
Corso di Sistemi Distribuiti e Cloud Computing
A.A. 2024/25

Valeria Cardellini

Laurea Magistrale in Ingegneria Informatica

Self-adaptive Distributed Systems

Macroarea di Ingegneria
Dipartimento di Ingegneria Civile e Ingegneria Informatica

• We aim to a software system capable of adapting its
operations at run-time with respect to itself and the
environment: a self-adaptive (or autonomic) software
system
– Applications of self-adaptive systems in many computing

environments
• Cloud computing
• Edge/fog computing
• Compute continuum
• HPC
• Cyber-physical systems

Valeria Cardellini - SDCC 2024/25 1

Self-adaptive software systems

“Intelligence is the ability to adapt to changes”
S. Hawking

Self-adaptive software systems

• Autonomic computing: computing paradigm able of
responding to the need of managing IT systems
complexity and heterogeneity through automatic
adaptations
– Inspired by human autonomic nervous system, able to control

some vital functions (heart rate, digestion, temperature, ...)
masking their complexity to humans

• A self-adaptive (or autonomic) software system can:
– Manage its functionalities and goals autonomously (i.e.,

without or with minimal human intervention)
– Handle changes and uncertainty in its environment and

system itself

Valeria Cardellini - SDCC 2024/25 2

Kephart and Chess, The vision of Autonomic Computing, IEEE Computer, 2003

Self-adaptation is everywhere

aws.amazon.com/ec2

Self-healing networks, www.juniper.net

kubernetes.io

Autonomous database,
www.oracle.com/autonomous-database/what-
is-autonomous-database/

Valeria Cardellini - SDCC 2024/25 3

Goals of self-adaptive systems

• A self-adaptive (self-*) software system is able to self-
manage, pursuing the following goals:

• Self-optimize
– Capability of system to optimize its resource usage or

performance while providing its required quality goals
– E.g., change placement of application components onto system

nodes to satisfy application response time

• Self-heal
– Capability of system to discover, diagnose and recover from

faults to provide its required quality goals or degrade gracefully
otherwise

– E.g., detect crashed nodes and exclude them from serving
requests

Valeria Cardellini - SDCC 2024/25 4

Goals of self-adaptive systems

• Self-configure
– Capability of system to automatically integrate new elements,

without interrupting the system’s normal operation, or tune
some configuration parameters

– E.g., discover new nodes and add them to serve requests

• Self-protect
– Capability of system to detect anomalies (i.e., intrusion

detection) and react to intrusion and attack actions and its
consequences (i.e., intrusion response) so to protect from
security threats

– E.g., in a network of IoT devices detect a jamming attack that
corrupts network traffic and adapt packets schedule

Valeria Cardellini - SDCC 2024/25 5

How to achieve the goals of a self-* system?

• The system should know its internal state (self-
awareness) and the current external operating
conditions (self-situation)

• Should identify changes regarding its state and the
surrounding environment (self-monitoring)

• And should adapt consequently (self-adjustment)

• These attributes are the implementation mechanisms

Valeria Cardellini - SDCC 2024/25 6

Conceptual model of self-adaptive system

Uncertainties

high-level

objectivesSelf-Adaptive
Software System

Environment
Non-controllable software, hardware, network,

physical context, users

High-level

objectives

input affect

Valeria Cardellini - SDCC 2024/25 7

input affect

Self-adaptive software system

Managed software system

Environment
Non-controllable software, hardware, network,

physical context, users

Conceptual model of self-adaptive system

Valeria Cardellini - SDCC 2024/25 8

input affect

Instrumentation to monitor & adapt system

Probes

Self-adaptive software system

Environment
Non-controllable software, hardware, network,

physical context, users

Managed software system

Conceptual model of self-adaptive system

Valeria Cardellini - SDCC 2024/25 9

input affect

Instrumentation to monitor & adapt system

Probes

Managing system

Self-adaptive software system

monitor adaptmonitor

Environment
Non-controllable software, hardware, network,

physical context, users

Managed software system

Conceptual model of self-adaptive system

High-level

objectives

Valeria Cardellini - SDCC 2024/25 10

You are already familiar with this model

• The control-theory perspective of a self-adaptive
system

Valeria Cardellini - SDCC 2024/25 11

MAPE: reference architecture for
self-adaptive system

• MAPE (Monitor, Analyze, Plan, Execute) loop

Valeria Cardellini - SDCC 2024/25 12

MAPE: building blocks (or phases)

• Monitor
– Collects data from the managed system and execution environment

through sensors; aggregates, filters and correlates these data into
symptoms that can be analyzed

• Analyze
– Observes and analyzes situations to determine need for adaptation
– If adaptation is required, it triggers Plan

• Plan
– Determines which mitigation actions need to be performed so to

enact a desired alteration in the managed system

• Execute
– Enacts the change plan by carrying out the actions determined by

Plan through effectors so to adapt the managed system

• Plus Knowledge (MAPE-K)
– Stores shared knowledge regarding relevant aspects of the managed

system, environment, and the administrator’s goals
Valeria Cardellini - SDCC 2024/25 13

MAPE: Monitor

• Main design options for Monitor:
– When to monitor: continuously, on demand
– What to monitor: resources, workload, performance, …
– How to monitor: architecture (centralized vs. decentralized),

methodology (active vs. passive)
– Where to store monitored data (e.g., time-series database)

and how (e.g., some pre-processing)

Valeria Cardellini - SDCC 2024/25 14

MAPE: Analyze

• Main design options for Analyze:
– When to analyze: event- or time-triggered

– Reactive vs. proactive adaptation
• Reactive: in reaction to events that have already occurred (e.g.,

increase number of resources after workload increase)

• Proactive: based on prediction so to plan adaptation actions in
advance (e.g., increase number of resources before workload
increase occurs)

Valeria Cardellini - SDCC 2024/25 15

MAPE: Plan
• The most challenging and studied MAPE phase
• A variety of methodologies and techniques can be

used to plan adaptation, including
– Optimization theory

ü Optimal adaptation actions
✗ Con: formulation can be NP-hard, too expensive to solve at runtime

– Heuristics
ü Faster
✗ Sub-optimal adaptation actions

– Machine learning, including reinforcement learning
– Control theory
– Queueing theory

• Example: optimal bin packing and heuristic policies to
dynamically place virtual machines or containers on
servers

Valeria Cardellini - SDCC 2024/25 16

Example: VM/container placement

Valeria Cardellini - SDCC 2024/25 17

• VM/container placement problem can be modeled as
bin packing optimization problem

• Bin packing: pack items of different sizes
(VMs/containers) into a minimum number of bins
(server nodes), each of a given capacity (amount of
resources), such that total size of items in each bin
does not exceed bin capacity

• Integer optimization problem ⇒ NP-hard ⇒ we need
efficient heuristics to find a new placement when
some change occurs

Example: VM/container placement
• Some examples of baseline heuristic policies
• Round robin: organize bins in a circular list, saving

the latest bin used for placement; allocate each item
on next bin with enough capacity, starting from
current position on list
– Does not minimize number of used bins

• First fit: organize bins in a list and place each item
into the first bin in which it fits, restarting for each
item at the beginning of list
– First fit decreasing: variant in which items are sorted in

decreasing order
• Many other heuristics, e.g.,

– Best fit: place item into the bin with the minimum amount of
capacity into which the item can fit

– Worst fit: similar to best fit, but maximum
Valeria Cardellini - SDCC 2024/25 18

Alternative architectures for MAPE

• How to design the managing system?
– Centralized MAPE: all MAPE components on same

node, simpler but lack of scalability in geo-
distributed environments

– Decentralized MAPE: MAPE components are
distributed; many architectural patterns, each one
with pros and cons

• No clear winner, it depends on system and application
features and requirements

19Valeria Cardellini - SDCC 2024/25

How to decentralize the adaptation control

Weyns et al., On patterns for decentralized control in self-adaptive systems. In
SEfSAS II, 2013

Valeria Cardellini - SDCC 2024/25 20

• Main architectural patterns for decentralized MAPE
Hierarchical

Flat

How to decentralize the adaptation control

• First design choice: hierarchical vs. flat
– Hierarchical: easier to design, but risk of bottleneck in top level

of hierarchy
– Flat: more difficult to coordinate, but can scale better

• Hierarchical MAPE patterns: multiple MAPE loops
organized in a hierarchy, where a higher-level control
loop manages subordinated control loops
- Master-worker
- Hierarchical control

• Flat MAPE patterns: multiple MAPE loops cooperate
as peers
– Coordinated control
– Information sharing

Valeria Cardellini - SDCC 2024/25 21

Hierarchical MAPE: master-worker pattern

Valeria Cardellini - SDCC 2024/25 22

M EM E ...

Master

Worker 1 Worker N

A P

• Decentralize M and E on workers, keep A and P
centralized on master

ü Global view on master who can achieve global
adaptation goals

✗ Communication overhead and risk of performance
bottleneck and SPOF on master

Hierarchical MAPE: hierarchical control pattern

Valeria Cardellini - SDCC 2024/25 23

M EA P

M EA P M EA P

• Multiple MAPE loops, which can operate at different
time scales and with separation of concerns

ü Top-level MAPE can achieve global goals, increased
flexibility

✗ Can be non-trivial to identify different levels of control,
depends on managed system characteristics

Flat MAPE: coordinated control pattern

Valeria Cardellini - SDCC 2024/25 24

M EA P M EA P

M EA P M EA P

• Multiple control loops, each one in charge of some part
of the managed system but coordinated through
interaction

ü Better scalability
✗ More difficult to take joint adaptation decisions

Flat MAPE: information sharing pattern

Valeria Cardellini - SDCC 2024/25 25

M EA P M EA P

M EA P M EA P

• Special case of coordinated control pattern: interaction
only among M components

ü Better scalability
✗ Lack of coordination on planning, conflicting or sub-

optimal adaptation actions can be enacted

Examples of self-adaptive systems

• Let’s analyze 3 examples of self-adaptive systems for
resource management
1. Auto-scaling EC2 instances
2. Selecting services of composite applications
3. Auto-scaling microservice-based applications

• Common ground
– Applications face unexpected events (e.g., workload surge

and spikes, node crashes)
– Adaptation goal: satisfy some SLO (e.g., based on

application response time, application availability)
– Examples differ in planning methodologies and control

architectures

Valeria Cardellini - SDCC 2024/25 26

Example 1: Amazon EC2 Auto Scaling

• AWS service to automatically add or remove EC2
instances according to user-defined conditions and
health checks https://aws.amazon.com/ec2/autoscaling/

• MAPE Monitor: monitor scaling metrics on EC2
instances using CloudWatch https://aws.amazon.com/cloudwatch/

• Which scaling metrics?
– CPU utilization, network I/O, Application Load Balancer request

count, …

Valeria Cardellini - SDCC 2024/25 27

Example 1: Amazon EC2 Auto Scaling

• MAPE Plan: we study 2 policies implemented in Auto
Scaling for determining scale-out/in decisions
https://docs.aws.amazon.com/autoscaling/ec2/userguide/scale-your-
group.html
– Dynamic simple scaling
– Predictive scaling

• In addition to auto-scaling, Auto Scaling is a self-
healing system
– Can detect when an EC2 instance is unhealthy, terminate it,

and launch a new instance to replace it

Valeria Cardellini - SDCC 2024/25 28

Example 1: Amazon EC2 Auto Scaling

• Dynamic simple scaling: user-defined scaling plan to
decide when and how to scale (reactive)

• Based on a threshold-based heuristic policy
– Set upper and lower thresholds on some scaling metric(s)

if (metric > upper_thr) scale-out
else if (metric < lower_thr) scale-in
• Example of scale-out rule: if average CPU utilization of all

instances > 70% in last 1 minute, then add 1 new instance
• Example of scale-in rule: if average CPU utilization of all

instances is <35% in last 5 min, then remove 1 instance
– CloudWatch monitors and sends alarms, one for scaling out

(upper_thr) and the other for scaling in (lower_thr)
– Cooldown period between each scaling activity

Valeria Cardellini - SDCC 2024/25 29

Threshold-based policy: pros & cons
✓ Simple and easy-to-understand: select scaling

metric(s), period and thresholds for alarms
✗ Not easy to choose metrics and thresholds

• Metric can be application-dependent: application
components can be CPU/memory/IO-intensive or a mix

• Thresholds value can be either too aggressive or
conservative, some example
Ø Slow scale-out, e.g., not enough instances added because upper_thr is

high ⇒ SLO violations occur
Ø Rapid scale-out, e.g., too many instances added because upper_thr is low
⇒ large underutilization and high cost

Ø Slow scale-in, e.g., not enough instances removed because scaling
period is long ⇒ large underutilization and high cost

Ø Rapid scale-in, e.g., too many instances removed because lower_thr is
high ⇒ SLO violations occur

• No application-specific metric (e.g., response time)
✗ Not robust against varying load patterns

Valeria Cardellini - SDCC 2024/25 30

Threshold-based policy: cons

• Example of wrong choices

Valeria Cardellini - SDCC 2024/25 31

over-provisioned

under-provisioned

scaling period = 30 s.
high_thr = 80% low_thr = 25%

scaling period = 60 s.
high_thr = 80% low_thr = 50%

Strasser et al., Autoscaler Evaluation and Configuration: A Practitioner's Guideline, ICPE 2023
https://research.spec.org/icpe_proceedings/2023/proceedings/p31.pdf

Example 1: Amazon EC2 Auto Scaling
• Predictive scaling: based on ML (proactive)

– Trained ML model to predict application expected traffic and
EC2 usage, including daily and weekly patterns

– Requires historical data collected from CloudWatch
• Model needs at least one day’s of historical data to start making

predictions
• Re-evaluated every 24 hours to forecast for the next 48 hours

✓ Proactive
✗ Requires training: the more the historical data, the more

accurate the forecast
✗ Choice of scaling metric is core

Valeria Cardellini - SDCC 2024/25 32

Example 2: Service selection

• QoS-driven self-adaptation of SOA applications
– Multiple concrete services for each abstract service: how to

select which concrete services to use so to satisfy application
SLAs?

Cardellini et al., MOSES: a framework for QoS driven runtime adaptation of service-oriented
systems, IEEE Trans. Soft. Eng., 2012 http://www.ce.uniroma2.it/publications/tse2012.pdf

33

s41
s42

s43

s44

Brokering service

SLAs SLAs

Valeria Cardellini - SDCC 2024/25

Example 2: Service selection

• MAPE Plan
– Centralized policy: select optimal set of concrete services (and

their coordination) by means of linear programming optimization

34Valeria Cardellini - SDCC 2024/25

Example 3: Hierarchical scaling of microservices

• Hierarchical control pattern to elastically
scale a microservices-based application
– Goal: keep response time below maximum

Va
le

ria
 C

ar
de

llin
i -

SD
C

C
 2

02
4/

25

35

M EA P
Microservice Manager

M EA P
Microservice Manager

M EA P
Application Manager

...

Rossi et al., Hierarchical scaling of microservices in Kubernetes, Proc. IEEE ACSOS 2020
http://www.ce.uniroma2.it/publications/acsos2020.pdf

– Each Microservice Mngr. determines scale-out/in needs
through local policy based on queueing theory (and workload
prediction) and sends proposal to Application Mngr.

– Application Mngr. coordinates scaling proposals by accepting
or not them and sends decision to local Execute components

– Implemented in Kubernetes

References

• The vision of Autonomic Computing
https://www.research.ibm.com/autonomic/research/papers/AC_Vision_
Computer_Jan_2003.pdf

• An Introduction to Self-Adaptive Systems: A Contemporary
Software Engineering Perspective, chapter 1
https://introsas.cs.kuleuven.be/2020ExcerptBook.pdf

• On patterns for decentralized control in self-adaptive systems
https://www.ics.uci.edu/~seal/publications/2012aSefSAS.pdf

Valeria Cardellini - SDCC 2024/25 36

