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Networking

Computing power Storage

Memory Protocols

Services and applications



Internet evolution: 1977
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Internet evolution: after 43 years (2020)
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• IPv4 AS-level 
Internet graph

• Interconnections of 
~47000 ASs,  
~150K links

Source: https://www.caida.org/projects/as-core/



Internet traffic in 2024

4

Source: Cisco

Source: https://www.sandvine.com/phenomena
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• Volume: 33 EB (22 fixed + 11 mobile) 
per day

• MAMAAN (Meta, Alphabet, Microsoft, 
Amazon, Alphabet and Netflix) 
generated 55% of Internet volume

• Video contributes 38% of downstream 
traffic

• Social media is the biggest app 
category in mobile networks’ 
downstream and upstream traffic

• Expanding number of app categories 
and larger number of apps, which are 
producing more data

Web growth
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2014: 1G websites!



Metcalfe’s law

“The value of a telecommunications network 
is proportional to the square of the number of 
connected users of the system”.

Networking is socially and economically 
interesting
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Computing power

• 1974: Intel 8080
– 2 MHz, 6K transistors

• 2004: Intel P4 Prescott
– 3.6 GHz, 125 million transistors

• 2011: Intel 10-core Xeon 
Westmere-EX (multicore CPUs)
– 3.33 GHz, 2.6 billion transistors

• 2019: NVIDIA Turing GPU
– 14.2 TFLOPS of peak single 

precision (FP32) performance
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• Computers got…
– Faster
– Cheaper
– Power efficient
– Smaller

Arduino UNO: weight=25 g, width=53.4 mm, 
length=68.6 mm



Every minute in Internet

https://www.domo.com/learn/infographic/data-never-
sleeps-11

• Huge data volume (2023) • Service evolution (how 
it was in 2014)
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• How to provide and manage 
these services?

• It is a problem of scale and 
scale changes everything!

The challenge: scale of Internet services

Scale has been the single most important force driving 
changes in system software over the last decade,

Ousterhout, Is scale your enemy, or is scale your friend?: 
technical perspective, Comm. ACM, 2011 
https://dl.acm.org/doi/pdf/10.1145/1965724.1965748

and this trend will probably continue for the next decade. 

Google in 1997
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Distributed systems: not only Internet and Web

• Internet and Web: two notable examples of 
distributed systems

• Other examples:
– Cloud systems, HPC systems, … sometimes 

accessible only through private networks
– Peer-to-peer systems
– Home networks (home entertainment, multimedia 

sharing)
– Internet of Things (IoT)
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Gartner’s IT hype cycle for emerging technologies

V. Cardellini - SDCC 2024/25 11

5 phases:
1) Innovation trigger: a new technology is introduced 
2) Peak of inflated expectations: hype tends to be overhyped, with high and 

often unrealistic expectations about technology impact
3) Trough of disillusionment: interest wanes as reality sets in, possible decline in 

investment
4) Slope of enlightenment: more practical applications start to be found, with a 

more balanced and clearer understanding of its potential
5) Plateau of productivity: technology widely adopted, reaches its full potential, 

becoming a mainstream tool

Graphical presentation 
developed by IT firm Gartner 
to represent maturity, 
adoption, and application of 
specific technologies



Gartner’s IT hype cycle for emerging technologies 
and cloud computing

2007

2008

2009

2010

2011
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Cloud computing from 
2007 to 2014, 
mainstream adoption 
from 20152012

2013
2014

Gartner’s hype cycle for emerging technologies 
in 2023
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Many technologies strictly 
related to (and impossible 
without) distributed systems 
and Cloud computing!



Distributed systems, Cloud and AI

• Artificial Intelligence (AI) has recently become 
practical as result of: 
– Distributed computing
– Affordable cloud computing and storage costs
– Examples: federated learning, distributed training 

of foundation models (huge computational and 
data storage needs) 

• Distribute = to divide and dispense in portions
• A foremost strategy used in distributed 

computing you already know
– Divide et impera: break larger (computational) 

problems down into numbers of smaller, 
interrelated, “manageable” pieces
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Distributed system

• Multiple definitions of distributed system (DS)
[van Steen & Tanenbaum] A distributed system is a 
collection of autonomous computing elements that 
appears to its users as a single coherent system

– Consists of autonomous computing elements (i.e., nodes), 
can be hardware devices (computer, phone, car, robot, …) or 
software processes

– Users or applications perceive it as a single system (how?): 
nodes need to collaborate
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Middleware
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Distributed system

[Lamport] A distributed system is one in which the 
failure of a computer you didn’t even know existed can 
render your own computer unusable

– Emphasis on fault tolerance

• Who is Leslie Lamport?
– Recipient of 2013 Turing award 

https://www.youtube.com/watch?v=pgWTmOyUjtM
– His research contributions have laid the foundations of 

theory and practice of DS
• Fundamental concepts such as causality, logical clocks and 

Byzantine failures
• Algorithms to solve many fundamental problems in DS

– Inventor of LaTeX
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Why make a system distributed?

• Share resources
– Resource = computing node, data, storage, service, …

• Lower costs
• Improve performance

– e.g., get data from a nearby node rather than one halfway round 
the world 

• Improve availability and reliability 
– even if one node fails, the system as a whole keeps functioning 

• Improve security
• Solve bigger problems

– e.g., huge amounts of data, can’t fit on one machine 
• Support Quality of Service (QoS) and Quality of 

Experience (QoE)
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Why to study distributed systems

• Distributed systems are more complex than 
centralized ones
– e.g., no global clock, group membership, …

• Building them is harder… and building them 
correct is even much harder
Distributed systems need radically different software 
than centralized systems do (Tanenbaum)

• Managing, and, above all, testing them is 
difficult
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Some distinguishing features of DS

• Concurrency
– Many things happen “at the same time” 
– Centralized system: design choice
– Distributed system: fact of life to be dealt with

• No global clock
– Centralized system: use computer’s physical clock for 

synchronization
– Distributed system: many physical clocks and not 

necessarily synchronized among them

• Independent and partial failures
– Centralized system: fails completely
– Distributed system: fails partially (i.e., only a part), often due 

to communication; hard (and in general impossible) to hide 
partial failures and their recovery
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Challenges and design goals

• Challenges and goals associated with 
designing distributed systems
1. Heterogeneity
2. Distribution transparency 
3. Openness
4. Scalability
5. Dependability
6. Security

while improving performance and energy 
efficiency, reducing monetary cost, etc.

V. Cardellini - SDCC 2024/25
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Challenge 1: Heterogeneity
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• Many sources of heterogeneity: network, hardware, 
operating system (OS), programming language, 
implementations by different developers

• How to address? Middleware: the “OS of a DS”
– Sw layer placed on top of OS that provides a programming 

abstraction as well as masks heterogeneity
– Contains commonly used components and functionalities 

(e.g., communication) thus avoiding developers to implement 
them again and from scratch 
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Communication middleware

• Facilitates communication among (heterogeneous) 
DS components/apps

• We will study
– Remote Procedure Call (RPC)
– Message Oriented Middleware (MOM)
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Remote Procedure Call (RPC) example

• Online payment
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RPC: Behind the curtains
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Challenge 2: Distribution transparency

• Distribution transparency: single coherent system 
where the distribution of its objects (processes and 
resources) is transparent (i.e., invisible) to users and 
apps

• Types of distribution transparency (ISO 10746, Reference 
Model of Open Distributed Processing)

Access transparency
– Hide differences in data representation and how objects are 

accessed
• e.g., use same mechanism for local or remote call

Location transparency
– Hide where objects are located 

• e.g., URL hides IP address
Relocation transparency

– Hide that objects may be moved to another location while in 
use

V. Cardellini - SDCC 2024/25
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Challenge 2: Distribution transparency

Migration transparency
– Hide that objects may move to another location

• e.g., communication between mobile phones 

Replication transparency
– Hide that multiple replicas of an object exist

• How? Same name for all replicas
• Example: type command dig www.youtube.com
• Require also location transparency

Concurrency transparency
– Hide that objects may be shared by several independent users

• E.g.: concurrent access to same DB table by multiple users
• Issue: leave shared object in a consistent state, e.g., by locking

mechanisms

Failure transparency
– Hide failure and recovery of objects (see Lamport’s definition)

V. Cardellini - SDCC 2024/25
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Degree of distribution transparency

• Aiming at full distribution transparency may be too 
much
– We cannot always hide communication latency: sending a 

message from Roma to New York requires ~23 ms
– We cannot completely hide failures in a large-scale DS

• Cannot distinguish a slow computer from a failing one
• Cannot be sure that a server actually performed an operation 

before crashing
– Price for achieving full transparency may be too high in term of 

performance
• e.g., keeping data replicas exactly up-to-date takes time
• e.g., immediately flushing write operations to disk for fault 

tolerance affects performance
• Trade-off between consistency and performance

V. Cardellini - SDCC 2024/25



Challenge 3: Openness

• Open DS: offers components that can easily be used 
by or integrated into other systems; consists of 
components that originate from elsewhere

• Systems should conform to well-defined interfaces 
– Defined through IDL (Interface Definition Language)

• Nearly always capture only syntax, not semantics
• Complete and neutral
• IDL examples: XDR, Thrift, WSDL, OMG IDL

• Systems should
– easily interoperate
– support portability of applications
– be easily extensible 

• Examples: Jakarta EE, .Net, Web Services
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Practice shows that many distributed systems are 
not as open as we’d like (van Steen & Tanenbaum)
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Separation of policies and mechanisms

• To implement open and flexible DS, we need to 
organize the DS as a collection of relatively small and 
easily replaceable or adaptable component rather than 
as a monolithic system

• How? Separate policies from mechanisms
– A policy refers to the principles guiding the decisions, 

while mechanisms represent the means to implement policies

• E.g., caching in web browsers:
– Mechanism: store data and allow (dynamic) setting of caching 

policies
– Caching policies:

• Where to cache data? 
• How to free space when cache fills up? 
• When to refresh cached data? 
• Private or shared cache?

V. Cardellini - SDCC 2024/25
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Separation of policies and mechanisms

• The other side of the coin
– Strict separation can be counterproductive: the stricter the 

separation between policy and mechanism, the more we need 
to ensure proper mechanisms, potentially leading to many 
configuration parameters and complex management

• Need to find a balance
• Possible solution: self-configurable systems
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Finding the right balance in separating policies from 
mechanisms is one of the reasons why designing a 
distributed system is sometimes more an art than a 
science (van Steen & Tanenbaum)
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Challenge 4: Scalability

• Scalability is the property of a (distributed) 
system to keep an adequate level of performance 
notwithstanding a growing amount of:
– Number of users and resources (size scalability)
– Maximum distance between nodes (geographical 

scalability) 
– Number of administrative domains (administrative 

scalability) 
• Most systems account only, to a certain extent, 

for size scalability 
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Many developers of modern distributed systems 
easily use the adjective scalable without making 
clear why their system actually scales. (van Steen) 



Size scalability

• Root causes for scalability problems in centralized 
system
– Computational capacity, limited by CPUs
– Storage capacity, including transfer rate between CPUs and 

disks
– Network between user and centralized service

• Formal analysis (see PMCS course)

• Service time S
• Utilization U: fraction of time the service is busy 
• Response time R: total time take to process a request its arrival

– If U is small, response-to-service time is close to 1: request is 
immediately processed 

– If U goes up to 1, system comes to a grinding halt.
Solution: decrease S. How?
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Size scalability

• Two directions for size scalability
– Vertical (scale-up): more powerful resources
– Horizontal (scale-out): more resources with 

same capacity
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• Which resources? Physical, virtual (virtual 
machines, software containers, etc.)



Size scalability: GFS example

• Google File System (GFS)
– Distributed file system based on divide et impera principle 

and horizontal scalability
– Read, write, append operations
– File divided into fixed blocks (chunks), which are distributed 

and replicated on multiple servers
– Single master, multiple workers (chunkservers)
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Size scalability: GFS example
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• See experimental results
– Scale parameter: number of clients
– Scalability metric: aggregated read/write/append throughput 

(random file access)
– Scalability criterion: the closer to network limit, the better

• Scalability is challenging!
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Techniques for scaling

1. Hide communication latency
– Make use of asynchronous communication
– Have separate handler for incoming response
– Problem: not every app fits this model

2. Facilitate solution by moving computations to clients

3. Partition data and computation across multiple 
resources
– Divide et impera: partition data and computation into smaller 

parts and distribute them across multiple DS resources
– E.g.: decentralized naming service (DNS), data-intensive 

distributed computation (Hadoop MapReduce and Spark)

V. Cardellini - SDCC 2024/25

37

Techniques for scaling

4. Replicate DS resources and data
– Make copies of data available at different DS nodes 
– Distribute processing on multiple DS nodes
– Examples:

• Distributed file systems and databases
• Replicated Web servers
• Web caches (in browsers and proxies) 

• Practical example: in a cloud storage service (e.g., 
Dropbox, OneDrive, GDrive) data are locally cached on 
your device and replicated across multiple cloud servers

V. Cardellini - SDCC 2024/25
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The problem with replication

• Applying replication is easy, but
• Having multiple copies leads to inconsistency: 

modifying one copy makes that copy different from the 
rest

• Trade-off: depending on application type, a certain 
degree of inconsistency can be tolerated
– Blog, shared file, shopping cart, on-line auction, air traffic 

control
• We will study different consistency models to choose 

from 
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Challenge 5: Dependability

• Dependability refers to the degree that a 
computer system can be relied upon to 
operate as expected   
– partial failures make it intricate for distributed 

systems 
• Requirements related to dependability

– Availability: readiness for usage
– Reliability: continuity of service delivery
– Safety: very low probability of catastrophic 

consequences
– Maintainability: how easily a failed system can be 

repaired
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Dependability: availability

Can I use the system now?
– System is ready to use (i.e., operational) immediately
– Availability A(t) of component C: probability that C is 

functioning correctly at time t

• Availability = uptime / (uptime + downtime)

• Normally expressed as number of 9’s 
– A = 99%: two nines 

downtime per year = 0.01*365.2425 d = 3d 15h 39m 29.5s
– A = 99.99%: four nines 

downtime per year = 0.0001*365.2425 d = 52 m 35.7 s 
– See uptime.is

40

1-A=1% average days per year
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Dependability: availability

• Metrics
A = MTTF/(MTTF + MTTR)

Mean Time To Failure (MTTF): average time until a component fails
Mean Time To Repair (MTTR): average time needed to repair a
component
Mean Time Between Failures (MTBF): MTTF + MTTR
MTBF = total operating time / number of failures

41V. Cardellini - SDCC 2024/25



Dependability: reliability

Will the system be up as long as I need it?
– System will run continuously without failure
– Reliability R(t) of component C: conditional probability that C

has been functioning correctly during [0,t) given C was 
functioning correctly at the time T = 0

• Metrics: MTTF (and failure rate)
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Bathtub curve for hardware Revised bathtub curve for software
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Availability vs reliability

• Availability ≠ reliability (when the system is repairable)

• Example A: system that goes down for 1 ms every hour
– Highly available: > 99,9999% (= 1 - 1/(3600*1000))
– Unreliable, because MTBF = 1 hour and there are 

24*365=8780 failures per year

• Example B: system that never crashes but is shutdown 
for 2 weeks every year
– Highly reliable, because MTBF = 1 year and there is only 1 

failure per year
– But only 96% available (= 1 - 14/365)
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Failure, error and fault

• Failure: a component is not living up to its 
specifications
– Example: crashed program

• Error: part of a component that can lead to a failure
– Example: programming bug

• Fault: cause of an error
– Can be: transient, intermittent, permanent
– Example: sloppy programmer

Chain fault ® error ® failure
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Dependability: tools

• Fault prevention
– Prevent fault occurrence

• Fault tolerance
– Build component and make it mask fault occurrence

• Fault removal
– Reduce presence, number, or seriousness of faults

• Fault forecasting
– Estimate current presence, future incidence, and 

consequences of faults
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Challenge 6: Security

• A distributed system that is not secure, is not 
dependable 

• What we need
– Confidentiality: information is disclosed only to authorized 

parties
– Integrity: ensure that alterations to system assets can be 

made only in an authorized way
• Authorization, authentication, trust

– Authentication: verifying correctness of claimed identity
– Authorization: does an identified entity has proper access 

rights?
– Trust: one entity can be assured that another will perform 

particular actions according to a specific expectation
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Security mechanisms

• Keeping it simple: it is all about encrypting and 
decrypting data using security keys

• Symmetric vs asymmetric cryptosystem
– Symmetric: same encryption and decryption key, both  keys 

should be kept secret
– Asymmetric: public key and private key 

• Secure hashing
– In practice, we use secure hash functions: H(data) returns a 

fixed-length string
• Any change from data to data∗ will lead to a completely 

different string H(data∗) 
• Given a hash value h, it is computationally impossible to find a 

data with h = H(data) 
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Two categories of distributed systems

• High-performance distributed computing 
systems
– Cluster computing
– Cloud computing
– Edge computing

• Distributed pervasive systems

V. Cardellini - SDCC 2024/25
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Cluster computing

• Cluster: group of high-end systems connected through 
a LAN 
– Typically homogeneous: same OS, near-identical hardware
– Single, or tightly coupled managing node(s) 

V. Cardellini - SDCC 2024/25

• Clusters dominate TOP500 architectures 
www.top500.org



Cloud computing

• Cluster computing is a major milestone that 
lead to Cloud computing

• But Cloud is:
– available to anyone
– on a much wider scale
– does not require users to physically own or use 

hardware

V. Cardellini - SDCC 2024/25
50

A distributed app in the Cloud
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Edge computing

• Brings computation and storage at the 
network edges, in proximity of data 
producers (e.g., IoT devices) and 
consumers (e.g., users)

V. Cardellini - SDCC 2024/25
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Distributed pervasive systems

• Distributed systems whose nodes are
– small, mobile, battery-powered and often embedded in a 

larger system
– characterized by the fact that the system naturally blends 

into the user’s environment

• Three (overlapping) subtypes of pervasive systems
– Ubiquitous computing systems: pervasive and continuously 

present, i.e. continuous interaction between system and 
users

– Mobile computing systems: pervasive, with emphasis on the 
fact that devices are inherently mobile

– Sensor networks: pervasive, with emphasis on the actual 
(collaborative) sensing and actuation of the environment

V. Cardellini - SDCC 2024/25
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Sensor networks

• Sensor networks as 
distributed databases: two 
extremes
(a)Store and process data in a 

centralized way only on the 
sink node

(b)Store and process data in a 
distributed way on the 
sensors (active and 
autonomous)
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• Characteristics of nodes
– Many: 10-103

– Simple: small memory, compute and communication capacity
– Often battery-powered (or even battery-less)

55

Pitfalls in realizing distributed systems

• Many distributed systems are needlessly complex 
because of errors in design and implementation that 
were patched later

• Common wrong assumptions by architects and 
designers of distributed systems (“The Eight Fallacies of 
Distributed Computing”, Peter Deutsch, 1991-92):
1. The network is reliable

• "You have to design distributed systems with the expectation of 
failure” (Ken Arnold)

2. Latency is zero
• Latency is more problematic than bandwidth
• “At roughly 300,000 km/s, it will always take at least 30 ms to 

send a ping from Europe to the US and back, even if the 
processing would be done in real time.” (Ingo Rammer)

3. Bandwidth is infinite

V. Cardellini - SDCC 2024/25
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Pitfalls in realizing distributed systems

4. The network is secure
5. The topology does not change

• That's right, it doesn’t--as long as it stays in the test lab!
6. There is one administrator
7. Transport cost is zero

• Going from the application level to the transport level is not free
• Costs for setting and running the network are not free

8. The network is homogeneous

Technology is not the solution to everything!
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