Macroarea di Ingegneria
Dipartimento di Ingegneria Civile e Ingegneria Informatica

Self-adaptive Distributed Systems

Corso di Sistemi Distribuiti e Cloud Computing
A.A. 2024/25

Valeria Cardellini

Laurea Magistrale in Ingegneria Informatica

Self-adaptive software systems

“Intelligence is the ability to adapt to changes”
S. Hawking

« We aim to a software system capable of adapting its
operations at run-time with respect to itself and the
environment: a self-adaptive (or autonomic) software
system

— Applications of self-adaptive systems in many computing
environments
* Cloud computing
» Edge/fog computing
+ Compute continuum
« HPC
* Cyber-physical systems

Valeria Cardellini - SDCC 2024/25 1

Self-adaptive software systems

« Autonomic computing: computing paradigm able of
responding to the need of managing IT systems
complexity and heterogeneity through automatic
adaptations

— Inspired by human autonomic nervous system, able to control
some vital functions (heart rate, digestion, temperature, ...)
masking their complexity to humans

» A self-adaptive (or autonomic) software system can:

— Manage its functionalities and goals autonomously (i.e.,
without or with minimal human intervention)

— Handle changes and uncertainty in its environment and
system itself

Kephart and Chess, The vision of Autonomic Computing, IEEE Computer, 2003

Valeria Cardellini - SDCC 2024/25

Self-adaptation is everywhere

kubernetes

Self-healing networks,

Autonomous Vision: Effortless, Limitless, Unbreakable Data Cloud

oN\ATICsCA
Ky Y,
b < e BO® d A\ 74
0 € =
Self-Provisioning Self-Securing Self-Managing
o Tamazn|EC2 |
% &
% @M d=h e
o‘l’ 9$O Self-Repairing Self-Scaling Self-Optimizing

Autonomous database,

Valeria Cardellini - SDCC 2024/25

Goals of self-adaptive systems

» A self-adaptive (self-*) software system is able to self-
manage, pursuing the following goals:
» Self-optimize
— Capability of system to optimize its resource usage or
performance while providing its required quality goals

— E.g., change placement of application components onto system
nodes to satisfy application response time

« Self-heal

— Capability of system to discover, diagnose and recover from
faults to provide its required quality goals or degrade gracefully
otherwise

— E.g., detect crashed nodes and exclude them from serving
requests

Valeria Cardellini - SDCC 2024/25

Goals of self-adaptive systems

» Self-configure

— Capability of system to automatically integrate new elements,
without interrupting the system’s normal operation, or tune
some configuration parameters

— E.g., discover new nodes and add them to serve requests

» Self-protect

— Capability of system to detect anomalies (i.e., intrusion
detection) and react to intrusion and attack actions and its
consequences (i.e., intrusion response) so to protect from
security threats

— E.g., in a network of loT devices detect a jamming attack that
corrupts network traffic and adapt packets schedule

Valeria Cardellini - SDCC 2024/25

How to achieve the goals of a self-* system?

« The system should know its internal state (self-
awareness) and the current external operating
conditions (self-situation)

« Should identify changes regarding its state and the
surrounding environment (self-monitoring)

» And should adapt consequently (self-adjustment)

» These attributes are the implementation mechanisms

Valeria Cardellini - SDCC 2024/25 6

Conceptual model of self-adaptive system

, High-level

objectives

Uncertainties —— input TT ﬂ affect

Environment
Non-controllable software, hardware, network,

physical context, users

Valeria Cardellini - SDCC 2024/25 7

Conceptual model of self-adaptive system

Managed software system

O\
input affect

Environment

Non-controllable software, hardware, network,

physical context, users

Valeria Cardellini - SDCC 2024/25

Conceptual model of self-adaptive system

Self-adaptive software system

Instrumentation to monitor & adapt system

Managed software system

O\
input affect

Probes

Environment

Non-controllable software, hardware, network,

physical context, users

Valeria Cardellini - SDCC 2024/25

Conceptual model of self-adaptive system

Self-adaptive software system
N Managing system High-level
V] objectives
monitor monitor TT lladapt
Instrumentation to monitor & adapt system
Managed software system
O\
input affect
Fese Environment

Non-controllable software, hardware, network,

physical context, users

Valeria Cardellini - SDCC 2024/25

10

You are already familiar with this model

system

Controller
C

u(k)

#1(/\-)

Plant
P

The control-theory perspective of a self-adaptive

Valeria Cardellini - SDCC 2024/25

1

MAPE: reference architecture for
self-adaptive system

 MAPE (Monitor, Analyze, Plan, Execute) loop

Policy
Analyzing

Sensor Effector

. anni
B

Symptom

Knowledge

Monitor Execute

\ /

Monitoring Sores Effector Executing
Nt

Valeria Cardellini - SDCC 2024/25

MAPE: building blocks (or phases)

* Monitor
— Collects data from the managed system and execution environment
through sensors; aggregates, filters and correlates these data into
symptoms that can be analyzed
« Analyze

— Observes and analyzes situations to determine need for adaptation
— If adaptation is required, it triggers Plan

 Plan
— Determines which mitigation actions need to be performed so to
enact a desired alteration in the managed system
 Execute

— Enacts the change plan by carrying out the actions determined by
Plan through effectors so to adapt the managed system

* Plus Knowledge (MAPE-K)

— Stores shared knowledge regarding relevant aspects of the managed
system, environment, and the administrator’s goals

Valeria Cardellini - SDCC 2024/25

MAPE: Monitor

» Main design options for Monitor:
— When to monitor: continuously, on demand
— What to monitor: resources, workload, performance, ...
— How to monitor: architecture (centralized vs. decentralized),
methodology (active vs. passive)

Where to store monitored data (e.g., time-series database)
and how (e.g., some pre-processing)

Valeria Cardellini - SDCC 2024/25 14

MAPE: Analyze

* Main design options for Analyze:
— When to analyze: event- or time-triggered

— Reactive vs. proactive adaptation

* Reactive: in reaction to events that have already occurred (e.g.,
increase number of resources after workload increase)

* Proactive: based on prediction so to plan adaptation actions in
advance (e.g., increase number of resources before workload
increase occurs)

Valeria Cardellini - SDCC 2024/25 15

MAPE: Plan

« The most challenging and studied MAPE phase

» A variety of methodologies and techniques can be
used to plan adaptation, including

— Optimization theory
v Optimal adaptation actions
X Con: formulation can be NP-hard, too expensive to solve at runtime

— Heuristics
v Faster
X Sub-optimal adaptation actions

— Machine learning, including reinforcement learning
— Control theory
— Queueing theory
« Example: optimal bin packing and heuristic policies to

dynamically place virtual machines or containers on
servers

Valeria Cardellini - SDCC 2024/25 16

Example: VM/container placement

« VM/container placement problem can be modeled as
bin packing optimization problem

. . pack items of different sizes
(VMs/containers) into a minimum number of bins
(server nodes), each of a given capacity (amount of
resources), such that total size of items in each bin
does not exceed bin capacity

™|

7| T

5 5 5
4 B 4 4

2 |2 |2 |2 “‘

i
vf
 Integer optimization problem = NP-hard = we need
efficient heuristics to find a new placement when

some Change Ooccurs
Valeria Cardellini - SDCC 2024/25 17

4 4 4

Example: VM/container placement

« Some examples of baseline heuristic policies

* Round robin: organize bins in a circular list, saving
the latest bin used for placement; allocate each item
on next bin with enough capacity, starting from
current position on list

— Does not minimize number of used bins

» First fit: organize bins in a list and place each item
into the first bin in which it fits, restarting for each
item at the beginning of list
— First fit decreasing: variant in which items are sorted in

decreasing order

« Many other heuristics, e.g.,

— Best fit: place item into the bin with the minimum amount of
capacity into which the item can fit

— Worst fit: similar to best fit, but maximum
Valeria Cardellini - SDCC 2024/25

Alternative architectures for MAPE

18

« How to design the managing system?

— Centralized MAPE: all MAPE components on same
node, simpler but lack of scalability in geo-
distributed environments

— Decentralized MAPE: MAPE components are
distributed; many architectural patterns, each one
with pros and cons

* No clear winner, it depends on system and application
features and requirements

Analyze —— Plan

/ Knowledge \

Monitor Execute
A L}

: 7
Sensor Effector

Valeria Cardellini - SDCC 2024/25 19

How to decentralize the adaptation control

» Main architectural patterns for decentralized MAPE

Master : Hierarchical
(] M—->A—»>P > E ‘
‘ A— P J
|
|
A | — —1 1
M E cee M E M—-A->P—~>E M—>A—->P—>E
A - o = (S M _— o |
. Worker 1™ " WorkerN ™, - W

Hierarchical MAPE: master-worker pattern Hierarchical MAPE: hierarchical control pattern

. Flat
‘MaAap»é M A P IE "M_,A__P__é' M- A LI
e 1t : 1 ‘
o 1 ﬁL iiw , 4]7
‘M*A*"*ﬁ M~ A Bk M- AP E M- A P IE
Lo A 4 i, =
Flat MAPESs: coordinated control pattern Flat MAPEs: information sharing pattern
Weyns et al., On patterns for decentralized control in self-adaptive systems. In
SEfSAS I, 2013
20

Valeria Cardellini - SDCC 2024/25

How to decentralize the adaptation control

» First design choice: hierarchical vs. flat
— Hierarchical: easier to design, but risk of bottleneck in top level
of hierarchy
— Flat: more difficult to coordinate, but can scale better
» Hierarchical MAPE patterns: multiple MAPE loops
organized in a hierarchy, where a higher-level control
loop manages subordinated control loops
- Master-worker
- Hierarchical control
» Flat MAPE patterns: multiple MAPE loops cooperate
as peers
— Coordinated control
— Information sharing

Valeria Cardellini - SDCC 2024/25 21

Hierarchical MAPE: master-worker pattern

« Decentralize M and E on workers, keep Aand P
centralized on master

v Global view on master who can achieve global
adaptation goals

X Communication overhead and risk of performance
bottleneck and SPOF on master

Master
A — P
= = ~ ~x
M E | soe M E |
S, | bR X
.-~ Worker 1 ‘* .-~ Worker N ‘\
Valeria Cardellini - SDCC 2024/25 22

Hierarchical MAPE: hierarchical control pattern

» Multiple MAPE loops, which can operate at different
time scales and with separation of concerns

v Top-level MAPE can achieve global goals, increased
flexibility

X Can be non-trivial to identify different levels of control,
depends on managed system characteristics
' hd

M—A—>P —>E

\
‘ b}

M— A —>P —> E |

<4
7

M— A —>P —> E

Ay 4 .
N . .
4 ’ 4

Valeria Cardellini - SDCC 2024/25 23

Flat MAPE: coordinated control pattern

« Multiple control loops, each one in charge of some part
of the managed system but coordinated through
interaction

v" Better scalability

X More difficult to take joint adaptation decisions

.
J N 5
. . .

\
b

M—- A —> P —> E ’

M— A —> P —lE |

Valeria Cardellini - SDCC 2024/25 24

Flat MAPE: information sharing pattern

» Special case of coordinated control pattern: interaction
only among M components

v" Better scalability

X Lack of coordination on planning, conflicting or sub-
optimal adaptation actions can be enacted

Valeria Cardellini - SDCC 2024/25 25

Examples of self-adaptive systems

» Let’s analyze 3 examples of self-adaptive systems for
resource management
1. Auto-scaling EC2 instances
2. Selecting services of composite applications
3. Auto-scaling microservice-based applications

« Common ground

— Applications face unexpected events (e.g., workload surge
and spikes, node crashes)

— Adaptation goal: satisfy some SLO (e.g., based on
application response time, application availability)

— Examples differ in planning methodologies and control
architectures

Valeria Cardellini - SDCC 2024/25

Example 1: Amazon EC2 Auto Scaling

26

« AWS service to automatically add or remove EC2
instances according to user-defined conditions and
health checks

Auto Scaling group

—_—

Minimum size Scale out as needed

——
Desired capacity

v
Maximum size

 MAPE Monitor: monitor scaling metrics on EC2
instances using CloudWatch

* Which scaling metrics?

— CPU utilization, network 1/O, Application Load Balancer request
count, ...

Valeria Cardellini - SDCC 2024/25

27

Example 1: Amazon EC2 Auto Scaling

« MAPE Plan: we study 2 policies implemented in Auto
Scaling for determining scale-out/in decisions

— Dynamic simple scaling
— Predictive scaling

» In addition to auto-scaling, Auto Scaling is a self-
healing system

— Can detect when an EC2 instance is unhealthy, terminate it,
and launch a new instance to replace it

Valeria Cardellini - SDCC 2024/25 28

Example 1: Amazon EC2 Auto Scaling

 Dynamic simple scaling: user-defined scaling plan to
decide when and how to scale (reactive)

« Based on a threshold-based heuristic policy
— Set upper and lower thresholds on some scaling metric(s)
if (metric > upper_thr) scale-out
else if (metric < lower_thr) scale-in

» Example of scale-out rule: if average CPU utilization of all
instances > 70% in last 1 minute, then add 1 new instance

» Example of scale-in rule: if average CPU utilization of all
instances is <35% in last 5 min, then remove 1 instance

— CloudWatch monitors and sends alarms, one for scaling out
(upper_thr) and the other for scaling in (lower _thr)

— Cooldown period between each scaling activity

Valeria Cardellini - SDCC 2024/25 29

Threshold-based policy: pros & cons

v/ Simple and easy-to-understand: select scaling
metric(s), period and thresholds for alarms

X Not easy to choose metrics and thresholds

* Metric can be application-dependent: application
components can be CPU/memory/IO-intensive or a mix

* Thresholds value can be either too aggressive or

conservative, some example
» Slow scale-out, e.g., not enough instances added because upper _thris
high = SLO violations occur
» Rapid scale-out, e.g., too many instances added because upper_thr is low
= large underutilization and high cost

» Slow scale-in, e.g., not enough instances removed because scaling
period is long = large underutilization and high cost

» Rapid scale-in, e.g., too many instances removed because lower _thr is
high = SLO violations occur

* No application-specific metric (e.g., response time)
X Not robust against varying load patterns

Valeria Cardellini - SDCC 2024/25

30

Threshold-based policy: cons

« Example of wrong choices
scaling period = 30 s. over-provisioned

high_thr = 80% low_thr = 25% /

D
‘© 154 12000 @ 94

£ 15_ 1508 8
i 10 11005 8 51

g 571) 150 & 2

® 04! , s , 0 & T , . ; ;
12 0 300 600 900 1200 0 300 600 900 1200

Time [s] Time [s]
scaling period = 60 s. g - d

_ high_thr =80% low_thr = 50% under-provisione

(2]

‘© 15/ 12000 @ 51

2o 1503 8

=10 11005 S 31

. J (2]

g ° g £

O 01 ; : : 0 o H11, ; ; ;

X o0 300 600 900 0 300 600 900

Time [s] Time [s]

Strasser et al., Autoscaler Evaluation and Configuration: A Practitioner's Guideline, ICPE 2023

Valeria Cardellini - SDCC 2024/25 31

Example 1: Amazon EC2 Auto Scaling

» Predictive scaling: based on ML (proactive)

— Trained ML model to predict application expected traffic and
EC2 usage, including daily and weekly patterns
— Requires historical data collected from CloudWatch

* Model needs at least one day’s of historical data to start making
predictions

* Re-evaluated every 24 hours to forecast for the next 48 hours

Analyze historical load Generate forecast Schedule scaling actions

v Proactive

X Requires training: the more the historical data, the more
accurate the forecast

X Choice of scaling metric is core

Valeria Cardellini - SDCC 2024/25 32

Example 2: Service selection

» QoS-driven self-adaptation of SOA applications

— Multiple concrete services for each abstract service: how to
select which concrete services to use so to satisfy application

SLAs?
Brokering service\ O O O Q

® o ,g—/‘ ! / :

\;\,;’ :> - sS4 S: B Q
— s —

: ~O O

“ o
n
=
>
7

]

| T
NG SVNGE e

Cardellini et al., MOSES: a framework for QoS driven runtime adaptation of service-oriented
systems, IEEE Trans. Soft. Eng., 2012

Valeria Cardellini - SDCC 2024/25 33

Valeria Cardellini - SDCC 2024/25

Example 2: Service selection

« MAPE Plan

— Centralized policy: select optimal set of concrete services (and
their coordination) by means of linear programming optimization

Knowledge [monitor + Analyze
if;:{Service Manager};{ QoS Monitor} ”””” WS Monitor J+
YN . »[Execution Path
A 7

> 'il_f\ Manager L Analyzer

s —

S| || |Plan L X vy

! § < L Optimization Engine]

o o
(=) 5]
8 I —
]
& g Execute

[m)] . N

| Composition |1 BPEL Engine Adaptation
Manager Manager
! 1
?
- = ETE Hi n
il\!%‘r:‘/»" - U;T E —Hﬁw]
Y BPEL Proc‘:ess ~ Users Concrete Services

Valeria Cardellini - SDCC 2024/25 34

Example 3: Hierarchical scaling of microservices

- Hierarchical control pattern to elastically ,@_\
scale a microservices-based application Qo 9
— Goal: keep response time below maximum ﬁéK @»\«q

— Each Microservice Mngr. determines scale-out/in needs \»Xol

through local policy based on queueing theory (and workload =g
prediction) and sends proposal to Application Mngr.

— Application Mngr. coordinates scaling proposals by accepting
or not them and sends decision to local Execute components

. Global Polic
— Implemented in Kubernetes .

Application Mana*r

Monitor Analyze + Plan Execute

Global
Reconfiguration
Manager

Application
Monitor

Global

Application Manager Actuator

M—>A—->P—>E

|

Microservice Mandger

. . . . Monitor Analyze + Plan Execute
Microservice Manager Microservice Manager v
. . Local
e Microservice : i Local
M—>A->P—E M—>A—P—E monitor || [Pomngazron| || actitor
Local Policy

Rossi et al., Hierarchical scaling of microservices in Kubernetes, Proc. IEEE ACSOS 2020
35

References

* The vision of Autonomic Computing
* An Introduction to Self-Adaptive Systems: A Contemporary

Software Engineering Perspective, chapter 1

» On patterns for decentralized control in self-adaptive systems

Valeria Cardellini - SDCC 2024/25

36

