
Sistemi Distribuiti e Cloud Computing
A.A. 2024/25

Valeria Cardellini

Laurea Magistrale in Ingegneria Informatica

Introduction to Distributed Systems

Macroarea di Ingegneria
Dipartimento di Ingegneria Civile e Ingegneria Informatica

Advances in technology and services

V. Cardellini - SDCC 2024/25 1

Networking

Computing power Storage

Memory Protocols

Services and applications

Internet evolution: 1977

2

V.
 C

ar
de

llin
i -

SD
C

C
 2

02
4/

25

Internet evolution: after 43 years (2020)

3V. Cardellini - SDCC 2024/25

• IPv4 AS-level
Internet graph

• Interconnections of
~47000 ASs,
~150K links

Source: https://www.caida.org/projects/as-core/

Internet traffic in 2024

4

Source: Cisco

Source: https://www.sandvine.com/phenomena
V. Cardellini - SDCC 2024/25

• Volume: 33 EB (22 fixed + 11 mobile)
per day

• MAMAAN (Meta, Alphabet, Microsoft,
Amazon, Alphabet and Netflix)
generated 55% of Internet volume

• Video contributes 38% of downstream
traffic

• Social media is the biggest app
category in mobile networks’
downstream and upstream traffic

• Expanding number of app categories
and larger number of apps, which are
producing more data

Web growth

V. Cardellini - SDCC 2024/25 5

2014: 1G websites!

Metcalfe’s law

“The value of a telecommunications network
is proportional to the square of the number of
connected users of the system”.

Networking is socially and economically
interesting

V. Cardellini - SDCC 2024/25 6

Computing power

• 1974: Intel 8080
– 2 MHz, 6K transistors

• 2004: Intel P4 Prescott
– 3.6 GHz, 125 million transistors

• 2011: Intel 10-core Xeon
Westmere-EX (multicore CPUs)
– 3.33 GHz, 2.6 billion transistors

• 2019: NVIDIA Turing GPU
– 14.2 TFLOPS of peak single

precision (FP32) performance

V. Cardellini - SDCC 2024/25 7

• Computers got…
– Faster
– Cheaper
– Power efficient
– Smaller

Arduino UNO: weight=25 g, width=53.4 mm,
length=68.6 mm

Every minute in Internet

https://www.domo.com/learn/infographic/data-never-
sleeps-11

• Huge data volume (2023) • Service evolution (how
it was in 2014)

V. Cardellini - SDCC 2024/25 8

• How to provide and manage
these services?

• It is a problem of scale and
scale changes everything!

The challenge: scale of Internet services

Scale has been the single most important force driving
changes in system software over the last decade,

Ousterhout, Is scale your enemy, or is scale your friend?:
technical perspective, Comm. ACM, 2011
https://dl.acm.org/doi/pdf/10.1145/1965724.1965748

and this trend will probably continue for the next decade.

Google in 1997

V. Cardellini - SDCC 2024/25 9

Distributed systems: not only Internet and Web

• Internet and Web: two notable examples of
distributed systems

• Other examples:
– Cloud systems, HPC systems, … sometimes

accessible only through private networks
– Peer-to-peer systems
– Home networks (home entertainment, multimedia

sharing)
– Internet of Things (IoT)

V. Cardellini - SDCC 2024/25 10

Gartner’s IT hype cycle for emerging technologies

V. Cardellini - SDCC 2024/25 11

5 phases:
1) Innovation trigger: a new technology is introduced
2) Peak of inflated expectations: hype tends to be overhyped, with high and

often unrealistic expectations about technology impact
3) Trough of disillusionment: interest wanes as reality sets in, possible decline in

investment
4) Slope of enlightenment: more practical applications start to be found, with a

more balanced and clearer understanding of its potential
5) Plateau of productivity: technology widely adopted, reaches its full potential,

becoming a mainstream tool

Graphical presentation
developed by IT firm Gartner
to represent maturity,
adoption, and application of
specific technologies

Gartner’s IT hype cycle for emerging technologies
and cloud computing

2007

2008

2009

2010

2011

V. Cardellini - SDCC 2024/25 12

Cloud computing from
2007 to 2014,
mainstream adoption
from 20152012

2013
2014

Gartner’s hype cycle for emerging technologies
in 2023

13V. Cardellini - SDCC 2024/25

Many technologies strictly
related to (and impossible
without) distributed systems
and Cloud computing!

Distributed systems, Cloud and AI

• Artificial Intelligence (AI) has recently become
practical as result of:
– Distributed computing
– Affordable cloud computing and storage costs
– Examples: federated learning, distributed training

of foundation models (huge computational and
data storage needs)

• Distribute = to divide and dispense in portions
• A foremost strategy used in distributed

computing you already know
– Divide et impera: break larger (computational)

problems down into numbers of smaller,
interrelated, “manageable” pieces

V. Cardellini - SDCC 2024/25 14

15

Distributed system

• Multiple definitions of distributed system (DS)
[van Steen & Tanenbaum] A distributed system is a
collection of autonomous computing elements that
appears to its users as a single coherent system

– Consists of autonomous computing elements (i.e., nodes),
can be hardware devices (computer, phone, car, robot, …) or
software processes

– Users or applications perceive it as a single system (how?):
nodes need to collaborate

V. Cardellini - SDCC 2024/25

Middleware

16

Distributed system

[Lamport] A distributed system is one in which the
failure of a computer you didn’t even know existed can
render your own computer unusable

– Emphasis on fault tolerance

• Who is Leslie Lamport?
– Recipient of 2013 Turing award

https://www.youtube.com/watch?v=pgWTmOyUjtM
– His research contributions have laid the foundations of

theory and practice of DS
• Fundamental concepts such as causality, logical clocks and

Byzantine failures
• Algorithms to solve many fundamental problems in DS

– Inventor of LaTeX

V. Cardellini - SDCC 2024/25

Why make a system distributed?

• Share resources
– Resource = computing node, data, storage, service, …

• Lower costs
• Improve performance

– e.g., get data from a nearby node rather than one halfway round
the world

• Improve availability and reliability
– even if one node fails, the system as a whole keeps functioning

• Improve security
• Solve bigger problems

– e.g., huge amounts of data, can’t fit on one machine
• Support Quality of Service (QoS) and Quality of

Experience (QoE)

V. Cardellini - SDCC 2024/25 17

Why to study distributed systems

• Distributed systems are more complex than
centralized ones
– e.g., no global clock, group membership, …

• Building them is harder… and building them
correct is even much harder
Distributed systems need radically different software
than centralized systems do (Tanenbaum)

• Managing, and, above all, testing them is
difficult

V. Cardellini - SDCC 2024/25 18

Some distinguishing features of DS

• Concurrency
– Many things happen “at the same time”
– Centralized system: design choice
– Distributed system: fact of life to be dealt with

• No global clock
– Centralized system: use computer’s physical clock for

synchronization
– Distributed system: many physical clocks and not

necessarily synchronized among them

• Independent and partial failures
– Centralized system: fails completely
– Distributed system: fails partially (i.e., only a part), often due

to communication; hard (and in general impossible) to hide
partial failures and their recovery

V. Cardellini - SDCC 2024/25 19

20

Challenges and design goals

• Challenges and goals associated with
designing distributed systems
1. Heterogeneity
2. Distribution transparency
3. Openness
4. Scalability
5. Dependability
6. Security

while improving performance and energy
efficiency, reducing monetary cost, etc.

V. Cardellini - SDCC 2024/25

21

Challenge 1: Heterogeneity

V. Cardellini - SDCC 2024/25

• Many sources of heterogeneity: network, hardware,
operating system (OS), programming language,
implementations by different developers

• How to address? Middleware: the “OS of a DS”
– Sw layer placed on top of OS that provides a programming

abstraction as well as masks heterogeneity
– Contains commonly used components and functionalities

(e.g., communication) thus avoiding developers to implement
them again and from scratch

22

Communication middleware

• Facilitates communication among (heterogeneous)
DS components/apps

• We will study
– Remote Procedure Call (RPC)
– Message Oriented Middleware (MOM)

V. Cardellini - SDCC 2024/25

Remote Procedure Call (RPC) example

• Online payment

V. Cardellini - SDCC 2024/25 23

RPC: Behind the curtains

V. Cardellini - SDCC 2024/25 24

25

Challenge 2: Distribution transparency

• Distribution transparency: single coherent system
where the distribution of its objects (processes and
resources) is transparent (i.e., invisible) to users and
apps

• Types of distribution transparency (ISO 10746, Reference
Model of Open Distributed Processing)

Access transparency
– Hide differences in data representation and how objects are

accessed
• e.g., use same mechanism for local or remote call

Location transparency
– Hide where objects are located

• e.g., URL hides IP address
Relocation transparency

– Hide that objects may be moved to another location while in
use

V. Cardellini - SDCC 2024/25

26

Challenge 2: Distribution transparency

Migration transparency
– Hide that objects may move to another location

• e.g., communication between mobile phones

Replication transparency
– Hide that multiple replicas of an object exist

• How? Same name for all replicas
• Example: type command dig www.youtube.com
• Require also location transparency

Concurrency transparency
– Hide that objects may be shared by several independent users

• E.g.: concurrent access to same DB table by multiple users
• Issue: leave shared object in a consistent state, e.g., by locking

mechanisms

Failure transparency
– Hide failure and recovery of objects (see Lamport’s definition)

V. Cardellini - SDCC 2024/25

27

Degree of distribution transparency

• Aiming at full distribution transparency may be too
much
– We cannot always hide communication latency: sending a

message from Roma to New York requires ~23 ms
– We cannot completely hide failures in a large-scale DS

• Cannot distinguish a slow computer from a failing one
• Cannot be sure that a server actually performed an operation

before crashing
– Price for achieving full transparency may be too high in term of

performance
• e.g., keeping data replicas exactly up-to-date takes time
• e.g., immediately flushing write operations to disk for fault

tolerance affects performance
• Trade-off between consistency and performance

V. Cardellini - SDCC 2024/25

Challenge 3: Openness

• Open DS: offers components that can easily be used
by or integrated into other systems; consists of
components that originate from elsewhere

• Systems should conform to well-defined interfaces
– Defined through IDL (Interface Definition Language)

• Nearly always capture only syntax, not semantics
• Complete and neutral
• IDL examples: XDR, Thrift, WSDL, OMG IDL

• Systems should
– easily interoperate
– support portability of applications
– be easily extensible

• Examples: Jakarta EE, .Net, Web Services

V. Cardellini - SDCC 2024/25 28

Practice shows that many distributed systems are
not as open as we’d like (van Steen & Tanenbaum)

29

Separation of policies and mechanisms

• To implement open and flexible DS, we need to
organize the DS as a collection of relatively small and
easily replaceable or adaptable component rather than
as a monolithic system

• How? Separate policies from mechanisms
– A policy refers to the principles guiding the decisions,

while mechanisms represent the means to implement policies

• E.g., caching in web browsers:
– Mechanism: store data and allow (dynamic) setting of caching

policies
– Caching policies:

• Where to cache data?
• How to free space when cache fills up?
• When to refresh cached data?
• Private or shared cache?

V. Cardellini - SDCC 2024/25

30

Separation of policies and mechanisms

• The other side of the coin
– Strict separation can be counterproductive: the stricter the

separation between policy and mechanism, the more we need
to ensure proper mechanisms, potentially leading to many
configuration parameters and complex management

• Need to find a balance
• Possible solution: self-configurable systems

V. Cardellini - SDCC 2024/25

Finding the right balance in separating policies from
mechanisms is one of the reasons why designing a
distributed system is sometimes more an art than a
science (van Steen & Tanenbaum)

31

Challenge 4: Scalability

• Scalability is the property of a (distributed)
system to keep an adequate level of performance
notwithstanding a growing amount of:
– Number of users and resources (size scalability)
– Maximum distance between nodes (geographical

scalability)
– Number of administrative domains (administrative

scalability)
• Most systems account only, to a certain extent,

for size scalability

V. Cardellini - SDCC 2024/25

Many developers of modern distributed systems
easily use the adjective scalable without making
clear why their system actually scales. (van Steen)

Size scalability

• Root causes for scalability problems in centralized
system
– Computational capacity, limited by CPUs
– Storage capacity, including transfer rate between CPUs and

disks
– Network between user and centralized service

• Formal analysis (see PMCS course)

• Service time S
• Utilization U: fraction of time the service is busy
• Response time R: total time take to process a request its arrival

– If U is small, response-to-service time is close to 1: request is
immediately processed

– If U goes up to 1, system comes to a grinding halt.
Solution: decrease S. How?

V. Cardellini - SDCC 2024/25 32

Size scalability

• Two directions for size scalability
– Vertical (scale-up): more powerful resources
– Horizontal (scale-out): more resources with

same capacity

V. Cardellini - SDCC 2024/25 33

• Which resources? Physical, virtual (virtual
machines, software containers, etc.)

Size scalability: GFS example

• Google File System (GFS)
– Distributed file system based on divide et impera principle

and horizontal scalability
– Read, write, append operations
– File divided into fixed blocks (chunks), which are distributed

and replicated on multiple servers
– Single master, multiple workers (chunkservers)

V. Cardellini - SDCC 2024/25 34

Size scalability: GFS example

V. Cardellini - SDCC 2024/25 35

• See experimental results
– Scale parameter: number of clients
– Scalability metric: aggregated read/write/append throughput

(random file access)
– Scalability criterion: the closer to network limit, the better

• Scalability is challenging!

36

Techniques for scaling

1. Hide communication latency
– Make use of asynchronous communication
– Have separate handler for incoming response
– Problem: not every app fits this model

2. Facilitate solution by moving computations to clients

3. Partition data and computation across multiple
resources
– Divide et impera: partition data and computation into smaller

parts and distribute them across multiple DS resources
– E.g.: decentralized naming service (DNS), data-intensive

distributed computation (Hadoop MapReduce and Spark)

V. Cardellini - SDCC 2024/25

37

Techniques for scaling

4. Replicate DS resources and data
– Make copies of data available at different DS nodes
– Distribute processing on multiple DS nodes
– Examples:

• Distributed file systems and databases
• Replicated Web servers
• Web caches (in browsers and proxies)

• Practical example: in a cloud storage service (e.g.,
Dropbox, OneDrive, GDrive) data are locally cached on
your device and replicated across multiple cloud servers

V. Cardellini - SDCC 2024/25

38

The problem with replication

• Applying replication is easy, but
• Having multiple copies leads to inconsistency:

modifying one copy makes that copy different from the
rest

• Trade-off: depending on application type, a certain
degree of inconsistency can be tolerated
– Blog, shared file, shopping cart, on-line auction, air traffic

control
• We will study different consistency models to choose

from

V. Cardellini - SDCC 2024/25

Challenge 5: Dependability

• Dependability refers to the degree that a
computer system can be relied upon to
operate as expected
– partial failures make it intricate for distributed

systems
• Requirements related to dependability

– Availability: readiness for usage
– Reliability: continuity of service delivery
– Safety: very low probability of catastrophic

consequences
– Maintainability: how easily a failed system can be

repaired

V. Cardellini - SDCC 2024/25 39

Dependability: availability

Can I use the system now?
– System is ready to use (i.e., operational) immediately
– Availability A(t) of component C: probability that C is

functioning correctly at time t

• Availability = uptime / (uptime + downtime)

• Normally expressed as number of 9’s
– A = 99%: two nines

downtime per year = 0.01*365.2425 d = 3d 15h 39m 29.5s
– A = 99.99%: four nines

downtime per year = 0.0001*365.2425 d = 52 m 35.7 s
– See uptime.is

40

1-A=1% average days per year

V. Cardellini - SDCC 2024/25

Dependability: availability

• Metrics
A = MTTF/(MTTF + MTTR)

Mean Time To Failure (MTTF): average time until a component fails
Mean Time To Repair (MTTR): average time needed to repair a
component
Mean Time Between Failures (MTBF): MTTF + MTTR
MTBF = total operating time / number of failures

41V. Cardellini - SDCC 2024/25

Dependability: reliability

Will the system be up as long as I need it?
– System will run continuously without failure
– Reliability R(t) of component C: conditional probability that C

has been functioning correctly during [0,t) given C was
functioning correctly at the time T = 0

• Metrics: MTTF (and failure rate)

42

Bathtub curve for hardware Revised bathtub curve for software

V. Cardellini - SDCC 2024/25

Availability vs reliability

• Availability ≠ reliability (when the system is repairable)

• Example A: system that goes down for 1 ms every hour
– Highly available: > 99,9999% (= 1 - 1/(3600*1000))
– Unreliable, because MTBF = 1 hour and there are

24*365=8780 failures per year

• Example B: system that never crashes but is shutdown
for 2 weeks every year
– Highly reliable, because MTBF = 1 year and there is only 1

failure per year
– But only 96% available (= 1 - 14/365)

43V. Cardellini - SDCC 2024/25

Failure, error and fault

• Failure: a component is not living up to its
specifications
– Example: crashed program

• Error: part of a component that can lead to a failure
– Example: programming bug

• Fault: cause of an error
– Can be: transient, intermittent, permanent
– Example: sloppy programmer

Chain fault ® error ® failure

44V. Cardellini - SDCC 2024/25

Dependability: tools

• Fault prevention
– Prevent fault occurrence

• Fault tolerance
– Build component and make it mask fault occurrence

• Fault removal
– Reduce presence, number, or seriousness of faults

• Fault forecasting
– Estimate current presence, future incidence, and

consequences of faults

45V. Cardellini - SDCC 2024/25

Challenge 6: Security

• A distributed system that is not secure, is not
dependable

• What we need
– Confidentiality: information is disclosed only to authorized

parties
– Integrity: ensure that alterations to system assets can be

made only in an authorized way
• Authorization, authentication, trust

– Authentication: verifying correctness of claimed identity
– Authorization: does an identified entity has proper access

rights?
– Trust: one entity can be assured that another will perform

particular actions according to a specific expectation

V. Cardellini - SDCC 2024/25 46

Security mechanisms

• Keeping it simple: it is all about encrypting and
decrypting data using security keys

• Symmetric vs asymmetric cryptosystem
– Symmetric: same encryption and decryption key, both keys

should be kept secret
– Asymmetric: public key and private key

• Secure hashing
– In practice, we use secure hash functions: H(data) returns a

fixed-length string
• Any change from data to data∗ will lead to a completely

different string H(data∗)
• Given a hash value h, it is computationally impossible to find a

data with h = H(data)

V. Cardellini - SDCC 2024/25 47

48

Two categories of distributed systems

• High-performance distributed computing
systems
– Cluster computing
– Cloud computing
– Edge computing

• Distributed pervasive systems

V. Cardellini - SDCC 2024/25

49

Cluster computing

• Cluster: group of high-end systems connected through
a LAN
– Typically homogeneous: same OS, near-identical hardware
– Single, or tightly coupled managing node(s)

V. Cardellini - SDCC 2024/25

• Clusters dominate TOP500 architectures
www.top500.org

Cloud computing

• Cluster computing is a major milestone that
lead to Cloud computing

• But Cloud is:
– available to anyone
– on a much wider scale
– does not require users to physically own or use

hardware

V. Cardellini - SDCC 2024/25
50

A distributed app in the Cloud

V. Cardellini - SDCC 2024/25
51

Edge computing

• Brings computation and storage at the
network edges, in proximity of data
producers (e.g., IoT devices) and
consumers (e.g., users)

V. Cardellini - SDCC 2024/25
52

53

Distributed pervasive systems

• Distributed systems whose nodes are
– small, mobile, battery-powered and often embedded in a

larger system
– characterized by the fact that the system naturally blends

into the user’s environment

• Three (overlapping) subtypes of pervasive systems
– Ubiquitous computing systems: pervasive and continuously

present, i.e. continuous interaction between system and
users

– Mobile computing systems: pervasive, with emphasis on the
fact that devices are inherently mobile

– Sensor networks: pervasive, with emphasis on the actual
(collaborative) sensing and actuation of the environment

V. Cardellini - SDCC 2024/25

54

Sensor networks

• Sensor networks as
distributed databases: two
extremes
(a)Store and process data in a

centralized way only on the
sink node

(b)Store and process data in a
distributed way on the
sensors (active and
autonomous)

V. Cardellini - SDCC 2024/25

• Characteristics of nodes
– Many: 10-103

– Simple: small memory, compute and communication capacity
– Often battery-powered (or even battery-less)

55

Pitfalls in realizing distributed systems

• Many distributed systems are needlessly complex
because of errors in design and implementation that
were patched later

• Common wrong assumptions by architects and
designers of distributed systems (“The Eight Fallacies of
Distributed Computing”, Peter Deutsch, 1991-92):
1. The network is reliable

• "You have to design distributed systems with the expectation of
failure” (Ken Arnold)

2. Latency is zero
• Latency is more problematic than bandwidth
• “At roughly 300,000 km/s, it will always take at least 30 ms to

send a ping from Europe to the US and back, even if the
processing would be done in real time.” (Ingo Rammer)

3. Bandwidth is infinite

V. Cardellini - SDCC 2024/25

56

Pitfalls in realizing distributed systems

4. The network is secure
5. The topology does not change

• That's right, it doesn’t--as long as it stays in the test lab!
6. There is one administrator
7. Transport cost is zero

• Going from the application level to the transport level is not free
• Costs for setting and running the network are not free

8. The network is homogeneous

Technology is not the solution to everything!

V. Cardellini - SDCC 2024/25

References

• Chapter 1 of van Steen & Tanenbaum book
• A brief introduction to distributed systems https://www.distributed-

systems.net/my-data/papers/2016.computing.pdf
• Fallacies of distributed computing explained https://arnon.me/wp-

content/uploads/Files/fallacies.pdf
• Episode 470: L. Peter Deutsch on the fallacies of distributed

computing https://www.se-radio.net/2021/07/episode-470-l-peter-
deutsch-on-the-fallacies-of-distributed-computing/

V. Cardellini - SDCC 2024/25
57

