbList)

Valeria Cardellini - SDCC 2024/25 32

How to make RPC look as much as possible as a
local procedure call?

RPC: architecture

Valeria Cardellini - SDCC 2024/25 33

• Solution: create proxies (aka stubs) to make it
appear that the call is local

• Client side: client stub exposes service’s interface
– Client calls client stub that manages all the details

• Server side: server stub receives request and
dispatches it calling the local procedure

• Goal: distribution transparency
– Stubs are automatically generated
– Developer focuses on application logic

RPC: basic steps

Valeria Cardellini - SDCC 2024/25 34

1. On client side, client calls a local procedure, called client stub
2. Client stub packs request message and call local OS

• Client stub marshals parameters: converts parameters from local to
common format and packages them into a message

3. Client OS sends request message to remote OS
4. Remote OS delivers request message to server stub
5. On server side, server stub unpacks request message and calls

server as it was a local procedure
• Server stub unmarshals parameters: extracts parameters from message

and converts them from common to local format

6. Server executes local call and returns result to server stub
7. Server stubs packs reply message (marshals return value(s)) and

calls OS
8. Server OS sends reply message to client OS
9. Client OS delivers message to client stub
10.Client stub unpacks reply message (unmarshals return value(s)) and

returns result to client

RPC: example

• RPC doit(a,b)

Valeria Cardellini - SDCC 2024/25 35

RPC: what is needed
• Exchange messages, so to make it appear to

developer that procedure call is local; we need to:
– Identify request and reply messages, remote procedure
– Pass parameters

• Manage data heterogeneity
– Which data? Parameters, return value(s)
– Marshaling vs. serialization:

• Marshaling: bundle parameters into a form that can be
reconstructed (unmarshaled) by another process

• Serialization: convert object into a sequence of bytes that can
be sent over a network; serialization is used in marshaling

• Handle failures due to distribution
– During communication
– User errors

Valeria Cardellini - SDCC 2024/25 36

RPC: challenges
• Implementation challenges for RPC
1. Manage heterogeneity in data representation

– In addition, client and server must agree on transport protocol
for message passing: TPC, UDP, both?

2. Perform parameter passing by reference
– Client and server run on different machines with their own

address space

3. Define failure semantics
– Local procedure call: exactly-once
– Remote procedure call: at-least-once or at-most-once (in most

cases)
4. Bind client to server, i.e., locate server endpoint

Valeria Cardellini - SDCC 2024/25 37

Data heterogeneity
• Client and server may use different data representations

– E.g., byte ordering (little endian vs big endian), data size,
padding, …

– RPC needs to define the details of how RPC messages are sent
on the wire

• Alternatives (general, not only RPC) to handle
heterogeneity in data representation:
1. Specify encoding within message itself
2. Let sender convert data into receiver encoding
3. Convert data into common encoding agreed between parties

• Sender: converts from local (i.e., native) to common
• Receiver: converts from common to local

4. Let an intermediary convert between different encodings

Valeria Cardellini - SDCC 2024/25 38

Data heterogeneity

• Let’s compare alternatives #2 and #3, assuming N
distributed components

• #2: each component knows all conversion functions
✓ Faster conversion
✗ Higher number of conversion functions: N*(N-1)

• #3: all components agree on common encoding for
data representation and each component knows
how to convert from local to common format and
vice versa
✗ Slower conversion
✓ Lower number of conversion functions: 2*(N-1)

• #3: standard choice in RPC systems

Valeria Cardellini - SDCC 2024/25 39

Data heterogeneity: patterns
• Patterns to implement alternatives #3 and #4
• Proxy

– Goal: support access (and location) transparency
– Manage access to an object using another proxy object

• Proxy is created in local address space to represent remote
object and exposes same interface of remote object

• Broker
– Goal: separate and encapsulate communication details from

its functionality
– Enable components to interact without handling remote

concerns by themselves
– Locate server for client, hide communication details, etc.

• Proxy (aka stub): standard choice in RPC systems
– Who automatically generates stubs?

Valeria Cardellini - SDCC 2024/25 40

Parameter passing techniques

• Call by value
– Parameter value is copied in a local isolated storage (usually

stack)
– Callee acts on copied data and changes will not affect caller

• Call by reference
– Reference (pointer) to parameter is copied into stack
– Callee acts directly on caller data

• Call by copy-restore
– A somehow special case of call by reference: data is copied

into caller stack; when procedure returns, updated content is
copied back (restored)

– Available in few programming languages (e.g., Ada, Fortran)

Valeria Cardellini - SDCC 2024/25 41

RPC parameter passing
• A reference is a memory address

– Valid only in its context (local machine)
– We need a pointer-less representation

• Solution: simulate call by reference by using call by
copy-restore
– Client stub copies the pointed data in the request message

and sends the message to server stub
– Server stub acts on copy, using the address space of the

receiver host
– If the copy is modified, it will be then restored by client stub

overwriting the original data
– Size of data to be copied should be known
– What happens if data contains a pointer?

Valeria Cardellini - SDCC 2024/25 42

Semantics of remote call/method

• Exactly once semantics is costly: most RPC systems
implement weaker semantics

• At-least-once semantics: if client receives reply from
server, then remote call has been executed at least
once by server

• At-most-once semantics: if client receives reply from
server, then remote call/method has been executed
at most once by server

Valeria Cardellini - SDCC 2024/25 43

Server binding
• Binding: how to locate the server endpoint, including

the proper process (port or transport address) on it
– In principle: can be static or dynamic

• Static binding
– Binding is known at design time: server address and other

info (e.g., port) are hard-coded
– Easy and no overhead, but lacks transparency and flexibility

• Dynamic binding
– At run-time
– Increased overhead, but gains transparency and flexibility

• E.g., we can redirect requests in case of server replication

– Try to limit overhead

Valeria Cardellini - SDCC 2024/25 44

Server binding: dynamic
• Two phases in client/server relationship
• Naming: static phase before execution

– Client specifies to whom it wants to be connected, using a
unique name that identifies the service

– Unique names are associated with operations or abstract
interfaces and binding is made to the specific service interface

• Addressing: dynamic phase during execution
– Server effectively binds to client when client invokes service
– Depending on middleware implementation, multiple replica

servers can be looked for

Valeria Cardellini - SDCC 2024/25 45

Server binding: dynamic

client
stub

server
stub

name
server

12, 3

4

Valeria Cardellini - SDCC 2024/25 46

• Addressing can be explicit or implicit
– Explicit addressing: client sends request using broadcast or

multicast, waiting only for first reply
– Implicit addressing: there is a name server (aka binder,

directory service, registry service) that registers services and
manages a binding table

– Service lookup, registration, update, and deletion

• Addressing frequency
– Each procedure call requires addressing
– To reduce cost, binding result is cached and re-used

More issues: Synchronous vs. asynchronous RPC

• Synchronous RPC: strict
request-reply behavior
– RPC call blocks client that waits

for server reply

• Some RPC middleware
supports asynchronous RPC
– Client continues without waiting

for server reply
– Server can reply as soon as

request is received and execute
procedure later

Asynchronous RPC

Valeria Cardellini - SDCC 2024/25 47

Synchronous RPC

More issues: transparency

• Is RPC truly transparent? Can we really just treat
remote procedure calls as local procedure calls?
– Performance, failures, concurrent requests, replication,

migration, …

• Performance
– RPC is slower ... a lot slower: why?
– Local call: maybe 10 cycles = ~3 ns
– RPC: 0.1-1 ms on a LAN => ~100K slower

• Major source of overhead: context switching, copies, inter-
process communication

• In WAN: can easily be millions of times slower

Valeria Cardellini - SDCC 2024/25 48

More issues: transparency

• Failures
– Different failures can occur

• Client cannot locate server
• Lost request messages
• Server crashes
• Lost reply messages
• Client crashes

Valeria Cardellini - SDCC 2024/25 49

More issues: security

• Authenticate client? Authenticate server?
– Is client sending messages to correct server or to

impostor?
– Is server accepting messages only from legitimate clients?

Can server identify user at client side?

• Messages may be visible over network
– Messages may be sniffed (and modified) while they

traverse the network: can we encrypt them?
– Have messages been accidentally corrupted or truncated

while on network?

• RPC protocol may be subject to replay attacks
– Can a malicious host capture a message and retransmit it

at a later time?

Valeria Cardellini - SDCC 2024/25 50

Programming with RPC
• Language support

– Some programming languages have no language-level
concept of remote procedure calls (e.g., C, C++)

• Their compilers will not automatically generate stubs

– Some languages directly support RPC (Java, Python,
Haskell, Go, Erlang)

• But we may need to deal with heterogeneous environments
(e.g., Java service communicating with Python service)

• Common solution
– Interface Definition Language (IDL): describes remote

procedures
– Separate IDL compiler generates client and server stubs

Valeria Cardellini - SDCC 2024/25 51

Interface Definition Language (IDL)
• IDL allows developer to specify remote procedure

interfaces (names, parameters, return values) in a
machine-independent way

• IDL compiler uses these interfaces to generate client
and server stubs
– Code to marshal
– Code to unmarshal
– Network transport code

• An IDL looks similar to function prototypes

Valeria Cardellini - SDCC 2024/25 52

IDL and its compiler

Valeria Cardellini - SDCC 2024/25 53

RPC middleware: case studies

• Sun RPC

• Java RMI

• Python RPyC

• Go

• gRPC

Valeria Cardellini - SDCC 2024/25 54

RPC implementation: Sun RPC

• First-generation RPC

• Created by Sun (now Oracle): Sun RPC
– RFC 1831 (1995), RFC 5531 (2009)
– Remains in use mostly because of NFS (Network File

System)

• Interfaces defined in an IDL called XDR

Valeria Cardellini - SDCC 2024/25 55

Sun RPC: XDR
• Sun RPC uses XDR (eXternal Data Representation)

as IDL to address data heterogeneity
– Standard to describe and encode machine-independent data

(RFC 4506)
– IDL compiler is rpcgen

• XDR provides built-in conversion functions for:
– Predefined primitive types, e.g., xdr_int()
– Predefined structured types, e.g., xdr_string()

• XDR is a binary format using implicit typing
– Implicit typing: only values are transmitted, not data types or

parameter info

Valeria Cardellini - SDCC 2024/25 56

Sun RPC: define RPC program using XDR

• Two descriptive parts written in XDR and grouped
in a file with extension .x
1. Definition: specifics of procedures (services) to identify

procedures and their parameters’ data types
2. XDR definitions: definitions of parameters’ data types (if

not built-in)

• Our Sun RPC example: calculate square of integer
number

Valeria Cardellini - SDCC 2024/25 57

Sun RPC example: define remote procedure
struct square_in { /* input (argument) */
long arg1;

};
struct square_out { /* output (result) */
long res1;

};
program SQUARE_PROG {
version SQUARE_VERS {
square_out SQUAREPROC(square_in) = 1; /* procedure number = 1 */
} = 1; /* version number */

} = 0x31230000; /* program number */

square.x

• Define remote procedure SQUAREPROC
– Each procedure has only one input parameter and one output parameter

– Identifiers are written in uppercase

– Each procedure is associated with a procedure number which is unique
within RPC program (e.g., 1)

Valeria Cardellini - SDCC 2024/25 58

Sun RPC: how to implement RPC program

• Developer codes:
– Client program: implements main() and logic needed to

find remote procedure and bind to it (example:
square_client.c)

– Server program: implements remote procedures provided
by RPC server (example: square_server.c)

• Note: developer does not write server-side main()
– Who calls remote procedure on server side?

Valeria Cardellini - SDCC 2024/25 59

Example: local procedure
• Let’s first consider standard local procedure

#include <stdio.h>

#include <stdlib.h>

struct square_in { /* input (argument) */

long arg;

};

struct square_out { /* output (result) */

long res;
};

typedef struct square_in square_in;
typedef struct square_out square_out;

square_out *squareproc(square_in *inp) {

static square_out out;

out.res = inp->arg * inp->arg;

return(&out);

}

square_local.c

Valeria Cardellini - SDCC 2024/25 60

Example: local procedure
• Local procedure (continue)

int main(int argc, char **argv) {

square_in in;

square_out *outp;

if (argc != 2) {

printf("usage: %s <integer-value>\n", argv[0]);

exit(1);

}

in.arg = atol(argv[1]);

outp = squareproc(&in);

printf("result: %ld\n", outp->res);

exit(0);

}

Which changes in case of remote procedure?

Valeria Cardellini - SDCC 2024/25 61

Sun RPC example: remote procedure

#include <stdio.h>

#include <rpc/rpc.h>

#include "square.h" /* generated by rpcgen */

square_out *squareproc_1_svc(square_in *inp, struct svc_req
*rqstp) {

static square_out out;

out.res1 = inp->arg1 * inp->arg1;

return(&out);
}

server.c

• Remote procedure is similar to local one

• Notes:
– Input and output parameters use pointers

– Output parameter must be pointer to static variable (i.e., global
memory allocation) so that pointed area exists when procedure
returns

– Name of RPC procedure changes slightly (add _ suffixed by version
number and _svc, e.g., _1_svc, all in lowercase)

Valeria Cardellini - SDCC 2024/25 62

Sun RPC example: client
• Run client with remote hostname and integer value; it

calls remote procedure
#include <stdio.h>

#include <rpc/rpc.h>

#include "square.h" /* generated by rpcgen */

int main(int argc, char **argv) {

CLIENT *clnt;
char *host;

square_in in;

square_out *result;

if (argc != 3) {

printf("usage: client <hostname> <integer-value>\n");

exit(1);

}

host = argv[1];

clnt = clnt_create(host, SQUARE_PROG, SQUARE_VERS, "tcp");

client.c

CLIENT *clnt_create(char *host, unsigned long prog,
unsigned number vers, char *proto)

Valeria Cardellini - SDCC 2024/25 63

Sun RPC example: client
if (clnt == NULL) {

clnt_pcreateerror(host);
exit(1);

}

in.arg1 = atol(argv[2]);

if ((result = squareproc_1(&in, clnt)) == NULL) {
printf("%s", clnt_sperror(clnt, argv[1]));
exit(1);

}

printf("result: %ld\n", result->res1);

exit(0);

}

Valeria Cardellini - SDCC 2024/25 64

Sun RPC example: client
• clnt_create(): creates client transport manager to

handle communication with remote server
– TPC or UDP, default timeout for request retransmission

• Client must know:
– Remote server hostname
– Info to call remote procedure: program name (SQUARE_PROG),

version number (1) and procedure name (square_proc)

• To call remote procedure:
– Procedure name changes slightly: add _ followed by version

number and write name in lowercase
– Two input parameters:

• Effective input parameter plus client transport manager

– Client gets pointer to result
• To identify failed RPC: NULL return

• Handling of failures that may occur during remote call
– clnt_pcreateerror() and clnt_perror() 65

Va
le

ria
 C

ar
de

llin
i -

SD
C

C
 2

02
4/

25

Sun RPC: features
• RPC program contains multiple remote procedures

– Versioning support
– Each procedure has one input and one output parameter
– Call by copy-restore

• Transport independent
– Transport protocol can be selected at run-time

• Mutual exclusion guaranteed by server
– Default: no concurrency on server side

• Synchronous client: blocked until server replies
• At-least-once semantics

– Request retransmission when timeout expires
• Security? Authentication mechanism added later with

Secure RPC

Valeria Cardellini - SDCC 2024/25 66

Sun RPC: server binding
• Client stub needs to know port number: how?
• Server stub registers RPC program

– Each procedure is identified by: program number, procedure
number, version number

• Where? In port map
– Dynamic table of RPC services on that host machine
– port map is managed by port mapper (rpcbind): one per host,

listens on port 111
– Client stub contacts port mapper to find out port number and

then sends request message to server stub

Valeria Cardellini - SDCC 2024/25 67

Sun RPC: port mapper (rpcbind)

• List RPC programs on a given host

>$ rpcinfo -p
program vers proto port

100000 4 tcp 111 rpcbind
100000 4 udp 111 rpcbind
824377344 1 udp 59528
824377344 1 tcp 49311

Our RPC program SQUAREPROC
– 824377344 (= 0x31230000) is the program number in

square.x
– Server supports both TCP and UDP: transport-protocol

independent

Valeria Cardellini - SDCC 2024/25 68

SUN RPC: development process

1. Define service specification
• Using XDR: square.x

2. Use rpcgen to generate
• header: square.h
• client stub: square_clnt.c
• server stub: square_svc.c
• XDR routines: square_xdr.c

3. Write
• client program: client.c
• server program: server.c

Valeria Cardellini - SDCC 2024/25 69

What goes on: server side

• Let’s analyze server stub code (square_svc.c)
• In main() server stub creates a socket and binds any

available local port to it
• Calls svc_register (RPC library function)

– To register procedures with port mapper
• Associates the specified program and version number pair with

the specified dispatch routine

• Then waits for requests by calling svc_run (RPC
library function)

Valeria Cardellini - SDCC 2024/25 70

⎼ svc_run invokes specific service
procedures in response to RPC call
messages

What goes on: client side

• When we start client program, clnt_create
contacts port mapper on server side to find port for
that interface
– Early binding: done once, not per each procedure call

• Client stub (square_clnt.c) manages communication
– Request timeout
– Marshaling from local representation to XDR format and

unmarshaling from XDR format to local representation

Valeria Cardellini - SDCC 2024/25 71

Java RMI
• Second-generation RPC
• Java RMI (Remote Method Invocation): RPC in Java
• Extends RPC to distributed objects

– Allows to develop distributed applications in Java where an
object on one JVM invokes methods on an object in another
JVM

– Goal: access transparency, but distribution transparency is
still not full

Valeria Cardellini - SDCC 2024/25 72

invocation invocation
remote

invocation
remote

local
local

local
invocation

invocation
A B

C

D

E

F

RMI: basics
• Recall Java separation between definition (interface)

and implementation (class)
• Idea: logical separation between interface and object

allows for their physical separation
• Remote interface: specifies set of methods to be

invoked remotely
• Remote object: instance of a class that implements a

remote interface
– But internal state of remote object is not distributed!

Valeria Cardellini - SDCC 2024/25 73

RMI: basics
• Remote method invocation: invoke methods of a

remote interface on a remote object
– Goal: keep same syntax as local invocation
– How to achieve it?

• Once again, proxy pattern: client-side stub and
server-side skeleton to hide distributed nature of
application

Valeria Cardellini - SDCC 2024/25 74

Server machine
Object

Client machine

Proxy

Same
interface
as object

Interface

State

MethodClient
invokes
a method

Network

Skeleton
invokes
same method
at object

Marshalled invocation
is passed across network

Client OS Server OS

Server

Skeleton

Client

Stub

RMI: serialization/deserialization
• No need for external data representation
• Serialization/deserialization directly supported by Java

– Thanks to Java bytecode, no need to (un)marshal, but data is
(de)serialized using language-level features

• Serialization: converts object that is passed as
parameter into byte stream
– writeObject on output stream

• Deserialization: decodes byte stream and builds copy
of original object
– readObject from input stream

• Stub and skeleton use serialization/deserialization to
exchange parameters and return values between
different JVMs

Valeria Cardellini - SDCC 2024/25 75

Marshaling vs serialization
• Loosely synonymous but semantically different
• Marshaling: stub converts local data into network

data (using encoding/decoding routines) and
packages network data for transmission

• Serialization: object state is converted into byte
stream, which can be converted back into object copy

• Difference becomes noticeable for objects
– Object codebase has also to be marshaled
– Java serialization relies on codebase being present at

receiver

• Different programming languages either make or
don’t make the distinction between the two
– E.g., in Python (Pickle module) marshaling and

serialization are considered the same, but not in Java

Valeria Cardellini - SDCC 2024/25 76

RMI: stub and skeleton interaction
• Client obtains object remote reference (i.e., stub

instance) through RMI registry
– Name server that relates objects with names
– Server registers its remote objects on RMI registry so that

they can be looked up
– Client contacts registry to look an object up by name

• Client invokes remote method on stub
– Syntax identical to local invocation

• Stub serializes data needed to invoke method (method
ID and parameters) and sends them to skeleton in a
message

• Skeleton receives message, deserializes received
data, invokes method, serializes return value, and
sends it to stub in a message

• Stub receives message, deserializes return value, and
returns it to client Valeria Cardellini - SDCC 2024/25 77

RMI example: echo remote interface

• Remote interface extends
Remote
– Remote identifies interfaces

whose methods may be
invoked from non-local JVMs

• Remote method
– throws RemoteException

import java.rmi.Remote;

import java.rmi.RemoteException;

public interface EchoInterface

extends Remote{

String getEcho(String echo)

throws RemoteException;

}
• To handle communication failure or protocol error
• Remote method invocation is not fully transparent

– passes parameters
• by value in case of primitive data types (int, char, …) or objects

that implement java.io.Serializable interface:
serialization/deserialization managed by stub/skeleton

• by reference in case of Remote objects: “reference” is not a
pointer, it is a data structure: {IP address, port, time, object #,
interface of remote object }

Valeria Cardellini - SDCC 2024/25 78

RMI example: echo server

• Class implements remote interface
– Extends UnicastRemoteObject
– super() calls class constructor

UnicastRemoteObject which
allows server to wait for requests
and serve them

– Implements remote method, which
throws remote exception

public class EchoRMIServer
extends UnicastRemoteObject
implements EchoInterface {

// Constructor
public EchoRMIServer()
throws RemoteException {
super();

}

// Implement remote method
public String getEcho(String echo)
throws RemoteException {
return echo;

}

79Valeria Cardellini - SDCC 2024/25

RMI example: echo server

• In main server object
instance is created

• RMI registry is created
• Server registers by name its

remote objects with RMI
registry

– RMI registry and server run
on same host

public static void main(String[] args) {
final int REGISTRYPORT = 1099;
String registryHost = "localhost";
String serviceName = "EchoService";
try {
// Create an instance of echo server
EchoRMIServer serverRMI = new EchoRMIServer();
// Bind remote object with RMI registry
Registry registry =
LocateRegistry.createRegistry(REGISTRYPORT);

registry.bind(serviceName, serverRMI);
}
catch (Exception e) {
System.err.println("EchoRMIServer exception: ");
e.printStackTrace();

}
}

}

80Valeria Cardellini - SDCC 2024/25

RMI example: echo client
• Remote reference is obtained

by lookup on server’s RMI
registry

• Client contacts RMI registry to
look up the remote object using
its name (registered by server)

– Registry returns a reference to
remote object

• Client invokes remote method
– Synchronous blocking call

public class EchoRMIClient
{
// Start RMI client
public static void main(String[] args)
{
bufferedReader stdIn =
new BufferedReader(
new InputStreamReader(System.in));

try
{
// Connect to remote RMI service
EchoInterface serverRMI = (EchoInterface)

Naming.lookup("EchoService");
// Interact with user
String message, echo;
System.out.print("Message? ");
message = stdIn.readLine();
// Invoke remote service
echo = serverRMI.getEcho(message);
System.out.println("Echo: "+echo+"\n");

}
catch (Exception e)
{e.printStackTrace(); System.exit(1); }
}
}

Valeria Cardellini - SDCC 2024/25 81

RMI: other features
• Automatic generation of stub and skeleton
• Synchronous blocking calls
• At-most-once semantics
• Concurrency: remote method can be invoked

concurrently by multiple clients
From Java RMI specification: “Since remote method invocation on the
same remote object may execute concurrently, a remote object
implementation needs to make sure its implementation is thread-safe”
https://docs.oracle.com/en/java/javase/23/docs/specs/rmi/arch.html
– Define remote method as synchronized to protect it

• Dynamic class loading: since class definitions are
required to serialize/deserialize objects passed as
parameters, RMI provides dynamic class loading

Valeria Cardellini - SDCC 2024/25 82

RMI: architecture

Valeria Cardellini - SDCC 2024/25

• RMI system consists of 3 layers: stub/skeleton layer,
remote reference layer, and transport layer

83

RPC in Python
• Various RPC implementations

– Pyro https://pyro4.readthedocs.io, RPyC, ZeroRPC
https://www.zerorpc.io

• What helps Python achieve transparency
– Inspection of live objects through inspect module

https://docs.python.org/3/library/inspect.html
• Examine class contents, retrieve method’s source code, and

extract function’s argument list

• General idea of implementing RPC in Python
– Create connection using RPC object
– Invoke remote methods using that object

• Let’s analyze RPyC (Remote Python Call)
https://rpyc.readthedocs.io

Valeria Cardellini - SDCC 2024/25 84

RPyC: features
• Transparent RPC interface

– Based on proxy pattern (once again)
– No interface definition file, IDL compiler, name server for

binding and lookup, transport service
– Access to remote objects as if they were local

• Symmetric operations
– Client and server can invoke RPCs on each other (e.g.,

server can invoke callbacks on client)

• Synchronous and asynchronous calls
• Secure

– Capability-based security model
– Integrates with TLS/SSL, SSH

Valeria Cardellini - SDCC 2024/25 85

RPyC: server and client
• Server

– Multiple implementations, including ThreadedServer (thread
for each connection)

• Plus OneShotServer, ThreadPoolServer, ForkingServer

– Binds to default port (18812, 18821 for SSL) or developer
provides host’s IP address and port within code

• Client
– Connects to server
– Performs remote operations through modules property,

which exposes server module’s namespace

Valeria Cardellini - SDCC 2024/25 86

RPyC: passing data
• By value

– Simple types (immutable objects: string, int, tuple)
• Sent directly to remote side

• By reference
– Object: reference (object name) to object is passed

• Remote server contacts client to access attributes and invoke
methods on object

• Changes will be reflected onto actual object

– Enables passing of location-sensitive objects, like files or
other OS resources

• Remote process can write to stdout of local process by getting
its sys.stdout

– Implementation: netrefs = transparent object proxies
• Local objects that forward all operations to corresponding

remote objects
• They make remote objects look and feel like local objects

Valeria Cardellini - SDCC 2024/25 87

RPyC: stubs

• Client creates a local proxy object for remote module
– Allows for transparent access
– Reference wrapped in special object called proxy that looks

like the actual object
– Any operation on proxy is delivered to target
– Client is unaware of this

• Synchronous and asynchronous calls
– Synchronous: client blocks and waits for return value
– Asynchronous: immediate return, notification when complete
– Calls can be made asynchronous by wrapping proxy with an

asynchronous wrapper

Valeria Cardellini - SDCC 2024/25 88

RPyC: services and security
• RPyC is built around services

– Each connections’ end exposes a service that is responsible
for the set of supported remote operations (aka policy)

• Services are classes that derive from
rpyc.core.service.Service and define exposed
methods
– Methods whose names begin with exposed_ or use

@rpyc.exposed decorator
– All exposed members of a service class are available to the

other side

Valeria Cardellini - SDCC 2024/25 89

RPyC example: calculator server
Va

le
ria

 C
ar

de
llin

i -
SD

C
C

 2
02

4/
25

90

RPyC example: calculator client

Valeria Cardellini - SDCC 2024/25 91

To remote party, service is
exposed as root object of
connection (conn.root).
This root object is a network
reference (netref) to service
instance living in server
process

RPyC: async operation
• Key feature of RPyC

– Client starts request and continues rather than blocking
– Gets AsyncResult object that will eventually hold result

• Asynchronous behavior must be explicitly enabled: to
turn the invocation of a remote method (or any callable
object) asynchronous, wrap it with async_()

• Then, client can
– test AsyncResult object for completion using ready
– wait for completion using wait()
– get result using value
– set timeout for result using set_expiry()
– register a callback function to be invoked when result arrives

using add_callback()

• No guarantee on execution order for async requests
See https://rpyc.readthedocs.io/en/latest/docs/async.html

Valeria Cardellini - SDCC 2024/25 92

RPyC: async operation and events
• Events can be implemented as asynchronous

callbacks
– Server produces events which are consumed by client

• Let’s analyze FileMonitor example
– Server periodically monitors file on client machine using

os.stat() to detect changes
– Whenever file is changed, server sends event to client

(invoking async callback) and provides old and new stat
results

– At client side, incoming events are served by background
thread

Valeria Cardellini - SDCC 2024/25
Client machine Server machine

FileMonitor

stat

client

callback
work

filename, callback func.

detected changeprint file change

Monitored file

93

RPyC example: FileMonitor server

Valeria Cardellini - SDCC 2024/25 94

RPyC example: FileMonitor client

Valeria Cardellini - SDCC 2024/25 95

RPyC example: FileMonitor client

Valeria Cardellini - SDCC 2024/25 96

RPC in Go

• Let’s introduce the Go programming language

http://www.ce.uniroma2.it/courses/sdcc2425/slides/Go.pdf

• What about RPC in Go?

Valeria Cardellini - SDCC 2024/25 97

RPC in Go

Valeria Cardellini - SDCC 2024/25

• Go standard library supports RPC right out-of-the-box
– Package net/rpc https://pkg.go.dev/net/rpc

– Provides access to the exported methods of an object across
a network

• TCP or HTTP as “transport” protocols
• Requirements for server RPC methods

– Method type and method are exported (capital letter)
– Only two arguments, both exported
– Second argument is a pointer to a reply struct that stores the

corresponding data
– An error is always returned

func (t *T) MethodName(argType T1, replyType *T2) error

98

RPC in Go: server
• On server side

– Create a TPC server (or an HTTP server) to
receive data

– Use Register (or RegisterName): register an
object, making it visible as a service

func (server *Server) Register(rcvr any) error
func RegisterName(name string, rcvr any) error

• One input parameter, which is the interface: any is an
alias for interface{}

• It publishes the methods that are part of the given
interface on the RPC server and allows them to be called
by clients connecting to the service

– Use Listen to announce on the local network
address

func Listen(network, address string) (Listener, error)
Valeria Cardellini - SDCC 2024/25 99

RPC in Go: server
– Use Accept to accept connections on the listener

and serve requests for each incoming connection
func (server *Server) Accept(lis net.Listener)

• Accept blocks; if the server wishes to do other work as
well, it should call this in a goroutine (go statement)

– Can also use HTTP handler for RPC messages
• See example on course site

Valeria Cardellini - SDCC 2024/25 100

RPC in Go: client
• On client side

– Use Dial to connect to RPC server at the
specified network address (and port)

func Dial(network, address string) (*Client, error)
• Use DialHTTP for HTTP connection

– Use Call to call synchronous RPC: Call waits for
the remote call to complete

func (client *Client) Call(serviceMethod string, args
any, reply any) error

– Use Go to call asynchronous RPC: Go invokes the
call asynchronously and signals completion using
the Call structure's Done channel

func (client *Client) Go(serviceMethod string, args
any, reply any, done chan *Call) *Call

Valeria Cardellini - SDCC 2024/25 101

RPC in Go: client

• On client side

– Struct Call represents an active RPC
type Call struct {

ServiceMethod string // The name of the service and method

// to call.

Args any // The argument to the function (*struct)

Reply any // The reply from the function (*struct)

Error error // After completion, the error status.

Done chan *Call // Receives *Call when Go is complete.

}

Valeria Cardellini - SDCC 2024/25 102

RPC in Go example: calculator

• Let’s consider a simple RPC calculator with two
functions: multiply and divide two integers

• Code available on course site

Valeria Cardellini - SDCC 2024/25 103

RPC in Go: synchronous call

• Need some setup in advance of this…
• Call makes blocking RPC call
• Call invokes the remote function, waits for it to complete, and

returns its error status
// Synchronous call

args := &server.Args{7,8}

var reply int

err = client.Call("Arith.Multiply", args, &reply)
if err != nil {

log.Fatal("arith error:", err)

}

fmt.Printf("Arith: %d*%d=%d", args.A, args.B, reply)

Valeria Cardellini - SDCC 2024/25

func (client *Client) Call(serviceMethod string,

args any, reply any) error

104

RPC in Go: asynchronous call
• How to make asynchronous RPC? Go uses a channel as

parameter to retrieve RPC reply when the call is complete
• Done channel will signal when the call is complete by returning

the same object of Call
– If Done is nil, Go will allocate a new channel

// Asynchronous call

quotient := new(Quotient)

divCall := client.Go("Arith.Divide", args, quotient, nil)
divCall = <- divCall.Done

// check errors, print, etc.

Valeria Cardellini - SDCC 2024/25

• For Go internal implementation, see
https://go.dev/src/net/rpc/client.go?s=8029:8135 - L284

func (client *Client) Go(serviceMethod string, args any,

reply any, done chan *Call) *Call

105

Go’s RPC semantics

• Go’s RPC is at-most-once
• Client opens TCP connection and writes request

– TCP may retransmit but server’s TCP receiver will filter out
duplicates internally, with sequence numbers

– No request retry in Go’s RPC code (i.e. will not create a
second TCP connection)

• However, client returns error if it does not get reply
– Perhaps after TCP timeout
– Perhaps server did not see request
– Perhaps server processed request but server or network

failed before reply came back

Valeria Cardellini - SDCC 2024/25 106

RPC in Go: marshaling and unmarshaling

• By default Go uses package encoding/gob for
parameters marshaling (encode) and unmarshaling
(decode) https://pkg.go.dev/encoding/gob

– Package gob manages streams of gobs (Go binary values)
exchanged between Encoder (transmitter) and Decoder
(receiver)

– A stream of gobs is self-describing: each data item in the
stream is preceded by a specification of its type, expressed
in terms of a small set of predefined types; pointers are not
transmitted, but values they point to are transmitted

– Basic usage: create encoder, transmit values, receive them
with decoder

– Requires that RPC client and server are both written in Go

Valeria Cardellini - SDCC 2024/25 107

RPC in Go: marshaling and unmarshaling

• Alternatives to gob

1. net/rpc/jsonrpc package in Go’s standard library
https://pkg.go.dev/net/rpc/jsonrpc

– Implements a JSON-RPC 1.0 ClientCodec and ServerCodec
for rpc package

2. gRPC

Valeria Cardellini - SDCC 2024/25 108

RPC in Go example: Word count

• Let’s consider a basic word count: given a document,
count the occurrences of each word in that document
– Tokenize and put words in a hash map

• Code available on course site

Valeria Cardellini - SDCC 2024/25 109

From word count to MapReduce

• Word count: Tokenize and put words in a hash map
• How do we parallelize this?

• Partition document into n partitions
• Build n hash maps, one for each partition
• Merge the n hash maps (by key)

• How do you do this in a distributed environment?

Valeria Cardellini - SDCC 2024/25 110

From word count to MapReduce

Valeria Cardellini - SDCC 2024/25

• Partition input document into shards and assign
shards to nodes

111

From word count to MapReduce

Valeria Cardellini - SDCC 2024/25

• Count words locally on each node

112

From word count to MapReduce

Valeria Cardellini - SDCC 2024/25

• How to merge results computed locally?
• A first solution: send everything to one node

What if data is too big? Too slow...

• The solution: partition key space among nodes (e.g,
[a-e], [f-j], [k-p] ...)

1. Assign a key space to each node
2. Split local results by the key spaces
3. Fetch and merge results that correspond to the

node’s key space

113

From word count to MapReduce

Valeria Cardellini - SDCC 2024/25

• The solution: partition key space among

nodes

1.Assign a key space to each node
2.Split local results by the key spaces

114

From word count to MapReduce

Valeria Cardellini - SDCC 2024/25

• The solution: partition key space among

nodes

1.Assign a key space to each node
2.Split local results by the key spaces
All-to-all shuffle

115

From word count to MapReduce

Valeria Cardellini - SDCC 2024/25

• The solution: partition key space among

nodes

1.Assign a key space to each node
2.Split local results by the key spaces
3.Merge results received from other nodes

116

MapReduce in a nutshell

• Partition dataset into many shards
• Map stage: each node processes one or more shards

locally
• Reduce stage: each node fetches and merges partial

results from all other nodes

• But implementing MapReduce is not so easy…
– Failures are common
– Data skew causes unbalanced performance across cluster
– System scale

Valeria Cardellini - SDCC 2024/25 117

Comparing RPC so far

• Let’s compare RPC implementations

– How do they differ in terms of distribution
transparency?

– Access transparency?
– Location transparency?
– Replication transparency?

• Add server-side load balancer which acts as proxy
between RPC clients and replicated RPC servers

– Concurrency transparency?
– Failure transparency?

Valeria Cardellini - SDCC 2024/25 118

Motivation for new RPC middleware

• Large-scale distributed applications composed of
microservices
– Microservices architecture: build sw application as a

collection of independent, autonomous (developed,
deployed, and scaled independently), business capability–
oriented, and loosely coupled services

– Multi-language (i.e., polyglot) development
– Communication mainly structured as RPCs

Valeria Cardellini - SDCC 2024/25 119

gRPC
• High-performance, open source universal RPC

framework https://grpc.io/

• Can run in any environment
– Multi-language, multi-platform framework

• Main usage scenarios
– Connect polyglot microservices that use request-reply

communication style in and across data centers with pluggable
support for load balancing, tracing, health checking and
authentication

– Connect devices, mobile apps and browsers to backend services
– Generate efficient client libraries

• Developed by Google, now CNCF project
• Used by many companies and in many distributed

systems
– E.g., Cisco, Cockroach Labs, Netflix, Square, etcd https://etcd.io/

Valeria Cardellini - SDCC 2024/25 120

gRPC: main features

• HTTP/2 for transport
– Bidirectional streaming, multiplexing, header compression

• Protocol buffers as IDL
– Simple service definition
– Automatic code generation
– Strict specification: prevents errors

• Plus authentication, flow control, blocking or non-
blocking bindings, deadline/timeouts and cancellation
– Deadline and timeouts allow clients to specify how long they

are willing to wait for response

Valeria Cardellini - SDCC 2024/25 121

gRPC: HTTP/2
• Transport over HTTP/2

– Basic idea of gRPC: treat RPCs as references to HTTP objects

• HTTP/2: major revision of HTTP that provides
significant performance benefits over HTTP 1.x

• HTTP/2 in a nutshell
– Binary framing layer: HTTP/2 request/response is divided into

small messages and framed in binary format, making message
transmission efficient

Valeria Cardellini - SDCC 2024/25 122

gRPC: HTTP/2
• HTTP/2 in a nutshell

– From request/response messages to streams
• Stream: bidirectional flow of bytes within an established

connection, which may carry one or more messages
• Message: complete sequence of frames that map to a logical

request or response message
• Frame: smallest unit of communication in HTTP/2, each

containing a frame header, which at least identifies the stream
to which the frame belongs

– Request/response multiplexing (usage of a single connection
per client): allows for efficient use of TCP connections and
avoids head-of-line blocking at HTTP level

– Native support for bidirectional streaming
– HTTP header compression: to reduce protocol overhead
See https://hpbn.co/http2/

Valeria Cardellini - SDCC 2024/25 123

gRPC: Protocol buffers
• gRPC uses protocol buffers (aka protobufs) as:

– IDL to define service interface: automatic generation of client
stubs and abstract server classes

– Message interchange format: gRPC messages are serialized
using protocol buffers, thus resulting in small message
payloads

• Based on proxy pattern: stub and server

Valeria Cardellini - SDCC 2024/25 124

Protocol buffers
• Google’s mature open-source mechanism to

serialize structured data
• Binary data representation
• Strongly typed

• Data types are structured as messages
– message: small logical record of information containing a

series of name-value pairs called fields
– Fields have unique field numbers (e.g., string name = 1),

used to identify fields in message binary format

Valeria Cardellini - SDCC 2024/25 125

Protocol buffers: example
• ProductInfo service interface
// ProductInfo.proto
syntax = "proto3";
package ecommerce;

service ProductInfo {
rpc addProduct(Product) returns (ProductID);
rpc getProduct(ProductID) returns (Product);

}

message Product {
string id = 1;
string name = 2;
string description = 3;

}

message ProductID {
string value = 1;

}
Valeria Cardellini - SDCC 2024/25

Client-server interaction

126

gRPC: basic steps

1. Define service (collection of remote methods) and
message types that are exchanged between client
and service in .proto file using protobufs as IDL

2. Generate server and client code using protoc
(protocol buffer compiler) in your preferred
language(s) from proto definition
– Go: compile manually using protoc command
– Java: use build automation tools (e.g., Maven, Gradle)

3. Use gRPC API in your preferred language (e.g., Go,
Java, Python) to write service client and server
– Let’s consider Go: gRPC-Go https://grpc.io/docs/languages/go

Valeria Cardellini - SDCC 2024/25 127

gRPC: helloworld example in Go
• See https://grpc.io/docs/languages/go/quickstart/ and

https://github.com/grpc/grpc-go/tree/master/examples/helloworld/

1. Define service (helloworld.proto file)
package helloworld;

// The greeting service definition.
service Greeter {
// Sends a greeting
rpc SayHello (HelloRequest) returns (HelloReply) {}

}

// The request message containing the user's name.
message HelloRequest {
string name = 1;

}

// The response message containing the greetings
message HelloReply {
string message = 1;

}Valeria Cardellini - SDCC 2024/25 128

gRPC: helloworld example in Go
2. Compile service definition:
$ protoc --go_out=. --go_opt=paths=source_relative \

--go-grpc_out=. --go-grpc_opt=paths=source_relative \

helloworld/helloworld.proto

• Automatically generated files:
– helloworld.pb.go: contains protobuf code to populate,

serialize, and retrieve request and response message types
– helloworld_grpc.pb.go: contains

• interface type (or stub) for clients to call with methods defined
in Helloworld service

• interface type for servers to implement, also with methods
defined in Helloworld service

• uses message definitions given in helloworld.pb.go

– Take a look at those files and see that
• message types have become Go structs
• RPC definitions have become Go interfaces

Valeria Cardellini - SDCC 2024/25 129

gRPC: helloworld example in Go
3. Create server: composed of two parts

a. Implement service interface generated from service
definition: the actual “work”

func (s *server) SayHello(ctx context.Context,

in *pb.HelloRequest) (*pb.HelloReply, error) {

…

}

b. Create and run gRPC server to listen for requests from
clients and dispatch them to service implementation

lis, err := net.Listen("tcp", port)
if err != nil {

log.Fatalf("failed to listen: %v", err)

}

s := grpc.NewServer()
pb.RegisterGreeterServer(s, &server{})
s.Serve(lis)

Valeria Cardellini - SDCC 2024/25 130

gRPC: helloworld example in Go
4. Create client

– To call service methods, first create a gRPC channel to
communicate with server using Dial

conn, err := grpc.Dial(address, opts…)
– We need a client stub to perform RPCs: get it using

pb.NewGreeterClient provided by pb package (generated
from .proto file)

c := pb.NewGreeterClient(conn)

– Call service methods on client stub: create and populate a
request protobuf object (HelloRequest) and pass a
context object which lets us change RPC’s behavior if
necessary (e.g., time-out/cancel RPC in flight)

r, err := c.SayHello(ctx, &pb.HelloRequest{Name: name})

Valeria Cardellini - SDCC 2024/25 131

gRPC: update application components

• gRPC simplifies application updates
• If you want make changes to server API (e.g., adding

new method)
1. Update service definition (.proto file)
2. Regenerate stubs so that client and server

implementations can reflect changes
3. Update server code to implement new method
4. Update client code to call new method

Valeria Cardellini - SDCC 2024/25 132

gRPC: update helloworld example in Go
• Let’s update gRPC service adding new method

SayHelloAgain()
1. Update .proto file
2. Regenerate gRPC code using protoc
3. Update server code to implement new method

func (s *server) SayHelloAgain(ctx context.Context, in

*pb.HelloRequest) (*pb.HelloReply, error) {

log.Printf("Received: %v", in.GetName())

return &pb.HelloReply{Message: "Hello again " +

in.GetName()}, nil

}

4. Update client code to call new method
r, err = c.SayHelloAgain(ctx, &pb.HelloRequest{Name: name})

if err != nil {

log.Fatalf("could not greet: %v", err)

}

log.Printf("Greeting: %s", r.GetMessage())
Valeria Cardellini - SDCC 2024/25 133

gRPC: ProductInfo example

• Online retail having ProductInfo microservice which
manages products and their information

• Clients can add and retrieve products
1. Define service in .proto file (see slide 128)
2. Implement server and client in Go
3. Implement server and client in Java

Go code: Teams/course website
Java code: https://github.com/grpc-up-and-running/samples/tree/master/ch02

See chapter 2 of gRPC: Up and Running
https://www.oreilly.com/library/view/grpc-up-and/9781492058328/

Valeria Cardellini - SDCC 2024/25 134

gRPC: types of RPC methods
• gRPC supports 4 kinds of service methods

– Defined in .proto file
– See routeguide example https://github.com/grpc/grpc-

go/tree/master/examples/route_guide

1. Simple RPC: client sends request to server and waits
for single response to come back (i.e., unary)
– A normal function call

rpc SayHello (HelloRequest) returns (HelloReply) {}

2. Server-streaming RPC: client sends request to server
and gets stream to read a sequence of messages
back
– Client reads from stream until there are no more messages
– gRPC guarantees message ordering within individual RPC call

rpc ListFeatures(Rectangle) returns (stream Feature) {}

Valeria Cardellini - SDCC 2024/25 135

gRPC: types of RPC methods
3. Client-streaming RPC: client writes sequence of

messages and sends them to server, waits for server to
read them and return its response
– gRPC guarantees message ordering within individual RPC call

rpc RecordRoute(stream Point) returns (RouteSummary) {}

4. Bidirectional streaming RPC: both sides send sequence
of messages using read-write stream (i.e., full duplex)
– The two streams operate independently, so client and server can

read and write messages as preferred (server can wait until it
has received all client’s messages before writing its messages,
or server and client can play “ping-pong”)

– gRPC preserves message ordering in each stream
rpc RouteChat(stream RouteNote) returns (stream RouteNote) {}

Valeria Cardellini - SDCC 2024/25 136

gRPC: distribution transparency
• What about distribution transparency?

– Access transparency?
• The usual proxy pattern

– Location transparency?
• gRPC supports service discovery mechanisms to locate

services dynamically
• By default, DNS as name resolver

https://grpc.io/docs/guides/custom-name-resolution/

– Concurrency transparency?
• Language dependent, for Go see https://github.com/grpc/grpc-

go/blob/master/Documentation/concurrency.md

– Replication transparency?
• gRPC can integrate with load balancers to distribute client

requests evenly across multiple server instances
https://grpc.io/docs/guides/custom-load-balancing

Valeria Cardellini - SDCC 2024/25 137

gRPC: distribution transparency
• What about distribution transparency?

– Failure transparency?
• At-most-once by default
• gRPC can support implementing retry strategies for

transient failures, including exponential backoff
https://grpc.io/docs/guides/retry/

• gRPC supports request hedging: sending multiple copies
of same request without waiting for response
https://grpc.io/docs/guides/request-hedging/
See: Dean and Barroso, The Tail at Scale, 2013
https://research.google/pubs/the-tail-at-scale/

Valeria Cardellini - SDCC 2024/25 138

gRPC: other features
• Security

– gRPC supports SSL/TLS
– How to use

• Need to generate SSL/TLS certificates (for development only:
self-signed certificates using OpenSSL)

• On server side: configure gRPC server to use SSL/TLS
certificates

• On client side. configure gRPC client to trust server’s SSL/TLS
certificates

• Example: https://github.com/grpc/grpc-
go/tree/master/examples/features/encryption

• Benchmarking and load testing
– ghz tool https://ghz.sh

Valeria Cardellini - SDCC 2024/25 139

gRPC: weaknesses
• Limited support in browsers

– Cannot directly call a gRPC service from a browser
– gRPC-Web can provide gRPC support to browser but limited

features (only simple RPC and limited server streaming)
https://grpc.io/docs/platforms/web/basics/

• Non-human readable format
– Protobuf is efficient to send and receive, but its binary format

is not human readable
– Developers need additional tools to analyze protobuf

payloads on the wire, write manual requests, and perform
debugging

• E.g., gRPC command-line tool or Wireshark
https://wiki.wireshark.org/gRPC

Valeria Cardellini - SDCC 2024/25 140

References
• Chapter 4 of van Steen & Tanenbaum book

• Remote Procedure Calls https://www.linuxjournal.com/article/2204

• Java Remote Method Invocation Specification
https://docs.oracle.com/en/java/javase/23/docs/specs/rmi/

• Trail: RMI https://docs.oracle.com/javase/tutorial/rmi/

• RPyC tutorial https://rpyc.readthedocs.io/en/latest/tutorial.html

• RPyC documentation https://rpyc.readthedocs.io

• Go’s package rpc https://pkg.go.dev/net/rpc

• RPC in the Go standard library, in Building Microservices with
Go https://subscription.packtpub.com/book/web-
development/9781786468666/1/ch01lvl1sec12/rpc-in-the-go-standard-
library

• gRPC - Up and Running https://www.oreilly.com/library/view/grpc-
up-and/9781492058328/

Valeria Cardellini - SDCC 2024/25 141

