
Corso di Sistemi Distribuiti e Cloud Computing
A.A. 2024/25

Valeria Cardellini

Laurea Magistrale in Ingegneria Informatica

Container-based virtualization: Docker

Macroarea di Ingegneria
Dipartimento di Ingegneria Civile e Ingegneria Informatica

Case study: Docker

• Lightweight, open and secure container-based
virtualization
– Application container: includes application and its

dependencies, but shares OS kernel with other containers
– Container runs as isolated process in user space on host OS
– Container is not tied to any specific infrastructure

Valeria Cardellini - SDCC 2024/25
1

Docker features

• Portable deployment across machines
• Versioning, i.e., git-like capabilities
• Component reuse
• Shared libraries, see Docker Hub https://hub.docker.com

• Supports OCI, a set of standards for containers
https://opencontainers.org/

Valeria Cardellini - SDCC 2024/25
2

Docker internals
• Written in Go
• Exploits Linux kernel mechanisms such as cgroups

and namespaces
– First versions were based on Linux Containers
– Then based on libcontainer, a container runtime which

provides a native Go implementation for creating containers
with namespaces, cgroups, capabilities, and filesystem
access controls and allows you to manage container
lifecycle
https://pkg.go.dev/github.com/opencontainers/runc/libcontainer

– libcontainer is included in runc: CLI tool for spawning
and running containers according to OCI specification
https://github.com/opencontainers/runc

Valeria Cardellini - SDCC 2024/25
3

Docker Engine
• Docker Engine acts a

client-server application
composed by:
– Server, called Docker

daemon (dockerd), which
listens for Docker API
requests and manages
Docker objects such as
images, containers,
networks, and volumes

– REST API which specifies
interfaces that programs

Valeria Cardellini - SDCC 2024/25
4

https://docs.docker.com/get-started/docker-overview/#docker-architecture

can use to control and interact with the daemon
– Command line interface (CLI) client

Docker architecture
• Docker uses a client-server architecture

– Docker client talks to Docker daemon, which builds, runs,
and distributes Docker containers

– Client and daemon communicate via sockets or REST API

Valeria Cardellini - SDCC 2024/25 5

Docker image
• Read-only template used to create a Docker container
• Build component of Docker

– Enables apps distribution with their runtime environment
• Incorporates all the dependencies and configuration necessary to

apps to run, eliminating the need to install packages and
troubleshoot

– Target machine must be Docker-enabled

• Docker can build images automatically by reading
instructions from a Dockerfile
– A text file with simple, well-defined syntax

• Images can be pulled and pushed towards a
public/private registry

• Image name: [registry/][user/]name[:tag]
– Default for tag is latest

Valeria Cardellini - SDCC 2024/25
6

Docker image: Dockerfile
• Image is created from Dockerfile and context

– Dockerfile: text file containing the instructions to assemble
the image

– Context: set of files (e.g., application, libraries)
– Often, an image is based on a parent image (e.g., alpine)

• Dockerfile syntax
Comment

INSTRUCTION arguments

• Instructions within Dockerfile run in order

7Valeria Cardellini - SDCC 2024/25

Docker image: Dockerfile
• Common instructions

– FROM <image>: to specify parent image (mandatory)
– WORKDIR <path>: to specify working directory
– COPY <host-path> <image-path>: to copy files from host

and put them into container image
– RUN <command>: to execute specified command
– ENV <name> <value>: to set environment variable
– EXPOSE: to set specified network port exposed by container
– CMD ["<command>", "<arg1>"]: to provide default

command the container will run

https://docs.docker.com/get-started/docker-concepts/building-
images/writing-a-dockerfile/

8Valeria Cardellini - SDCC 2024/25

Docker image: Dockerfile
• Example: Dockerfile to build the image of a container

that will run as application a simple todo list manager
written in Node.js

9
Valeria Cardellini - SDCC 2024/25

https://docs.docker.com/get-started/workshop/02_our_app/

Directory with app code

Docker image: build

• Build image from Dockerfile and context
– Build's context is the set of files located in the specified

PATH or URL

⎼ E.g., to build image for Node.js app (slide 9)
$ docker build -t getting-started .

⎼ If Dockerfile’s name is not Dockerfile use –f, e.g.,
$ docker build -t getting-started –f myDockerfile .

Valeria Cardellini - SDCC 2024/25
10

$ docker build [OPTIONS] PATH | URL | -

https://docs.docker.com/reference/cli/docker/build-legacy/

Docker image: layers
• Each image consists of a series of layers
• Docker uses union file systems to combine these

layers into a single unified view
– Layers are stacked on top of each other to form a base for

a container’s root file system
– Based on copy-on-write (CoW) strategy

Valeria Cardellini - SDCC 2024/25
11

Docker image: layers
• Layering pros

- Enable layer sharing and reuse, installing common layers
only once and saving bandwidth and storage space

- Manage dependencies and separate concerns
- Facilitate software specializations
See docs.docker.com/storage/storagedriver

12
Valeria Cardellini - SDCC 2024/25

Docker image: layers and Dockerfile
• Each layer represents an instruction in Dockerfile

– Except CMD instruction, which specifies what command to run
within container: it only modifies image’s metadata, without
producing an image layer

• Each layer except the very last one is read-only
• Writable layer on top (aka container layer) is added

when container is created
– Changes made to running container (e.g., writing a file) are

written to writable layer
– Does not persist after container is deleted
– Suitable for storing ephemeral data generated at runtime

• To inspect an image, including image layers
$ docker inspect imageid

Valeria Cardellini - SDCC 2024/25
13

Docker image: storage
• Containers are usually stateless (why? easier to

scale, restart from failure, migrate)
– Very little data written to container’s writable layer
– Data usually written on Docker volumes
– Nevertheless: some workloads require to write data to

container’s writable layer

• Storage driver controls how images and containers
are stored and managed on Docker host

• Multiple choices for storage driver
- Including Overlay2 (at file level, preferred for all Linux

distros), Device Mapper, btrfs and zfs (at block level)
- Storage driver’s choice can affect performance of

containerized apps: optimized for space efficiency, but write
speeds can be lower than native file system performance

https://docs.docker.com/storage/storagedriver/select-storage-driver
Valeria Cardellini - SDCC 2024/25

14

Docker container and registry
• Docker container: runnable instance of Docker image

– Run component of Docker
– Run, start, stop, move, or delete a container using Docker API

or CLI commands

• Docker registry: stateless server-side application that
stores and lets you distribute Docker images
- Distribute component of Docker
- Open library of images
- Docker-hosted registries: Docker Hub, Docker Store (open

source and enterprise verified images)

Valeria Cardellini - SDCC 2024/25 15

- Since Docker containers are
stateless, when a container is
deleted, any data written not
stored in a data volume is
deleted

Docker: run command

• When you run a container whose image is not yet
installed but is available on Docker Hub

Valeria Cardellini - SDCC 2024/25
16

Courtesy of “Docker in Action” by J. Nickoloff

State transitions of Docker containers

Valeria Cardellini - SDCC 2024/25
17

Courtesy of “Docker in Action” by J. Nickoloff

Commands: Docker info

• Obtain system-wide info on Docker installation
$ docker info

including:
– How many images, containers and their status
– Storage driver
– Operating system, architecture, total memory
– Docker registry

18
Valeria Cardellini - SDCC 2024/25

Commands: image handling
• List images on host (i.e., local repository)

$ docker images

alternatively, $ docker image ls

• List every image, including intermediate image layers
$ docker image ls –a

• Options to list images by name and tag, to list image
digests (sha256), to filter images, to format the output
- E.g., to list untagged images (<none>) that have no

relationship to any tagged images (no longer used but
consume disk space)

$ docker images --filter "dangling=true"

• Remove an image
$ docker rmi imageid
alternatively, $ docker image rm imageid

19
Valeria Cardellini - SDCC 2024/25

can also use imagename
instead of imageid

Command: run

• Most common options
--name assign a name to container
-d detached mode (run container in background)
-i interactive (keep STDIN open even if not attached)
-t allocate a pseudo-tty
--expose expose a port or range of ports inside container
-p publish container's port or range of ports to host
-v bind and mount a volume
-e set environment variables
--link add link to another container

20

$ docker run [OPTIONS] IMAGE [COMMAND] [ARGS]

Valeria Cardellini - SDCC 2024/25

https://docs.docker.com/reference/cli/docker/container/run/

Commands: containers management
• List containers

– Only running containers: $ docker ps
alternatively, $ docker container ls

– All containers (including stopped or killed containers):
$ docker ps -a

• Manage container lifecycle
– Stop running container

$ docker stop containerid
– Start stopped container

$ docker start containerid
– Kill running container

$ docker kill containerid
– Remove container (need to stop it before attempting removal)

$ docker rm containerid

21

can also use containername
instead of containeridValeria Cardellini - SDCC 2024/25

Commands: containers management

22
Valeria Cardellini - SDCC 2024/25

• Stop and remove running container
$ docker ps
$ docker stop containerid
$ docker ps -a
$ docker rm containerid

• Stop all containers
$ for i in $(docker ps -q); do docker stop $i; done

• Execute command in a running container
$ docker exec [OPTIONS] CONTAINER [COMMAND] [ARGS]

Commands: containers management
• Inspect a container

– Most detailed view of the environment in which a container
was launched

$ docker inspect containerid

• Copy files from and to container
$ docker cp containerid:path localpath
$ docker cp localpath containerid:path

23
Valeria Cardellini - SDCC 2024/25

Docker networking
• Container networking: ability for containers to connect

to and communicate with each other or to non-Docker
workloads

• Published ports
– In docker run, use --publish or -p flag to make port

available to services outside of Docker
– E.g.: -p 8080:80 map port 8080 on host to TCP port 80 in

container
– Issue: publishing container ports is insecure by default

• Include localhost IP address so that only host can access
container port, e.g.: -p 127.0.0.1:8080:80

• IP address and hostname
– Container receives IP address out of network IP subnet
– Docker daemon performs dynamic subnetting and IP address

allocation for containers
– Container hostname defaults to be container ID in Docker

Valeria Cardellini - SDCC 2024/25 24

Docker networking: network drivers
• Docker's networking is pluggable using drivers
• Several network drivers, including

– bridge: default network driver, used when application
runs in a container that needs to communicate with other
containers on same host

• Software bridge which lets containers connected to same
bridge network communicate, while providing isolation from
containers that are not connected to that bridge network

– host: remove network isolation between container and
host and use host networking directly

Valeria Cardellini - SDCC 2024/25
25

Docker volumes

• Preferred mechanism for persisting data generated
by and used by Docker containers
– New directory is created within Docker’s storage directory on

host machine, and Docker manages directory’s content
• On Linux storage directory is /var/lib/docker/volumes/

– Volume does not need to exist on host, it is created on
demand if it does not yet exist

Valeria Cardellini - SDCC 2024/25
26

Docker volumes
• To mount a volume to a container, use -v (or --

volume) flag with docker run
$ docker run … -v source:destination:[options]
– Use ro option to mount a read-only volume
– If a container is started with a volume that does not yet exist,

Docker creates the volume

• Commands to manage volumes:
– Create volume: $ docker volume create volumename
– List volumes: $ docker volume ls
– Inspect volume: $ docker volume inspect volumename
– Remove volume: $ docker volume rm volumename

• Volume can be declared in Dockerfile using VOLUME
• How to load data into a volume? Can use docker cp

Valeria Cardellini - SDCC 2024/25
27

https://docs.docker.com/engine/reference/commandline/

Docker volumes: pros
✓ Completely managed by Docker
✓ Easy to back up or migrate
✓ Managed using Docker CLI or API
✓ Work on both Linux and Windows containers
✓ Can be shared among multiple containers
✓ Content can be encrypted
✓ Content can be pre-populated
✓ Better choice than persisting data in container’s

writable layer
– A volume does not increase container size and its contents

exist outside container lifecycle

• Tip: use volumes for write-heavy application (e.g., a
write-intensive DB)

Valeria Cardellini - SDCC 2024/25 28

Hands-on: hello world

• Download and install Docker
– Available on multiple platforms
https://docs.docker.com/get-started/get-docker/
https://docs.docker.com/get-started/

• Test Docker version
$ docker --version

• Test Docker installation by running hello-world
Docker image
$ docker run hello-world

Valeria Cardellini - SDCC 2024/25
29

Hands-on: hello world

• Run “Hello World” container with a command
$ docker run alpine /bin/echo 'Hello world'

- alpine: lightweight Linux distro with reduced image size

• Use commands to:
⎼ List containers and container images

⎼ Remove containers and container images

Valeria Cardellini - SDCC 2024/25
30

Hands-on: networking
• Run nginx Web server inside a container

- Bind container port to host port
$ docker run -dp 80:80 --name web nginx

Option -p: publish container port (80) to host port (80)
Option -d: detached mode

1. Send HTTP request through Web browser
- First retrieve hostname of host machine (e.g., localhost)

2. Send HTTP request to nginx from interactive
container using a bridge network

$ docker network create –d bridge my_net

$ docker run -dp 80:80 --name web --network=my_net nginx

$ docker run -i -t --network=my_net --name web_test busybox

/ # wget -O - http://web:80/

/ # exit

31
Valeria Cardellini - SDCC 2024/25

Hands-on: from Dockerfile
• Running Apache web server with minimal index page

1. Define container image with Dockerfile
• Define image starting from Ubuntu, install and configure Apache
• Incoming port set to 80 using EXPOSE instruction

Va
le

ria
 C

ar
de

llin
i -

SD
C

C
 2

02
4/

25

32

FROM ubuntu:18.04

Install dependencies

RUN apt-get update -y

RUN apt-get -y install apache2

Install apache and write hello world message

RUN echo 'Hello World!' > /var/www/html/index.html

Configure apache

RUN echo '. /etc/apache2/envvars' > /root/run_apache.sh

RUN echo 'mkdir -p /var/run/apache2' >> /root/run_apache.sh

RUN echo 'mkdir -p /var/lock/apache2' >> /root/run_apache.sh

RUN echo '/usr/sbin/apache2 -D FOREGROUND' >> /root/run_apache.sh

RUN chmod 755 /root/run_apache.sh

EXPOSE 80

CMD /root/run_apache.sh

Hands-on: from Dockerfile

2. Build container image from Dockerfile
$ docker build -t hello-apache .

3. Run container and bind
$ docker run -dp 80:80 hello-apache

4. Execute an interactive shell in running container
$ docker exec --it hello-apache /bin/bash

• To reduce container’s image size let’s avoid adding
unnecessary layers
– E.g., in Dockerfile update and install multiple packages in a

single RUN instruction
• Use \ to type out the command in multiple lines

Valeria Cardellini - SDCC 2024/25
33

Hands-on: from Dockerfile

34

FROM ubuntu:18.04

Install dependencies

RUN apt-get update –y && \

apt-get -y install apache2

Install apache and write hello world message

RUN echo 'Hello World!' > /var/www/html/index.html

Configure apache

RUN echo '. /etc/apache2/envvars' > /root/run_apache.sh && \

echo 'mkdir -p /var/run/apache2' >> /root/run_apache.sh && \

echo 'mkdir -p /var/lock/apache2' >> /root/run_apache.sh && \

echo '/usr/sbin/apache2 -D FOREGROUND' >> /root/run_apache.sh && \

chmod 755 /root/run_apache.sh

EXPOSE 80

CMD /root/run_apache.sh

Valeria Cardellini - SDCC 2024/25

Hands-on: volumes
• Run nginx container with volume

$ docker volume create my-vol

$ docker volume ls

$ docker volume inspect my-vol

$ docker run -d \

--name devtest \

-v my-vol:/app \

nginx:latest

– my-vol is the source, /app is the target inside container
$ docker inspect devtest

– Inspect container to verify that Docker created the volume
and it mounted correctly

Valeria Cardellini - SDCC 2024/25
35

Docker: reduce image size
• Optimize Docker images

– Especially important for DevOps engineers at every stage
of CI/CD process

– Not only to reduce image disk space, reduce image transfer
and deploy time, but also to improve security

– Best practice employed by Google and other tech giants

• Techniques
1. Use minimal base images (e.g., alpine, minideb) or

distroless base images
• Distroless images contain only application and its runtime

dependencies; do not contain package managers, shells or
any other programs available in standard Linux distro
https://github.com/GoogleContainerTools/distroless

2. Minimize number of image layers

https://devopscube.com/reduce-docker-image-size/
Valeria Cardellini - SDCC 2024/25

36

Docker: reduce image size
• Techniques

3. Multistage builds
• Use intermediate images (build stages) to compile code,

install dependencies, and package files; after that, only
necessary files required to run app are used in another image
with only the required libraries

4. Exploit image layers’ caching
• Add the lines which are used for installing dependencies and

packages earlier inside Dockerfile, before COPY commands
5. Use .dockerignore file

• Configuration file that describes files and directories that you
want to exclude when building a Docker image

6. Keep application data in a volume, not inside the
container

Valeria Cardellini - SDCC 2024/25
37

Configure container memory and CPU
• By default, a container has no resource constraints

– Can use as much resource as host’s kernel scheduler allows

• Docker provides ways to control how much memory
or CPU a container can use by setting runtime
configuration flags of docker run
https://docs.docker.com/engine/containers/resource_constraints/
– Docker Engine implements configuration changes by

modifying settings of container’s cgroup

Valeria Cardellini - SDCC 2024/25
38

Configure container memory

• Avoid running out of memory (OOM)
– Individual containers can be killed
– Docker daemon has lower OOM score, so less risk than

containers

• Docker can enforce hard or soft memory limits
– Hard limit: container cannot use more than a given amount

of user or system memory; --memory flag
– Soft limit: container can use as much memory as it needs

unless certain conditions are met, such as when kernel
detects contention or low memory on host machine

– Example: limit container to use at most 500 MB of memory
(hard limit) and specify also a soft limit
$ docker run –it --memory-reservation="300m" \

--memory="500m" ubuntu /bin/bash

Valeria Cardellini - SDCC 2024/25
39

Configure container CPU
• Various constraints to limit container usage of host

machine’s CPU cycles
• Some options

--cpus=<value>: limit how many CPU resources a container
can use (hard limit)
--cpu-quota=<value>: set CPU Completely Fair Scheduler
(CFS) quota on container
--cpuset-cpus: limit specific CPUs or cores a container can use
--cpu-shares: set to value >/< 1024 to increase/reduce
container’s weight, and give it access to greater/less proportion of
CPU cycles (soft limit)
– Example: limit container to use at most 50% of CPU every

second
$ docker run -it --cpus=".5" ubuntu /bin/bash

Alternatively, $ docker run -it --cpu-period=100000 \

--cpu-quota=50000 ubuntu /bin/bash

40
Valeria Cardellini - SDCC 2024/25

Multi-container Docker applications

• How to run multi-container Docker apps?
• Container deployment on single host

– Docker Compose
• Container deployment on multiple hosts

– Docker Swarm
– Kubernetes

Valeria Cardellini - SDCC 2024/25
41

Docker Compose

• Tool for defining and running multi-container Docker
applications https://docs.docker.com/compose/

• How to install https://docs.docker.com/compose/install/
– Included with Docker Desktop for Windows and macOS

• Allows us to coordinate a composition of multiple
containers running on a single host (i.e., single
Docker engine)
– User expresses the containers to be instantiated at once and

their relationships
– Compose automatically sets up a network and attaches all

deployed containers to it

42
Valeria Cardellini - SDCC 2024/25

Docker Compose: how to use
• To start: specify how to compose containers in a

YAML file named compose.yaml
• Then, manage lifecycle of containerized application

through Compose

• To start Docker composition (background -d):
$ docker compose up -d

– By default, Docker Compose looks for compose.yaml in
working directory

• Can specify a different file using -f flag
$ docker compose –f composefile up –d

• To stop running containers:
$ docker compose stop

• To bring composition down, removing everything
$ docker compose down

Valeria Cardellini - SDCC 2024/25 43

Docker Compose: Compose file
• To configure Docker application’s services, networks,

volumes, and more
– Different versions of Compose file format

– Latest: Compose V2 implements format defined by Compose
Specification https://compose-spec.io/ and includes legacy
versions 2.x and 3.x

• What inside compose.yaml (or compose.yml)?
• YAML file which defines: version (optional), services

(required), networks, volumes, configs, secrets

https://docs.docker.com/reference/compose-file/

44
Valeria Cardellini - SDCC 2024/25

Docker Compose: Compose file
• Service: abstract definition of computing resources

within application which can be scaled or replaced
independently from other components
– Services are backed by a set of containers

– Compose file must declare a services top-level element

• Within each service
– build section, which defines how to create service image

– container_name, startup and shutdown dependencies
between services (depends_on), exposed containers ports,
CPU and memory limits, volumes that are accessible to
service containers

– and many other settings, see
https://docs.docker.com/reference/compose-file/services/

45
Valeria Cardellini - SDCC 2024/25

Docker Compose: example
• Simple Python web app running on Docker Compose

– 2 containers: Python web app and Redis
– Use Flask framework and maintain hit counter in Redis
– Redis: in-memory, key-value data store
See https://docs.docker.com/compose/gettingstarted/

46Valeria Cardellini - SDCC 2024/25

• Steps:
1. Write Python app
2. Define Python container

image with its Dockerfile

Docker Compose: example
• Steps (cont’d):

4. Build and run app with Compose
$ docker compose up –d

5. Send HTTP requests using curl or browser (counter is
increased)

6. List local images $ docker image ls
7. Stop Compose, bringing everything down

$ docker compose down

47Valeria Cardellini - SDCC 2024/25

3. Define services in Compose
file
• Two services: web (image

defined by Dockerfile) and
redis (official image pulled
from Docker Hub)

Docker Compose: example

• Add volume for app code, so that code can be
modified on the fly without rebuilding the image

• Specify restart policy for containers in Compose file
– Options: on-failure[:max-retries], always, unless-stopped

• Start multiple replicas of same service using deploy
specification, e.g.,

48Valeria Cardellini - SDCC 2024/25

Example of Dockerized distributed system
• Kafka as Docker container
• Different packages already available, e.g.,

– https://bitnami.com/stack/kafka/containers either single container
or Docker Compose with Zookeeper or KRaft

– https://learn.conduktor.io/kafka/how-to-start-kafka-using-docker/
Docker Compose with Zookeeper, single and multiple
Zookeeper and Kafka brokers

Valeria Cardellini - SDCC 2024/25 49

Docker Compose: pros and cons

✓ Simplify development, deployment, and management
of multi-container applications on single host

✓ Simplified control
✓ Efficient collaboration
✓ Rapid application development
✓ Portability across environments

✗ Single host
✗ Lack of elasticity

Valeria Cardellini - SDCC 2024/25 50

Docker Swarm

• Swarm mode: advanced feature of Docker to
natively manage a cluster of Docker engines called
a swarm https://docs.docker.com/engine/swarm/

• A swarm consists of multiple Docker engines which
run in swarm mode

• Tasks: containers running in a service

51Valeria Cardellini - SDCC 2024/25

Docker Swarm: features
• Cluster management integrated with Docker
• Decentralized management
• Declarative service model
• Scaling

– Number of tasks for each service, but no auto-scaling
• State reconciliation

– Swarm monitors cluster state and reconciles any difference
wrt desired state (e.g., node crash)

• Multi-host networking
– Can specify overlay network for services

• Load balancing
– Can expose service ports to external load balancer and

specify how to distribute containers among nodes
• Secure: TLS authentication and encryption
• Easy to use and lightweight

52Valeria Cardellini - SDCC 2024/25

Docker Swarm: architecture
• Node: instance of Docker engine

– Manager node(s): handles cluster management, including
scheduling tasks to worker nodes

• Multiple managers to improve fault tolerance
• Raft as consensus algorithm to manage global cluster state

– Worker nodes execute tasks
• Workers use a gossiping protocol to disseminate information on their

state

53Valeria Cardellini - SDCC 2024/25

Some useful tools
• To manage images

– Reduce image size: Slim https://slimtoolkit.org/
– Explore image layers: Dive https://github.com/wagoodman/dive
– Automate image builds: Packer https://www.packer.io/

• To monitor
– cAdvisor https://github.com/google/cadvisor

• To check fo vulnerabilities
– Docker Scout https://docs.docker.com/scout/
– Static analysis: Clair https://github.com/quay/clair

• To compose:
– Docker Compose examples https://github.com/docker/awesome-

compose

• Many more tools: https://github.com/veggiemonk/awesome-docker

Valeria Cardellini - SDCC 2024/25 54

References

• Docker Docs https://docs.docker.com/
• Docker workshop https://docs.docker.com/get-started/workshop/
• Nickoloff and Kuenzli, Docker in Action 2nd Edition, 2019

https://www.manning.com/books/docker-in-action-second-edition

Valeria Cardellini - SDCC 2024/25 55

