TOR VERGATA Macroarea di Ingegneria

- ‘ Dipartimento di Ingegneria Civile e Ingegneria Informatica
UNIVERSITA DEGLI STUDI DI ROMA

Introduction to Go

Corso di Sistemi Distribuiti e Cloud Computing
A.A. 2024/25

Valeria Cardellini

Laurea Magistrale in Ingegneria Informatica

What is Go? _TGO

* “An open source programming language that makes
it easy to build simple, secure, and scalable systems”

» Conceived in 2007 at Google by R. Griesemer, R.
Pike and K. Thompson, and announced in 2009

» Goals of language and its tools:

— To be expressive, efficient in both compilation and
execution, and effective in writing reliable and robust
programs

— Strong and statically, fast compiled language that feels like a
dynamically typed, interpreted language

» Go’s ancestors: mainly C and CSP (communicating
sequential processes) formal language by T. Hoare

Valeria Cardellini - SDCC 2024/25 1

Top programming languages and Go

» |IEEE Spectrum’s 2024 rankings of most popular
programming languages

w ,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,

R T

va

t ipt e
.] e
. o e ———rr

O o.22c: . [

o Go -

& o

omm®T 0 wm

Mathanatica ¢
e
e [sner1 [N e I

Valeria Cardellini - SDCC 2024/25

Go and C

* Go: “C-like language” or “C for the 21st
century”

* From C, Go inherited
— Expression syntax
— Control-flow statements
— Basic data types
— Call-by-value parameter passing
— Pointers
— Run-time efficiency
— Static typing

Valeria Cardellini - SDCC 2024/25

Go and other languages

* New and efficient facilities for concurrency

» Flexible approach to data abstraction and
object-oriented programming

« Automatic memory management (garbage
collection)

« Readability and usability

Valeria Cardellini - SDCC 2024/25

Go and distributed systems

* Go allows programmers to focus on
distributed system problems

— good support for concurrency

— good support for RPC

— garbage-collected (no use-after-freeing problems)
— type safe

« Simple language to learn

Valeria Cardellini - SDCC 2024/25

Go and cloud

» Also language for cloud native applications

* E.g., Go Cloud: library and tools for open cloud
development in Go

— Goal: allow application developers to seamlessly deploy
cloud applications on any combination of cloud providers

— E.g., read from blob storage

ctx := context.Background()
bucket, err := blob.OpenBucket(ctx, "s3://my-bucket")
if err != nil {
return err
}
defer bucket.Close()
blobReader, err := bucket.NewReader(ctx, "my-blob", nil)
if err != nil {
return err

}

Valeria Cardellini - SDCC 2024/25

Editor plugins and IDEs

« GolLand

* vim-go: plugin for vim

* Go extension for Visual Studio Code

« Can be integrated with gopls

— Go language server (What is it?)

Valeria Cardellini - SDCC 2024/25

Hello world example

package main
import "fmt"

func main() {
fmt.Println("Hello, fHJ\")
}

Valeria Cardellini - SDCC 2024/25

Some notes on the first example

» No semicolon at the end of statements or
declarations

» Go natively handles Unicode

« Every Go program is made up of packages (similar to
C libraries or Python packages)
— Package: one or more .go source files in a single directory

» Source file begins with package declaration (which
package the file belongs to), followed by list of other
imported packages
— Programs start running in main

— fmt package contains functions for printing formatted output
and scanning input

Valeria Cardellini - SDCC 2024/25

Go tool

Go is a compiled language

Go tool: fetch, build, and install Go packages and
commands
— A zero configuration tool

To run the program: go run

v go/src % go run helloworld.go
Hello, tH 5
v go/src % |}

To build the program into binary: go build

v go/src % go build helloworld.go
Vv go/src % 1s helloworldx
helloworld helloworld.go

Vv go/src % ./helloworld

Hello, 5

v go/src % |}

Valeria Cardellini - SDCC 2024/25

Packages

10

Go program is made up of packages
Programs start running in package main

Packages contain type, function, variable, and
constant declarations

Packages can even be very small or very large

Case determines visibility: a name is exported if it
begins with a capital letter
- Foo is exported, foo is not

— E.g., fmt.Println(math.pi)
./prog.go:9:19: undefined: math.pi

Valeria Cardellini - SDCC 2024/25

11

Imports

 Import statement: groups imports into a
parenthesized, “factored” statement

package main

import (
"fmt"
"math")

func main() {
fmt.Printf("Now you have %g problems.\n", math.Sqrt(7))

Valeria Cardellini - SDCC 2024/25

Functions

12

* Function can take zero or more arguments
func add(x int, y int) int {
return x + vy

}

- add takes as input two arguments of type int
» Type comes after variable name
» Shorter version for input arguments:

func add(x, y int) int {
* Function can return any number of results

func swap(x, y string) (string, string) {
return y, Xx

}

— Also useful to return both result and error values

Valeria Cardellini - SDCC 2024/25

13

Functions

package main
import "fmt"
func swap(x, y string) (string, string) {

return y, X

func main() {
a, b := swap("hello", "world")
fmt.Println(a, b)

Valeria Cardellini - SDCC 2024/25

Functions

14

* Return values may be named
package main

import "fmt"
func split(sum int) (x, y int) {
X =sum * 4 /9

y = sum - X
return // same as return x, y

func main() {
fmt.Println(split(17))

Valeria Cardellini - SDCC 2024/25

15

Variables

* var statement: declares a list of variables
— Type is last

« Can be at package or function level

package main
import "fmt"

var c, python, java bool

func main() {

var i int

fmt.Println(i, c, python, java)
}

» Can include initializers, one per variable
— If initializer is present, type can be omitted

» Variables declared without an explicit initial value are
given their zero value
» Short variable declaration using := (use only inside

functions)
Valeria Cardellini - SDCC 2024/25

Types

16

* Usual basic types
- bool, string, int, uint, float32, floaté64, ..

« Type conversion
var i int = 42
var f float64 = float64(i)

— Unlike in C, in Go assignment between items of different
type requires an explicit conversion

» Type inference
— Variable's type inferred from value on right hand side
var i int
j :=1// j is an int

Valeria Cardellini - SDCC 2024/25

17

Flow control statements

 for, if (and else), switch
* defer

Valeria Cardellini - SDCC 2024/25

Looping construct

18

Go has only one looping construct: for loop

3 components
— Init statement
— Condition expression

— Post statement
sum := 0
for i :=0; i < 10; i++ {
sum += 1
}

No parentheses surrounding the 3 components of
for statement

Braces { } are always required

Valeria Cardellini - SDCC 2024/25

19

Looping construct

 Init and post statements are optional: in this way, for
is Go's “while”
sum := 1
for sum < 1000 {
sum += sum

 If you omit condition, infinite loop
for {

}

Valeria Cardellini - SDCC 2024/25 20

Example: echo

// Echo prints its command-line arguments.

package main
import (
n fmt n

(OFS]

) s and sep implicitly initialized
func main() { //////__ to empty strings

var s, sep string
for i := 1; i < len(os.Args); i++ {

s += sep + os.Argsfi{_

sep = os.Args is a slice of
strings (see next slides)

}

fmt.Println(s)
}

Valeria Cardellini - SDCC 2024/25 21

Conditional statements: if

« Go's if (and else) statement is like for loop:

— Expression is not surrounded by parentheses ()
— Braces { } are always required

— if...else if...else statement to combine multiple
if...else statements

if optionalStatementl; booleanExpressionl {
block1l

} else if optionalStatement2; booleanExpression2 {
block2

} else {
block3

Valeria Cardellini - SDCC 2024/25

22

Example: if
 An example
if v := math.Pow(x, n); v < limit {
return v

} else {
fmt.Printf("%g >= %g\n", v, limit)
}

— Remember that } else must be on the same line
— Variable v is in scope only within if statement

Valeria Cardellini - SDCC 2024/25

23

Conditional statements: switch

« switch statement selects one of many cases to be
executed

— Cases evaluated from top to bottom, stopping when a case
succeeds

» Differences from C

— Go only runs the selected case, not all the cases that follow
(i.e., C’s break is provided automatically in Go)

— Switch cases need not be constants, and values involved
need not be integers

Valeria Cardellini - SDCC 2024/25

Defer statement

24

* New mechanism to defer the execution of a function
until the surrounding function returns

— Deferred call's arguments are evaluated immediately, but

function call is not executed until surrounding function that
contains defer has terminated

package main
import "fmt"

func main() {

2 n n he-L-l.o
defer fmt.Println("world")
fmt.Println("hello") world

}

» Deferred function calls pushed onto a stack
— Deferred calls executed in LIFO order

» Great for cleanup things, like closing files or

connections!
Valeria Cardellini - SDCC 2024/25

25

Pointers

* Pointer: value that contains the address of a variable

— Usual operators * and &: & operator yields the address of a
variable, and * operator retrieves the variable that the pointer
refers to

var p *int

i:=1

p = &l // p, of type *int, points to 1
fmt.Println(*p) // "1"

*p = 2 // equivalent to i = 2
fmt.Println(i) // "2"

» Unlike C, Go has no pointer arithmetic
» Zero value for a pointer is nil

« Safe for a function to return the address of a local
variable, because local variable will survive function

scope
Valeria Cardellini - SDCC 2024/25

Composite data types: structs and array

26

« Aggregate data types: structs and arrays

« Struct: typed collection of fields
— Syntax similar to C, fixed size
type Vertex struct {

X int
Y int
}

— Struct fields are accessed using dot notation, e.g.,
fmt.Println(v.X)

— Can also be accessed through a struct pointer

« Array: [n]Tis an array of n values of type T
— Fixed size (cannot be resized)
var a [2]string
a[@] = "Hello"

Valeria Cardellini - SDCC 2024/25

217

Composite data types: slices

m

« []Tis a slice with elements of type T: dynamically-
sized, flexible view into the elements of an array
— Create a slice by slicing an existing array or slice
— Specify two indices, a low and high bound, separated by a
colon: s[i : j]
— Slice includes the first element, but excludes the last
primes := [6]int{2, 3, 5, 7, 11, 13}
var s []int = primes[1:4] [3 5 7]
» Slice: section of underlying array

— Change slice element: modify corresponding element of
underlying array
Valeria Cardellini - SDCC 2024/25 28

» Slice: key data type in Go, more
powerful than array ji

Slices: operations

* Length of slice s: number of elements it contains, use
len(s)

« Capacity of slice s: number of elements in the
underlying array, counting from the first element in the
slice, use cap(s)

« Compile or run-time error if array length is exceeded:
Go performs bounds check (memory-safe language)

» Slices can also be created using make
— Length and capacity can be specified

Valeria Cardellini - SDCC 2024/25 29

Slices: operations

» Let’s create an empty slice

package main

import "fmt"

func main() {
a := make([]int, @, 5) // len(s)=0, cap(s)=5
printSlice("a", a)

}

func printSlice(s string, x []int) {
fmt.Printf("%s len=%d cap=%d %v\n", s, len(x), cap(x), Xx)
}
a len=0 cap=5 []

Valeria Cardellini - SDCC 2024/25

Slices: operations

30

* New items can be appended to a slice using append
func append(slice []T, elems ...T) []T
— When append a slice, slice may be enlarged if necessary
func main() {
var s []int
printSlice(s)

s = append(s, @) // works on nil slices
printSlice(s)

s = append(s, 1) // slice grows as needed
printSlice(s)

s = append(s, 2, 3, 4) // more than one element
printSlice(s)
}

Valeria Cardellini - SDCC 2024/25

31

Composite data types: maps

* map maps keys to values

— Map type map[K]V is a reference to a hash table where K
and V are the types of its keys and values

— Use make to create a map

m = make(map[string]Vertex)

m["Bell Labs"] = Vertex{
40.68433, -74.39967,

}
» QOperations on map: insert or update element, retrieve
element, delete element, test if key is present

m[key] = element // insert or update
elem = m[key] // retrieve
delete(m, key) // delete

elem, ok = m[key] // test

Valeria Cardellini - SDCC 2024/25

Range

32

e range iterates over entries in a variety of data
structures

— range on arrays and slices provides both index and value
for each entry

— range on map iterates over key/value pairs

package main
import "fmt"

var pow = []int{1, 2, 4, 8, 16, 32, 64, 128}
func main() {

for i, v := range pow {
fmt.Printf("2**%d = %d\n", i, v)

}

Valeria Cardellini - SDCC 2024/25

33

Range: example

func main() { Skip index or value by assigning to _
nums := []int{2, 3, 4}
sum := @
for _5 num := range nums { o e T CEngEse e
sum += num sum: 9
} index: 1
fmt.Println("sum:", sum) a —> apple
for i, num := range nums { b —> banana
if num == 3 { key: a
fmt.Println("index:", i)
key: b
}
}
kvs := map[string]string{"a": "apple", "b": "banana"}
for k, v := range kvs {
fmt.Printf("%s -> %s\n", k, v)
} Key is first, value is second but doesn't

for k := range kvs { “——— have to be present
fmt.Println("key:", k)

}

Valeria (}ardellini - SDCC 2024/25

Go functions: anonymous and closures

34

» Go functions can be anonymous

— Useful when you want to define a function inline without
having to name it

 Go functions can be closures

— Go closure: anonymous nested function which retains
bindings to variables defined outside closure’s body

— Closure can hold a unique state of its own; state becomes
isolated as you create new function instances

— See example

« See

— E.g., middleware pattern to independently act on a request
before or after the normal request handler (e.g., to wrap
HTTP request’s handler and measure its processing time)

Valeria Cardellini - SDCC 2024/25

35

Closure: example

package main
import "fmt"
// fibonacci is a function that returns

// a function that returns an int.
func fibonacci() func() int {

X,y =1, 0

return func() int {
X, Y =Y, Xty
return x

}

}

func main() {
f := fibonacci()
for i :=0; i < 10; i++ {
fmt.Println(f())

} Valeria Cardellini - SDCC 2024/25

Methods

36

» Go does not have classes, but supports methods
defined on struct types

A method is a function with a special receiver
argument (extra parameter before function name)

— The receiver appears in its own argument list between func
and method name

type Vertex struct {

X, Y floaté64

func (v Vertex) Abs() float64 {
return math.Sqrt(v.X*v.X + v.Y¥*v.Y)

Valeria Cardellini - SDCC 2024/25

37

Interfaces

» Interface type: named collection of method signatures

* Any type (struct) that implements the required
methods, implements that interface

— Instead of designing the abstraction in terms of what kind of
data our type can hold, you design the abstraction in terms
of what actions your type can execute

» A type is not explicitly declared to be of a certain
interface, it is implicit
— Just implement the required methods

» Let’s code a basic interface for geometric shapes

Valeria Cardellini - SDCC 2024/25

Interface: example

38

package main

import "fmt"
import "math"

// A basic interface for geometric shapes
type geometry interface {

area() floaté64

perim() floaté64

}

// For example, implement this interface on rect and circle types

type rect struct {
width, height float64

}

type circle struct {
radius floaté64

}

Valeria Cardellini - SDCC 2024/25

39

Interface: example

// To implement an interface in Go, you just need to
// implement all the methods in the interface.

// Here you implement geometry on rect
func (r rect) area() float64d {
return r.width * r.height
}
func (r rect) perim() floaté64 {
return 2*r.width + 2*r.height

// Here you implement geometry on circle
func (c circle) area() float64 {

return math.Pi * c.radius * c.radius
}
func (c circle) perim() float64 {

return 2 * math.Pi * c.radius

}

Valeria Cardellini - SDCC 2024/25

Interface: example

40

// If a variable has an interface type, then you can call
// methods that are in the named interface. Here's a
// generic measure function taking advantage of this
// to work on any geometry

$ go run interfaces.go
func measure(g geometry) {

fmt.Println(g) 13 4}
fmt.Println(g.area()) 12
fmt.Println(g.perim()) 14

} {5}

func main() { 78.53981633974483
r := r?ct{width? 3, height: 4} 31.41592653589793
¢ := circle{radius: 5}

// The circle and rect struct types both implement the
// geometry interface so you can use instances of these
// structs as arguments to measure

measure(r)

measure(c)

}
Valeria Cardellini - SDCC 2024/25

41

Concurrency in Go

» Go provides concurrency features as part of the core
language

 Goroutines and channels
— Support CSP concurrency model

« Can be used to implement different concurrency
patterns

Valeria Cardellini - SDCC 2024/25

Goroutines

42

« Goroutine: lightweight thread managed by Go
runtime
» Very easy to use: just prefix go to function call
go f(x, y, z) // start a new goroutine running
/1 F(x, Yy, z)
» Goroutines run in same address space, so access to
shared memory must be synchronized
» Be careful: when main function returns, program exits
without waiting for other (non-main) goroutines to
complete
— See example goroutine_termination.go

Valeria Cardellini - SDCC 2024/25

43

Goroutines

» Are goroutines threads?

— No, they are lightweight abstractions over threads
» Scheduled over OS threads by Go scheduler
* A single OS thread can run many goroutines

— Goroutine creation and destruction are cheaper as compared to
OS threads (at least 5x) and less memory consuming (~500x)
» Are goroutines called in the declared order?

— No, since goroutines are abstractions over threads, they all
have the same priority and you therefore cannot control the
order in which they run

* How to control goroutine performance?

— You can set an environment variable (GOMAXPROCS) which
determines how many threads your program will use
simultaneously

* Normally set to number of virtual CPU cores

Valeria Cardellini - SDCC 2024/25

Channels

« Communication mechanism that lets one goroutine
sends values of a given type to another goroutine
— Channel: thread-safe queue managed by Go and its runtime

» Hides a lot of pain of inter-thread communication

— Internally, a channel uses mutexes and semaphores just as
one might expect

writes data Goroutine 2

reads data
Goroutine 1

* Multiple senders can write to same channel
— Useful for notifications, multiplexing, etc.
— And totally thread-safe!
» Be careful: only one can close channel, and can’t

send after close (panic!)
Valeria Cardellini - SDCC 2024/25

Channels

« Channel: a typed conduit through which a goroutine
can send and receive values using the channel

operator < - _

ch <- v // Send v to channel ch Data f'o".VS |nlthe
arrow direction

v := <- ch // Receive from ch, and

// assign value to v
» A conduit for values of a particular type (e.g., int,
struct)
— By default bidirectional
» Create channel with make before using it
ch := make(chan int)
« Send and receive block until the other side is ready

— Goroutines can synchronize without explicit locks or
condition variables

— See
Valeria Cardellini - SDCC 2024/25 46
Channels: example
import "fmt"
func sum(s []int, c chan int) { * Distributed sum: sum is
sum := © distributed between two
for _, v := range s { goroutines
sum += v « Example of applying the
} common SPMD pattern for
c <- sum // send sum to c parallelism

func main() {

[1int{7, 2, 8, -9, 4, 0}
make(chan int)

go sum(s[:len(s)/2], c)

go sum(s[len(s)/2:], c)

X, Yy = <-c, <-c // receive from c
fmt.Println(x, y, x+y)

S .

c

}

Valeria Cardellini - SDCC 2024/25 47

Channels: example

package main » Fibonacci sequence: iterative
import "fmt" version using channel
func fib(c chan int) {
X,y =0, 1
for {
c <- X
X, ¥ =Y, XY ——Flegant and efficient!
}
}
func main() {
¢ := make(chan int)
go fib(c)
for 1 :=0; i < 10; i++ {
fmt.Println(<-c)
}
}

Valeria Cardellini - SDCC 2024/25

Buffered channels

48

« By default (i.e., unbuffered channel), channel ops block

— Go spec.: If the capacity is zero or absent, the channel is
unbuffered and communication succeeds only when both a
sender and receiver are ready. If the channel is unbuffered, the
sender blocks until the receiver has received the value

» Buffered channels do not block if they are not full or not
empty
— Specify buffer capacity as make’s second argument
ch := make(chan int, 100)
« If capacity is zero or absent, channel is unbuffered
— Send to buffered channel blocks only when buffer is full

— Receive from buffered channel blocks only when buffer is
empty (no data to receive) s s

Valeria Cardellini - SDCC 2024/25 BuﬁerechhanneI

49

More on channels: close and range

* How to close channel
— Use close function

— Receiver can test whether a channel has been closed by
assigning a second value to receive

v, ok := <- ch

» ok is false if there are no more values to receive and channel
has been closed

— Only sender should close a channel, never receiver

» Sending on closed channel causes run-time panic
panic: send on closed channel

— See example

» Use range to receive values from channel repeatedly
until it is closed
for elem := range ch {
fmt.Println(elem)

Valeria Cardellini - SDCC 2024/25

More on channels: select

50

« select allows a goroutine to wait on multiple
channels at once

— Blocks until one of its cases can run, then executes that
case

— One at random if multiple cases are ready

Go spec.: If one or more of the communications can proceed, a
single one that can proceed is chosen via a uniform pseudo-
random selection. Otherwise, if there is a default case, that case
is chosen. If there is no default case, the "select" statement
blocks until at least one of the communications can proceed.

select {
case mgsl := <-chl: // receive on chl
/] ...
case msg2 := <-ch2: // receive on ch2
// ...use X...
}

Valeria Cardellini - SDCC 2024/25

51

Using select: example

« Fibonacci sequence: iterative version using two channels, the
latter being used to quit

package main
import "fmt"

func fibonacci(c, quit chan int) {
X, y :=0, 1
for {
select {
case ¢ <- x: // send Fibonacci value
X, Y =Y, Xty
case <- quit: // receive termination
fmt.Println("quit")
return

}

Valeria Cardellini - SDCC 2024/25

Using select: example

52

func main() {
¢ := make(chan int) // unbuffered channel
quit := make(chan int)
go func() { // anonymous function
for i :=0; i < 10; i++ {

fmt.Println(<-c) // receive Fibonacci val.

}
quit <- ©

149

fibonacci(c, quit)

Valeria Cardellini - SDCC 2024/25

53

More on channels: select

* You can use select with a default clause to
implement non-blocking sends, receives, and even
non-blocking multi-way selects

select {

case mgsl :
/] ...

case msg2 := <-ch2: // receive
// ...use X...

case ch3 <-msg3: // send
/] ...

default:

/] ...

<-chl: // receive

}

See example with non-blocking channel operations

Valeria Cardellini - SDCC 2024/25

Timers

54

* You can implement timeouts by using a timer channel
— You tell the timer how long you want to wait, and it provides
a channel that will be notified at that time
// to wait 2 seconds
timer := time.NewTimer(time.Second * 2)
<- timer.C

- <-timer.C blocks on timer’s channel C until it sends a value
indicating that the timer fired

— Timer can be canceled before it fires using Stop()
— See example

Valeria Cardellini - SDCC 2024/25

55

Exercise: Implement mutex using channel

» Go also provides mutexes to safely access shared
data across multiple goroutines
— See example

» Let’s implement mutex using channel
type Lock struct {
//?
}
func NewlLock() Lock {
/]2
}
func (1 *Lock) Lock() {
//?

}
func (1 *Lock) Unlock() {

/]2
}

Valeria Cardellini - SDCC 2024/25 56

Exercise: Implement mutex using channel

type Lock struct {
ch chan bool

}

func NewLock() Lock {
lock := Lock{make(chan bool, 1)}
lock.ch <- true // send
return lock

}

func (1 *Lock) Lock() {
<-1l.ch // receive

}

func (1 *Lock) Unlock() {
l.ch <- true // send

}

Valeria Cardellini - SDCC 2024/25 57

Wait group

Another synchronization primitive is sync.WaitGroup

Allows co-operating goroutines to collectively wait for
an event before proceeding independently again

Like a concurrent-safe counter: functions Add, Done,
and Wait

When to use

1. When cleaning up, to ensure that all goroutines (main
included) wait before all terminating
+ See example

2. Cyclic algorithm with a set of goroutines that work
independently for a while, then wait on a barrier, before
proceeding independently again; data might be exchanged
at barrier

» Aka Bulk Synchronous Parallel (BSP) pattern

Valeria Cardellini - SDCC 2024/25

A few more things

58

Modules

Variadic functions

Error handling

Go tools

Testing and benchmarking
RPC in Go

Many other things, but this is just an introduction!
— E.g., HTTP support in net/http package

Valeria Cardellini - SDCC 2024/25

59

Go modules

* Module: collection of related Go packages stored in
a file tree with a go.mod file at its root

» go.mod file defines:

— module path, which is also the import path used for root
directory

— minimum version of Go required by module

— its dependency requirements, which are the other modules
needed for a successful build with their minimum version

module mymodule

« To generate go.mod file:

$ go mod init <module_name>

github.com/inconshreveable/mousetrap v1.0.0 // indirect
github.com/spf13/cobra v1.2.1 // indirect

° TO add miSSing (and remove github.com/spf13/pflag v1.0.5 // indirect
unused) module requirements:

$ go mod tidy

Valeria Cardellini - SDCC 2024/25 60

Variadic functions

» Go functions can be called with a varying number of
arguments: variadic functions
— E.g., fmt.Println is a variadic function

ackage main)
P g func main() {

import "fmt"
sum(1, 2)
func sum(nums ...int) { sum(1l, 2, 3)
fmt.Print(nums, " ")
total := © nums := []int{1, 2, 3, 4}
for _, num := range nums { sum(nums. ..)
total += num
}
} — .
fmt.Println(total) $ go run variadic-functions.go
} [12] 3
[123]6
[1234] 10

Valeria Cardellini - SDCC 2024/25 61

Error handling

» (Go code uses error values to indicate abnormal state

» Errors are communicated via explicit, separate return
value

“Error handling [in Go] does not obscure the flow of control.” (R. Pike)

— By convention, last value returned by functions
— nil value in error position means no error
result, err := SomeFunction()
if err = nil {
// handle error

}

» Built-in error interface type in package errors
type error interface {
Error() string

}

- errors.New constructs a basic error value with its message

Valeria Cardellini - SDCC 2024/25

Common errors and recommended tools

62

« Go can be somewhat picky

— Unused variables raise errors, not warnings

» Use blank identifier “_” for variables you don’t care about (e.g.,
the loop index when you need only the value)

— In if-else statement { must be placed at the end of the
same line, e.g.
} else {
} else if .. {

— Unused imports raise errors

» Recommended command-line tools:

— gofmt to format code
$ gofmt -w yourcode.go

— goimports to automatically add/remove imports

— godoc to browse package documentation

Valeria Cardellini - SDCC 2024/25

63

Testing and benchmarking in Go

 Go testing package provides tools to write unit tests

e To run tests:
$ go test

« Code to be tested is in a given source file (e.g.,
math.go)

« Testfile foritends _test.go (e.g., math_test.go)
— Call func TestXxx(*testing.T) where Xxx is the name of
the tested function

func TestAbs(t *testing.T) {
got := Abs(-1)
if got =1 {

t.Errorf("Abs(-1) = %d; want 1", got)

}

}

Valeria Cardellini - SDCC 2024/25

Testing and benchmarking in Go

64

» Use benchmarking to measure code performance

 Benchmark tests are in _test.go files and are
named beginning with Benchmark

* The testing runner executes each benchmark
function several times, increasing b.N on each run
until it collects a precise measurement

— A benchmark runs a function in a loop b.N times
func BenchmarkXxx(b *testing.B) {
for i :=0; i < b.N; i++ {
Xxx(...)
}
}
 To run benchmarks
$ go test -bench=.

 Example: let's benchmark make vs. append on slice
Valeria Cardellini - SDCC 2024/25

65

References

« Go website

» Go standard library
* Online Go tutorial

* Go playground

* Go by examples

* Donovan and Kernighan, The Go programming language,
Addison-Wesley, 2016

* Learn Go programming (7 hours video)

e How to code in Go

More resources

Valeria Cardellini - SDCC 2024/25

66

