Macroarea di Ingegneria
TOR VERGATA Dipartimento di Ingegneria Civile e Ingegneria Informatica

UNIVERSITA DEGLI STUDI DI RO MA

Communication in Distributed Systems
Part 2

Corso di Sistemi Distribuiti e Cloud Computing
A.A. 2024/25

Valeria Cardellini

Laurea Magistrale in Ingegneria Informatica

Message-oriented communication

« RPC improves distribution transparency with respect
to socket programming

« But still synchrony between interacting entities
— Over time: caller waits the reply
— In space: shared data
— Functionality and communication are coupled

* Which communication models to improve decoupling
and flexibility?

 Message-oriented communication

— Transient
» Berkeley socket

» Message Passing Interface (MPI): see "Sistemi di calcolo
parallelo e applicazioni" course

— Persistent
* Message Oriented Middleware (MOM)

Valeria Cardellini — SDCC 2024/25 1

Message-oriented middleware

« Communication middleware that supports sending
and receiving messages in a persistent way
— MOM offers intermediate-term storage capacity for
messages
» Loose coupling among system/app components
— Decoupling in time and space
— Can also support synchronization decoupling
— Goals: increase performance, scalability and reliability
— Typically used in serverless and microservice architectures
« Two patterns:
— Message queue
— Publish-subscribe (pub/sub)
And two related types of system:

— Message queue system (MQS)

— Pub/sub system
Valeria Cardellini — SDCC 2024/25

Queue message pattern

* Messages sent to queue are stored until they are
retrieved by consumer

* Multiple producers can send messages to queue
» Multiple consumers can receive messages from queue

* But communication is one-to-one: producer’'s message
is delivered to a single consumer

 When to use message queues
— Examples: task scheduling, load balancing, logging or tracing

Valeria Cardellini — SDCC 2024/25

Queue message pattern

A sends a message to B B issues a response message back to A

request
message
- send request « not consumin: 9 {osponss + send response
- resources locked resources as message
+ consuming memory
memory
—
Queue receives and oy d]
poesshinasad ueue receives an
Service A Service B Secvicah stores response Servoa B
(l_l: 0 arvice message arvice
request l
message
- release resources « receive request
and memory
« locki
resources
-¢
Queue sends
message
Service A M Service B Queue send
response
2 Service A pon Service B
«not consuming « process request
resources or
memory ! - process response
- then release
resources and T
memory
Queue is idl
Service A Service B
)
Service A Service B
o L
Valeria Cardellini — SDCC 2024/25 4

Message queue API
» Typical calls of MQS:

— put: non-blocking send
 Insert message into queue
— get: blocking receive
* Block until queue is nonempty and receive a message
» Variant: allow searching for specific message in queue
— poll: non-blocking receive
» Check queue and receive message if available
* Never block
— notify: non-blocking receive

* Install handler (callback function) to be automatically called
when a message is put into queue

Valeria Cardellini — SDCC 2024/25 5

Publish/subscribe pattern

» Application components can publish asynchronous
messages (e.g., event notifications), and/or declare
their interest in message topics by issuing a
subscription

« Each message can be delivered to multiple consumers

Subscriber 1 (S1
Publisher 1 a / (51)

\ a 7/
PubSubService
g (Publisher-Subscriber Q‘
Publisher 2 \Service) | Subscriber 2 (S2)
/ Topic Subscribers \
< a,c Subscriber 3 (S3)

Publisher 3

a §1,53
b S2
c $2,S3

Valeria Cardellini — SDCC 2024/25

Publish/subscribe pattern

« Multiple consumers can subscribe to topic with or
without filters

» Subscriptions are collected by an event dispatcher
component, responsible for routing events to all
matching subscribers

— For scalability reasons, its implementation is distributed

» High degree of decoupling among components

— Easy to add and remove components: appropriate for
dynamic environments

Valeria Cardellini — SDCC 2024/25

Publish/subscribe pattern

» A sibling of message queue pattern but further
generalizes it by delivering a message to multiple
consumers

— Message queue: delivers messages to only one receiver,
i.e., one-to-one communication

— Pub/sub channel: delivers messages to multiple receivers,
i.e., one-to-many communication

Valeria Cardellini — SDCC 2024/25

Publish/subscribe API

» Typical calls of pub/sub system:
— publish(event): called by publisher to publish an
event
» Events can be of any data type and may contain meta-data
— subscribe(filter_expr, notify_cb, expiry) -
sub_handle: called by subscriber to subscribe to events

» Takes as input: filter expression, reference to notify
callback for event delivery, and expiry time for subscription

» Returns subscription handle

— notify_cb(sub_handle, event): called by pub/sub
system to deliver to subscribers a matching event

— unsubscribe(sub_handle): called by subscriber to
unsubscribe

Valeria Cardellini — SDCC 2024/25

MOM functionalities

« MOM handles the complexity of addressing,
routing, availability of communicating application
components (or applications), and message
format transformations

i Message-oriented Middleware i
< X<
< -> x -»CD——:—»
O+~ = = |
Route CD_’ x "(:D__:_’.
Transform

2 @&

.
Exactly-once At-least-once Transaction-based Timeout-based
Delivery Delivery Delivery Delivery

Valeria Cardellini — SDCC 2024/25

MOM functionalities

10

Let's analyze

— Delivery semantics

— Delivery model

— Message routing

— Message transformations

Valeria Cardellini — SDCC 2024/25

1

Delivery semantics in MOM

<=1
At-most-once delivery .

» Message will be delivered not more than once
« Messages may be lost but are not redelivered

1+
At-least-once delivery ><

« Messages are never lost but they may be delivered more than
once

« Design application to be idempotent (not affected adversely
when processing same message more than once)

» How can MOM ensure that messages are received

successfully?
— Consumer sends ack for each message and MOM resends
message if ack is not received Producer . Consumer

==
: : ACK
X ACK
=

Delivery semantics in MOM

Valeria Cardellini — SDCC 2024/25

12

=1

Exactly-once delivery

 How can MOM ensure that a message is delivered
only exactly once to a consumer?

— MOM also filters message duplicates

* Upon creation, each message is associated with a unique ID,
which is used to filter message duplicates during their traversal
from producer to consumer

— In addition, messages must survive MOM failures

Message
Producer L 2 2 Filter 1 2 Consumer
(S =

i
Message
ID

Valeria Cardellini — SDCC 2024/25

13

Delivery semantics in MOM

Transaction-based delivery @

 How can MOM ensure that messages are only
deleted from a message queue if they have been
received successfully?

— MOM and consumer participate in a transaction: read and
delete operations are performed within a transaction, thus
guaranteeing ACID behavior

; i ACID Transaction, ;

owrlte : Oread
Producer R G:D Consumer

Valeria Cardellini — SDCC 2024/25

Delivery semantics in MOM

4
Timeout-based delivery

 How can MOM ensure that messages are only
deleted from a message queue if they have been
received successfully at least once?
— Message is not deleted immediately from queue, but marked
as being invisible until visibility timeout expires
— Invisible message cannot be read by another consumer

— After consumer’s ack of message receipt, message is
deleted from queue

eset visible e d

rea

0wrlte n >

Producer)i » Consumer
acknowledge
/edelete °set invisible e €
set visible
visibility

Valeria Cardellini — SDCC 2024/25 timeout

Delivery model

« How messages are retrieved by receivers (i.e.,
subscribers or consumers)

» Options: push vs. pull delivery

» Push: receiver is notified by MOM when a message
is available

» Pull: receiver polls MOM for new messages

‘ > Rec. A l Rec. A
MOM MOM
‘ , Rec.B t Rec. B
Push delivery Pull delivery

Valeria Cardellini — SDCC 2024/25

Message routing: general model

16

* Queues are managed by queue managers (QMs)
— An application can put messages only into a local queue
— Getting a message is possible by extracting it from a local
queue only
* QMs need to route messages

— Work as message-queuing “relays” that interact with
distributed applications and each other

— Form an overlay network
— There can also be special QMs that operate only as routers

Look up

Source queue contact address Destination queue
manager - of destination manager
queue manager
= Logical
T queue-level =
address (name) | (J—\
Local OS T Address lookup
k database Local OS
e — |_Contact
Network address

Valeria Cardellini — SDCC 2024/25

17

Message routing: overlay network

« Overlay network to route messages
— By using routing tables
— Routing tables are stored and managed by QMs

« Overlay network needs to Sendera

be maintained over time Application poplcation
— Routing tables are often set lggggge
up and managed manually: T Messag0 [t e
. II\\]
easier but ... sendauete |4 E' :
— Dynamic overlay networks - [< [icaton
require to manage at runtime M
mapping between queue — H \ or s 727
name and its location = : .
A? {”cat ::‘o'n' . o Receiver B
Router
Valeria Cardellini — SDCC 2024/25 18

Message transformation: message broker

* New/existing apps that need to be integrated into a
single, coherent system rarely use common data
format

* How to handle data heterogeneity?

» Let’'s now focus on message broker
— Usually takes care of application heterogeneity in MOM

Valeria Cardellini — SDCC 2024/25 19

Message broker: general architecture

* Message broker handles application heterogeneity

— Converts incoming messages to target format providing
access transparency

— Often acts as application gateway

— Manages repository of conversion rules and programs to
transform message types

— May provide content-based routing capabilities
— Must be scalable and reliable: distributed implementation

Source Message broker Destination
Application D |:| D Application
Broker plugins Rules
£ \
_ £ — Queuing |, | ° _
Local OS ‘T Local OS Local OS
- J N

Valeria Cardellini — SDCC 2024/25

MOM frameworks

20

* Main MOM systems and libraries
— Apache ActiveMQ
— Apache Kafka
— Apache Pulsar

- IBM MQ
— NATS

— RabbitMQ
— ZeroMQ

» Distinction between queue message and pub/sub
patterns is often lacking
— Some frameworks support both (e.g., Kafka, NATS)
— Others not (e.g., pub/sub in Redis

Valeria Cardellini — SDCC 2024/25

21

MOM frameworks

» Also as Cloud services
— Amazon Simple Queue Service (SQS)
— Amazon Simple Notification Service (SNS)
— CloudAMQP: RabbitMQ as a Service
— Google Cloud Pub/Sub
— Microsoft Azure Service Bus

Valeria Cardellini — SDCC 2024/25 22

Amazon Simple Queue Service (SQS) |8

» Reliable, scalable Cloud-based message queue
service

— Goal: decouple application components, which can run
independently and asynchronously and be developed with
different technologies and languages

» Architecture
— Message queues fully managed by AWS
— Message queues distributed on multiple SQS servers

— SQS servers replicated within a region: message copies
stored on multiple servers for high availability

— Pull delivery model: consumers poll message from queue

Your Distributed Your Queue
's

Valeria Cardellini — SDCC 2024/25 23

Amazon SQS: Features

« Consumer must delete message from queue
— A queue is a temporary holding location
— Configurable message retention period (max 14 days)

« SQS provides timeout-based delivery

— Received message remains in queue but is locked during
consumer processing (visibility timeout)

— If processing fails, lock expires and message is available again

o Component 1 sends Visibity
Message A to the queue \ gm

40
M :

Component 2
Valeria Cardellini — SDCC 2024/25 Q 24

Amazon SQS: Features

« Consumers use polling to receive messages from
queue
— Short polling: SQS queries only a subset of servers
— Long polling: SQS queries all servers

» SQS queue type can be standard or FIFO

« Standard queue (default)
— Best-effort ordering, thus occasionally out-of-order delivery

might occur
_ _ HHeHA| b ||« FEHEHEH—=
— Duplicates can be received
Standard
« FIFO queue R

— In-order delivery, i.e., messages are received and processed
in the same order in which they were transmitted

— Avoids duplicates
X Reduced throughput

eHHeHA| b ||« FHEHEHE-
FIFO Queue
Valeria Cardellini — SDCC 2024/25 25

Amazon SQS: API

e CreateQueue, ListQueues, DeleteQueue
— Create, list, delete queues
« SendMessage

— Add message to queue (message size up to 256 KB)
— How to send message payload larger than 256 KB?
+ Store payload on S3 and send a reference to it inside message

« ReceiveMessage

— Retrieve one or more messages from queue

— Can’t specify which messages to retrieve, only maximum
number of messages (up to 10)

* DeleteMessage
— Remove specified message from queue

Valeria Cardellini — SDCC 2024/25

Amazon SQS: API

26

« ChangeMessageVisibility

— Change visibility timeout of the specified message in a queue
(when received, message remains in the queue upon it is
explicitly deleted by consumer)

— Default visibility timeout is 30 sec.

« SetQueueAttributes, GetQueueAttributes
— Control queue settings, get information about a queue

Valeria Cardellini — SDCC 2024/25

27

Amazon SQS: example

» Cloud app for photo processing service

— Let's use SQS to decouple app front-end and back-end, load
balancing and fault tolerance

— App front-end sends to queue a message with S3 link to image

— Pool of EC2 instances takes requests from queue and resizes
images

* In case of failure during processing, message is again visible in queue

» Back-end EC2 instances can be scaled horizontally according to
number of queued messages

Autoscaling group _Autoscaling group
@ ; 2 ': Message count ¢ ™
== i —>t}<— ; | ; —>£E<—
/@*me«
@ sQs queue
"
. - S3 bucket
Valeria Cardellini — SDCC 2024/25 28

Apache Kafka §€

» Open-source, distributed even streaming platform
— To publish and subscribe to streams of events
— To store streams of events durably and reliably
— To process streams of events

« Started by LinkedIn in 2010
» Used at scale by tech giants (LinkedIn, Netflix, Uber, ...)
« Written mainly in Scala

« Horizontally scalable \Q\
* Fault-tolerant

» High throughput ingestion

— Billions of events

Valeria Cardellini — SDCC 2024/25 29

Kafka at a glance

producer producer producer

\L/

kafka
cluster

Y

consumer consumer consumer

» Kafka stores streams of events (aka messages, records)
in categories called topics

» Kafka cluster: composed by servers known as brokers,
that can span multiple data centers or cloud regions
— Brokers receive and store events

» Producers: publish (write) events to a Kafka topic

« Consumers: subscribe to Kafka topics, read published
events and process them

— A topic can have 0, 1, or many subscribing consumers
Valeria Cardellini — SDCC 2024/25

Kafka: topic and partitions

» Topic: category to which an event is published
» For each topic, Kafka cluster maintains a partitioned log

» Log (data structure): append-only, totally-ordered
sequence of events ordered by time

« Partitioned log: each topic is split into a pre-defined
number of partitions
— Partition: unit of parallelism for topic

Partition el
o |o|t|z[afa[s|e|7 8|9,

1

- \
Partition | - /Writes
|
)

Partition |
2 0f1]2,
-

Old » New

Valeria Cardellini — SDCC 2024/25

Kafka: partitions

* Producers publish events to topic partition
« Consumers read events from topic

« Each partition is a numbered, ordered, immutable
sequence of records that is appended to
— Records written to partition are immutable
— Like a commit log

« Each record is associated with a monotonically

increasing sequence number, called offset
Producers

lwrites

1
|
|
|
|
|

11151
0142

819
/ reads\

Consumer A Consumer B

Valeria Cardellini — SDCC 2024/25 (offset=9) (offset=11) 32

Kafka: partitions and design choices

« To improve scalability: topic partitions are distributed
across multiple brokers

v 1/0 throughput increases: parallel reads and writes
» Multiple producers can write in parallel to different partitions
» Multiple consumers can read in parallel from different partitions

Broker 1 Broker 2 Broker 3

- Topic A Topic A Topic A
(Partition 0) (Partition 1) (Partition 2)

Topic B Topic B
(Partition 0) (Partition 1)

* Topic A -3 Partitions
* Topic B -2 Partitions

Valeria Cardellini — SDCC 2024/25 33

Kafka: partitions and design choices

» To improve fault tolerance: each topic partition can be
replicated across brokers

— Each partition has one leader and 0 or more followers
« followers > 0 in case of replication
— replication-factor = total number of replicas including leader

— replication-factor = N — up to N-1 brokers can fail before
losing stored events

Broker 2 Broker 3

* Topic B -2 Partitions

1
Topic B i * Replication factor of 2
(Partition 0) JRUEY (Partition 1) 3¢ i
[Leader] N %, [Leader] ‘_'?%/. !
<. Co A :
N &g !
N

é % Topic B S Topic B :
; (Partition 0 4 (partition 1) ;
: [Follower] [Follower] i
I 1
i
Valeria Cardellini — SDCC 2024/25 34

Kafka: partitions and design choices

» To simplify data consistency management: only
leader handles read and write requests
— Producers read from leader, consumers write to leader
— Followers replicate leader and act as backups

— Followers can be in-sync (i.e., fully updated replica) with
leader or out-of-sync

Pull changes
T et !
i v
Partition O Partition O Partition O
Producer
Write (Leader) (Follower) (Follower)
— —_— —_—
e i
Pull changes

Valeria Cardellini — SDCC 2024/25 35

Kafka: partitions and design choices

« To share responsibility and balance load: each broker
is leader for some of its partitions and follower for
others

— Brokers can rely on Apache Zookeeper or KRaft for
coordination, including leader election

i Broker 1 Broker 2 Broker 3

Producer
* Topic B -2 Partitions
Topic B Replication Topic B i * Replication factor of 2

(Partition 1) 755 Aaialiali » (Partition 1) !
|Leader} [Leader] [Follower]

All Reads ! Topic B Replication Topic B !
- : (Partition 0) 75| SakEREeRE -»> (Partition 0) ;
; [Leader] [Follower] ;
| :
Valeria Cardellini — SDCC 2024/25 36

Kafka: producers

* Producers = data sources

» Publish events to topics of their choice
— Producers send events directly (i.e., without any routing tier)
to the broker which is leader for the partition
» Responsible for choosing which event to assign to
which partition within the topic: how?
— Key-based partitioning, i.e., producer uses a partition key
within event to write it to a given partition
+ Partition is chosen based on key hash

« E.g., if key=user_id, then all events of a given user are sent to
same partition

— Round-robin (default, if key is not specified)
* Multiple producers can write to same partition

Valeria Cardellini — SDCC 2024/25 37

Kafka: consumers

« Kafka uses pull delivery model for consumers

« Consumer uses offset to keep track of which events it
has already consumed

« Same partition can be read by multiple consumers,
each reading at different offsets

EOERREEE
X345 7
| : ‘
/:‘
P 8

Consumer- 1 Consumer-2
(offset 3) (offset 5)

Valeria Cardellini — SDCC 2024/25

Kafka: consumers

38

* Why pull?
* Push

— Broker actively pushes events to consumers

X Broker has to deal with different consumers with diverse
needs and capabilities and control transmission rate

X Broker has to decide push timing: whether to send a
message immediately or accumulate more data and then
send

« Pull

— Consumers are in charge of retrieving events from broker

— Consumers have to maintain offset to identify next event to
read

v/ More scalable (less burden on brokers) and flexible

X If broker has no events, consumers may end up busy waiting
for events to arrive

Valeria Cardellini — SDCC 2024/25

39

Kafka: consumers

* How can consumer read in a fault-tolerant way?

— Once consumer reads events, it stores its committed offset
in a special Kafka topic called __consumer_offsets

— After recovering from crash, consumer can replay events
using committed offset

— By default, auto-commit is enabled

Valeria Cardellini — SDCC 2024/25

Kafka: brokers

40

« Kafka brokers store messages reliably on disk

 Differently from other queue message and pub/sub
systems, Kafka does not delete messages after
delivery, but retains messages

» Issue: need to free up disk space, how?

— Topics are configured with refention time (how long events
should be stored)

— Upon expiry, events are marked for deletion
— Alternatively, retention can be specified in bytes

Valeria Cardellini — SDCC 2024/25

41

Hands-on Kafka

* Preliminary steps:
— Download and install Kafka

» Configure Kafka properties in server.properties (e.g.,
listeners and advertised.listeners)
— Start Kafka environment

Kafka can be started using KRaft or ZooKeeper, let's use Kafka
with ZooKeeper (included with Kafka download)

« Start ZooKeeper (default port: 2181)

$ zookeeper-server-start zookeeper.properties
Alternatively $ zKserver start

« Start Kafka broker (default port: 9092)

$ kafka-server-start server.properties

Valeria Cardellini — SDCC 2024/25

Hands-on Kafka

42

» Let's use Kafka CLI tools to create a topic, publish
and consume some events to/from topic and delete it

» Create a topic named test with 1 partition and non-

replicated
— bootstrap_server: specify one Kafka broker

$ kafka-topics --create --bootstrap-server localhost:9092
--replication-factor 1 --partitions 1 --topic test

» Write some events into topic

$ kafka-console-producer --bootstrap-server localhost:9092
--topic test

> first message
> another message

» Read events from beginning of topic

$ kafka-console-consumer --bootstrap-server localhost:9092
--topic test --from-beginning

Valeria Cardellini — SDCC 2024/25

43

Hands-on Kafka

» Read events from a given offset (e.g., 2) and a
specific topic partition

$ kafka-console-consumer --bootstrap-server localhost:9692

--topic test --offset 2 --partition ©

» List available topics
$ kafka-topics --list --bootstrap-server localhost:9092

» Delete topic

$ kafka-topics --delete --bootstrap-server localhost:9092
--topic test

« Stop Kafka and Zookeeper

$ kafka-server-stop

$ zookeeper-server-stop
Alternatively $ zKserver stop

Valeria Cardellini — SDCC 2024/25 44

Kafka: consumer group

» Consumer Group: set of consumers which cooperate to
consume data from some topic and share a group ID
— A Consumer Group maps to a logical subscriber

— Topic partitions are divided among consumers in the group for
load balancing and can be reassigned in case of consumer
join/leave

— Every event is delivered to only one consumer in group
— Every group maintains its offset per topic partition
Reads Kafka Cluster
Server 1— Server 2
O\ ﬂpo||p3| |/|P1||P2_||
pesons [TTTTTTTT L] j—— N SN

sEEsEnsnss
I =

e [[TTTTIIITT) |t

AN
Z X

Valeria Cardellini — SDCC 2024/25 45

Kafka: consumer group

 How can many consumers read the same events from
the topic?
— Use different group IDs

« Example: microservices communicate using Kafka

Shipping Service

romentsarice | > [| | | | | |

payment_events Notification Service

— Each microservice has its own consumer group

Shipping service 2

e How to scale? z‘
w
=)

| Partition 0 l

| Partition 1 ' \ shipping_group
\\ X premssssesmnenassSnass * x“

N
payment_events \ !

Valeria Cardellini — SDCC 2024/25 notification_group

Kafka: ordering guarantees

i Notification service 2

>
g
=4
=
8
=3
=)
=
7]
o
2
a
(]
-

46

« Events published by producer to topic partition will be
appended in the order they are sent

« Consumer reads events in the order they are stored
in the partition
« Strong guarantee about ordering only within a
partition
— Total order over events within partition, i.e., per-partition
ordering
— Kafka does not preserve event order among different topic
partitions
» Per-partition ordering plus ability to partition events
among partitions by key is sufficient for most
applications

Valeria Cardellini — SDCC 2024/25

47

Kafka: delivery semantics

« At-least-once (default): no event loss, but events
may be duplicated and out-of-order (wrt producer)

— Producer: wait for ack only from partition leader; if none,
retry

— How? Set acks=1

» acks is the the number of brokers who need to acknowledge
receiving the event before it is considered a successful write

— Consumer: commit offset after processing event

--------- Send data to leader SEEEEEEEd Broker 101 -
1 1 i
PRODUCER . ® 1 2 3 4 5 6 7 8 9 e -
. Partition O (leader) 0 1 [N @
LEE Respond to every write request ZEES

acks=1

See

Valeria Cardellini — SDCC 2024/25 48

Kafka: delivery semantics

« Exactly-once: no event loss, no duplicates and
partition-level ordering, but higher latency and lower
throughput
— Producer: wait for ack from all in-sync partition replicas
— How? Set acks=all on producer

— Requires also producer ID and event sequence number in
each event sent from producer (aka idempotent producer) to
detect and avoid duplicates and maintain log order

— Requires also committed offsets and in-sync replicas
— Not fully exactly-once

‘[fj,) Mathias Verraes X
» @mathiasverraes - Follow

There are only two hard problems in distributed systems:

2. Exactly-once delivery 1. Guaranteed order of messages

2. Exactly-once delivery PRODUCER
8:40 PM - Aug 14, 2015 O R fiRasponse

@ 68K @ Reply (2 Copylink

Read 81 replies

acks=all

Valeria Cardellini — SDCC 2024/25

Kafka: delivery semantics

* User can also implement at-most-once: messages
may be lost but are never re-delivered
— Producer: disable retries (i.e., acks=0)
— Consumer: commit offset before processing message

« Take-away message: choose delivery semantics that
makes sense for your application context

Valeria Cardellini — SDCC 2024/25

Kafka: fault tolerance

» Kafka replicates topic partitions for fault tolerance

— Leader coordinates to update followers when new events
arrive

— Set of in-sync replicas known as ISR

Kafka Cluster

Broker 1 [Broker 2 | + Broker 3

|
> Partition1 > Partition1 | Partition1

Producer r ‘
Partition2 < Partition2 : » Partition2

1
Partition3 Partition3 < ‘ Partition3

A | |

Leader Follower

* |f leader crashes, a follower can be elected as new
leader by Zookeeper or KRaft

Valeria Cardellini — SDCC 2024/25

Kafka: fault tolerance

« Kafka makes an event available for consumption
only after all replicas in ISR for that partition have
applied it to their log

— Events may not be immediately available for consumption:
tradeoff between consistency and availability

* Producers can either waiting for event to be
committed or not (by setting acks)

— Tradeoff between latency and durability

Valeria Cardellini — SDCC 2024/25 52

e

Kafka and ZooKeeper i’ﬁp

« Zookeeper: hierarchical, distributed key-value store

— Coordination service for distributed systems, which provides
facilities for locking, leader election, monitoring

— Maintains a namespace, organized as tree

— Simple operations on tree: create and delete nodes, read and
update data contained in a node

— Used within many open-source distributed systems
« Kafka uses ZooKeeper for metadata management
- List of brokers
- Configuration for topics and permissions
- Leader election: to determine partition leader

- Zookeeper allows Kafka to know about changes (e.g., new
topic, deleted topic, broker crash, broker restart)

Valeria Cardellini — SDCC 2024/25 53

From ZooKeeper to KRaft

» Zookeeper cons
X Different system for metadata management and consensus
X Can become bottleneck as Kafka cluster grows

« Apache Kafka Raft (KRaft) in newer releases
— Kafka cluster metadata stored in Kafka cluster itself
v Simpler architecture
v Faster and more scalable metadata update operations

— Metadata replicated to all brokers, making failover from
failure faster

— Consensus protocol based on Raft

KRaft

@@@ Qt’

T

& & & @
Valeria Cardellini — SDCC 2024/25 54
Kafka: APls
« 5 APIs (Java and Scala only)
) Producers
* Producer API: publish data to 1 Tl [
Kafka topics \ /
« Consumer API: read data from v ,/'S:pp
Kafka topics Connectors | §o8 | = 200
. —, \I;OCGSSOFS
« Kafka Connect API: build and run / | \ App

reusable connectors (producers or
consumers) that connect Kafka
topics to apps or external systems
(source or sink)

App App App

Consumers

— Many pre-built connectors: AWS S3, RabbitMQ, MySQL,
Postgres, AWS Lambda, ...

Valeria Cardellini — SDCC 2024/25 55

Kafka: APIs

« Kafka Streams API: transform streams of data from
input topics to output topics
— Kafka is an event streaming platform (not only pub-sub)

« Admin API: manage and inspect topics, brokers, and
other Kafka objects

Valeria Cardellini — SDCC 2024/25

Kafka: client library

56

» Kafka officially provides only SDK for Java

» For other languages, implementations of client library
provided by community, including
- Go

— Python

Valeria Cardellini — SDCC 2024/25

57

Messaging protocols

» Application-layer open standard protocols to interact
with MOM
— AMAQP (Advanced Message Queueing Protocol)
* Binary protocol
— MQTT (Message Queue Telemetry Transport)
 Binary, ligthweight protocol
— STOMP (Simple Text Oriented Messaging Protocol)

» Simple, text-based protocol

* Goals:
— Platform- and vendor-agnostic
— Provide interoperability between different MOMs

Valeria Cardellini — SDCC 2024/25

Messaging protocols and loT

58

» Widely used in Internet of Things (loT)

— Use messaging protocol to send data from sensors to
services that process data

AMQP BROKER

Exchange Queue
Publish Routes Consumes
=
umer

e

* Why? Exploit MOM advantages for loT
— Decoupling
— Resiliency: temporary message storage provided by MOM
— Traffic spikes handling: data persisted in MOM and processed
eventually

Valeria Cardellini — SDCC 2024/25

59

AMQP: characteristics

* Open standard protocol for MOM, supported by
industry
— Version 1.0, approved in 2014 by ISO and IEC

» Application-level, binary protocol
— Based on TCP with additional reliability mechanisms (delivery
semantics)
* Programmable protocol
— Entities and routing schemes are primarily defined by apps

* Implementations

— Apache ActiveMQ, RabbitMQ, Apache Qpid, Azure Event
Hubs, Pika (Python implementation), ...

Valeria Cardellini — SDCC 2024/25 60

AMQP: model

« AMQP architecture involves 3 main actors:

— Publishers, subscribers, and brokers

DS ERE gy
EXCHANGE ROUTE
\ IENSUME

D]]:D_ SUBSCRIBER

« AMQP entities (within broker): queues, exchanges and
bindings
— Messages are published to exchanges (like post offices or
mailboxes)
— Exchanges distribute message copies to queues using rules
called bindings

— AMQP brokers either push messages to consumers
subscribed to queues, or consumers pull messages from

queues on demand
Valeria Cardellini — SDCC 2024/25 61

. PUBLISHER

i

AMQP: routing

Direct exchange routing

» Different types of
exchanges that route
messages differently

— Direct exchange: delivers
messages to queues based
on message routing key

— Fanout exchange: delivers
messages to all queues that
are bound to it

Valeria Cardellini — SDCC 2024/25

AMQP: routing

62

 Different types of exchanges that route messages
differently
— Topic exchange: delivers messages to one or many queues
based on topic matching
» Often used to implement publish/subscribe pattern variations
» Commonly used for multicast routing of messages
» Example use: distributing data relevant to specific geographic
location (e.g., points of sale)

— Headers exchange: delivers messages based on multiple
attributes expressed as headers

» To route on multiple attributes that are more easily expressed as

message headers than routing key

Valeria Cardellini — SDCC 2024/25

63

AMQP: messages

« AMQP defines two types of messages:
— Bare messages, supplied by sender

— Annotated messages, seen at receiver and added by
intermediaries during transit

* Message header conveys delivery parameters
— Including durability requirements, priority, time to live

Annotated message

header

delivery-

message- | properties |application- | application-

annotations| annotations

Valeria Cardellini — SDCC 2024/25

properties

data

Bare message

footer

RabbitMQ FaRa0bit

64

» Open-source message broker

PRODUCER

Publish

BROKER
&] RabbitMQ

» Uses push delivery model
» Offers FIFO ordering guarantee at queue level

* Supports multiple messaging protocols
- AMQP, STOMP and MQTT

* Runs on many operating systems and cloud

environments

» Provides a wide range of development tools for
popular languages (Java, Go, Python, ...)

Valeria Cardellini — SDCC 2024/25

Consume

Subscribe

CONSUMER

65

RabbitMQ: architecture

. Messages are not Message flow in RabbitMQ
pUinShed direCtIy to a PRODUCER g] @
queue ,BROKER)

* Producer sends messages ®
to an exchange, which @
routes messages to sinang || snang (3)
different queues with the = “
help of bindings and Lg] \@
routing keys Srm—

— Binding: link between a)] .
queue and an exchange CONSUMER @ ®)
» RabbitMQ broker can be distributed, e.g., forming a
cluster

— Supports quorum queue: durable, replicated FIFO queue

based on Raft consensus algorithm
Valeria Cardellini — SDCC 2024/25 66

RabbitMQ: use cases

i

1. Store and forward messages sent by o
a producer and received by a
consumer (message queue pattern)

2. Distribute tasks among multiple o

workers (work queue pattern) e
©

3. Deliver messages to many G
consumers (pub/sub pattern) using a @
message exchange

4. Receive messages selectively:

producer sends messages to type=direct
an exchange, that selects the queue)

rpc_queue

5. Run a function on a remote node client
and wait for result (RPC pattern)

Valeria Cardellini — SDCC 2024/25 67

RabbitMQ and Go

» Let’s use RabbitMQ, Go and AMQP (messaging
protocol) for:

Ex. 1: Message queue pattern

E

Ex. 2: Work queue pattern

Code on Teams/course website

Valeria Cardellini — SDCC 2024/25

RabbitMQ and Go

68

* Preliminary steps:

1. Install RabbitMQ and start RabbitMQ server on localhost on
default port
$ rabbitmg-server
— RabbitMQ CLI tool: rabbitmqgctl
$ rabbitmqctl status
$ rabbitmqctl shutdown

Some useful commands for rabbitmqgctl
list_channels

list_consumers

list_queues

stop_app
reset

— Also web Ul for management and monitoring
2. Install Go AMQP client library
$ go get github.com/rabbitmqg/amgqp@91-go

See for details on ampq

Valeria Cardellini — SDCC 2024/25

69

RabbitMQ and Go: example 1

1. Message queue pattern

— Run single producer/single consumer, multiple
producers/multiple consumers

— Note that:
* Message is delivered to only one consumer
* Delivery is push-based

send.go RabbitMQ broker receive.go

Valeria Cardellini — SDCC 2024/25

RabbitMQ and Go: example 2

70

2. Work queue pattern

— Version 1 (new_task _v1.go and worker_v1.go):

» Use multiple consumers and see how queue allows us to
distribute tasks among consumers in round-robin fashion

« If consumer crashes after RabbitMQ delivers message but
before completing task, message is lost (i.e., cannot be
delivered to another consumer)

auto-ack=true: message is considered to be successfully
delivered immediately after it is sent (“fire-and-forget”)
— Version 2 (new_task _v1.go and worker_v2.go):

» Set auto-ack=false in Consume and add explicit ack in
consumer to tell RabbitMQ that message has been received,
processed and that RabbitMQ can safely discard it

» Let’s shutdown and restart RabbitMQ: what happens to
pending messages?
« Which delivery semantics with explicit acks?

Valeria Cardellini — SDCC 2024/25

71

RabbitMQ and Go: example 2

2. Work queue pattern

— Version 3 (new_task v3.go and worker_v3.go):

» Use durable queue so it is persisted to disk and survives
RabbitMQ crash and restart

* New queue with durable=true in QueueDeclare

— Version 4 (new_task _v3.go and worker_v4.go):

* Improve task distribution among consumers by looking at
number of unacknowledged messages for each consumer, so
to not dispatch a new message to a consumer until it has
processed and acknowledged the previous one

» Use channel prefetch setting (Qos)

worker_v1.go
worker_v2.go
worker_v3.go
worker_v4.go

new_task_v1.go
new_task_v3.go

RabbitMQ broker

Valeria Cardellini — SDCC 2024/25 72

Multicast communication

* Multicast communication: group communication
pattern in which data is sent to multiple receivers (but
not all) at once

— Can be one-to-many or many-to-many

— One-to-many multicast apps: video/audio resource distribution,
file distribution

— Many-to-many multicast apps: conferencing tools, multiplayer
games, interactive distributed simulations

— Broadcast: special case of multicast, in which data is sent to all
receivers

« Cannot be implemented as unicast replication (source
sends as many copies as receivers number): lack of
scalability

— Solution: replicate only when needed

Valeria Cardellini — SDCC 2024/25 73

Types of multicast

« How to realize multicast?

— Network-level multicast (IP-level)

» Packet replication and routing managed by network
routers: I[P Multicast

X Limited usage

— Application-level multicast
* Replication and routing managed by hosts

Valeria Cardellini — SDCC 2024/25

Application-level multicast

74

« Basic idea:
— Organize nodes into overlay network
— Use overlay network to disseminate data
— Structured or unstructured

» Structured application-level multicast

— Explicit communication paths
— How to build structured overlay network?

» Tree: one path between each pair of nodes, e.g., tree building

based on Chord
» Mesh: multiple paths between each pair of nodes

» Unstructured application-level multicast

Valeria Cardellini — SDCC 2024/25

75

Unstructured application-level multicast

* How to realize unstructured application-level
multicast?
v Flooding
* Node P sends multicast message m to all its neighbors

* Inits turn, each neighbor will forward multicast message to
all its neighbors (except to P) if it had not seen m before

v Random walk

* Node P sends multicast message m to a randomly chosen
neighbor

* Inits turn, the neighbor will forward multicast message to a
randomly chosen neighbor

<~ Gossiping

Valeria Cardellini — SDCC 2024/25

Gossip-based protocols

76

» Gossip-based protocols (or algorithms) are
probabilistic (aka epidemic algorithms)

— Gossiping effect: information can spread within a group just
as it would be in real life

— Strongly related to epidemics, by which a disease is spread
by infecting members of a group, which in turn can infect
others

» Allow information dissemination in large-scale
networks through random choice of successive
receivers among those known to sender

— Each node sends the message to a randomly chosen
subset of nodes in the network

— Each node that receives it will send a copy to another
subset, also chosen at random, and so on

Valeria Cardellini — SDCC 2024/25

77

Origin of gossip-based protocols

» Gossiping protocols proposed in 1987 by Demers et
al. in a work on data consistency in replicated
databases composed of hundreds of servers

— Basic idea: assume there are no write conflicts (i.e.,
independent updates)

— Update operations are initially performed at one replica
server

— Areplica passes its updated state to only a few neighbors
— Update propagation is /azy, i.e., not immediate
— Eventually, each update should reach every replica

Demers et al., Epidemic Algorithms for Replicated Database Maintenance,
PODC 1987

Valeria Cardellini — SDCC 2024/25

Why gossiping in large-scale DSs?

78

» Several attractive properties of gossip-based
information dissemination for large-scale distributed
systems

— Simplicity of gossiping algorithms
— No centralized control or management (and related
bottleneck)

— Scalability: each node sends only a limited number of
messages, independently from system size

— Reliability and robustness: thanks to message redundancy

Valeria Cardellini — SDCC 2024/25

79

Who uses gossiping? Examples

« AWS S3 “uses a gossip protocol to quickly spread
information throughout the S3 system. This allows
Amazon S3 to quickly route around failed or
unreachable servers, among other things”

« Amazon’s Dynamo uses gossiping for failure
detection of nodes

» BitTorrent uses a gossip-based information exchange

« Cassandra uses gossiping for group membership and
failure detection of nodes

» Gossip dissemination pattern

Valeria Cardellini — SDCC 2024/25

Strategies to spread updates

80

» Let’s consider the two principle operations

1. Anti-entropy: a node regularly picks another node
randomly and exchanges updates (i.e., state
differences), aiming to have identical states at both
afterwards

2. Rumor spreading: periodically a node which has
new or updated information (i.e., has been
contaminated) selects F (F >= 1) peers to send
updates to (contaminating them); a node that has
received an update can stop distributing it

Valeria Cardellini — SDCC 2024/25

81

Anti-entropy

» Goal: increase node state similarity, thus decreasing
“disorder” (reason for name!)

* Node P selects node Q randomly: how does P

update Q?

» 3 different update strategies:

— push: P only pushes its own updates to Q

— pull: P only pulls in new updates from Q

— push-pull: P and Q send updates to each

other, i.e., P and Q exchange updates

Valeria Cardellini — SDCC 2024/25

Anti-entropy: performance

P

—_—
—»

choice

data

choice

Q

OO

data

choice

O—0O

data

82

* Push-pull

— Fast and message-saving strategy: takes O(In N) rounds to
disseminate updates to N nodes, using O(N In In N)

messages

— Round (or gossip cycle): time interval in which every node
takes the initiative to start an exchange

Valeria Cardellini — SDCC 2024/25

of oblivious nodes

of oblivious nodes

10000

8000 +

6000

4000 -

2000 +

0 4
T

- pul

—— push
pushpull

T T T
5 10 15
Number of rounds

T
20

T
25

10000

1000 -

100 A

- pul

71 — push :
.
!

pushpull

T
12

T ; T T
14 16 18 20
Number of rounds (detailed)

T
22

T
24

83

Rumor spreading

* Node P, having an update to report, contacts randomly
chosen node Q and forwards update message to it

« If Q was already updated, P may lose interest in spreading
update any further and with probability p, stops

contacting other nodes

» Fraction s of oblivious nodes (that have not been updated)

is equal to

s—e” (1/pstop+1)(1—s)

o

N

o
1

o
=
o

Number of oblivious nodes
o o
o =
(3] o
1

o

o

S
1

T T T T
0.2 0.4 0.6 0.8

Probability that a node stops spreading a rumor

T
1.0

Consider 10,000 nodes
1/Pstop S Ns
0.203188 2032
0.059520 595
0.019827 198
0.006977 70
0.002516 25
0.000918 9
0.000336 3

N O oA 0N =

* To improve information dissemination (especially when
Pstop IS high), combine rumor spreading with anti-entropy

Valeria Cardellini — SDCC 2024/25

84

General schema of gossiping protocol

« Two nodes P and Q, where P selects Q to exchange

information with

— Pruns at each round (every A time units)

Active thread (node P):
(1) selectPeer(&Q);

(2) selectToSend(&bufs);

(3) sendTo(Q, bufs);

(4)

(5) receiveFrom(Q, &bufr);

(6) selectToKeep(cache, bufr);
(7) processData(cache);

selectPeer: randomly select a neighbor

Passive thread (node Q):
(1)

(2
(3
4
(5
(6
(7

receiveFromAny(&P, &bufr);
selectToSend(&bufs);
sendTo(P, bufs);
selectToKeep(cache, bufr);
processData(cache)

N N N N N N’

selectToSend: select some entries from local cache
selectToKeep: select which received entries to store into local cache;

remove repeated entries

Kermarrec and van Steen, Gossiping in distributed systems, SIGOPS Oper. Syst. Rev.,

2007

Valeria Cardellini — SDCC 2024/25

85

Framework of gossiping protocols

« Simple? Not quite getting into the details...

« Some crucial aspects
— Peer selection

* E.g., Q can be uniformly chosen from set of currently available
(i.e., alive) nodes

— Data exchanged

+ Exchange is highly application-dependent
» Choice of update strategy

— Data processing
« Again, highly application-dependent

Valeria Cardellini — SDCC 2024/25

86

Gossiping vs flooding: example

* Information dissemination is the classic and most
popular application of gossiping protocols in DSs
— Gossiping is more efficient than flooding
* Flooding-based information dissemination
— Each node that receives message forwards it to its
neighbors (let's consider all neighbors, including sender)
— Message is eventually discarded when TTL=0

Round 1 Round 2 Round 3
L) O\
O—@ Oo—0O

A

N
Y

oo o
="

Sent messages: 18

Valeria Cardellini — SDCC 2024/25 Reached nodes: 8 out of 9,

e
S

Gossiping vs flooding: example

» Let’s use rumor spreading
— Message is sent to neighbors with probability p
for each msg m
if random(0,1) < p then send m

Round 1 Round 2 Round 3
90 0-0-0 09
N ’ Y ’
p p p p
Y P NP O
‘ ‘ ® OO U '\>
p
Y
o0 00 © O—@
Sent messages: 11
Reached nodes: 7 out 9
Valeria Cardellini — SDCC 2024/25 88

Gossiping vs flooding

» Gossiping features
— Probabilistic
— Takes a localized decision but results in a global state
— Lightweight
— Fault-tolerant
* Flooding has some advantages
— Universal coverage and minimal state information
— ... but it floods the networks with redundant messages

» Gossiping goals
— Reduce the number of redundant transmissions that occur with
flooding while trying to retain its advantages

— ... but due to its probabilistic nature, gossiping cannot
guarantee that all the peers are reached and it requires more
time to complete than flooding

Valeria Cardellini — SDCC 2024/25 89

Other application domains of gossiping

 Besides information dissemination...

* Peer sampling
— How to provide every node with a list of peers to exchange
information with
* Resource management, including monitoring, in
large-scale distributed systems
— E.g., failure detection

« Distributed computations to aggregate data in very
large distributed systems (e.g., sensor networks)

— Computation of aggregates e.g., sum, average, maximum
and minimum values
— E.g., to compute average value
* Let vy, and vy ; be the values at time =0 stored by nodes / and j
* Upon gossip, i and j exchange their local value v; and v; and
adjust it to
Vajs Vi <(Vo it Vo)2

Valeria Cardellini — SDCC 2024/25

Gossiping case studies

90

1. Blind counter rumor mongering: an example of
gossiping protocol

2. Bimodal multicast: multicast protocol that exploits
gossiping to achieve reliability

Valeria Cardellini — SDCC 2024/25

91

Blind counter rumor mongering

* Why such name?

— Rumor mongering (def: “the act of spreading rumors”, also
known as gossip): a node with “hot rumor” will periodically
infect other nodes

— Blind: loses interest regardless of message recipient (why)
— Counter: loses interest after some contacts (when)

« Two parameters to control gossiping
— B: max number of neighbors a message is forwarded to

— F: number of times a node forwards the same message to its
neighbors

Portman and Seneviratne, The cost of application-level broadcast in a
fully decentralized peer-to-peer network, ISCC 2002

Valeria Cardellini — SDCC 2024/25

Blind counter rumor mongering

92

» Gossiping protocol

A node n initiates a broadcast by sending message m to B of its
neighbors, chosen at random

When node p receives a message m from node g
If p has received m no more than F times

p sends m to B uniformly randomly chosen neighbors that p
knows have not yet seen m

— Note that p knows if its neighbor r has already seen m only if
p has sent it to r previously, or if p has received m from r

» Performance (B=F=2) with respect to flooding
— Lower number of messages (~50%)
— Not complete coverage (~90%)
— Slower (~2x)

Valeria Cardellini — SDCC 2024/25

93

Bimodal multicast

» Aka pbcast (probabilistic broadcast)
« Composed by two phases:
1. Message distribution: a process sends a multicast
message with no particular reliability guarantees

2. Gossip repair: after a process receives a message, it
begins to gossip about the message to a set of peers

» Gossip occurs at regular intervals and offers the processes a
chance to compare their states and fill any gaps in the
message sequence

» Used by Fastly CDN for cache invalidation

Birman et al., Bimodal multicast, ACM Trans. Comput. Syst., 1999

Valeria Cardellini — SDCC 2024/25 94

Bimodal multicast: message distribution

0 Send messages
1 A A

/ - failed
P2 » messages
P3 %% // >
> i :

l
Ps '
Pe

*%

:time
« Start by using unreliable multicast to rapidly distribute
messages
« Partial distribution of multicast messages may occur
— Some message may not get through

— Some process may be faulty

Valeria Cardellini — SDCC 2024/25 95

Bimodal multicast: gossip repair
Send digests

P1
P2

P3
Pa
p5 | /

Ps

» Periodically (e.g., every 100 ms) each process
sends a digest describing its state to some randomly
selected process

» Digest only identifies messages, without including

them
Valeria Cardellini — SDCC 2024/25 96

Bimodal multicast: gossip repair

Solicit message copies

P1
P2

P3
Pa
Ps

Ps

» Recipient checks gossip digest against its
own history and solicits a copy of any missing
message from the process that sent the
gossip

Valeria Cardellini — SDCC 2024/25 97

Bimodal multicast: gossip repair

Send message copies
P4
P2

P3
P4
p5 [
Ps

* Processes reply to solicitations received during a
gossip round by retransmitting the requested
message

« Some optimizations (not examined)

Valeria Cardellini — SDCC 2024/25

Bimodal multicast: why “bimodal™?

» Are there two phases?
* Nope; description of dual “modes” of result

1. pbcast is almost always

delivered to most or to Pbcast bimodal delivery distribution

Either sender ... or data gets
feW processes and fails... through with
1.E+00 high probability
almost never to some .
_I~I< 1.E-05
processes B e
Atomicity = almost all or B 1E1s
@ .
almost none S 1620
. o
2. A second bimodal £ 1625
characteristic is due to 1.E-30

delivery latencies, with 0 5 10 15 20 25 30 35 40 45 50
one distribution of very
low latencies (messages that arrive without loss in the first
phase) and a second distribution with higher latencies

(messages that had to be repaired in the second phase)

number of processes to deliver pbcast

Valeria Cardellini — SDCC 2024/25

Publish-subscribe: subscription

Publisher

Subscriber

Data item @

Y

Subscription O

* T Read/Delivery

™N
* I Notification

Subscriber

@)

» Subscriber specifies in which events it is interested
(subscription S)

» Publisher publishes event N: does N match S?
« Challenge: how to implement event matching

Valeria Cardellini — SDCC 2024/25

Event matching: centralized architecture

100

« Naive solution: centralized architecture
— Single server handles all subscriptions and notifications

 Server:

— Handles subscriptions from subscribers
— Receives events from publishers

— Checks events against subscriptions

— Notifies matching subscribers

v/ Simple to realize, feasible for small-scale
deployments

X Scalability

X SPOF

Valeria Cardellini — SDCC 2024/25

101

Event matching: distributed architecture

* How to achieve matching scalability?
« Simple solution: partition subscriptions; how?

1. Hierarchical architecture: master distributes
matching across multiple workers
— Each worker stores and handles a subset of subscriptions

— Master receives events and distribute them among workers
for matching

— How to partition?

» Topic-based pub/sub: hash on topics’ names to map
subscriptions and events to workers

X Single master

2. Flat architecture: no single master, matching is
spread across distributed servers
— Topic-based pub/sub: hash on topics’ names to select server

Valeria Cardellini — SDCC 2024/25 102

Event matching: distributed architecture

« Other solutions: decentralized servers organized into
overlay network

 How to route notifications to subscribers?

1. Unstructured overlay: flooding or gossiping to
disseminate event notifications

— Store a subscription only at one server, while disseminating
notifications to all servers: in this way, matching is distributed
across servers

— Selective routing helps to avoid disseminating notifications to
all servers: install filters that effectively ignore paths toward
nodes that are not interested in what is being published

2. Structured overlay: DHT to disseminate event
notifications

Valeria Cardellini — SDCC 2024/25 103

References

Chapter 4 and Section 5.6 of van Steen & Tanenbaum book

RabbitMQ

Kafka doc.
Kafka: A Distributed Messaging System for Log Processing

Sax, Apache Kafka, Encyclopedia of Big Data Technologies,
Springer, 2018

Montresor, Gossip and epidemic protocols, Wiley Encyclopedia
of Electrical and Electronics Engineering, 2017

The cost of application-level broadcast in a fully decentralized
peer-to-peer network

Bimodal multicast

Valeria Cardellini — SDCC 2024/25

104

