
Corso di Sistemi Distribuiti e Cloud Computing
A.A. 2024/25

Valeria Cardellini

Laurea Magistrale in Ingegneria Informatica

Communication in Distributed Systems
Part 2

Macroarea di Ingegneria
Dipartimento di Ingegneria Civile e Ingegneria Informatica

Message-oriented communication

• RPC improves distribution transparency with respect
to socket programming

• But still synchrony between interacting entities
– Over time: caller waits the reply
– In space: shared data
– Functionality and communication are coupled

• Which communication models to improve decoupling
and flexibility?

• Message-oriented communication
– Transient

• Berkeley socket
• Message Passing Interface (MPI): see "Sistemi di calcolo

parallelo e applicazioni" course
– Persistent

• Message Oriented Middleware (MOM)

Valeria Cardellini – SDCC 2024/25 1

Message-oriented middleware
• Communication middleware that supports sending

and receiving messages in a persistent way
– MOM offers intermediate-term storage capacity for

messages

• Loose coupling among system/app components
– Decoupling in time and space
– Can also support synchronization decoupling
– Goals: increase performance, scalability and reliability
– Typically used in serverless and microservice architectures

• Two patterns:
– Message queue
– Publish-subscribe (pub/sub)

• And two related types of system:
– Message queue system (MQS)
– Pub/sub system

Valeria Cardellini – SDCC 2024/25 2

Queue message pattern

• Messages sent to queue are stored until they are
retrieved by consumer

• Multiple producers can send messages to queue
• Multiple consumers can receive messages from queue
• But communication is one-to-one: producer’s message

is delivered to a single consumer

• When to use message queues
– Examples: task scheduling, load balancing, logging or tracing

Valeria Cardellini – SDCC 2024/25 3

Queue message pattern

Valeria Cardellini – SDCC 2024/25 4

A sends a message to B B issues a response message back to A

Message queue API

• Typical calls of MQS:
– put: non-blocking send

• Insert message into queue

– get: blocking receive
• Block until queue is nonempty and receive a message
• Variant: allow searching for specific message in queue

– poll: non-blocking receive
• Check queue and receive message if available
• Never block

– notify: non-blocking receive
• Install handler (callback function) to be automatically called

when a message is put into queue

Valeria Cardellini – SDCC 2024/25 5

Publish/subscribe pattern

Valeria Cardellini – SDCC 2024/25 6

• Application components can publish asynchronous
messages (e.g., event notifications), and/or declare
their interest in message topics by issuing a
subscription

• Each message can be delivered to multiple consumers

Publish/subscribe pattern

Valeria Cardellini – SDCC 2024/25 7

• Multiple consumers can subscribe to topic with or
without filters

• Subscriptions are collected by an event dispatcher
component, responsible for routing events to all
matching subscribers
– For scalability reasons, its implementation is distributed

• High degree of decoupling among components
– Easy to add and remove components: appropriate for

dynamic environments

Publish/subscribe pattern

• A sibling of message queue pattern but further
generalizes it by delivering a message to multiple
consumers
– Message queue: delivers messages to only one receiver,

i.e., one-to-one communication
– Pub/sub channel: delivers messages to multiple receivers,

i.e., one-to-many communication

Valeria Cardellini – SDCC 2024/25 8

Publish/subscribe API

• Typical calls of pub/sub system:
– publish(event): called by publisher to publish an

event
• Events can be of any data type and may contain meta-data

– subscribe(filter_expr, notify_cb, expiry) →
sub_handle: called by subscriber to subscribe to events

• Takes as input: filter expression, reference to notify
callback for event delivery, and expiry time for subscription

• Returns subscription handle

– notify_cb(sub_handle, event): called by pub/sub
system to deliver to subscribers a matching event

– unsubscribe(sub_handle): called by subscriber to
unsubscribe

Valeria Cardellini – SDCC 2024/25 9

MOM functionalities
• MOM handles the complexity of addressing,

routing, availability of communicating application
components (or applications), and message
format transformations

https://www.cloudcomputingpatterns.org/message_oriented_middleware

Valeria Cardellini – SDCC 2024/25 10

MOM functionalities

• Let’s analyze
– Delivery semantics
– Delivery model
– Message routing
– Message transformations

Valeria Cardellini – SDCC 2024/25 11

Delivery semantics in MOM

At-most-once delivery
• Message will be delivered not more than once
• Messages may be lost but are not redelivered

Valeria Cardellini – SDCC 2024/25 12

<=1

ConsumerConsumerProducer

At-least-once delivery
• Messages are never lost but they may be delivered more than

once
• Design application to be idempotent (not affected adversely

when processing same message more than once)
• How can MOM ensure that messages are received

successfully?
– Consumer sends ack for each message and MOM resends

message if ack is not received

Delivery semantics in MOM

Exactly-once delivery
• How can MOM ensure that a message is delivered

only exactly once to a consumer?
– MOM also filters message duplicates

• Upon creation, each message is associated with a unique ID,
which is used to filter message duplicates during their traversal
from producer to consumer

– In addition, messages must survive MOM failures

Valeria Cardellini – SDCC 2024/25 13

ConsumerProducer

Delivery semantics in MOM

Transaction-based delivery
• How can MOM ensure that messages are only

deleted from a message queue if they have been
received successfully?
– MOM and consumer participate in a transaction: read and

delete operations are performed within a transaction, thus
guaranteeing ACID behavior

Valeria Cardellini – SDCC 2024/25 14

ConsumerProducer

Delivery semantics in MOM

Timeout-based delivery
• How can MOM ensure that messages are only

deleted from a message queue if they have been
received successfully at least once?
– Message is not deleted immediately from queue, but marked

as being invisible until visibility timeout expires
– Invisible message cannot be read by another consumer
– After consumer’s ack of message receipt, message is

deleted from queue

Valeria Cardellini – SDCC 2024/25 15

ConsumerProducer

Delivery model

• How messages are retrieved by receivers (i.e.,
subscribers or consumers)

• Options: push vs. pull delivery
• Push: receiver is notified by MOM when a message

is available
• Pull: receiver polls MOM for new messages

Valeria Cardellini – SDCC 2024/25

MOM

Rec. A

Rec. B

Push delivery

MOM

Rec. A

Rec. B

Pull delivery

16

Message routing: general model
• Queues are managed by queue managers (QMs)

– An application can put messages only into a local queue
– Getting a message is possible by extracting it from a local

queue only

• QMs need to route messages
– Work as message-queuing “relays” that interact with

distributed applications and each other
– Form an overlay network
– There can also be special QMs that operate only as routers

Valeria Cardellini – SDCC 2024/25 17

Message routing: overlay network

• Overlay network to route messages
– By using routing tables
– Routing tables are stored and managed by QMs

Valeria Cardellini – SDCC 2024/25

• Overlay network needs to
be maintained over time
– Routing tables are often set

up and managed manually:
easier but …

– Dynamic overlay networks
require to manage at runtime
mapping between queue
name and its location

18

Message transformation: message broker

• New/existing apps that need to be integrated into a
single, coherent system rarely use common data
format

• How to handle data heterogeneity?
• Let’s now focus on message broker

– Usually takes care of application heterogeneity in MOM

Valeria Cardellini – SDCC 2024/25 19

Message broker: general architecture
• Message broker handles application heterogeneity

– Converts incoming messages to target format providing
access transparency

– Often acts as application gateway
– Manages repository of conversion rules and programs to

transform message types
– May provide content-based routing capabilities
– Must be scalable and reliable: distributed implementation

Valeria Cardellini – SDCC 2024/25 20

MOM frameworks

• Main MOM systems and libraries
– Apache ActiveMQ https://activemq.apache.org
– Apache Kafka
– Apache Pulsar https://pulsar.apache.org
– IBM MQ https://www.ibm.com/products/mq
– NATS https://nats.io
– RabbitMQ
– ZeroMQ https://zeromq.org

• Distinction between queue message and pub/sub
patterns is often lacking
– Some frameworks support both (e.g., Kafka, NATS)
– Others not (e.g., pub/sub in Redis https://redis.io/topics/pubsub)

Valeria Cardellini – SDCC 2024/25 21

MOM frameworks

• Also as Cloud services
– Amazon Simple Queue Service (SQS)
– Amazon Simple Notification Service (SNS)
– CloudAMQP: RabbitMQ as a Service
– Google Cloud Pub/Sub
– Microsoft Azure Service Bus

Valeria Cardellini – SDCC 2024/25 22

Amazon Simple Queue Service (SQS)
• Reliable, scalable Cloud-based message queue

service
– Goal: decouple application components, which can run

independently and asynchronously and be developed with
different technologies and languages

• Architecture
– Message queues fully managed by AWS
– Message queues distributed on multiple SQS servers
– SQS servers replicated within a region: message copies

stored on multiple servers for high availability
– Pull delivery model: consumers poll message from queue

23Valeria Cardellini – SDCC 2024/25

Amazon SQS: Features
• Consumer must delete message from queue

– A queue is a temporary holding location
– Configurable message retention period (max 14 days)

• SQS provides timeout-based delivery
– Received message remains in queue but is locked during

consumer processing (visibility timeout)
– If processing fails, lock expires and message is available again

24Valeria Cardellini – SDCC 2024/25

Amazon SQS: Features

• Consumers use polling to receive messages from
queue
– Short polling: SQS queries only a subset of servers
– Long polling: SQS queries all servers

• SQS queue type can be standard or FIFO
• Standard queue (default)

– Best-effort ordering, thus occasionally out-of-order delivery
might occur

– Duplicates can be received

• FIFO queue
– In-order delivery, i.e., messages are received and processed

in the same order in which they were transmitted
– Avoids duplicates
✗ Reduced throughput

25Valeria Cardellini – SDCC 2024/25

Amazon SQS: API

• CreateQueue, ListQueues, DeleteQueue
– Create, list, delete queues

• SendMessage
– Add message to queue (message size up to 256 KB)
– How to send message payload larger than 256 KB?

• Store payload on S3 and send a reference to it inside message

• ReceiveMessage
– Retrieve one or more messages from queue
– Can’t specify which messages to retrieve, only maximum

number of messages (up to 10)

• DeleteMessage
– Remove specified message from queue

Valeria Cardellini – SDCC 2024/25 26

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/Welcome.html

Amazon SQS: API

• ChangeMessageVisibility
– Change visibility timeout of the specified message in a queue

(when received, message remains in the queue upon it is
explicitly deleted by consumer)

– Default visibility timeout is 30 sec.

• SetQueueAttributes, GetQueueAttributes
– Control queue settings, get information about a queue

Valeria Cardellini – SDCC 2024/25 27

Amazon SQS: example

Valeria Cardellini – SDCC 2024/25

• Cloud app for photo processing service
– Let’s use SQS to decouple app front-end and back-end, load

balancing and fault tolerance

– App front-end sends to queue a message with S3 link to image

– Pool of EC2 instances takes requests from queue and resizes
images

• In case of failure during processing, message is again visible in queue
• Back-end EC2 instances can be scaled horizontally according to

number of queued messages

28
S3 bucket

Autoscaling group

SQS queue

Autoscaling group
Message count

Apache Kafka
• Open-source, distributed even streaming platform

– To publish and subscribe to streams of events
– To store streams of events durably and reliably
– To process streams of events
https://kafka.apache.org/

• Started by LinkedIn in 2010
• Used at scale by tech giants (LinkedIn, Netflix, Uber, …)
• Written mainly in Scala
• Horizontally scalable
• Fault-tolerant
• High throughput ingestion

– Billions of events

29Valeria Cardellini – SDCC 2024/25

Kafka at a glance

• Kafka stores streams of events (aka messages, records)
in categories called topics

• Kafka cluster: composed by servers known as brokers,
that can span multiple data centers or cloud regions
– Brokers receive and store events

• Producers: publish (write) events to a Kafka topic
• Consumers: subscribe to Kafka topics, read published

events and process them
– A topic can have 0, 1, or many subscribing consumers

30Valeria Cardellini – SDCC 2024/25

Kafka: topic and partitions

• Topic: category to which an event is published
• For each topic, Kafka cluster maintains a partitioned log
• Log (data structure): append-only, totally-ordered

sequence of events ordered by time
• Partitioned log: each topic is split into a pre-defined

number of partitions
– Partition: unit of parallelism for topic

31Valeria Cardellini – SDCC 2024/25

Kafka: partitions

• Producers publish events to topic partition
• Consumers read events from topic
• Each partition is a numbered, ordered, immutable

sequence of records that is appended to
– Records written to partition are immutable
– Like a commit log

• Each record is associated with a monotonically
increasing sequence number, called offset

Valeria Cardellini – SDCC 2024/25 32

Kafka: partitions and design choices

• To improve scalability: topic partitions are distributed
across multiple brokers
✓ I/O throughput increases: parallel reads and writes

• Multiple producers can write in parallel to different partitions
• Multiple consumers can read in parallel from different partitions

Valeria Cardellini – SDCC 2024/25 33

Kafka: partitions and design choices

• To improve fault tolerance: each topic partition can be
replicated across brokers
– Each partition has one leader and 0 or more followers

• followers > 0 in case of replication
– replication-factor = total number of replicas including leader
– replication-factor = N → up to N-1 brokers can fail before

losing stored events

Valeria Cardellini – SDCC 2024/25 34

Kafka: partitions and design choices

• To simplify data consistency management: only
leader handles read and write requests
– Producers read from leader, consumers write to leader
– Followers replicate leader and act as backups
– Followers can be in-sync (i.e., fully updated replica) with

leader or out-of-sync

Valeria Cardellini – SDCC 2024/25 35

Kafka: partitions and design choices

• To share responsibility and balance load: each broker
is leader for some of its partitions and follower for
others
– Brokers can rely on Apache Zookeeper or KRaft for

coordination, including leader election

Valeria Cardellini – SDCC 2024/25 36

Kafka: producers

• Producers = data sources
• Publish events to topics of their choice

– Producers send events directly (i.e., without any routing tier)
to the broker which is leader for the partition

• Responsible for choosing which event to assign to
which partition within the topic: how?
– Key-based partitioning, i.e., producer uses a partition key

within event to write it to a given partition
• Partition is chosen based on key hash
• E.g., if key=user_id, then all events of a given user are sent to

same partition
– Round-robin (default, if key is not specified)

• Multiple producers can write to same partition

Valeria Cardellini – SDCC 2024/25 37

Kafka: consumers

• Kafka uses pull delivery model for consumers
https://kafka.apache.org/documentation.html#design_pull

• Consumer uses offset to keep track of which events it
has already consumed

• Same partition can be read by multiple consumers,
each reading at different offsets

Valeria Cardellini – SDCC 2024/25 38

Kafka: consumers

• Why pull?
• Push

– Broker actively pushes events to consumers
✗ Broker has to deal with different consumers with diverse

needs and capabilities and control transmission rate
✗ Broker has to decide push timing: whether to send a

message immediately or accumulate more data and then
send

• Pull
– Consumers are in charge of retrieving events from broker
– Consumers have to maintain offset to identify next event to

read
✓ More scalable (less burden on brokers) and flexible
✗ If broker has no events, consumers may end up busy waiting

for events to arrive

Valeria Cardellini – SDCC 2024/25 39

Kafka: consumers

• How can consumer read in a fault-tolerant way?
– Once consumer reads events, it stores its committed offset

in a special Kafka topic called __consumer_offsets
– After recovering from crash, consumer can replay events

using committed offset
– By default, auto-commit is enabled

Valeria Cardellini – SDCC 2024/25 40

Kafka: brokers

• Kafka brokers store messages reliably on disk
• Differently from other queue message and pub/sub

systems, Kafka does not delete messages after
delivery, but retains messages

• Issue: need to free up disk space, how?
– Topics are configured with retention time (how long events

should be stored)
– Upon expiry, events are marked for deletion
– Alternatively, retention can be specified in bytes

Valeria Cardellini – SDCC 2024/25 41

Hands-on Kafka
• Preliminary steps:

– Download and install Kafka
https://kafka.apache.org/downloads

• Configure Kafka properties in server.properties (e.g.,
listeners and advertised.listeners)

– Start Kafka environment
Kafka can be started using KRaft or ZooKeeper, let’s use Kafka
with ZooKeeper (included with Kafka download)
• Start ZooKeeper (default port: 2181)
$ zookeeper-server-start zookeeper.properties

Alternatively $ zKserver start
• Start Kafka broker (default port: 9092)
$ kafka-server-start server.properties

Valeria Cardellini – SDCC 2024/25 42

Hands-on Kafka
• Let’s use Kafka CLI tools to create a topic, publish

and consume some events to/from topic and delete it
• Create a topic named test with 1 partition and non-

replicated
– bootstrap_server: specify one Kafka broker

$ kafka-topics --create --bootstrap-server localhost:9092
--replication-factor 1 --partitions 1 --topic test

• Write some events into topic
$ kafka-console-producer --bootstrap-server localhost:9092

--topic test

> first message

> another message

• Read events from beginning of topic
$ kafka-console-consumer --bootstrap-server localhost:9092
--topic test --from-beginning

Valeria Cardellini – SDCC 2024/25 43

Hands-on Kafka

• Read events from a given offset (e.g., 2) and a
specific topic partition

$ kafka-console-consumer --bootstrap-server localhost:9092
--topic test --offset 2 --partition 0

• List available topics
$ kafka-topics --list --bootstrap-server localhost:9092

• Delete topic
$ kafka-topics --delete --bootstrap-server localhost:9092
--topic test

• Stop Kafka and Zookeeper
$ kafka-server-stop
$ zookeeper-server-stop

Alternatively $ zKserver stop

Valeria Cardellini – SDCC 2024/25 44

Kafka: consumer group

• Consumer Group: set of consumers which cooperate to
consume data from some topic and share a group ID
– A Consumer Group maps to a logical subscriber
– Topic partitions are divided among consumers in the group for

load balancing and can be reassigned in case of consumer
join/leave

– Every event is delivered to only one consumer in group
– Every group maintains its offset per topic partition

Valeria Cardellini – SDCC 2024/25 45

Kafka: consumer group

Valeria Cardellini – SDCC 2024/25

• How can many consumers read the same events from
the topic?
– Use different group IDs

• Example: microservices communicate using Kafka

• How to scale?
– Each microservice has its own consumer group

46

Kafka: ordering guarantees

• Events published by producer to topic partition will be
appended in the order they are sent

• Consumer reads events in the order they are stored
in the partition

• Strong guarantee about ordering only within a
partition
– Total order over events within partition, i.e., per-partition

ordering
– Kafka does not preserve event order among different topic

partitions

• Per-partition ordering plus ability to partition events
among partitions by key is sufficient for most
applications

Valeria Cardellini – SDCC 2024/25 47

Kafka: delivery semantics

• At-least-once (default): no event loss, but events
may be duplicated and out-of-order (wrt producer)
– Producer: wait for ack only from partition leader; if none,

retry
– How? Set acks=1

• acks is the the number of brokers who need to acknowledge
receiving the event before it is considered a successful write

– Consumer: commit offset after processing event

See https://kafka.apache.org/documentation/#semantics

Valeria Cardellini – SDCC 2024/25 48

acks=1

Kafka: delivery semantics
• Exactly-once: no event loss, no duplicates and

partition-level ordering, but higher latency and lower
throughput
– Producer: wait for ack from all in-sync partition replicas
– How? Set acks=all on producer
– Requires also producer ID and event sequence number in

each event sent from producer (aka idempotent producer) to
detect and avoid duplicates and maintain log order

– Requires also committed offsets and in-sync replicas
– Not fully exactly-once

Valeria Cardellini – SDCC 2024/25 49

acks=all

Kafka: delivery semantics

• User can also implement at-most-once: messages
may be lost but are never re-delivered
– Producer: disable retries (i.e., acks=0)
– Consumer: commit offset before processing message

• Take-away message: choose delivery semantics that
makes sense for your application context

Valeria Cardellini – SDCC 2024/25 50

Kafka: fault tolerance

• Kafka replicates topic partitions for fault tolerance
– Leader coordinates to update followers when new events

arrive
– Set of in-sync replicas known as ISR

• If leader crashes, a follower can be elected as new
leader by Zookeeper or KRaft

Valeria Cardellini – SDCC 2024/25 51

Kafka: fault tolerance

• Kafka makes an event available for consumption
only after all replicas in ISR for that partition have
applied it to their log
– Events may not be immediately available for consumption:

tradeoff between consistency and availability

• Producers can either waiting for event to be
committed or not (by setting acks)
– Tradeoff between latency and durability

Valeria Cardellini – SDCC 2024/25 52

Kafka and ZooKeeper
• Zookeeper: hierarchical, distributed key-value store

https://zookeeper.apache.org/
– Coordination service for distributed systems, which provides

facilities for locking, leader election, monitoring
– Maintains a namespace, organized as tree
– Simple operations on tree: create and delete nodes, read and

update data contained in a node
– Used within many open-source distributed systems

• Kafka uses ZooKeeper for metadata management
- List of brokers

- Configuration for topics and permissions

- Leader election: to determine partition leader

- Zookeeper allows Kafka to know about changes (e.g., new
topic, deleted topic, broker crash, broker restart)

Valeria Cardellini – SDCC 2024/25 53

From ZooKeeper to KRaft

• Zookeeper cons
✗ Different system for metadata management and consensus
✗ Can become bottleneck as Kafka cluster grows

• Apache Kafka Raft (KRaft) in newer releases
– Kafka cluster metadata stored in Kafka cluster itself
✓ Simpler architecture
✓ Faster and more scalable metadata update operations
– Metadata replicated to all brokers, making failover from

failure faster
– Consensus protocol based on Raft

Valeria Cardellini – SDCC 2024/25 54

Kafka: APIs

• 5 APIs (Java and Scala only)
• Producer API: publish data to

Kafka topics
• Consumer API: read data from

Kafka topics
• Kafka Connect API: build and run

reusable connectors (producers or
consumers) that connect Kafka
topics to apps or external systems
(source or sink)

Valeria Cardellini – SDCC 2024/25

⎼ Many pre-built connectors: AWS S3, RabbitMQ, MySQL,
Postgres, AWS Lambda, …

https://kafka.apache.org/documentation/#api

55

Kafka: APIs

• Kafka Streams API: transform streams of data from
input topics to output topics
– Kafka is an event streaming platform (not only pub-sub)

• Admin API: manage and inspect topics, brokers, and
other Kafka objects

Valeria Cardellini – SDCC 2024/25 56

Kafka: client library

• Kafka officially provides only SDK for Java
• For other languages, implementations of client library

provided by community, including
– Go

https://github.com/confluentinc/confluent-kafka-go
https://github.com/segmentio/kafka-go

– Python
https://github.com/confluentinc/confluent-kafka-python

Valeria Cardellini – SDCC 2024/25 57

Messaging protocols

• Application-layer open standard protocols to interact
with MOM
– AMQP (Advanced Message Queueing Protocol)

• Binary protocol
– MQTT (Message Queue Telemetry Transport) https://mqtt.org

• Binary, ligthweight protocol
– STOMP (Simple Text Oriented Messaging Protocol)

https://stomp.github.io/
• Simple, text-based protocol

• Goals:
– Platform- and vendor-agnostic
– Provide interoperability between different MOMs

Valeria Cardellini – SDCC 2024/25 58

Messaging protocols and IoT

Valeria Cardellini – SDCC 2024/25 59

• Widely used in Internet of Things (IoT)
– Use messaging protocol to send data from sensors to

services that process data

• Why? Exploit MOM advantages for IoT
– Decoupling
– Resiliency: temporary message storage provided by MOM
– Traffic spikes handling: data persisted in MOM and processed

eventually

AMQP: characteristics
• Open standard protocol for MOM, supported by

industry
– Version 1.0, approved in 2014 by ISO and IEC
https://docs.oasis-open.org/amqp/core/v1.0/amqp-core-complete-v1.0.pdf

• Application-level, binary protocol
– Based on TCP with additional reliability mechanisms (delivery

semantics)

• Programmable protocol
– Entities and routing schemes are primarily defined by apps

• Implementations
– Apache ActiveMQ, RabbitMQ, Apache Qpid, Azure Event

Hubs, Pika (Python implementation), …

Valeria Cardellini – SDCC 2024/25 60

AMQP: model
• AMQP architecture involves 3 main actors:

– Publishers, subscribers, and brokers

• AMQP entities (within broker): queues, exchanges and
bindings
– Messages are published to exchanges (like post offices or

mailboxes)
– Exchanges distribute message copies to queues using rules

called bindings
– AMQP brokers either push messages to consumers

subscribed to queues, or consumers pull messages from
queues on demand

Valeria Cardellini – SDCC 2024/25
https://www.rabbitmq.com/tutorials/amqp-concepts

61

AMQP: routing

• Different types of
exchanges that route
messages differently
– Direct exchange: delivers

messages to queues based
on message routing key

– Fanout exchange: delivers
messages to all queues that
are bound to it

Valeria Cardellini – SDCC 2024/25 62

AMQP: routing

• Different types of exchanges that route messages
differently
– Topic exchange: delivers messages to one or many queues

based on topic matching
• Often used to implement publish/subscribe pattern variations
• Commonly used for multicast routing of messages
• Example use: distributing data relevant to specific geographic

location (e.g., points of sale)
– Headers exchange: delivers messages based on multiple

attributes expressed as headers
• To route on multiple attributes that are more easily expressed as

message headers than routing key

Valeria Cardellini – SDCC 2024/25 63

AMQP: messages

• AMQP defines two types of messages:
– Bare messages, supplied by sender
– Annotated messages, seen at receiver and added by

intermediaries during transit

• Message header conveys delivery parameters
– Including durability requirements, priority, time to live

Valeria Cardellini – SDCC 2024/25

Annotated message

64

RabbitMQ

Valeria Cardellini – SDCC 2024/25

• Open-source message broker https://www.rabbitmq.com/

• Uses push delivery model
• Offers FIFO ordering guarantee at queue level
• Supports multiple messaging protocols

– AMQP, STOMP and MQTT

• Runs on many operating systems and cloud
environments

• Provides a wide range of development tools for
popular languages (Java, Go, Python, …)

65

RabbitMQ: architecture
• Messages are not

published directly to a
queue

• Producer sends messages
to an exchange, which
routes messages to
different queues with the
help of bindings and
routing keys
– Binding: link between a

queue and an exchange

Valeria Cardellini – SDCC 2024/25

Message flow in RabbitMQ

• RabbitMQ broker can be distributed, e.g., forming a
cluster https://www.rabbitmq.com/distributed.html
– Supports quorum queue: durable, replicated FIFO queue

based on Raft consensus algorithm
66

RabbitMQ: use cases

1. Store and forward messages sent by
a producer and received by a
consumer (message queue pattern)

2. Distribute tasks among multiple
workers (work queue pattern)

3. Deliver messages to many
consumers (pub/sub pattern) using a
message exchange

4. Receive messages selectively:
producer sends messages to
an exchange, that selects the queue

5. Run a function on a remote node
and wait for result (RPC pattern)

Valeria Cardellini – SDCC 2024/25 67

https://www.rabbitmq.com/tutorials

RabbitMQ and Go

• Let’s use RabbitMQ, Go and AMQP (messaging
protocol) for:

Ex. 1: Message queue pattern
https://www.rabbitmq.com/tutorials/tutorial-one-go

Ex. 2: Work queue pattern
https://www.rabbitmq.com/tutorials/tutorial-two-go.html

Valeria Cardellini – SDCC 2024/25 68

Code on Teams/course website

RabbitMQ and Go
• Preliminary steps:
1. Install RabbitMQ and start RabbitMQ server on localhost on

default port https://www.rabbitmq.com/download.html
$ rabbitmq-server
– RabbitMQ CLI tool: rabbitmqctl

$ rabbitmqctl status
$ rabbitmqctl shutdown

Some useful commands for rabbitmqctl
list_channels
list_consumers
list_queues
stop_app
reset

– Also web UI for management and monitoring
2. Install Go AMQP client library

$ go get github.com/rabbitmq/amqp091-go
See https://pkg.go.dev/github.com/rabbitmq/amqp091-go for details on ampq

Valeria Cardellini – SDCC 2024/25 69

RabbitMQ and Go: example 1
1. Message queue pattern

– Run single producer/single consumer, multiple
producers/multiple consumers

– Note that:
• Message is delivered to only one consumer
• Delivery is push-based

Valeria Cardellini – SDCC 2024/25 70

RabbitMQ brokersend.go receive.go

RabbitMQ and Go: example 2
2. Work queue pattern

– Version 1 (new_task_v1.go and worker_v1.go):
• Use multiple consumers and see how queue allows us to

distribute tasks among consumers in round-robin fashion
• If consumer crashes after RabbitMQ delivers message but

before completing task, message is lost (i.e., cannot be
delivered to another consumer)
auto-ack=true: message is considered to be successfully
delivered immediately after it is sent (“fire-and-forget”)

– Version 2 (new_task_v1.go and worker_v2.go):
• Set auto-ack=false in Consume and add explicit ack in

consumer to tell RabbitMQ that message has been received,
processed and that RabbitMQ can safely discard it

• Let’s shutdown and restart RabbitMQ: what happens to
pending messages?

• Which delivery semantics with explicit acks?

Valeria Cardellini – SDCC 2024/25 71

RabbitMQ and Go: example 2
2. Work queue pattern

– Version 3 (new_task_v3.go and worker_v3.go):
• Use durable queue so it is persisted to disk and survives

RabbitMQ crash and restart
• New queue with durable=true in QueueDeclare

– Version 4 (new_task_v3.go and worker_v4.go):
• Improve task distribution among consumers by looking at

number of unacknowledged messages for each consumer, so
to not dispatch a new message to a consumer until it has
processed and acknowledged the previous one

• Use channel prefetch setting (Qos)

Valeria Cardellini – SDCC 2024/25 72

RabbitMQ broker
new_task_v1.go
new_task_v3.go

worker_v1.go
worker_v2.go
worker_v3.go
worker_v4.go

Multicast communication

• Multicast communication: group communication
pattern in which data is sent to multiple receivers (but
not all) at once
– Can be one-to-many or many-to-many
– One-to-many multicast apps: video/audio resource distribution,

file distribution
– Many-to-many multicast apps: conferencing tools, multiplayer

games, interactive distributed simulations
– Broadcast: special case of multicast, in which data is sent to all

receivers

• Cannot be implemented as unicast replication (source
sends as many copies as receivers number): lack of
scalability
– Solution: replicate only when needed

Valeria Cardellini – SDCC 2024/25 73

Types of multicast

• How to realize multicast?
– Network-level multicast (IP-level)

• Packet replication and routing managed by network
routers: IP Multicast

✗Limited usage

– Application-level multicast
• Replication and routing managed by hosts

Valeria Cardellini – SDCC 2024/25 74

Application-level multicast

• Basic idea:
– Organize nodes into overlay network
– Use overlay network to disseminate data
– Structured or unstructured

• Structured application-level multicast
– Explicit communication paths
– How to build structured overlay network?

• Tree: one path between each pair of nodes, e.g., tree building
based on Chord

• Mesh: multiple paths between each pair of nodes

• Unstructured application-level multicast

Valeria Cardellini – SDCC 2024/25 75

Unstructured application-level multicast

• How to realize unstructured application-level
multicast?
✓ Flooding

• Node P sends multicast message m to all its neighbors
• In its turn, each neighbor will forward multicast message to

all its neighbors (except to P) if it had not seen m before
✓ Random walk

• Node P sends multicast message m to a randomly chosen
neighbor

• In its turn, the neighbor will forward multicast message to a
randomly chosen neighbor

!Gossiping

Valeria Cardellini – SDCC 2024/25 76

Gossip-based protocols

• Gossip-based protocols (or algorithms) are
probabilistic (aka epidemic algorithms)
– Gossiping effect: information can spread within a group just

as it would be in real life
– Strongly related to epidemics, by which a disease is spread

by infecting members of a group, which in turn can infect
others

• Allow information dissemination in large-scale
networks through random choice of successive
receivers among those known to sender
– Each node sends the message to a randomly chosen

subset of nodes in the network
– Each node that receives it will send a copy to another

subset, also chosen at random, and so on

Valeria Cardellini – SDCC 2024/25 77

Origin of gossip-based protocols

• Gossiping protocols proposed in 1987 by Demers et
al. in a work on data consistency in replicated
databases composed of hundreds of servers
– Basic idea: assume there are no write conflicts (i.e.,

independent updates)
– Update operations are initially performed at one replica

server
– A replica passes its updated state to only a few neighbors
– Update propagation is lazy, i.e., not immediate
– Eventually, each update should reach every replica

Demers et al., Epidemic Algorithms for Replicated Database Maintenance,
PODC 1987 https://dl.acm.org/doi/pdf/10.1145/41840.41841

Valeria Cardellini – SDCC 2024/25 78

Why gossiping in large-scale DSs?

• Several attractive properties of gossip-based
information dissemination for large-scale distributed
systems
– Simplicity of gossiping algorithms
– No centralized control or management (and related

bottleneck)
– Scalability: each node sends only a limited number of

messages, independently from system size
– Reliability and robustness: thanks to message redundancy

Valeria Cardellini – SDCC 2024/25 79

Who uses gossiping? Examples

• AWS S3 “uses a gossip protocol to quickly spread
information throughout the S3 system. This allows
Amazon S3 to quickly route around failed or
unreachable servers, among other things”

• Amazon’s Dynamo uses gossiping for failure
detection of nodes

• BitTorrent uses a gossip-based information exchange
• Cassandra uses gossiping for group membership and

failure detection of nodes
• Gossip dissemination pattern

https://martinfowler.com/articles/patterns-of-distributed-systems/gossip-
dissemination.html

Valeria Cardellini – SDCC 2024/25 80

Strategies to spread updates

• Let’s consider the two principle operations

1. Anti-entropy: a node regularly picks another node
randomly and exchanges updates (i.e., state
differences), aiming to have identical states at both
afterwards

2. Rumor spreading: periodically a node which has
new or updated information (i.e., has been
contaminated) selects F (F >= 1) peers to send
updates to (contaminating them); a node that has
received an update can stop distributing it

Valeria Cardellini – SDCC 2024/25 81

Anti-entropy

• Goal: increase node state similarity, thus decreasing
“disorder” (reason for name!)

• Node P selects node Q randomly: how does P
update Q?

• 3 different update strategies:
choice

data

Valeria Cardellini – SDCC 2024/25 82

choice

data

choice

data

P Q

– push: P only pushes its own updates to Q

– pull: P only pulls in new updates from Q

– push-pull: P and Q send updates to each
other, i.e., P and Q exchange updates

Anti-entropy: performance

• Push-pull
– Fast and message-saving strategy: takes O(ln N) rounds to

disseminate updates to N nodes, using O(N ln ln N)
messages

– Round (or gossip cycle): time interval in which every node
takes the initiative to start an exchange

Valeria Cardellini – SDCC 2024/25 83

Rumor spreading

84Valeria Cardellini – SDCC 2024/25

• Node P, having an update to report, contacts randomly
chosen node Q and forwards update message to it

• If Q was already updated, P may lose interest in spreading
update any further and with probability pstop stops
contacting other nodes

• Fraction s of oblivious nodes (that have not been updated)
is equal to

• To improve information dissemination (especially when
pstop is high), combine rumor spreading with anti-entropy

General schema of gossiping protocol
• Two nodes P and Q, where P selects Q to exchange

information with
– P runs at each round (every Δ time units)

Active thread (node P): Passive thread (node Q):
(1) selectPeer(&Q); (1)
(2) selectToSend(&bufs); (2)
(3) sendTo(Q, bufs); -----> (3) receiveFromAny(&P, &bufr);
(4) (4) selectToSend(&bufs);
(5) receiveFrom(Q, &bufr); <----- (5) sendTo(P, bufs);
(6) selectToKeep(cache, bufr); (6) selectToKeep(cache, bufr);
(7) processData(cache); (7) processData(cache)

selectPeer: randomly select a neighbor
selectToSend: select some entries from local cache
selectToKeep: select which received entries to store into local cache;
remove repeated entries
Kermarrec and van Steen, Gossiping in distributed systems, SIGOPS Oper. Syst. Rev.,
2007 https://www.distributed-systems.net/my-data/papers/2007.osr.pdf

Valeria Cardellini – SDCC 2024/25 85

Framework of gossiping protocols

• Simple? Not quite getting into the details…
• Some crucial aspects

– Peer selection
• E.g., Q can be uniformly chosen from set of currently available

(i.e., alive) nodes
– Data exchanged

• Exchange is highly application-dependent
• Choice of update strategy

– Data processing
• Again, highly application-dependent

Valeria Cardellini – SDCC 2024/25 86

Gossiping vs flooding: example
• Information dissemination is the classic and most

popular application of gossiping protocols in DSs
– Gossiping is more efficient than flooding

• Flooding-based information dissemination
– Each node that receives message forwards it to its

neighbors (let’s consider all neighbors, including sender)
– Message is eventually discarded when TTL=0

Round 1 Round 2 Round 3

Sent messages: 18
Reached nodes: 8 out of 9Valeria Cardellini – SDCC 2024/25 87

Gossiping vs flooding: example

• Let’s use rumor spreading
– Message is sent to neighbors with probability p
for each msg m

if random(0,1) < p then send m

p

p

p

p

p

p p

p

p p

p
Round 1 Round 2 Round 3

Sent messages: 11
Reached nodes: 7 out 9

Valeria Cardellini – SDCC 2024/25 88

Gossiping vs flooding
• Gossiping features

– Probabilistic
– Takes a localized decision but results in a global state
– Lightweight
– Fault-tolerant

• Flooding has some advantages
– Universal coverage and minimal state information
– … but it floods the networks with redundant messages

• Gossiping goals
– Reduce the number of redundant transmissions that occur with

flooding while trying to retain its advantages
– … but due to its probabilistic nature, gossiping cannot

guarantee that all the peers are reached and it requires more
time to complete than flooding

Valeria Cardellini – SDCC 2024/25 89

Other application domains of gossiping
• Besides information dissemination…
• Peer sampling

– How to provide every node with a list of peers to exchange
information with

• Resource management, including monitoring, in
large-scale distributed systems
– E.g., failure detection

• Distributed computations to aggregate data in very
large distributed systems (e.g., sensor networks)
– Computation of aggregates e.g., sum, average, maximum

and minimum values
– E.g., to compute average value

• Let v0,i and v0,j be the values at time t=0 stored by nodes i and j
• Upon gossip, i and j exchange their local value vi and vj and

adjust it to
v1,i, v1,j ←(v0,i + v0,j)/2

Valeria Cardellini – SDCC 2024/25 90

Gossiping case studies

1. Blind counter rumor mongering: an example of
gossiping protocol

2. Bimodal multicast: multicast protocol that exploits
gossiping to achieve reliability

Valeria Cardellini – SDCC 2024/25 91

Blind counter rumor mongering

• Why such name?
– Rumor mongering (def: “the act of spreading rumors”, also

known as gossip): a node with “hot rumor” will periodically
infect other nodes

– Blind: loses interest regardless of message recipient (why)
– Counter: loses interest after some contacts (when)

• Two parameters to control gossiping
– B: max number of neighbors a message is forwarded to
– F: number of times a node forwards the same message to its

neighbors

Valeria Cardellini – SDCC 2024/25 92

Portman and Seneviratne, The cost of application-level broadcast in a
fully decentralized peer-to-peer network, ISCC 2002

Blind counter rumor mongering
• Gossiping protocol
A node n initiates a broadcast by sending message m to B of its

neighbors, chosen at random
When node p receives a message m from node q
If p has received m no more than F times
p sends m to B uniformly randomly chosen neighbors that p
knows have not yet seen m
– Note that p knows if its neighbor r has already seen m only if

p has sent it to r previously, or if p has received m from r

• Performance (B=F=2) with respect to flooding
– Lower number of messages (~50%)
– Not complete coverage (~90%)
– Slower (~2x)

Valeria Cardellini – SDCC 2024/25 93

Bimodal multicast

• Aka pbcast (probabilistic broadcast)
• Composed by two phases:

1. Message distribution: a process sends a multicast
message with no particular reliability guarantees

2. Gossip repair: after a process receives a message, it
begins to gossip about the message to a set of peers
• Gossip occurs at regular intervals and offers the processes a

chance to compare their states and fill any gaps in the
message sequence

• Used by Fastly CDN for cache invalidation
https://www.fastly.com/blog/building-fast-and-reliable-purging-system

Birman et al., Bimodal multicast, ACM Trans. Comput. Syst., 1999
Valeria Cardellini – SDCC 2024/25 94

Bimodal multicast: message distribution

• Start by using unreliable multicast to rapidly distribute
messages

• Partial distribution of multicast messages may occur
– Some message may not get through

– Some process may be faulty

Send messages
: failed

messages

p1

p2

p3

p4

p5

p6
time

Valeria Cardellini – SDCC 2024/25 95

Bimodal multicast: gossip repair

• Periodically (e.g., every 100 ms) each process
sends a digest describing its state to some randomly
selected process

• Digest only identifies messages, without including
them

Send digests
p1

p2

p3

p4

p5

p6

Valeria Cardellini – SDCC 2024/25 96

Bimodal multicast: gossip repair

• Recipient checks gossip digest against its
own history and solicits a copy of any missing
message from the process that sent the
gossip

Solicit message copies
p1

p2

p3

p4

p5

p6

Valeria Cardellini – SDCC 2024/25 97

Bimodal multicast: gossip repair

• Processes reply to solicitations received during a
gossip round by retransmitting the requested
message

• Some optimizations (not examined)

Send message copies
p1

p2

p3

p4

p5

p6

Valeria Cardellini – SDCC 2024/25 98

Bimodal multicast: why “bimodal”?
• Are there two phases?
• Nope; description of dual “modes” of result

Pbcast bimodal delivery distribution

1.E-30

1.E-25

1.E-20

1.E-15

1.E-10

1.E-05

1.E+00

0 5 10 15 20 25 30 35 40 45 50

number of processes to deliver pbcast

p{
#p

ro
ce

ss
es

=k
}

1. pbcast is almost always
delivered to most or to
few processes and
almost never to some
processes
Atomicity = almost all or
almost none

2. A second bimodal
characteristic is due to
delivery latencies, with
one distribution of very
low latencies (messages that arrive without loss in the first
phase) and a second distribution with higher latencies
(messages that had to be repaired in the second phase)

Either sender
fails…

… or data gets
through with

high probability

Valeria Cardellini – SDCC 2024/25 99

Publish-subscribe: subscription

• Subscriber specifies in which events it is interested
(subscription S)

• Publisher publishes event N: does N match S?
• Challenge: how to implement event matching

Valeria Cardellini – SDCC 2024/25 100

Event matching: centralized architecture

• Naive solution: centralized architecture
– Single server handles all subscriptions and notifications

• Server:
– Handles subscriptions from subscribers
– Receives events from publishers
– Checks events against subscriptions
– Notifies matching subscribers

✓ Simple to realize, feasible for small-scale
deployments

✗ Scalability
✗ SPOF

Valeria Cardellini – SDCC 2024/25 101

Event matching: distributed architecture
• How to achieve matching scalability?
• Simple solution: partition subscriptions; how?
1. Hierarchical architecture: master distributes

matching across multiple workers
– Each worker stores and handles a subset of subscriptions
– Master receives events and distribute them among workers

for matching
– How to partition?

• Topic-based pub/sub: hash on topics’ names to map
subscriptions and events to workers

✗ Single master

2. Flat architecture: no single master, matching is
spread across distributed servers
– Topic-based pub/sub: hash on topics’ names to select server

Valeria Cardellini – SDCC 2024/25 102

Event matching: distributed architecture

• Other solutions: decentralized servers organized into
overlay network

• How to route notifications to subscribers?
1. Unstructured overlay: flooding or gossiping to

disseminate event notifications
– Store a subscription only at one server, while disseminating

notifications to all servers: in this way, matching is distributed
across servers

– Selective routing helps to avoid disseminating notifications to
all servers: install filters that effectively ignore paths toward
nodes that are not interested in what is being published

2. Structured overlay: DHT to disseminate event
notifications

Valeria Cardellini – SDCC 2024/25 103

References
• Chapter 4 and Section 5.6 of van Steen & Tanenbaum book

• RabbitMQ https://www.rabbitmq.com/
https://www.rabbitmq.com/tutorials

• Kafka doc. https://kafka.apache.org/documentation/
• Kafka: A Distributed Messaging System for Log Processing

https://pages.cs.wisc.edu/~akella/CS744/F17/838-
CloudPapers/Kafka.pdf

• Sax, Apache Kafka, Encyclopedia of Big Data Technologies,
Springer, 2018

• Montresor, Gossip and epidemic protocols, Wiley Encyclopedia
of Electrical and Electronics Engineering, 2017
http://disi.unitn.it/~montreso/ds/papers/montresor17.pdf

• The cost of application-level broadcast in a fully decentralized
peer-to-peer network https://ieeexplore.ieee.org/document/1021785

• Bimodal multicast https://dl.acm.org/doi/pdf/10.1145/312203.312207
Valeria Cardellini – SDCC 2024/25 104

