
Corso di Sistemi Distribuiti e Cloud Computing
A.A. 2024/25

Valeria Cardellini

Laurea Magistrale in Ingegneria Informatica

Microservices and
Serveless Computing

Macroarea di Ingegneria
Dipartimento di Ingegneria Civile e Ingegneria Informatica

Microservices

• A “new” emerging architectural style for distributed
applications that structures an application as a
collection of loosely coupled services

• Not so new: deriving from SOA and Web services
– But with some significant differences

• Address how to build, manage, and evolve
architectures out of small, self-contained units
– Modularization: decompose app into a set of independently

deployable services, that are loosely coupled and cooperating
and can be rapidly deployed and scaled

– Services equipped with memory persistence tools (e.g.,
relational databases and NoSQL data stores)

Valeria Cardellini – SDCC 2024/25 1

The ancestors: Service Oriented Architecture
• Service Oriented Architecture (SOA): architectural

paradigm for designing loosely coupled distributed sw
systems

• Definition https://docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf

SOA is a paradigm for organizing and utilizing
distributed capabilities that may be under the control of
different ownership domains. It provides a uniform
means to offer, discover, interact with and use
capabilities to produce desired effects consistent with
measurable preconditions and expectations

• Properties of SOA https://www.w3.org/TR/ws-arch/

– Logical view
– Message orientation and description orientation
– Service granularity, network orientation
– Platform neutral

2Valeria Cardellini – SDCC 2024/25

Service Oriented Architecture

• 3 interacting entities
1. Service requestor or consumer: requests service execution
2. Service provider: provides service and makes it available
3. Service registry: offers publication and search tools to

discover the services offered by providers

Valeria Cardellini – SDCC 2024/25 3

Web services
• Web services: implementation of SOA
• Definition https://www.w3.org/TR/ws-arch/

– Web service: software system designed to support
interoperable machine-to-machine (M2M)
interaction over a network

– Web service interface described in a machine-
processable format

– Other systems interact with web service in a
manner prescribed by its description using SOAP
messages, typically conveyed using HTTP

Valeria Cardellini – SDCC 2024/25 4

Web services
• More than 60 standards and specifications, most used:

– To describe: WSDL (Web Service Description Language)
– To communicate: SOAP (Simple Object Access Protocol)
– To register: UDDI (Universal Description, Discovery and

Integration)
– To define business processes: BPEL (Business Process

Execution Language), BPMN (Business Process Model and
Notation)

Valeria Cardellini – SDCC 2024/25 5

– To define SLA: WSLA
• A variety of technologies

– Including ESB (Enterprise Service Bus):
integration platform that provides
fundamental interaction and
communication services for complex
applications

SOA vs. microservices

• Heavyweight vs. lightweight technologies
- SOA tends to rely strongly on heavyweight middleware (e.g.,

ESB), while microservices rely on lightweight technologies

• Protocol families
– SOA is often associated with web services protocols

• SOAP, WSDL, and WS-* family of standards

– Microservices typically rely on REST and HTTP

• Views
– SOA mostly viewed as integration solution
– Microservices are typically applied to build individual

software applications

Valeria Cardellini – SDCC 2024/25 6

Microservices and containers
• Microservices as ideal complement of container-based

virtualization
– “Microservice instance per container”: package each

microservice as container image and deploy each
microservice instance as container

– Manage each container at runtime scaling and/or migrating it

• Pros and cons:
✓ Scale out/in microservice instance by changing number of

container replicas
✓ Scale up/down microservice instance assigning more/less

resources to container
✓ Isolate microservice instance
✓ Set resource limits on microservice instance
✓ Build and start rapidly
✗ Require container orchestration to manage multi-container app

Valeria Cardellini – SDCC 2024/25 7

Microservices: benefits

• Increased software agility
– Microservice: independent unit of development,

deployment, operations, versioning, and scaling
– Interaction with a microservice happen via its API, which

encapsulates its implementation details
– Exploit container-based virtualization

• Improved scalability and fault isolation
• Increased reusability across different areas of

business
• Improved data security
• Faster development and delivery
• Greater autonomy of teams

Valeria Cardellini – SDCC 2024/25 8

Microservices: concerns

• Increased network traffic
– Microservice calls over a network cost more in terms of

network latency

• Higher complexity
– Increased operational complexity (e.g., deployment)
– Global testing and debugging is more complicated

Valeria Cardellini – SDCC 2024/25 9

Microservices and scalability

• How to achieve scalability of microservices?
– Use multiple instances of same microservice and load

balance requests across multiple instances

• How to improve scalability of microservices?
– Microservice state is complex to manage and scale
– Prefer stateless services: scale better and faster than

stateful services

Valeria Cardellini – SDCC 2024/25 10

Stateless service

https://www.cloudcomputingpatterns.org/stateless_component/

Valeria Cardellini – SDCC 2024/25

• Stateless service: state is handled external of service
to ease its scaling out and to make application more
tolerant to service failures

11

Stateful service

https://www.cloudcomputingpatterns.org/stateful_component/

Valeria Cardellini – SDCC 2024/25

• Stateful service: multiple instances of scaled-out
service need to synchronize their internal state to
provide a unified behavior

• Issue: how can a scaled-out stateful service maintain
a synchronized internal state?

12

A full view of microservice patterns

Va
le

ria
 C

ar
de

llin
i –

SD
C

C
 2

02
4/

25

13

Service discovery

• Why service discovery? The
client of a microservice needs
to discover the network
location of a microservice
instance
– Microservice instances have

dynamically assigned network
locations (IP address and port)
and their set changes
dynamically because of auto-
scaling, failures, and upgrades

Valeria Cardellini – SDCC 2024/25 14

• Service discovery provides
– Mechanism for a microservice instance to register
– Way to find the service once it has registered

Service discovery: patterns

1. Service registry
– A database of services, their instances and their locations
– Service instances are registered with service registry on

startup and deregistered on shutdown
– A clients query the service registry to find the available

instances of a service

Valeria Cardellini – SDCC 2024/25 15

Service discovery: patterns

2. Client-side service discovery
– Client of service is responsible for determining network

locations of available service instances and load balancing
requests among them

– Client queries Service Register, then it uses a load-
balancing algorithm to choose one of the available service
instances and performs a request
https://microservices.io/patterns/client-side-discovery.html

Valeria Cardellini – SDCC 2024/25 16

Service discovery: patterns

3. Server-side service discovery
– Client uses an intermediary that acts as Load Balancer and

runs at a well known location
– Client makes a request to a service via a load balancer. The

load balancer queries the Service Registry and routes each
request to an available service instance
https://microservices.io/patterns/server-side-discovery.html

Valeria Cardellini – SDCC 2024/25 17

Integration of microservices

• Let’s consider two issues related to
integration of microservices
– Synchronous vs. asynchronous communication

(or RPC vs. messaging)
– Orchestration vs. choreography

Valeria Cardellini – SDCC 2024/25 18

A full view of microservice patterns

Va
le

ria
 C

ar
de

llin
i –

SD
C

C
 2

02
4/

25

19

Synchronous vs. asynchronous

• Should communication be synchronous or
asynchronous (or RPC vs. messaging)?
– Synchronous: request/response style of communication
– Asynchronous: event-driven style of communication

• Synchronous communication
– Synchronous request/response-based communication

mechanisms, such as HTTP-based REST or gRPC

• Asynchronous communication
– Asynchronous, message-based communication mechanisms

such as pub-sub systems, message queues and related
protocols

– Interaction style can be one-to-one or one-to-many

• Synchronous communication may reduce availability

Valeria Cardellini – SDCC 2024/25 20

Synchronous vs. asynchronous

• Example of synchronous communication vs.
asynchronous communication

Valeria Cardellini – SDCC 2024/25 21

Orchestration and choreography
• Microservices can interact among them according to

2 patterns:
– Orchestration
– Choreography

• Orchestration: centralized approach
– A single centralized process (orchestrator, conductor or

message broker) coordinates interaction
– Orchestrator is responsible for invoking and combining

services, which can be unaware of composition

Valeria Cardellini – SDCC 2024/25 22

Orchestrator

Orchestration and choreography

• Choreography: decentralized approach
– A global description of participating services, which is

defined by exchange of messages, rules of interaction and
agreements between two or more endpoints

– Services can exchange messages directly

Valeria Cardellini – SDCC 2024/25 23

Example: orchestration and choreography

• Example: workflow for customer creation, i.e.,
process for creating a new customer

Valeria Cardellini – SDCC 2024/25 24

From: S. Newman, “Building Microservices”, O’Really, 2015.

Example: orchestration and choreography
Orchestration

25

Choreography

Valeria Cardellini – SDCC 2024/25

Orchestration vs choreography

• Orchestration:
✓ Simpler and more popular
✗ SPoF and performance bottleneck
✗ Tight coupling
✗ Higher network traffic and latency

• Choreography
✓ Lower coupling, less operational complexity, and increased

flexibility and ease of changing
✗ Services need to know about each other’s locations
✗ Extra work to monitor and track services
✗ Implementing mechanisms such as guaranteed delivery is

more challenging

Valeria Cardellini – SDCC 2024/25 26

A full view of microservice patterns

Va
le

ria
 C

ar
de

llin
i –

SD
C

C
 2

02
4/

25

27

Decomposition patterns

• Let’s consider how to decompose a monolithic
application into microservices
– Monolithic: application as a single deployable unit

• Mostly an art, no winner strategy but rather a number
of strategies https://microservices.io/patterns

Valeria Cardellini – SDCC 2024/25 28

Decomposition patterns
• What to consider

– Architecture must be stable
– Each service must be cohesive

• A service should implement a small set of strongly related
functions

– Services must conform to Common Closure Principle to
ensure that each change affect only one service
• Things that change together should be packaged together

– Services must be loosely coupled
• Each service as an API that encapsulates its implementation, which

can be changed without affecting clients
– A service should be testable
– Each service should be small enough to be developed by a

“two pizza” team (6-10 people)
– Each team that owns one or more services must be

autonomous, minimal collaboration with other teams

Valeria Cardellini – SDCC 2024/25 29

Main decomposition patterns
• Let’s consider e-commerce app that takes orders from

customers, verifies inventory and available credit, and
ships them

1. Decompose by business capability and define
services corresponding to business capabilities
– Business capability: something that a business does in order to

generate value
– E.g., Order Management is responsible for orders, Customer

Management is responsible for customers

Valeria Cardellini – SDCC 2024/25 30

Main decomposition patterns
2. Decompose by domain-driven design (DDD)

subdomain
– A domain consists of multiple subdomains; each

subdomain corresponds to a different part of the
business

– E.g., Order Management, Inventory, Product Catalogue,
Delivery

Valeria Cardellini – SDCC 2024/25 31

Design patterns

• Let’s now consider some design patterns
1. Circuit breaker
2. Database per service
3. Saga (and event sourcing)
4. CQRS
5. Log aggregation
6. Distributed request tracing

Valeria Cardellini – SDCC 2024/25 32

A full view of microservice patterns

Va
le

ria
 C

ar
de

llin
i –

SD
C

C
 2

02
4/

25

33

Reliability patterns: Circuit breaker

• Problem: How to prevent a network or service
failure from cascading to other services?

• Solution: A service client invokes a remote
service via a proxy that functions in a similar
fashion to an electrical circuit breaker
– When the number of consecutive failures

crosses a threshold, the circuit breaker trips,
and for the duration of a timeout period all
attempts to invoke the remote service will fail
immediately

– After the timeout expires, the circuit breaker
allows a limited number of test requests to
pass through. If those requests succeed, the
circuit breaker resumes normal operation.
Otherwise, in case of failure the timeout period
begins again

Valeria Cardellini – SDCC 2024/25 34

https://microservices.io/patterns/reliability/circuit-breaker.html

Data patterns: Database per service

Valeria Cardellini – SDCC 2024/25 35

• Pros and cons
✓ Helps ensure that services are loosely coupled
✓ Each service can use the most convenient DB type (e.g., KV data store,

graph database)
✗ More complex to implement transactions that span multiple services
✗ Complexity of managing multiple DBs

• But do not need to provision a DB server for each service
• Options: private-tables-per-service, schema-per-service, database-

server-per-service
https://microservices.io/patterns/data/database-per-service.html

• Problem: which database
architecture?

• Solution: keep each
microservice’s persistent data
private to that service and
accessible only via its API.
Service transactions only
involve its DB

Data patterns: Saga
• Problem: each service has its own DB, however some

transactions span multiple services: how to maintain data
consistency across services without using distributed
transactions (e.g., two-phase commit protocol)?

• Solution: implement each transaction that spans multiple
services as a saga

• Saga: sequence of local transactions
– Each local transaction updates its DB and publishes a message or

event to trigger the next local transaction in the saga
– If local transaction fails, then saga executes a series of

compensating transactions that undo changes made by preceding
local transactions (rollback)

Valeria Cardellini – SDCC 2024/25 36https://microservices.io/patterns/data/saga.html

Payment
Service

Stock
Service

Data patterns: Saga

Valeria Cardellini – SDCC 2024/25 37

Choreography

• 2 ways to coordinate saga:
– Choreography: each local transaction publishes events that

trigger local transactions in other services
– Orchestration: an orchestrator tells participants what local

transactions to execute

Data patterns: Saga

Valeria Cardellini – SDCC 2024/25 38

Orchestration

• 2 ways to coordinate saga:
– Choreography: each local transaction publishes events that

trigger local transactions in other services
– Orchestration: orchestrator tells participants what local

transactions to execute

Data patterns: orchestration-based Saga
• Let’s consider orchestration-based saga

– Source: MSc thesis by Andrea Cifola
http://www.ce.uniroma2.it/courses/sdcc2122/slides/Microservice_SAGAexample.pdf

Valeria Cardellini – SDCC 2024/25 39

Data patterns: orchestration-based Saga

• We also use another pattern: event sourcing
https://microservices.io/patterns/data/event-sourcing.html

– Problem: a service that participates in a saga needs to
atomically update the DB and sends messages/events in
order to avoid data inconsistencies

– Solution: persist a sequence of domain events that represent
state changes; each event in the sequence is stored in an
append-only event store (a DB of events)

Valeria Cardellini – SDCC 2024/25 40

Event store

Data patterns: CQRS

• Problem: How to implement a query that retrieves
data from multiple services in a microservice
architecture? How to separate read and write load
allowing you to scale each independently?

• Solution: define a view DB, which is a read-only
replica that is designed to support that query
– Application keeps replica updated by subscribing to Domain

events published by the service that owns data
https://microservices.io/patterns/data/domain-event.html

• Called Command Query Responsibility Segregation
(CQRS), i.e., separate read and update operations
for a data store
https://microservices.io/patterns/data/cqrs.html

Valeria Cardellini – SDCC 2024/25 41

Monitoring microservices

– To debug the application
– To analyze performance and latency, including tail latency

Valeria Cardellini – SDCC 2024/25 42

• Service distribution, even at large scale: difficult to
monitor microservice app and capture causal and
temporal relationships among microservices
– Aka microservices observability challenge

• We need monitoring

Monitoring microservices

• We need monitoring
– To analyze service dependencies
– To identify root cause of anomalies, which requires to:

• Construct a service dependency graph that outlines the
sequence of microservices that are invoked

• Localize the root cause microservices using the graph, traces,
logs, and KPIs

Valeria Cardellini – SDCC 2024/25 43

A request is passed through
multiple microservices with
different functionalities

Observability patterns

• Let’s consider 2 observability patterns to monitor
microservices

1. Log aggregation
2. Distributed request tracing

Valeria Cardellini – SDCC 2024/25 44

Observability patterns: Log aggregation

• Problem: How to understand application behavior
and troubleshoot problems?

• Solution: Use a centralized logging service that
aggregates logs from each microservice instance
– DevOps team can search and analyze logs and configure

alerts that are triggered when certain messages appear in
logs

– E.g., AWS CloudWatch

✗ Centralized (if physical, not only logical)
✗ Handling large volume of logs requires substantial

infrastructure
https://microservices.io/patterns/observability/application-logging.html

Valeria Cardellini – SDCC 2024/25 45

Observability patterns: Distributed tracing

• Problem: How to understand complex app behavior
and troubleshoot problems?

• Solution: Instrument microservices with code that
– Assigns to each user request a unique request id (aka trace

id), that allows to track that request through the
microservices it traverses

– Passes trace id to each microservice involved in handling
the user request

– Includes trace id in log messages
– Records trace context (e.g., start time, operation, duration) in

a (distributed) data store

✗ Storing and aggregating traces can require significant
infrastructure
https://microservices.io/patterns/observability/distributed-tracing.html

Valeria Cardellini – SDCC 2024/25 46

Monitoring microservices: tools
• Dapper

– Google’s production distributed systems tracing infrastructure
– Based on spans and traces

• Span: individual unit of work (e.g., HTTP request, call to DB) in
application; must have an operation name, start time, and duration

• Trace: collection/list of spans connected in a parent/child
relationship (can also be thought of as DAG of spans); traces
specify how requests are propagated through services and other
components

Valeria Cardellini – SDCC 2024/25 47
Barroso er al., Dapper, a large-scale distributed systems tracing infrastructure, 2010

trace spans

Monitoring microservices: tools

• Dapper
– Traces are sampled using an adaptive sampling rate, why?

• Storing everything would require too much storage and network
traffic, as well as introducting too much application overhead

– Span data is written to local log files, then pulled from there
by Dapper daemons, sent over a collection infrastructure,
and finally traces are stored into BigTable, with one row in a
trace table dedicated to each trace id

Valeria Cardellini – SDCC 2024/25 48

Monitoring microservices: tools

• Open-source tools for distributed tracing
– Jaeger https://www.jaegertracing.io

• Uses Spark/Flink for aggregate trace analysis

– Zipkin https://zipkin.io

– OpenTelemetry https://opentelemetry.io

• Broad language support
• Integrated with popular frameworks and libraries

• Need for standards to support interoperability
between different tracing tools

– W3C defines Trace Contex: standardized format for
unifying tracing data https://www.w3.org/TR/trace-context-2/

Valeria Cardellini – SDCC 2024/25 49

Some large-scale examples

• Netflix, Twitter, Uber: 500+ microservices

Valeria Cardellini – SDCC 2024/25 50

Example of microservices app
• Let’s examine a microservices app: Google’s

Online Boutique
https://github.com/GoogleCloudPlatform/microservices-demo

• Online store composed of 11 microservices written
in different languages
– Renaissance in programming language diversity: need

for polyglot programming

• How to realize a polyglot application?
1. REST and JSON as message interchange format
2. gRPC and protocol buffers as IDL and message

interchange format: approach chosen in Online
Boutique

Valeria Cardellini – SDCC 2024/25 51

Online Boutique: architecture

Valeria Cardellini – SDCC 2024/25 52

Online Boutique: features

• Composed of 10 microservices written in different
languages that communicate using gRPC

• Used by Google to demonstrate use of many
technologies:
– Kubernetes and Google Kubernetes Engine (GKE):

container orchestration
– gRPC: we know it J
– Istio / Cloud Service: service mesh
– Google Cloud’s Observability: monitoring, logging, and

tracing on Google Cloud
https://cloud.google.com/products/observability

– Locust: load testing tool https://locust.io

– Skaffold: command line tool that facilitates Kubernetes and
containers development https://skaffold.dev

Valeria Cardellini – SDCC 2024/25 53

Microservice technologies timeline

Valeria Cardellini – SDCC 2024/25 54
From "Microservices: The Journey So Far and Challenges Ahead”.

Generations: at the beginning

• 4 generations of microservice architectures
• 1st generation based on:

– Container-based virtualization, e.g., Docker
– Service discovery tools, e.g.,

• etcd https://etcd.io: distributed reliable key-value store
• Zookeeper

– Monitoring tools: enable runtime monitoring and analysis
of microservice resources behavior at different levels of
detail

• Graphite https://graphiteapp.org
• InfluxDB https://www.influxdata.com
• Prometheus https://prometheus.io/

Valeria Cardellini – SDCC 2024/25 55

Generations: container orchestration

• Then, container orchestration
– E.g., Kubernetes, Docker Swarm
– Automate container allocation and management,

abstracting away underlying physical or virtual
infrastructure from developers

– But application-level fault-tolerance mechanisms are still
implemented inside microservice code

Valeria Cardellini – SDCC 2024/25 56

Generations: service discovery and fault tolerance

• 2nd generation based on service discovery tools
and fault-tolerant (FT) communication libraries
– Goal: let services communicate more efficiently and reliably
– FT communication libraries implement resiliency patterns

(e.g., circuit breaker, fallback, retry/timeout)

Valeria Cardellini – SDCC 2024/25 57

Generations: service discovery and fault tolerance

• Examples:
– Consul: initially only service discovery, now service mesh
– Finagle https://github.com/twitter/finagle: FT, protocol-

agnostic RPC library
– Hystrix https://github.com/Netflix/Hystrix: Netflix’s FT library

(in maintenance mode)
– Resilience4j https://resilience4j.readme.io: FT library for

Java and functional programming, provides circuit breaker
and other resiliency patterns

Valeria Cardellini – SDCC 2024/25 58

Generations: service mesh

• 3rd generation based on service mesh technology and
sidecar proxies
– Encapsulate communication-related features and use of

protocol-specific and fault-tolerant communication libraries
– Goal: abstract these functionalities from developers, improve

sw reusability and provide homogeneous interface

Valeria Cardellini – SDCC 2024/25 59

Service mesh
• Dedicated infrastructure layer for microservice apps

to facilitate communication among microservices
• Provides a set of features including service

discovery, load balancing, authentication, encryption,
observability, without adding them to application code

• Typically organized with a centralized control plane
and a decentralized data plane (sidecar proxy per
microservice)

• Examples:
– Istio https://istio.io

– Envoy https://www.envoyproxy.io

– Linkerd https://linkerd.io

– Consul https://www.consul.io

See https://servicemesh.es
Valeria Cardellini – SDCC 2024/25 60

Generations: serverless

Valeria Cardellini – SDCC 2024/25 61

• 4th generation based on Function as a Service
(FaaS) and serverless computing to further
simplify microservice development and delivery

Serverless computing

• Cloud computing model which aims to abstract server
management and low-level infrastructure decisions
away from users by means of full automation

• Users develop, run and manage application code (i.e.,
functions), without any worry about provisioning,
managing and scaling computing resources that run
the application code

• Runtime environment is fully managed by Cloud (or
private infrastructure and platform) provider

• Serverless: functions still run on “servers” somewhere
but we don’t care about them

Valeria Cardellini – SDCC 2024/25 62

Serverless through an analogy
• Services for moving homes

Valeria Cardellini – SDCC 2024/25 63

serverless

IaaS/PaaS
cloud

self-hosting

Serverless: many definitions
Va

le
ria

 C
ar

de
llin

i –
SD

C
C

 2
02

4/
25

64

Serverless: many definitions

Kounev et al., Serverless Computing: What It Is, and What It Is Not?,
Comm. ACM, 2023

Serverless computing is a cloud computing paradigm encompassing a
class of cloud computing platforms that allow one to develop, deploy, and
run applications (or components thereof) in the cloud without allocating
and managing virtualized servers and resources or being concerned about
other operational aspects.
The responsibility for operational aspects, such as fault tolerance or the
elastic scaling of computing, storage, and communication resources to
match varying application demands, is offloaded to the cloud provider.
Providers apply utilization-based billing: they charge cloud users with fine
granularity, in proportion to the resources that applications actually
consume from the cloud infrastructure, such as computing time, memory,
and storage space.

Valeria Cardellini – SDCC 2024/25 65

Serverless, FaaS and BaaS

• Function as a Service (FaaS) and serverless
sometimes used interchangeably, some discussion
on difference

• FaaS can be seen as the most prominent example of
serverless computing
– Can be defined as "a serverless computing platform where the unit

of computation is a function that is executed in response to triggers
such as events or HTTP requests" (Kounev et al.)

• Backend as a Service (BaaS)
– BaaS offerings are focused on specialized cloud application

components, such as object storage, databases, and
messaging

– Examples: AWS S3 and DynamoDB, Google Cloud Firestore
(NoSQL document database) and Pub/Sub

Valeria Cardellini – SDCC 2024/25 66

Serverless: features
• Ephemeral compute resources

– May only last for one function invocation
✗ Cold start: when a request arrives and no container/microVM

is ready to serve it, function execution must be delayed until
a new container/microVM is launched

• Automated (i.e., zero configuration) elasticity
– Compute resources auto-scale transparently from zero to

peak load and back in response to workload shifts

• True pay-per-use: fine-grained and utilization-based
– E.g., AWS Lambda price is per 1 ms associated with

memory size

67Valeria Cardellini – SDCC 2024/25

Serverless: features
• Event-driven

– When event is triggered (e.g., file uploaded to storage,
message ready in queue) or HTTP request arrives, serving
infrastructure is allocated dynamically to execute the
function code

• NoOps (no operations): simplifies process of
deploying code into production
– Scaling, capacity planning and maintenance operations

are hidden from developers

• Supports diverse kinds of applications
– From enterprise automation to scientific computing to ML

inference

68Valeria Cardellini – SDCC 2024/25

Serverless application: a first example
• Propagate updates in social media app in a

serverless fashion
1. User composes status update and sends it using mobile

client
2. Platform orchestrates ops needed to propagate update

inside social media platform and to user’s friends using
serverless (AWS Lambda) and other cloud services (AWS
DynamoDB and SNS)

3. Friend receive update

Valeria Cardellini – SDCC 2024/25 69

Serverless Cloud services
• Several Cloud providers offer serverless computing

on their public clouds as fully managed service
– AWS Lambda https://aws.amazon.com/lambda/

• See hands-on course
• Lambda@Edge: functions at the edge

https://aws.amazon.com/lambda/edge/

– Azure Functions https://azure.microsoft.com/products/functions

– Google Cloud Run Functions
https://cloud.google.com/functions

• User has limited knobs to control performance
– Amount of memory allocated to function (CPU ~ memory)

• Cloud platforms also offer supporting services to
operate a serverless ecosystem
– E.g., event notification, storage, message queue, DB

Valeria Cardellini – SDCC 2024/25 70

Example: AWS’s reference Web app
• Simple “to-do list” web app that enables a registered

user to create, update, view, and delete items
• Event-driven web app uses AWS Lambda and Amazon

API Gateway for its business logic, DynamoDB as its
database, and Amplify Console to host all static content

Valeria Cardellini – SDCC 2024/25 71

https://github.com/aws-samples/lambda-
refarch-webapp

Example: Google Cloud Run Functions
• “Hello World” example from Google using Go

– HTTP response that displays “Hello, World!”
https://cloud.google.com/functions/docs/tutorials

Valeria Cardellini – SDCC 2024/25 72

Example: Google Cloud Run Functions

• A more complex example
– Function execution is triggered from storage when image is

uploaded to Cloud Storage bucket
– Function uses Cloud Vision API to detect violent or adult

content
– When such content is detected, a second function is called

to process the offensive image: it uses ImageMagick to blur
the image, and then uploads the blurred image to the output
bucket

https://cloud.google.com/functions/docs/tutorials/imagemagick

Valeria Cardellini – SDCC 2024/25 73

Serverless: state
• Stateless functions are easy to manage (horizontal

scalability, fast recovery, …)
– But stateless functions are not enough for some applications

(e.g., ML, streaming)

• How to handle stateful computation?
– First approach: state is external (e.g., handed over to

external shared storage system) so functions are still
stateless

– Issues to address:
• Efficient access to shared state, so to keep auto-scaling benefits
• Programming support, e.g., Azure Durable Functions

https://learn.microsoft.com/en-us/azure/azure-
functions/durable/durable-functions-overview

• What about transactions?
https://cacm.acm.org/practice/transactions-and-serverless-are-made-
for-each-other/

Valeria Cardellini – SDCC 2024/25 74

Serverless: challenges and limitations
• Performance

– Cold starts
• “Starting a new function instance involves loading the runtime and your

code. Requests that include function instance startup, called cold
starts, can be slower than requests routed to existing function
instances.” (Google Cloud Run Functions)

– Autoscaling

• Programming languages
– Language support depends on Cloud provider
– Language impacts on performance and cost of functions

• Resource limits
– E.g., on AWS memory between 128 and 10240 MB per

function

• Security
– E.g., more entry points, financial exhaustion attacks

• Vendor lock-in
Valeria Cardellini – SDCC 2024/25 75

Less flexibility

Composition of serverless functions

• Write small, simple, stateless functions
– Complex functions are hard to understand, debug, and

maintain
– Separate code from data structures

• Then compose them in a workflow

Valeria Cardellini – SDCC 2024/25 76

Example: AWS Step Functions

Valeria Cardellini – SDCC 2024/25 77

• AWS Step Functions: serverless orchestration
service that allows developers to coordinate multiple
Lambda functions into a workflow

• Example: process photo after its upload in S3

Open-source serverless platforms

• Can run on commodity hardware
• Popular platforms

– Apache OpenWhisk https://openwhisk.apache.org

– OpenFaaS https://www.openfaas.com

– Fission https://fission.io

– Knative https://knative.dev

– Nuclio https://nuclio.io

• Most platforms rely on Kubernetes for orchestration
and management of serverless functions
– Configuration and management of containers inside which

functions run
– Container scheduling and service discovery
– Elasticity management

Valeria Cardellini – SDCC 2024/25 78

OpenWhisk

• Distributed serverless platform that executes
functions in response to events
https://openwhisk.apache.org

• Functions run inside Docker containers
• Support for multiple container orchestration

frameworks

Valeria Cardellini – SDCC 2024/25 79

OpenWhisk

• Developers write functions (called actions)
– In any supported programming language
– Actions are dynamically deployed, scheduled and run in

response to associated events (via triggers) from external
sources (feeds) or from HTTP requests

• Functions can be combined into compositions

Valeria Cardellini – SDCC 2024/25 80

OpenWhisk: architecture
• Architecture powered by multiple frameworks

– NGINX: OpenWhisk entry point that receives HTTP request
and forwards it to Controller, that translate the request into
invocation of an action

– CouchDB (document-oriented NoSQL data store): stores
authentication and authorization info, action code, ...

– Kafka: mediates communication between controller and
invokers

– Docker: used by Invoker to execute action code

Valeria Cardellini – SDCC 2024/25 81

OpenFaaS
• Distributed serverless framework for functions, built

on top of Docker and Kubernetes https://www.openfaas.com

• Layered architecture
– OpenFaaS gateway: provides REST API to manage and

scale functions, record metrics
– NATS: used for asynchronous function execution and

queuing https://nats.io

– Prometheus: provides metrics and enables auto-scaling
https://prometheus.io

Valeria Cardellini – SDCC 2024/25 82

OpenFaaS

• Conceptual workflow
– Gateway can be accessed through its REST API, CLI or UI
– Prometheus collects metrics which are made available via

gateway's API and are used for auto-scaling
– NATS enables function invocations to run asynchronously

Valeria Cardellini – SDCC 2024/25 83

https://docs.openfaas.com/architecture/stack/

Serverless in the compute continuum
• Open-source serverless platforms are unsuitable for

compute continuum because of centralization
components

• We are developing Serverledge, a decentralized
FaaS framework: thesis opportunities!

Valeria Cardellini – SDCC 2024/25 84

Russo Russo et al., Decentralized Function-as-a-Service for the Edge-Cloud
Continuum, Percom 2023 https://github.com/grussorusso/serverledge

References: Microservices

• Lewis and Fowler, Microservice,
https://martinfowler.com/articles/microservices.html

• Lewis and Fowler, Microservice Guides,
https://martinfowler.com/microservices

• Richardson, Microservice Architecture, https://microservices.io

• Jamshidi et al., Microservices: The Journey So Far and
Challenges Ahead, IEEE Software, 2018
https://ieeexplore.ieee.org/iel7/52/8354413/08354433.pdf

Valeria Cardellini – SDCC 2024/25 85

References: Serverless
• Roberts, Serverless Architectures,

https://martinfowler.com/articles/serverless.html

• Schleier-Smith et al., What serverless computing is and should
become: the next phase of cloud computing, Comm. ACM, 2021
https://cacm.acm.org/research/what-serverless-computing-is-and-should-
become

• Kounev et al., Serverless Computing: What It Is, and What It Is
Not?, Comm. ACM, 2023 https://dl.acm.org/doi/pdf/10.1145/3587249

Valeria Cardellini – SDCC 2024/25 86

