TOR VERGATA Macroarea di Ingegneria

Cvivensira prciisronr o1 zoums Dipartimento di Ingegneria Civile e Ingegneria Informatica

Container-based virtualization: Docker

Corso di Sistemi Distribuiti e Cloud Computing
A.A. 2024/25

Valeria Cardellini

Laurea Magistrale in Ingegneria Informatica

Case study: Docker .*!

« Lightweight, open and secure container-based docker
virtualization

— Application container: includes application and its
dependencies, but shares OS kernel with other containers

— Container runs as isolated process in user space on host OS

— Container is not tied to any specific infrastructure

App 1 App 3
Bins/Libs Bins/Libs

e

Docker Engine

Operating System

Infrastructure

[18 &

Valeria Cardellini - SDCC 2024/25

Docker features

» Portable deployment across machines

« Versioning, i.e., git-like capabilities

« Component reuse

» Shared libraries, see Docker Hub

» Supports OCI, a set of standards for containers

Valeria Cardellini - SDCC 2024/25

Docker internals

* Written in Go

» Exploits Linux kernel mechanisms such as cgroups
and namespaces
— First versions were based on Linux Containers

— Then based on , @ container runtime which
provides a native Go implementation for creating containers
with namespaces, cgroups, capabilities, and filesystem
access controls and allows you to manage container
lifecycle

— 1libcontainer is included in runc: CLI tool for spawning
and running containers according to OCI specification

Valeria Cardellini - SDCC 2024/25

Docker Engine

* Docker Engine acts a

client-server application
composed by:

— Server, called Docker
daemon (dockerd), which
listens for Docker API

requests and manages
Docker objects such as

images, containers,
networks, and volumes

container

manages

network

REST API which specifies

interfaces that programs
can use to control and interact with the daemon
— Command line interface (CLI) client

REST API

server
docker daemon

data volumes

https://docs.docker.com/get-started/docker-overview/#docker-architecture

Valeria Cardellini - SDCC 2024/25

Docker architecture

Docker uses a client-server architecture

— Docker client talks to Docker daemon, which builds, runs,
and distributes Docker containers

— Client and daemon communicate via sockets or REST API

|C|ient I [Docker Host]]Registry |
e — ————— — =
‘ } (lunggs J !Coz\lvamers | images J
' docker run l > A ‘——o
NGinNX
{ U .
(e @ redi ‘mm @
docker buILdl........ . cccccc. Yool 70 /77 R venens - @
(s ISR N
r’) Docker [| ‘
dockexcputl/r~---1T--""1" e T e ST O ->L B
& \FEx}eTsionséi
=@
L
LPIugins 71‘
! s 8O

Valeria Cardellini - SDCC 2024/25

Docker image

» Read-only template used to create a Docker container

* Build component of Docker

— Enables apps distribution with their runtime environment

* Incorporates all the dependencies and configuration necessary to
apps to run, eliminating the need to install packages and
troubleshoot

— Target machine must be Docker-enabled

« Docker can build images automatically by reading
instructions from a Dockerfile
— A text file with simple, well-defined syntax

» Images can be pulled and pushed towards a
public/private registry

* Image name: [registry/][user/lname[:tag]
— Default for tag is latest

Valeria Cardellini - SDCC 2024/25

Docker image: Dockerfile

* Image is created from Dockerfile and context

— Dockerfile: text file containing the instructions to assemble
the image

— Context: set of files (e.g., application, libraries)
— Often, an image is based on a parent image (e.g., alpine)

» Dockerfile syntax
Comment
INSTRUCTION arguments

* |nstructions within Dockerfile run in order

Valeria Cardellini - SDCC 2024/25

Docker image: Dockerfile

« Common instructions
- FROM <image>: to specify parent image (mandatory)
- WORKDIR <path>: to specify working directory

- COPY <host-path> <image-path>: to copy files from host
and put them into container image

- RUN <command>: to execute specified command
- ENV <name> <value>: to set environment variable
- EXPOSE: to set specified network port exposed by container

- CMD ["<command>", "<argl>"]: to provide default
command the container will run

Valeria Cardellini - SDCC 2024/25 8

Docker image: Dockerfile

« Example: Dockerfile to build the image of a container
that will run as application a simple todo list manager
written in Node.js

mtax=docker/dockerfile Directory with app code
|— getting-started-app/

FROM node:lts-alpine | — package.json

--------- | — README.md
WORKDIR /app | — spec/
COPY . . | — src/
RUN yarn install --production | '— yarn.lock

CMD ["node", "src/index.js"

Valeria Cardellini - SDCC 2024/25

Docker image: build

 Build image from Dockerfile and context
— Build's context is the set of files located in the specified
PATH or URL

$ docker build [OPTIONS] PATH | URL | -

— E.g., to build image for Node.js app (slide 9)
$ docker build -t getting-started .
If Dockerfile’s name is not Dockerfile use -f, e.g.,

$ docker build -t getting-started -f myDockerfile .

https://docs.docker.com/reference/cli/docker/build-legacy/

Valeria Cardellini - SDCC 2024/25

Docker image: layers

10

« Each image consists of a series of layers

» Docker uses union file systems to combine these
layers into a single unified view

— Layers are stacked on top of each other to form a base for
a container’s root file system

— Based on copy-on-write (CoW) strategy

Thin R/W layer 54— Container layer

| | | | I

~

91e54dfb1179 0B

d74508fb6632 1.895 KB

& > Image layers (R/O)
c22013c84729 194.5 KB

d3alf33e8a5a 188.1 MB

ubuntu:15.04

. .. Container
Valeria Cardellini - SDCC 2024/25 {Basedion ubuntuz15.08 image]

1

Docker image: layers

« Layering pros
- Enable layer sharing and reuse, installing common layers
only once and saving bandwidth and storage space

- Manage dependencies and separate concerns
- Facilitate software specializations
See docs.docker.com/storage/storagedriver

91e54dfb1179

d74508fb6632 1.895 KB

€22013c84729 194.5 KB

d3a1f33e8a5a 188.1 MB

ubuntu:15.04 Image

Valeria Cardellini - SDCC 2024/25

Docker image: layers and Dockerfile

12

» Each layer represents an instruction in Dockerfile

— Except CMD instruction, which specifies what command to run
within container: it only modifies image’s metadata, without
producing an image layer

» Each layer except the very last one is read-only
« \Writable layer on top (aka container layer) is added

when container is created

— Changes made to running container (e.g., writing a file) are
written to writable layer

— Does not persist after container is deleted

— Suitable for storing ephemeral data generated at runtime
« To inspect an image, including image layers

$ docker inspect imageid

Valeria Cardellini - SDCC 2024/25

13

Docker image: storage

» Containers are usually stateless (why? easier to
scale, restart from failure, migrate)
— Very little data written to container’s writable layer
— Data usually written on Docker volumes
— Nevertheless: some workloads require to write data to
container’s writable layer
« Storage driver controls how images and containers
are stored and managed on Docker host

« Multiple choices for storage driver

- Including Overlay?2 (at file level, preferred for all Linux
distros), Device Mapper, btrfs and zfs (at block level)

- Storage driver’s choice can affect performance of
containerized apps: optimized for space efficiency, but write
speeds can be lower than native file system performance

Valeria Cardellini - SDCC 2024/25
14

Docker container and registry

« Docker container: runnable instance of Docker image
— Run component of Docker

— Run, start, stop, move, or delete a container using Docker API
or CLI commands

- Since Docker containers are
stateless, when a container is
deleted, any data written not ocke
stored in a data volume is ' | Jonamne sonl
deleted

* Docker registry: stateless server-side application that

stores and lets you distribute Docker images

- Distribute component of Docker

- Open library of images

- Docker-hosted registries: Docker Hub, Docker Store (open
source and enterprise verified images)

Valeria Cardellini - SDCC 2024/25 15

Docker: run command

* When you run a container whose image is not yet
installed but is available on Docker Hub

Docker looks Docker
for the image Is it searches
on this installed? Docker Hub
computer for the image

Is it
on Docker
Hub?

Docker creates The image Bocker
The container a new container layers are
: . - ; downloads
is running! and starts installed on

the program this computer the image

Courtesy of “Docker in Action” by J. Nickoloff

Valeria Cardellini - SDCC 2024/25

State transitions of Docker containers

pause
run L

running unpause paused

‘) restart
restart start stop | kill

create

: stop
exited <

— (\/7

Courtesy of “Docker in Action” by J. Nickoloff

restarting

Valeria Cardellini - SDCC 2024/25

Commands: Docker info

» Obtain system-wide info on Docker installation
$ docker info
including:
— How many images, containers and their status
— Storage driver
— Operating system, architecture, total memory
— Docker registry

Valeria Cardellini - SDCC 2024/25
18

Commands: image handling

List images on host (i.e., local repository)
$ docker images
alternatively, $ docker image 1ls

List every image, including intermediate image layers
$ docker image 1ls -a

Options to list images by name and tag, to list image
digests (sha256), to filter images, to format the output
- E.g., to list untagged images (<none>) that have no

relationship to any tagged images (no longer used but
consume disk space)

$ docker images --filter "dangling=true"

Remove an image can also use imagename
instead of imageid

$ docker rmi imageid

alternatively, $ docker image rm imageid

Valeria Cardellini - SDCC 2024/25
19

Command: run

$ docker run [OPTIONS] IMAGE [COMMAND] [ARGS]

* Most common options
--name assign a name to container

-d detached mode (run container in background)

-1 interactive (keep STDIN open even if not attached)
-t allocate a pseudo-tty

--expose expose a port or range of ports inside container

-p publish container's port or range of ports to host

Y bind and mount a volume

-e set environment variables

--1link add link to another container

Valeria Cardellini - SDCC 2024/25
20

Commands: containers management

 List containers
— Only running containers: $ docker ps
alternatively, $ docker container 1s
— All containers (including stopped or killed containers):
$ docker ps -a

« Manage container lifecycle
— Stop running container
$ docker stop containerid
Start stopped container
$ docker start containerid

— Kill running container
$ docker kill containerid

— Remove container (need to stop it before attempting removal)
$ docker rm containerid

can also use containername
Valeria Cardellini - SDCC 2024/25 instead of containerid

21

Commands: containers management

Stop and remove running container
docker ps

docker stop containerid

docker ps -a

docker rm containerid

T A A B

Stop all containers
$ for i in $(docker ps -q); do docker stop $i; done

« Execute command in a running container

$ docker exec [OPTIONS] CONTAINER [COMMAND] [ARGS]

Valeria Cardellini - SDCC 2024/25

Commands: containers management

22

* Inspect a container

— Most detailed view of the environment in which a container
was launched

$ docker inspect containerid

» Copy files from and to container
$ docker cp containerid:path Localpath
$ docker cp Llocalpath containerid:path

Valeria Cardellini - SDCC 2024/25

23

Docker networking

» Container networking: ability for containers to connect
to and communicate with each other or to non-Docker
workloads

* Published ports

— In docker run, use --publish or -p flag to make port
available to services outside of Docker

— E.g.: -p 8080:80 map port 8080 on host to TCP port 80 in
container

— Issue: publishing container ports is insecure by default

* Include localhost IP address so that only host can access
container port, e.g.: -p 127.0.0.1:8080:80

* |P address and hostname
— Container receives |IP address out of network IP subnet

— Docker daemon performs dynamic subnetting and IP address
allocation for containers

— Container hostname defaults to be container ID in Docker
Valeria Cardellini - SDCC 2024/25

Docker networking: network drivers

24

» Docker's networking is pluggable using drivers

» Several network drivers, including
- bridge: default network driver, used when application
runs in a container that needs to communicate with other
containers on same host

» Software bridge which lets containers connected to same
bridge network communicate, while providing isolation from
containers that are not connected to that bridge network

- host: remove network isolation between container and
host and use host networking directly

Valeria Cardellini - SDCC 2024/25

25

Docker volumes

» Preferred mechanism for persisting data generated
by and used by Docker containers

— New directory is created within Docker’s storage directory on
host machine, and Docker manages directory’s content
* On Linux storage directory is /var/lib/docker/volumes/

— Volume does not need to exist on host, it is created on
demand if it does not yet exist

(
Container 1
-)

tmpfs

bind mount

mount volume

| Memory J

(Filesystem

Valeria Cardellini - SDCC 2024/25 e -

Docker volumes

26

« To mount a volume to a container, use -v (or --

volume) flag with docker run

$ docker run .. -v source:destination:[options]

— Use ro option to mount a read-only volume

— If a container is started with a volume that does not yet exist,

Docker creates the volume

« Commands to manage volumes:

— Create volume: $ docker volume create volumename

— List volumes: $ docker volume 1s

— Inspect volume: $ docker volume inspect volumename

— Remove volume: $ docker volume rm volumename

* Volume can be declared in Dockerfile using VOLUME
* How to load data into a volume? Can use docker cp

https://docs.docker.com/engine/reference/commandline/
Valeria Cardellini - SDCC 2024/25

27

Docker volumes: pros

v Completely managed by Docker

v/ Easy to back up or migrate

v/ Managed using Docker CLI or API

v/ Work on both Linux and Windows containers
v/ Can be shared among multiple containers

v/ Content can be encrypted

v/ Content can be pre-populated

v Better choice than persisting data in container’'s
writable layer

— A volume does not increase container size and its contents
exist outside container lifecycle

» Tip: use volumes for write-heavy application (e.g., a
write-intensive DB)

Valeria Cardellini - SDCC 2024/25

Hands-on: hello world

28

* Download and install Docker
— Available on multiple platforms

 Test Docker version
$ docker --version

« Test Docker installation by running hello-world
Docker image

$ docker run hello-world

Valeria Cardellini - SDCC 2024/25

29

Hands-on: hello world

* Run “Hello World” container with a command

$ docker run alpine /bin/echo 'Hello world'

- alpine: lightweight Linux distro with reduced image size

 Use commands to:

— List containers and container images

— Remove containers and container images

Valeria Cardellini - SDCC 2024/25

Hands-on: networking

30

* Run nginx Web server inside a container
- Bind container port to host port
$ docker run -dp 80:80 --name web nginx
Option -p: publish container port (80) to host port (80)
Option -d: detached mode

1. Send HTTP request through Web browser

- First retrieve hostname of host machine (e.g., localhost)

2. Send HTTP request to nginx from interactive
container using a bridge network

$ docker
$ docker
$ docker
/ # wget
/ # exit

network create -d bridge my_net

run -dp 80:80 --name web --network=my net nginx
run -i -t --network=my net --name web_test busybox
-0 - http://web:80/

Valeria Cardellini - SDCC 2024/25

31

Valeria Cardellini - SDCC 2024/25

Hands-on: from Dockerfile

* Running Apache web server with minimal index page

1. Define container image with Dockerfile
» Define image starting from Ubuntu, install and configure Apache

* Incoming port set to 80 using EXPOSE instruction
FROM ubuntu:18.04

Install dependencies

RUN apt-get update -y

RUN apt-get -y install apache2

Install apache and write hello world message

RUN echo 'Hello World!' > /var/www/html/index.html

Configure apache

RUN echo '. /etc/apache2/envvars' > /root/run_apache.sh

RUN echo 'mkdir -p /var/run/apache2' >> /root/run_apache.sh
RUN echo 'mkdir -p /var/lock/apache2' >> /root/run_apache.sh
RUN echo '/usr/sbin/apache2 -D FOREGROUND' >> /root/run_apache.sh
RUN chmod 755 /root/run_apache.sh

EXPOSE 80
CMD /root/run_apache.sh

Hands-on: from Dockerfile

32

2. Build container image from Dockerfile
$ docker build -t hello-apache

3. Run container and bind
$ docker run -dp 80:80 hello-apache

4. Execute an interactive shell in running container
$ docker exec --it hello-apache /bin/bash

« To reduce container’s image size let’s avoid adding
unnecessary layers

— E.g., in Dockerfile update and install multiple packages in a
single RUN instruction

+ Use \ to type out the command in multiple lines

Valeria Cardellini - SDCC 2024/25

33

Hands-on: from Dockerfile

FROM ubuntu:18.04

Install dependencies
RUN apt-get update -y && \
apt-get -y install apache2

Install apache and write hello world message
RUN echo 'Hello World!' > /var/www/html/index.html

Configure apache
RUN echo '. /etc/apache2/envvars' > /root/run_apache.sh && \
echo 'mkdir -p /var/run/apache2' >> /root/run_apache.sh && \
echo 'mkdir -p /var/lock/apache2' >> /root/run_apache.sh && \
echo '/usr/sbin/apache2 -D FOREGROUND' >> /root/run_apache.sh && \
chmod 755 /root/run_apache.sh
EXPOSE 80

CMD /root/run_apache.sh

Valeria Cardellini - SDCC 2024/25

Hands-on: volumes

34

* Run nginx container with volume
$ docker volume create my-vol
$ docker volume 1ls
$ docker volume inspect my-vol
$ docker run -d \
--name devtest \
-v my-vol:/app \
nginx:latest
- my-vol is the source, /app is the target inside container
$ docker inspect devtest

— Inspect container to verify that Docker created the volume
and it mounted correctly

Valeria Cardellini - SDCC 2024/25

35

Docker: reduce image size

» Optimize Docker images

— Especially important for DevOps engineers at every stage
of CI/CD process

— Not only to reduce image disk space, reduce image transfer
and deploy time, but also to improve security

— Best practice employed by Google and other tech giants

* Techniques

1. Use minimal base images (e.g., alpine, minideb) or
distroless base images

» Distroless images contain only application and its runtime
dependencies; do not contain package managers, shells or
any other programs available in standard Linux distro

2. Minimize number of image layers

Valeria Cardellini - SDCC 2024/25

Docker: reduce image size

36

* Techniques

3. Multistage builds

» Use intermediate images (build stages) to compile code,
install dependencies, and package files; after that, only
necessary files required to run app are used in another image
with only the required libraries

4. Exploit image layers’ caching

* Add the lines which are used for installing dependencies and
packages earlier inside Dockerfile, before COPY commands

5. Use .dockerignore file

» Configuration file that describes files and directories that you
want to exclude when building a Docker image

6. Keep application data in a volume, not inside the
container

Valeria Cardellini - SDCC 2024/25

37

Configure container memory and CPU

« By default, a container has no resource constraints
— Can use as much resource as host’s kernel scheduler allows

* Docker provides ways to control how much memory
or CPU a container can use by setting runtime
configuration flags of docker run

Docker Engine implements configuration changes by
modifying settings of container’s cgroup

Valeria Cardellini - SDCC 2024/25

38

Configure container memory

» Avoid running out of memory (OOM)

Individual containers can be killed

Docker daemon has lower OOM score, so less risk than
containers

» Docker can enforce hard or soft memory limits

Valeria Cardellini -

Hard limit: container cannot use more than a given amount
of user or system memory; - -memory flag

Soft limit: container can use as much memory as it needs
unless certain conditions are met, such as when kernel
detects contention or low memory on host machine
Example: limit container to use at most 500 MB of memory
(hard limit) and specify also a soft limit
$ docker run -it --memory-reservation="300m" \
--memory="500m" ubuntu /bin/bash

SDCC 2024/25
39

Configure container CPU

» Various constraints to limit container usage of host
machine’s CPU cycles

« Some options

--cpus=<value>: limit how many CPU resources a container
can use (hard limit)

--cpu-quota=<value>: set CPU Completely Fair Scheduler
(CFS) quota on container

--cpuset-cpus: limit specific CPUs or cores a container can use

--cpu-shares: set to value >/< 1024 to increase/reduce
container’s weight, and give it access to greater/less proportion of
CPU cycles (soft limit)

— Example: limit container to use at most 50% of CPU every

second
$ docker run -it --cpus=".5" ubuntu /bin/bash
Alternatively, $ docker run -it --cpu-period=100000 \

--cpu-quota=50000 ubuntu /bin/bash
Valeria Cardellini - SDCC 2024/25

40

Multi-container Docker applications

* How to run multi-container Docker apps?
» Container deployment on single host

— Docker Compose
» Container deployment on multiple hosts

— Docker Swarm
— Kubernetes

Valeria Cardellini - SDCC 2024/25
41

Docker Compose

@)

=)

» Tool for defining and running multi-container Docker
applications

* How to install
— Included with Docker Desktop for Windows and macOS

» Allows us to coordinate a composition of multiple
containers running on a single host (i.e., single
Docker engine)

— User expresses the containers to be instantiated at once and
their relationships

— Compose automatically sets up a network and attaches all
deployed containers to it

Valeria Cardellini - SDCC 2024/25
42

Docker Compose: how to use

» To start: specify how to compose containers in a
YAML file named compose.yaml

« Then, manage lifecycle of containerized application
through Compose

» To start Docker composition (background -d):
$ docker compose up -d

— By default, Docker Compose looks for compose.yaml in
working directory
» Can specify a different file using -f flag

$ docker compose -f composefile up -d

« To stop running containers:
$ docker compose stop
* To bring composition down, removing everything

$ docker compose down
Valeria Cardellini - SDCC 2024/25 43

Docker Compose: Compose file

» To configure Docker application’s services, networks,
volumes, and more

— Different versions of Compose file format

— Latest: Compose V2 implements format defined by Compose
Specification and includes legacy
versions 2.x and 3.x

» What inside compose.yaml (or compose.yml)?

» YAML file which defines: version (optional), services
(required), networks, volumes, configs, secrets

Valeria Cardellini - SDCC 2024/25

Docker Compose: Compose file

44

» Service: abstract definition of computing resources
within application which can be scaled or replaced
independently from other components

— Services are backed by a set of containers

— Compose file must declare a services top-level element
« Within each service

— build section, which defines how to create service image

— container_name, startup and shutdown dependencies
between services (depends_on), exposed containers ports,
CPU and memory limits, volumes that are accessible to
service containers

— and many other settings, see

Valeria Cardellini - SDCC 2024/25

45

Docker Compose: example

» Simple Python web app running on Docker Compose
— 2 containers: Python web app and Redis
— Use Flask framework and maintain hit counter in Redis
— Redis: in-memory, key-value data store

See
¢ Steps t syntax=docker/dockerfile:1
1. Write Python app FROM python:3.18-alpine

2. Define Python container =2
image with its Dockerfile

CMD ["flask", "run", "--debug"]

Valeria Cardellini - SDCC 2024/25

Docker Compose: example

46

» Steps (cont'd):

services:
3. Define services in Compose web :
file — build: .
* Two services: web (image ports:
defined by Dockerfile) and - "8000:5000"
redis (pulled redis -

from Docker Hub) image: "redis:alpine”
4. Build and run app with Compose
$ docker compose up -d

5. Send HTTP requests using curl or browser (counter is
increased)

6. Listlocalimages $ docker image 1ls
7. Stop Compose, bringing everything down
$ docker compose down

Valeria Cardellini - SDCC 2024/25

47

Docker Compose: example

» Add volume for app code, so that code can be
modified on the fly without rebuilding the image

- Specify restart policy for containers in Compose file
— Options: on-failure[:max-retries], always, unless-stopped
« Start multiple replicas of same service using deploy
specification, e.g.,
services:
frontend:
image: example/webapp
deploy:
mode: replicated

replicas: 6

Valeria Cardellini - SDCC 2024/25 48

Example of Dockerized distributed system

» Kafka as Docker container
» Different packages already available, e.g.,

- either single container
or Docker Compose with Zookeeper or KRaft

Docker Compose with Zookeeper, single and multiple
Zookeeper and Kafka brokers

Valeria Cardellini - SDCC 2024/25 49

Docker Compose: pros and cons

v/ Simplify development, deployment, and management
of multi-container applications on single host

v/ Simplified control

v Efficient collaboration

v/ Rapid application development
v Portability across environments

X Single host
X Lack of elasticity

Valeria Cardellini - SDCC 2024/25

Docker Swarm

« Swarm mode: advanced feature of Docker to
natively manage a cluster of Docker engines called
a swarm

« A swarm consists of multiple Docker engines which
run in swarm mode

« Tasks: containers running in a service

Valeria Cardellini - SDCC 2024/25

50

51

Docker Swarm: features

» Cluster management integrated with Docker
» Decentralized management
* Declarative service model
« Scaling
— Number of tasks for each service, but no auto-scaling
» State reconciliation

— Swarm monitors cluster state and reconciles any difference
wrt desired state (e.g., node crash)

« Multi-host networking
— Can specify overlay network for services
« Load balancing

— Can expose service ports to external load balancer and
specify how to distribute containers among nodes

Secure: TLS authentication and encryption

~+ Easy to use and lightweight
Valeria Cardellini - SDCC 2024/25

Docker Swarm: architecture

52

* Node: instance of Docker engine
— Manager node(s): handles cluster management, including
scheduling tasks to worker nodes
* Multiple managers to improve fault tolerance
» Raft as consensus algorithm to manage global cluster state
— Worker nodes execute tasks

» Workers use a gossiping protocol to disseminate information on their
state

Raft consensus group

| Internal distributed state store () |

l I I

< “‘/ - \ ~\ y , \ \

o ¥ ’«‘ po ‘ ‘ A
| Workerél Workerél Worker$| Worker$| Worker$ | Workerél Workeré

Gossip network

Valeria Cardellini - SDCC 2024/25

53

Some useful tools

 To manage images
— Reduce image size: Slim https:/slimtoolkit.org/
— Explore image layers: Dive https://github.com/wagoodman/dive
— Automate image builds: Packer https://www.packer.io/
« To monitor
— cAdvisor https://github.com/google/cadvisor
» To check fo vulnerabilities
— Docker Scout https://docs.docker.com/scout/
— Static analysis: Clair htips://github.com/quay/clair

» To compose:

— Docker Compose examples htips://github.com/docker/awesome-
compose

« Many more tools:

Valeria Cardellini - SDCC 2024/25 54

References

 Docker Docs

» Docker workshop https://docs.docker.com/get-started/workshop/

* Nickoloff and Kuenzli, Docker in Action 2nd Edition, 2019
https://www.manning.com/books/docker-in-action-second-edition

Valeria Cardellini - SDCC 2024/25 55

