
Corso di Sistemi Distribuiti e Cloud Computing
A.A. 2024/25

Valeria Cardellini

Laurea Magistrale in Ingegneria Informatica

Virtualization

Macroarea di Ingegneria
Dipartimento di Ingegneria Civile e Ingegneria Informatica

Valeria Cardellini - SDCC 2024/25

Virtualization
• High-level abstraction to hide details of underlying

implementation
• Abstraction of computing resources

– Logical view different from physical one

• How? Decouple user-perceived architecture and
behavior of hw and sw resources from their physical
realization

• Goals:
– Portability, efficiency, reliability, security, …

1

Virtualization of resources

• System (hw and sw) resources virtualization
– Virtual machines, containers, unikernels, …

• Storage virtualization
– Storage Area Network (SAN), …

• Network virtualization
– Virtual LAN (VLAN), Virtual Private Network (VPN), …

• Data center virtualization

Valeria Cardellini - SDCC 2024/25
2

Our

focus

Components of virtualized environment

• Major components:
– Guest

– Host

– Virtualization layer

• Guest: interacts with
virtualization layer rather
than with host

• Host: original
environment where
guest is supposed to be
managed

Valeria Cardellini - SDCC 2024/25 3

• Virtualization layer: responsible for recreating same or
different environment where guest will operate

Taxonomy of virtualization techniques

• Execution environment virtualization is the oldest,
most popular and developed area ⇒ our focus

Valeria Cardellini - SDCC 2024/25 4

Valeria Cardellini - SDCC 2024/25

Virtual Machine
• Virtual Machine (VM): complete compute

environment with its own isolated processing
capabilities, memory, and communication channels

• Allows us to represent hw/sw resources of a physical
machine differently from their reality
– E.g., VM hw resources (CPU, network card, ...) different from

physical resources of the real machine

– E.g., VM sw resources (OS, …) different from sw resources

of the real machine

• A single physical machine can be used to host
several VMs

5

Virtualization layer

VM1 VM2 VM3

Hardware

Valeria Cardellini - SDCC 2024/25

Virtualization: a short history
• Virtualization and VMs are an “old” idea in

computer science
– Dates back to the 1960s in a centralized context

– Designed to allow legacy (existing) software to run on

expensive mainframes and transparently share (scarce)

physical resources

– E.g., IBM System/360-67 mainframe

• In the 1980s, with the transition to PCs, the
problem of transparently sharing computing
resources was solved by multitasking OSs
– Virtualization became less of an issue

6

Valeria Cardellini - SDCC 2024/25

Virtualization: a short history
• At the end of the 1990s, interest in virtualization

revamped to make programming special-purpose hw
less burdensome
– VMware founded in 1998

• Moreover, management costs and under-utilization of
hw and sw platforms exacerbate the need for
virtualization solutions
– Hw changes faster than sw (middleware and applications)

– Management cost increases and application portability

decreases

– Sharing underutilized computing resources becomes

important again to reduce infrastructure costs

• Nowadays, virtualization is a core technology for
cloud computing

7

Virtualization: pros

• Facilitate compatibility, portability, interoperability and
migration of applications and environments
– Hw independence: create once, run everywhere

– Legacy VMs: run old OSs or applications on new platforms

Valeria Cardellini - SDCC 2024/25 8

Virtualization: pros

• Enable server consolidation in data center
– Goal: reduce number of physical servers and use them more

efficiently

– How? Multiplexing multiple VMs on same physical server

✓ Reduce costs, energy consumption, and occupied space

✓ Simplify server management, maintenance, and upgrade

✓ Reduce service downtime through live migration of VMs

Valeria Cardellini - SDCC 2024/25 9

Virtualization: pros
• Enable isolation of application components that are

malfunctioning or under security attacks, thus
increasing application reliability and security
– VMs running different components cannot access each

other’s resources

– Software bugs, crashes, viruses inside VM do not harm

other VMs running on same physical machine

• Enable performance isolation of different VMs
– By scheduling shared physical resources among different

VMs running on the same physical machine

• Enable load balancing on physical machines
– By migrating VMs from a physical machine to another

Valeria Cardellini - SDCC 2024/25 10

Valeria Cardellini - SDCC 2024/25

Reasons to use virtualization

• Personal and educational
– Run multiple OSs simultaneously on single machine

– Simplify sw installation

– Develop, test and debug applications

– Simulate distributed environment on single machine

• Enterprise
– Consolidate data center infrastructure and ensure

business continuity

– Encapsulate entire systems in single files (system images)

that can be replicated, migrated or reinstalled on any

server

– Enable DevOps

11

Hardware

Operating System

ISA

Libraries

ABI

API

System calls

Applications

System ISA User ISA

A1

A2

A3

Interfaces in computer system

Valeria Cardellini - SDCC 2024/25 12

Applications:
• use library functions (A1)
• make system calls (A2)
• execute machine instructions (A3)

Valeria Cardellini - SDCC 2024/25

Interfaces in computer system and virtualization
At which level can we realize virtualization?
• Strictly related to computer system interfaces

– Hw/sw interface (system ISA): primarily for system resource

management, privileged instructions executed only by OS

[interface 3]

– Hw/sw interface (user-level ISA): primarily for computation, non-
privileged instructions executed by any program [interface 4]

– System calls [interface 2]:

• ABI (Application Binary Interface):
interface 2 + interface 4

– Library calls (API) [interface 1]

• Essence of virtualization: mimic
behavior of these interfaces

Smith and Nair, The architecture of virtual machines, IEEE Computers, 2005
13

Valeria Cardellini - SDCC 2024/25

Implementation levels of virtualization

• Virtualization can be implemented at various
operational levels:
– ISA level

– Hardware level (aka system VMs)

– Operating system level (aka containers)

– Library level

– User application level (aka process VMs)

14

Our

focus

Valeria Cardellini - SDCC 2024/25

Implementation levels of virtualization

• ISA level
– Goal: emulate a given ISA by ISA of host machine

• E.g., MIPS binary code can run on x86-based host with

help of ISA emulation

– ISA emulation can be done through code
interpretation or dynamic binary translation

• With code interpretation every source instruction is

interpreted by emulator in order to execute native ISA

instructions

• Dynamic binary translation is faster: converts in blocks

rather than instruction by instruction

15

Valeria Cardellini - SDCC 2024/25

• Hardware level (aka system VMs)
– Goal: virtualize host resources (processors,

memory, and I/O devices)
– Based on Virtual Machine Monitor (VMM), aka

hypervisor
• VMM handles interaction with underlying hw for CPU,

memory, and I/O resource access

16

Implementation levels of virtualization

Valeria Cardellini - SDCC 2024/25

Implementation levels of virtualization
• Hardware level (aka system VMs)

– Provides a complete environment in which
multiple VMs can coexist

• VMM manages hardware resources and shares them

among multiple VMs and provide isolation and

protection of VMs

• When a VM performs a privileged instruction or

operation that directly interacts with shared hw, VMM

intercepts the instruction, checks it for correctness, and

performs it

– Examples: VMware, KVM,
Xen, Parallels, VirtualBox

Multiple instances of combinations
<applications, OS>

17

Valeria Cardellini - SDCC 2024/25

Implementation levels of virtualization

• Operating system level (aka containers)
– Goal: create multiple isolated containers
– Examples: Docker, Linux Containers, Podman

• Library level
– Goal: create execution environment to run apps in a

host environment that does not suite native apps
• Rather than creating a VM to run full OS and apps

– Examples:
• Wine https://www.winehq.org: runs Windows apps on top of

POSIX-compliant OS by translating Windows API calls into

POSIX calls on-the-fly

• Cygwin https://cygwin.com: “Get that Linux feeling – on

Windows”

18

Valeria Cardellini - SDCC 2024/25

Implementation levels of virtualization
• User application level (aka process VMs)

– Virtual platform that executes a single process
– Provides virtual ABI or API to user application
– Application is compiled into intermediary, portable

code (e.g., Java bytecode) and executed in runtime
environment provided by process VM

– Examples: JVM, .NET CLR
Multiple instances of combinations
<application, runtime system>

19

Valeria Cardellini - SDCC 2024/25

Implementation levels of virtualization: summing up

20

• Relative merits of virtualization at different levels

System-level virtualization: terminology

• Let’s first focus on system-level virtualization
(achieved through VMM or hypervisor)

• Host: base platform on top of which VMs are
executed; made of:
– Physical machine

– Possible host OS

– VMM

• Guest: everything inside a single VM
– Guest OS and applications executed inside the VM

Valeria Cardellini - SDCC 2024/25
21

System-level virtualization: taxonomy

• Let’s classify system-level virtualization
solutions according to:
1. Where to deploy VMM

• System VMM (aka type-1, native or bare-
metal hypervisor)

• Hosted VMM (aka type-2 hypervisor)

2. How to virtualize instruction execution
• Full virtualization

– Software-assisted
– Hardware-assisted

• Paravirtualization
Valeria Cardellini - SDCC 2024/25

22

System-level virtualization: taxonomy

Valeria Cardellini - SDCC 2024/25
23

Virtualization

OS level Hardware level

Type-2 Full virtualizationPara-virtualizationType-1

Micro-kernelMonolithic Sw-assistedHw-assisted

Where? How?

Valeria Cardellini - SDCC 2024/25

System vs. hosted VMM

System VMM Hosted VMM

ho
st

guest host

In which level of the system architecture is VMM deployed?
– Directly on hardware: system (or native) VMM
– On top of host OS: hosted VMM

gu
es

t

24

System vs. hosted VMM
• System VMM (type-1): runs directly on hw, offers

virtualization features integrated into a simplified OS
– VMM can have microkernel (only basic functions, no device

drivers) or monolithic architecture

– Examples: KVM, Microsoft Hyper-V, Nutanix AHV, VMware ESXi,

Xen

• Hosted VMM (type-2): runs on top of host OS, accesses
hw resources via host OS system calls
– Interacts with host OS via ABI and emulates virtual hw ISA for

guest OS

✓ Can use host OS to manage devices and use low-level services

(e.g., resource scheduling)

✓ No need to change guest OS

✗ Performance degradation with respect to system VMM

– Examples: Parallels Desktop, VirtualBox

Valeria Cardellini - SDCC 2024/25
25

Valeria Cardellini - SDCC 2024/25

Full virtualization vs paravirtualization

How to manage interaction between VMs and VMM in
order to access to system resources, i.e., how to
manage the execution of privileged instructions that
require direct access to hardware or other privileged
resources?

– Full virtualization
– Paravirtualization

Comparison of platform virtualization software

https://en.wikipedia.org/wiki/Comparison_of_platform_virtualization_software

26

Valeria Cardellini - SDCC 2024/25

Full virtualization vs paravirtualization
• Full virtualization

– VMM exposes to each VM simulated hw interfaces that are

functionally identical to those of the underlying physical

machine

– VMM intercepts attempts to perform privileged instructions

(e.g., I/O, TLB update) and emulates the expected behavior

– Examples: KVM, VMware ESXi, Microsoft Hyper-V

• Paravirtualization
– The VMM exposes to each VM simulated hw interfaces that

are functionally similar (but not identical) to those of the

underlying physical machine

– Hardware is not emulated, but a minimal software layer

(Virtual Hardware API) is created to ensure VM management

and their isolation

– Examples: Xen, Oracle VM, PikeOS

27

Full virtualization vs paravirtualization

• Full virtualization pros and cons
✓Run unmodified guest OSs
✓Complete isolation between VM instances:

security, ease of emulating different architectures

✗VMM is more complex
✗Require processor collaboration to make

virtualization more efficient: why?

Valeria Cardellini - SDCC 2024/25 28

Issues to address for system-level virtualization
• Non-virtualized processor

architecture operates according to
at least 2 protection levels (rings):
supervisor and user
– Ring 0: most privileged (unrestricted

access to system resources)

– Ring 3: least privileged

Valeria Cardellini - SDCC 2024/25 29

• With virtualization
– VMM operates in supervisor mode (ring 0)

– Guest OS and applications (i.e., VM) operate in user mode

(guest OS in ring 1 or 3)

– Ring deprivileging problem: guest OS operates in a ring

which is not its own ⇒ cannot execute privileged instructions

(e.g., lidt in x86 to load interrupt descriptor table)

– Ring compression problem: since applications and guest OS

run at the same level, guest OS space must remain protected

x86 architecture w/o virtualization

How to address ring deprivileging
• Trap-and-emulate

– When guest OS attempts to execute privileged instructions

(which can run only in kernel mode), an exception (trap) must

be notified to VMM and control must be transferred to it; VMM

performs a safety check on the requested operation, executes

(“emulates”) its behavior and returns result to guest OS

– Instead non-privileged instructions (all of them?) run by guest

OS do not trap and are directly executed

Valeria Cardellini - SDCC 2024/25 30

Popek and Goldberg virtualization requirements

• Popek and Goldberg (1974): conditions and theorems
under which a computer architecture can support efficient
virtualization
Formal requirements for virtualizable third generation architectures,
https://dl.acm.org/doi/pdf/10.1145/361011.361073

• Conditions:

Valeria Cardellini - SDCC 2024/25 31

Equivalence

Resource
control

Efficiency

Popek and Goldberg virtualization requirements
• ISA instructions are classified into 3 groups:

1. Privileged instructions: must be executed in supervisor mode,

trap if executed in user mode

2. Sensitive instructions: change underlying resources (e.g., page

tables) or observe information that indicates current privilege

level (thus exposing that guest OS does not run on bare metal);

• Control sensitive: change the CPU configuration / CPU state (e.g.,
interrupt table, paging table)

• Behavior sensitive: reveal something about the CPU state

3. Innocuous instructions: not sensitive

• Theorem: For any conventional computer, a virtual
machine monitor may be constructed if the set of sensitive
instructions for that computer is a subset of the set of
privileged instructions

Valeria Cardellini - SDCC 2024/25 32

https://blog.acolyer.org/2016/02/19/formal-requirements-for-virtualizable-third-generation-architectures

Condition for virtualization
• The bad news: theorem condition is not satisfied by all

architectures
– There might be sensitive but non-privileged instructions that are

executed in user mode without causing trap to OS

Valeria Cardellini - SDCC 2024/25 33

• Some CPU architectures are non-virtualizable
– x86: plenty of sensitive non-privileged instructions

• E.g., pushf (push the flags register on the stack)

– MIPS: mostly virtualizable, but

• $k0, $k1 (registers to save/restore state) are user-accessible

– ARM: mostly virtualizable, but

• Some instructions are undefined in user-mode

Condition for virtualization
• From Popek and Goldberg’s theorem:

– Need to virtualize both privileged instructions and sensitive but

non-privileged instructions that are executed in user mode

• Issue:
– Privileged instructions cause trap: ok

– Non-privileged sensitive instructions do not cause trap

– How to virtualize these instructions?

• 1st solution: trap-and-emulate
– Privileged and non-privileged sensitive instructions cause trap

and divert control to VMM

– Seems easy but … how to implement it?

• 2nd solution: paravirtualization
– Modify guest OS, by either preventing non-privileged sensitive

instructions or making them non-sensitive (i.e., changing the

context)

Valeria Cardellini - SDCC 2024/25 34

Full virtualization: solutions

• How to realize trap mechanism?

• At hardware level if processor supports virtualization
– Idea: introduce a new privilege level

• Hypervisor privilege level, more privileged than kernel

privilege level

• All sensitive instruction trap to hypervisor level

hardware-assisted CPU virtualization

• At software level if processor does not support
virtualization

fast binary translation
• The elder solution

Valeria Cardellini - SDCC 2024/25 35

Hardware-assisted CPU virtualization
• Hardware-assisted CPU virtualization (Intel VT-x and

AMD-V) provides two new CPU operating modes
(root mode and non-root mode), each supporting all 4
x86 protection rings

Valeria Cardellini - SDCC 2024/25

- VMM runs in root mode

(Root-Ring 0), while guest

OSs run in guest mode in

their original privilege levels

(Non-Root Ring 0): no

longer ring deprivileging

and ring compression

issues

- VMM can control guest

execution through VM

control data structures in

memory

36

x86 architecture with full virtualization
and hardware-assisted CPU
virtualization

Hardware-assisted CPU virtualization: VT-x

Valeria Cardellini - SDCC 2024/25 37

• VMX root: intended for hypervisor operations (like x86
without VT-x)

• VMX non-root: intended to support VMs
• When executing VMEntry operation, processor state is

loaded from guest-state of VM scheduled to run, then
control is transferred from hypervisor to VM

• VMExit saves processor state in guest-state area of
running VM; it loads processor state from host-state,
then transfers control to hypervisor

Fast binary translation

• VMM trap mechanism for privileged instructions is offered

by processors with hardware support for virtualization

– How to achieve full virtualization without hw support?

• Fast binary translation: VMM scans code before its

execution to replace blocks containing privileged

instructions with functionally equivalent blocks containing

instructions for notifying exception to VMM

Valeria Cardellini - SDCC 2024/25

x86 architecture with full virtualization
and fast binary translation

- Translated blocks are

directly executed on hw and

stored in cache for future

reuse

✗ Higher complexity and lower

performance wrt to hw-

assisted virtualization

38

Paravirtualization

Valeria Cardellini - SDCC 2024/25

• Non-transparent virtualization solution
- Guest OS kernel must be modified to let it invoke the virtual

API exposed by VMM

• Non-virtualizable instructions are replaced by
hypercalls that communicate directly with hypervisor
- Hypercall: software trap from guest OS to hypervisor, just as

syscall is software trap from app to kernel

hypercall : hypervisor = syscall : kernel

x86 architecture with paravirtualization

39

Paravirtualization: hypercall execution

Valeria Cardellini - SDCC 2024/25

• When application running in VM issues a guest OS system call,

through the hypercall the control flow jumps to hypervisor, which then

passes control back to guest OS

Source: “The Definitive Guide to XEN hypervisor”

40

Paravirtualization: pros & cons

Valeria Cardellini - SDCC 2024/25

• Pros (vs full virtualization):
✓ Relatively easier and more practical implementation

✓ Less overhead wrt fast binary translation

✓ Does not require virtualization extensions from host CPU as

hw-assisted virtualization does

• Cons (vs full virtualization):
✗ Requires source code availability of OS to modify guest OS

and make it paravirtualized

✗ Cost of maintaining paravirtualized OSs

• Paravirtualized OS cannot run directly on hardware

41

Summing up different approaches

Valeria Cardellini - SDCC 2024/25 42

Fast Binary Translation

VMM reference architecture
• 3 main modules

– Dispatcher: VMM entry point that reroutes privileged instructions

issued by VMs to the other modules

– Scheduler: invoked by dispatcher whenever VM executes

privileged instruction for acquiring system resources; decides

about their allocation to VMs

– Interpreter: executes proper routine when VM executes a

privileged instruction

43Valeria Cardellini - SDCC 2024/25
Virtual Machine Monitor

Scheduler

VMM CPU scheduler

Valeria Cardellini - SDCC 2024/25 44

• Guest OS sees virtual CPUs
• Physical CPUs on host machine are multiplexed

among VMs
• How to schedule virtual CPUs on physical CPUs?

Memory virtualization
• In non-virtualized environment

– One-level memory mapping: from virtual memory to physical

memory provided by page tables

– MMU and TLB hardware components to optimize virtual memory

performance

• In virtualized environment
– All VMs share machine memory and VMM needs to partition it

among VMs

– Two-level memory mapping: from guest virtual memory to

guest physical memory to host physical memory

• Some terminology
– Guest virtual memory: memory visible to apps; continuous virtual

address space presented by guest OS to apps

– Guest physical memory: memory visible to guest OS

– Host physical memory: actual hw memory visible to VMM

Valeria Cardellini - SDCC 2024/25 45

Two-level memory mapping

Valeria Cardellini - SDCC 2024/25

• Going from guest virtual memory to host physical memory
requires two-level memory mapping
GVA (guest virtual address) è GPA (guest physical
address) è HMA (host machine address)

• Guest physical address ≠ host machine address: why?
⎻ Hints: many VMs; what does guest OS expect about its memory?

46

Shadow page tables
• How to avoid unbearable performance drop due to extra

memory mapping?
• VMM maintains shadow page tables (SPTs) and uses

them to accelerate address mapping
– So to achieve direct mapping from GVA to HPA

Valeria Cardellini - SDCC 2024/25 47

• SPT directly maps GVA to HPA
– Guest OS creates and manages page tables (PTs)

for its virtual address space without modification

• But these PTs are not used by MMU hardware

– VMM creates and manages PTs that map virtual

pages directly to machine pages

• These VMM PTs are the shadow page tables and
are loaded into MMU

– VMM needs to keep SPTs consistent with changes

made by each guest OS to its PTs

Memory mapping with SPTs

Valeria Cardellini - SDCC 2024/25

• VMM uses TLB hardware to map virtual memory directly
to machine memory to avoid the two levels of translation
on every access (red arrow)

48

SPT consistency

• When guest OS changes its PTs, VMM needs to
update SPTs to enable a direct lookup

• How?
– VMM maps guest OS PTs as read only

– When guest OS writes to PTs, trap to VMM

– VMM applies write to SPT and guest OS PT, then returns

– Aka memory tracing

– Adds overhead

Valeria Cardellini - SDCC 2024/25 49

Challenges in memory virtualization with SPT

Valeria Cardellini - SDCC 2024/25

• Address translation
– Guest OS expects contiguous,

zero-based physical memory, but

underlying machine memory may

be non contiguous: VMM must

preserve this illusion

• Page table shadowing
– SPT implementation is complex

– VMM intercepts paging operations

and constructs copy of PTs

• Overheads
– SPTs consume significant host

memory

– SPTs need to be kept consistent

with guest PTs

– VM exits add to execution time

50

Hw support for memory virtualization

Valeria Cardellini - SDCC 2024/25

• Second Level Address
Translation (SLAT) is the
hardware-assisted solution
for memory virtualization
(Intel EPT and AMD RVI) to
translate GVA into HPA

• Using SLAT significant
performance gain with
respect to SPT: around 50%
for MMU intensive
benchmarks

51

• SPT is a software-managed solution: let’s consider
a more efficient hardware solution

Case study: Xen
• Most notable example of paravirtualization

https://www.xenproject.org/ born at Cambridge Univ.

– Open-source type-1 (system VMM) hypervisor with microkernel

design

– Offers to guest OS a virtual interface (hypercall API) to whom

guest OS refers to access physical resources

– Supports paravirtualization (PV), hardware-assisted

virtualization (HVM) and their combination

• With paravirtualization Xen requires PV-enabled guest OSs and
PV drivers (part of Linux kernel and other OSs)

– OSs ported to Xen: Linux, NetBSD, FreeBSD

– Foundation for commercial virtualization products (e.g.,

XenServer, Oracle VM)

– Xen distros for embedded systems (e.g., ARM, RISC-V)

– Powers IaaS providers (e.g., Alibaba, Amazon, Rackspace)

52Valeria Cardellini - SDCC 2024/25

Valeria Cardellini - SDCC 2024/25

Xen: features
• Thin hypervisor model

– 300K lines of code on x86, 65K on Arm

– Small footprint and interface (around 1MB in size)

– Microkernel design

– Scalable: up to 4,095 host CPUs with 16Tb of RAM

– More robust and secure than other hypervisors

– But still vulnerable to attacks https://xenbits.xen.org/xsa/

• Continuously improved
• Flexibility in management

– Tuning for performance

• Supports VM live migration
• Low overhead (within 2%) with respect to bare metal

machine without virtualization

53

Valeria Cardellini - SDCC 2024/25

Xen: the origins
• Goal of Cambridge Univ. group who designed Xen

(late 1990s, released in 2003):
– Design hypervisor capable of scaling to ~100 VMs apps

• At that time, only fast binary translation

– Idea: “What if instead of trying to fool the guest kernel into

thinking it’s running on real hardware, you just let the guest

know that it was running in a virtual machine, and changed

the interface you provide to make it easier to implement?”

• What can be paravirtualized?
– Privileged instructions: replaced by hypercalls

– Page tables (memory access)

– Disk access and I/O devices

– Interrupts and timers

54

Xen: architecture

https://wiki.xenproject.org/wiki/Xen_Project_Software_Overview

Valeria Cardellini - SDCC 2024/25
55

Xen architecture: hypervisor
• In charge of CPU scheduling, memory management,

interrupt and timer handling
• Per-domain and per-vCPU info management

Valeria Cardellini - SDCC 2024/25
56

Valeria Cardellini - SDCC 2024/25

Xen architecture: domains
• 2 kinds of domains: control domain which starts and

manages all the others unprivileged domains
• Guest domains: DomU (unprivileged)

– Represent VM instances, each running a guest OS with

apps

- Run on virtual CPUs (vCPUs)

• Dom0 (control domain): VM with special privileges
– Handles device driver stack that provides access to physical

devices to the other domains, so it responsible for

multiplexing guest I/O

– Provides management functions (e.g., create other domains)

– Contains system services: Device Emulation (DS),

XenStore/XenBus (XS), and Toolstack (TS)

– Mandatory, initial domain started by Xen on boot

57

Dom0 components: XenStore and Toolstack
• XenStore: information storage space shared among

domains
– Stores configuration and status information

– Implemented as hierarchical key-value storage

• When values are changed in XS, a watch function notifies listeners (e.g.,
drivers) of changes of the key they have subscribed to

– Communicates with guest VMs via shared memory using Dom0

privileges

• Toolstack: allows user to manage VM lifecycle (create,
shutdown, pause, migrate) and configuration
– To create a new VM, user provides a configuration file describing

memory and CPU allocation and device configurations

– Toolstack parses this file and writes this information in XenStore

– Takes advantage of Dom0 privileges to map guest memory, to load

kernel and virtual BIOS and to set up initial communication channels

with XenStore and with virtual console when a new VM is created

Valeria Cardellini - SDCC 2024/25 58

CPU scheduler in Xen
• VMM scheduler decides, among all virtual CPUs

(vCPUs) of VMs, which ones will execute on physical
CPUs (pCPUs)
- Further scheduling level with respect to OS ones (processes

and user-level threads within processes)

• Xen allows to choose among different CPU schedulers
– Credit scheduler is the default

• Scheduling algorithm goals:
– Make sure that domains get fair share of pCPU

• Proportional share algorithm: allocates pCPU in proportion to
number of shares (weights) assigned to vCPUs

– Keep pCPU busy

• Work-conserving algorithm: does not allow pCPU to be idle when
there is work to be done

– Schedule with low latency

59Valeria Cardellini - SDCC 2024/25

Credit scheduler
• Proportional fair share and work-conserving scheduler
• Each domain (including Domain0) is assigned a weight

and a cap (tunable parameters)
– Weight: relative pCPU allocation per domain (default 256)

– Cap: maximum amount of CPU a domain can use

• cap = 0 (default): vCPU can receive any extra CPU (i.e., work-
conserving)

• cap ≠ 0: limits amount of pCPU that vCPU receives (i.e., non work-
conserving); expressed as % of pCPU (e.g., 100 = 1 pCPU, 50 =
0.5 pCPU)

• The scheduler transforms the weight into a credit
allocation for each vCPU
– The credit value represents the pCPU share that the domain is

expected to have

– As a vCPU runs, it consumes credit

– If its credit value is negative, the domain is in OVER priority;

otherwise, in UNDER priority 60Valeria Cardellini - SDCC 2024/25

Credit scheduler: algorithm
• For each pCPU, the scheduler maintains a queue of

vCPUs, with all the vCPUs in UNDER priority first,
followed by vCPUs in OVER priority
– Round-robin ordering within UNDER and OVER priorities

– Scheduler picks the vCPU at the head of the queue

– Selected vCPU receives 30 ms time slice before being

preempted to run another vCPU

– VCPUs in OVER priority cannot be scheduled unless there is

no UNDER VCPUs in the queue

• The scheduler load balances vCPUs across pCPUs on

SMP (symmetric multi-processor) host

– Before a pCPU goes idle, it considers other pCPUs in order

to find any UNDER credit vCPU: no pCPU is idle when there

is runnable work in the system

https://wiki.xenproject.org/wiki/Credit_Scheduler

61Valeria Cardellini - SDCC 2024/25

Valeria Cardellini - SDCC 2024/25

Xen and paravirtualization
• In most deployments, Xen no longer uses

paravirtualization to virtualize CPU (as in original
implementation)
– HVM guests exploit hardware extensions to implement

hardware-assisted virtualization

– PV guests are still used on hardware not supporting

virtualization extensions

• However, paravirtualization is important for I/O:
instead of trying to (inefficiently) emulate hardware I/O
devices, we can define a new virtual-only device and
provide a driver for it
– Xen supports hybrid variants (mix of PV and HVM) including

PVH guests

https://wiki.xenproject.org/wiki/Understanding_the_Virtualization_Spectrum

62

VM portability
• VM image: a single file for each VM which contains a

bootable OS, data files, and applications
• Virtual machine images come in different formats
• How to import and export VM images and avoid

vendor lock-in?
• Open Virtualization Format (OVF)

– Open industry standard (ISO 17203) for packaging and

distributing VMs

• Virtual-platform agnostic

– Image stored in .ova file (Open Virtual Appliance)

– VM configuration specified in XML format within a .ovx file

– Supported by many hypervisors, including Hyper-V, VMware,

VirtualBox, XenServer

Valeria Cardellini - SDCC 2024/25 63

VM resizing and migration

• Useful techniques to deploy and manage
large-scale virtualized environments
– Dynamic resizing for vertical scaling (scale up,

scale down) of VMs
– Live migration of VMs

• Move VM between different physical machines (or

even data centers) without stopping it

Valeria Cardellini - SDCC 2024/25 64

VM dynamic resizing
• Fine-grain mechanism with respect to migrating or

rebooting VMs
– Example: app running on a VM consumes a lot of resources,

thus VM starts running out of RAM and CPU

– Solution: dynamically resize VM (aka warm resizing)

✓ More cost-effective and faster than VM reboot
✗ Not supported by all virtualization products and guest

OSs
• What can be resized without stopping and rebooting

the VM?
– Number of virtual CPUs

– Memory

Valeria Cardellini - SDCC 2024/25 65

VM dynamic resizing: CPU
• Add or remove virtual CPUs (without turning off VM)
• Linux supports CPU hot-plug/hot-unplug

https://www.kernel.org/doc/html/latest/core-api/cpu_hotplug.html

– Uses information in virtual file system sysfs (processor info is

in /sys/devices/system/cpu)
– /sys/devices/system/cpu/cpuX for cpuX (X = 0, 1, 2, …)

– To turn on cpu #5:

echo 1 > /sys/devices/system/cpu/cpu5/online
– To turn off cpu #5:

echo 0 > /sys/devices/system/cpu/cpu5/online

• VM CPU resizing can be managed using virsh
– virsh: command line tool to configure and manage virtual

machines, available with some hypervisors (KVM, Xen)

– E.g., set the number of vCPUs while VM is running (cannot

exceed max. number of vCPUs)

virsh setvcpus <vm_name> <vcpu_count> --current
Valeria Cardellini - SDCC 2024/25 66

VM dynamic resizing: memory
• Based on memory ballooning

– Mechanism used by hypervisors (e.g., KVM, Xen and

VMware) to pass memory back and forth between hypervisor

and guest OSs

– In KVM: virtio_balloon driver

Valeria Cardellini - SDCC 2024/25

• When balloon deflates:
more memory to VM
– Anyway, VM memory size

cannot exceed

maxMemory

• When balloon inflates:
less memory to VM
– Swap memory pages to

disk

67

VM migration

• Pros
– Useful in clusters and virtual data centers to:

✓Consolidate infrastructure

✓Add failover flexibility

✓Balance load

• Cons
✓Requires VMM support
✓Migration overhead is non-negligible
✓WAN migration is scarcely supported

Valeria Cardellini - SDCC 2024/25 68

VM migration
• Approaches to migrate VM instances between physical

machines:
– Stop and copy: shutdown source VM and transfer VM image to

destination host, but downtime can be too long

• VM image can be large and network bandwidth limited

– Live migration: source VM is running during migration

• Largely used by Google: > 1M migrations per month

Valeria Cardellini - SDCC 2024/25 69

Our focus

VM live migration
• Preliminary steps before starting VM live migration

– Setup phase: determine source host, destination host and

VM to migrate (goals of load balancing, energy efficiency,

server consolidation) by means of proper algorithms

• What to migrate? Memory, storage, network
connections

• How? In a transparent way wrt applications running
inside VM
– But migration transparency is hard to achieve, live migration

still causes application downtime: how to limit it?

Valeria Cardellini - SDCC 2024/25 70

VM live migration: storage
• Let’s consider VM migration within a cluster

environment

• To migrate storage
– Can use network-accessible and shared storage system

• SAN (Storage Area Network) or cheaper NAS (Network Attached
Server) or distributed file system (e.g., HDFS, GlusterFS, CEPH)

– Without shared storage: source VMM stores all source VM

data in an image file, which is transferred to destination host

71Valeria Cardellini - SDCC 2024/25

VM live migration: network
• To migrate network connections

– Source VM has its own virtual IP address, which can be

distinct from IP address of source host; can also have its own

distinct virtual MAC address

• VMM maintains a mapping of virtual IP and MAC addresses to
their corresponding VMs

– If source and destination hosts are connected to a single

switched LAN, an unsolicited ARP reply from source host is

provided, advertising that the IP has moved to a new location

• A few in-flight packets might be lost

– Alternatively, use forwarding mechanisms on source host

72Valeria Cardellini - SDCC 2024/25

VM live migration: memory
• To migrate memory (including CPU and device state):

1. Pre-copy phase: VMM copies in an iterative way the memory

pages from source VM to destination VM while source VM is

running

• During iteration n those pages dirtied during iteration n-1 are copied

2. Stop-and-copy phase: source VM is suspended and the last

dirty pages are copied, as well as CPU and device drivers

states; VM applications do not run

• Downtime: from some msec to sec, depending on memory size,
application memory workload and network bandwidth

3. Commitment and reactivation phases: destination VM is

activated and recovers application execution; source VM is

removed (and source host may be turned off)

• Known as pre-copy approach
– Memory is copied before VM execution resumes at destination

– Most popular solution (e.g, KVM, VMWare, Xen, Google CE)

Valeria Cardellini - SDCC 2024/25 73

VM live migration: overall process

Valeria Cardellini - SDCC 2024/25 74

Clark et al., Live Migration of Virtual Machines, NSDI 2005
https://www.usenix.org/legacy/event/nsdi05/tech/full_papers/clark/clark_html/

VM live migration: alternatives for memory
• Pre-copy cannot migrate in a transparent manner

memory-intensive apps
– E.g., for write-intensive memory app, pre-copy is unable to

transfer memory faster than memory is dirtied by running app

• Two alternative approaches
– Post-copy

– Hybrid

• Post-copy
– CPU and device state are transferred immediately to

destination host followed by transfer of execution control to

destination host

– Memory is fetched on-demand if needed by the running VM

on the destination host (pull approach)

✓ Reduces downtime and total migration time

✗ Incurs app degradation due to page faults which must be

resolved over the network
Valeria Cardellini - SDCC 2024/25 75

VM live migration: alternatives for memory
• Hybrid

– Special case of post-copy migration: post-copy preceded by

a bounded pre-copy stage

– Idea: transfer a subset of the most frequently accessed

memory pages before VM execution is switched to

destination, so to reduce app performance degradation due

to memory transfer after VM is resumed

✓ Pre-copy stage reduces the number of future network-bound

page faults as a large portion of VM memory is already pre-

copied

• Most virtualization products support only pre-copy

Valeria Cardellini - SDCC 2024/25 76

VM live migration: alternatives for memory

Valeria Cardellini - SDCC 2024/25 77

• Summary of approaches to migrate memory

VM live migration and hypervisors

• VM live migration is supported by open-source and
commercial hypervisors
– E.g., KVM, Hyper-V, Xen, VirtualBox

• Can be managed using virsh with different options
$> virsh migrate --live [--undefinesource] \
[--copy-storage-all] [--copy-storage-inc] domain desturi
$> virsh migrate-setmaxdowntime domain downtime
$> virsh migrate-setspeed domain bandwidth
$> virsh migrate-getspeed domain

Valeria Cardellini - SDCC 2024/25 78

VM migration in WAN

• How to achieve VM live migration across multiple
geo-distributed data centers?
– Key challenge: maintain network connectivity and preserve

open connections during and after migration

– Limited support in open-source and commercial hypervisors

Valeria Cardellini - SDCC 2024/25 79

VM migration in WAN: storage
• Approaches to migrate storage in WAN

– Shared storage

✗Storage access time can be too slow

– On-demand fetching

• Transfer only some blocks to destination and then fetch
remaining blocks from source only when requested

✗Does not work if source crashes

– Pre-copy plus write throttling

• Pre-copy VM disk image to destination whilst VM continues to
run, keep track of write operations on source (delta) and then
apply delta on destination

• If write rate at source is too fast, use write throttling to slow down
VM disk writing so that migration can proceed

Valeria Cardellini - SDCC 2024/25 80

VM migration in WAN environments: network
• Approaches to migrate network connections in WAN

– IP tunneling

• Set up an IP tunnel between old IP address at source VM and
new IP address at destination VM

• Use tunnel to forward all packets that arrive at source VM for
old IP address

• Once migration has completed and VM can respond at its new
location, update the DNS entry with new IP address

• Tear down the tunnel when no connections remain that use the
old IP address

✗Does not work if source VM crashes

– Virtual Private Network (VPN)

• Use MPLS VPN to create the abstraction of a private network
and address space shared by multiple data centers

– Software-Defined Networking (SDN)

• Change control plane, no need to change IP address!

Valeria Cardellini - SDCC 2024/25 81

OS-level virtualization

• So far system-level virtualization
• Let’s now consider operating system (OS) level

virtualization (or container-based virtualization)
• Allows to run multiple isolated (sandboxed) user-

space instances on top of a single OS
– Such instances are called:

• containers
• jails

• zones

• virtual environments

Valeria Cardellini - SDCC 2024/25
82

OS-level virtualization
• OS kernel allows the existence of multiple isolated

user-space instances, called containers
• Each container has:

- Its own set of processes, file systems, users, network

interfaces with IP addresses, routing tables, firewall rules, …

• Containers share the same OS kernel (e.g., Linux)

83
Valeria Cardellini - SDCC 2024/25

OS-level virtualization: mechanisms
• Which kernel mechanisms to manage containers?

– Need to isolate processes from each other in terms of sw

and hw (CPU, memory, …) resources

• Main mechanisms offered by Unix-like OS kernel
– chroot (change root directory)

• Allows to change the apparent root folder for the current
running process and its children

– cgroups (Linux-specific)

• Manage resources for groups of processes

– namespaces (Linux-specific)

• Per-process resource isolation

Valeria Cardellini - SDCC 2024/25 84

Mechanisms: namespaces
• Feature of Linux kernel that allows to isolate what a

set of processes can see in the operating
environment (processes, ports, files, ...)

• Kernel resources are partitioned so that one set of
processes sees one set of resources, while another
set of processes sees a different set of resources

• 6 different types of namespaces

Valeria Cardellini - SDCC 2024/25 85

Mechanisms: namespaces
• mnt: isolates mount points seen by a container

– Virtually partitions the file system: processes running in

separate mount namespaces cannot access files outside of

their mount point

• pid: isolates PID space, so that each process only
sees itself and its children (PID 1, 2, 3, …)

• network: allows each container to have its dedicated
network stack
– Its own private routing table, set of IP addresses, socket

listing, firewall, and other network-related resources

• user: isolates user and group IDs
– E.g., allows a non-root user on host to be mapped with root

user within container, without having actual root access to

host

Valeria Cardellini - SDCC 2024/25
86

Mechanisms: namespaces
• uts (Unix timesharing): provides dedicated host and

domain names
– Allows processes to think they are running on differently

named servers

• ipc: provides dedicated shared memory for IPC, e.g.,
different Posix message queues

Valeria Cardellini - SDCC 2024/25
87

Mechanisms: cgroups
• cgroups = control groups
• Allows to limit, measure and isolate the use of hw

resources (CPU, memory, block I/O, network) of a set
of processes

• Low-level filesystem interface similar to sysfs and
procfs
– By default mounted on /sys/fs/cgroup/ directory

• Mechanisms in a nutshell:
– namespaces implements information isolation: what a

container can see

– cgroups implements resource isolation: how much resources

a container can use

Valeria Cardellini - SDCC 2024/25
88

OS-level virtualization: pros
• VMM-based vs container-based virtualization

Valeria Cardellini - SDCC 2024/25
89

In a nutshell: lightweight vs. heavyweight

OS-level virtualization: pros
With respect to VMM-based virtualization (type-1)
✓ Minimal performance degradation

– Apps invoke system calls directly, without VMM indirection

✓ Minimum startup and shutdown times
– Seconds (even msec) per container, minutes per VM

✓ High density
– Hundreds of containers on a single physical machine (PM)

✓ Smaller image (footprint)
– Does not include OS kernel

✓ Ability to share memory pages among multiple
containers running on same PM

✓ Increased portability and interoperability
✓ Containerized apps independent of execution

environment
Valeria Cardellini - SDCC 2024/25 90

OS-level virtualization: cons
With respect to VMM-based virtualization (type-1)
✗ Less flexibility

– Cannot run different OS kernels simultaneously on same PM

✗ Only native applications for supported OS kernel
– E.g., cannot run Windows container on Linux host

✗ Less isolation and higher performance interference
on shared system resources
– Process-level isolation

✗ Higher risk of vulnerability and more threats
– Vulnerability in OS kernel can compromise entire system

– Since containers share OS kernel, a single compromised

container could comprise host OS and other containers

Valeria Cardellini - SDCC 2024/25
91

OS-level virtualization: some products

Valeria Cardellini - SDCC 2024/25 92

• Docker
– The most popular container engine

– Provides application containers
– Supports Open Container Initiative

(OCI), a set of standards for containers

https://opencontainers.org

• LXC (LinuX Containers) https://linuxcontainers.org/lxc/

– Supported by mainline Linux kernel

– Provides system containers (full OS image)

• Podman https://podman.io

– Supports OCI

– Docker compatible CLI

• FreeBSD Jail
• OpenVZ (for Linux) https://openvz.org

• Virtuozzo Containers

OS-level virtualization: only Linux?

• Windows and OS X also support container-based
virtualization
– E.g., Docker Desktop

https://www.docker.com/products/docker-desktop/

• Alternative: install a VM with Linux as guest OS and
then install a container-based virtualization product
inside VM
✗ Performance loss because of nested virtualization

Valeria Cardellini - SDCC 2024/25
93

Containers, DevOps and CI/CD

• Containers help in the shift to DevOps and CI/CD
(Continuous Integration and Continuous Deployment)

94

• DevOps = Development and
Operations
– Development methodology with a

set of practices aimed at bridging

the gap between Development and

Operations, emphasizing

communication and collaboration,

continuous integration, quality

assurance and delivery with

automated deployment

Valeria Cardellini - SDCC 2024/25

Containers, DevOps and CI/CD

95

• CI/CD = Continuous Integration and Continuous
Delivery/Deployment
– Continuous integration: sw development practice that

merges work of all developers working on same project

– Continuous delivery: ensures reliable and frequent

releases

• In DevOps culture, the two practices are combined
to enable teams to ship software releases
effectively, reliably, and frequently

Valeria Cardellini - SDCC 2024/25

Containers, DevOps and CI/CD

• Containers are become a standard to build, package,
share, and deploy apps and all their dependencies
– Containers (more than VMs) allow developers to build code

collaboratively by sharing images while simplifying

deployment to different environments without further

configuration

96
Valeria Cardellini - SDCC 2024/25

Containers, DevOps and CI/CD

Valeria Cardellini - SDCC 2024/25
97

• Some tools for DevOps

Containers, microservices, and serverless

• Using containers
- App and all its dependencies into single package that can

run almost anywhere

- Using fewer resources than traditional VMs

• Containers are the key enabling technology for
microservices and serverless computing
– Wrap microservices and functions in containers

Valeria Cardellini - SDCC 2024/25
98

Docker

• Let’s go into Docker details
http://www.ce.uniroma2.it/courses/sdcc2425/slides/Docker.pdf

Valeria Cardellini - SDCC 2024/25
99

Container resizing

• As for VMs, we can resize and migrate containers

• Resizing (CPU, memory, I/O) changes dynamically
container limits
– On Docker (not supported for Windows)

$docker update [OPTIONS] CONTAINER [CONTAINER...]
– Some example of container resizing

$ docker update --cpu-shares 512 containerID
$ docker update --cpu-shares 512 -m 300M containerID

Valeria Cardellini - SDCC 2024/25 100

Live migration of containers

• As for VM migration, we need to:
– Save state

– Transfer state

– Restore from state

• State saving, transferring and restoring happen with
frozen app: migration downtime
– Use memory pre-copy or memory post-copy

• No native support in container engines, requires
additional tool

• We also need to migrate container image (and
volumes) and network connections

Valeria Cardellini - SDCC 2024/25 101

Live migration of containers

Valeria Cardellini - SDCC 2024/25 102

• Use CRIU tool to support live migration (in Docker and
other container engines) through checkpointing and
restoration https://criu.org/

– During checkpoint, CRIU freezes running container at source

host and collects information about its CPU state, memory

content, and process tree

– Collected information is passed on to destination host, and

container is resumed

– How to: https://docs.docker.com/reference/cli/docker/checkpoint/

Container security
• Where attacks come from in a containerized

environment?

• Example of attack: container escape and privilege
escalation
– Attacker can leverage containerized app’s vulnerabilities to

breach its isolation boundary, gaining access to host

system’s resources

– Once attacker accesses host, it can escalate its privilege to

access other containers or run harmful code on host
Valeria Cardellini - SDCC 2024/25 103

Container orchestration
• Sw platforms for managing the deployment of multi-

container packaged applications in large-scale
clusters

• Allow to configure, provision, deploy, monitor, and
dynamically control containerized apps
– Used to integrate and manage containers at scale

• Examples
– Docker Swarm

– Kubernetes (next lesson)

– Nomad https://www.nomadproject.io/

• Also available as fully managed Cloud services

104
Valeria Cardellini - SDCC 2024/25

Containers in Cloud
• Containers and container orchestration platforms as

first-class Cloud services
• Container-as-a-Service (CaaS)

– Allows developers to manage and deploy containerized

applications using a Cloud-based platform

• Features: those of containers + cloud
– Containerization and container orchestration

– Networking

– Platform configuration

– Security and access control

– Integration with other Cloud services

• Examples
– Amazon Elastic Container Service https://aws.amazon.com/ecs/

– Azure Container Instances

https://azure.microsoft.com/products/container-instances

– Google Cloud Run https://cloud.google.com/runVa
le

ria
 C

ar
de

llin
i -

SD
C

C
 2

02
4/

25

105

Hypervisors and containers in Cloud

• Which virtualization technology for IaaS providers?
✓ Hypervisor-based virtualization: greater security, isolation,

and flexibility (different OSs on same PM)

✓ Container-based virtualization: smaller-size deployment and

thus larger density, reduced startup and shutdown times

• Some question
– Containers on top of bare metal or in VMs?

– Are containers replacing VMs?

Valeria Cardellini - SDCC 2024/25
106

New lightweight virtualization approaches

• Deployment strategies examined so far

Valeria Cardellini - SDCC 2024/25 107

?

New lightweight approaches to virtualization
• Microservices, serverless computing, edge/fog

computing, compute continuum demand for low-
overhead (or lightweight) virtualization techniques,
even lighter than containers
– Additional requirement: improve security

• MicroVM, lightweight OSs and unikernels
– Idea: reduce OS overhead and attack surface

– OS overhead: services and tools coming with common OSs

(shells, editors, core utils, and package managers) are not

needed

– Attack surface: images contain only the code that is strictly

necessary for app to run, thus resulting in minimal attack

surface

Valeria Cardellini - SDCC 2024/25 108

MicroVM runtimes
• Tiny, specialized VMMs that run lightweight VMs

(microVMs)
• Goal: reduce memory footprint and improve security of

virtualization layer
• Firecracker: VMM purpose-built by Amazon for creating

and managing secure, efficient and multi-tenant
microVMs https://firecracker-microvm.github.io

109

– Why? To enable AWS Lambda and AWS Fargate

– Based on KVM but with minimalist design (exclude

unnecessary devices and guest functionality)

– Open source, written in Rust

– Runs app in microVM: < 125 ms startup time and

<5 MB memory footprint

– Scales to thousands of multi-tenant microVMs

– Supported OS guests inside microVM: Linux and OSv

Valeria Cardellini - SDCC 2024/25

Lightweight operating systems
• Minimal, container-focused OSs, typically with

monolithic kernel architecture
– Special-purpose OSs to run containerized apps

• Fedora CoreOS https://fedoraproject.org/it/coreos/

– Minimal, monolithic and compact Linux distribution

• Only functionalities required for deploying apps inside
containers, together with built-in mechanisms for service
discovery, container management and configuration sharing

– Goal: provide the best container host to run containerized

workloads securely and at scale

– Can be installed on bare metal or on hypervisor

– Fast bootstrap and small memory footprint

– Includes Docker and podman

Valeria Cardellini - SDCC 2024/25
110

Unikernels

Valeria Cardellini - SDCC 2024/25
111

VM
container

unikernel

• Specialized, small, lightweight, single-address-space
operating system with kernel included as library
within application (aka library OS)
– Sort of very lightweight VM specialized to single app:

executable directly into kernel, resulting in monolithic

process that runs entirely in kernel mode

– Built by compiling high-level language directly into

specialized machine image that runs directly on hypervisor

– Goal: isolation benefits of hypervisor without overhead of

guest OS

Unikernels: pros and cons
• Pros (from specialized = high performance)

✓ Lightweight and small (minimal memory footprint)

✓ Fast app execution (no context switching)

✓ Fast boot (measured in ms)

✓ Secure (reduced attack surface)

See https://www.youtube.com/watch?v=oHcHTFleNtg

• Cons:
✗ Engineering effort to port app to unikernel

✗ Single language runtime

✗ Limited debugging tools

• Good news: cons almost solved with recent
unikernel frameworks

Valeria Cardellini - SDCC 2024/25 112

Unikernels: frameworks
• Frameworks (and programming language)

– MirageOS (OCaml) https://mirage.io

– OSv (C, C++, Go, Python, Java, Rust, …)

– Nanos https://nanos.org/

– Unikernel Linux: patch to Linux and glibc to build

unmodified programs as unikernel

https://github.com/unikernelLinux/ukl

– Unikraft

• OSv https://github.com/cloudius-systems/osv

– Designed to run single unmodified Linux application on top of

hypervisor (e.g., KVM, Xen, VMWare, Firecracker)

– Linux binary compatible unikernel

– To run app on OSv, need to build image by fusing OSv kernel

and app files together https://github.com/cloudius-systems/capstan

– Open-source and fast

• Can boot in ~5 ms on Firecracker using 11 MB of memory
Valeria Cardellini - SDCC 2024/25 113

Unikernels: frameworks

• Unikraft https://unikraft.org

– Fast, secure and open-source Unikernel Development Kit

– Goal: build unikernels easily, quickly and without time-

consuming expert work

– Supports multiple hypervisors (e.g., Xen and KVM) and CPU

architectures

– Ability to run wide range of apps (even complex: Redis,

Nginx, Memcached) and languages

– POSIX compliant

– Written in C

Valeria Cardellini - SDCC 2024/25
114

Unikernels: frameworks

Valeria Cardellini - SDCC 2024/25
115

• Unikraft

Performance of virtualization approaches

116

My VM is lighter (and safer) than your container, SOSP 2017
https://dl.acm.org/doi/pdf/10.1145/3132747.3132763

Valeria Cardellini - SDCC 2024/25

• VM boot times grow linearly with VM size

• Difficulties in securing containers due to growth of Linux syscall API

Performance of virtualization approaches
• Performance studies compare hypervisor vs.

lightweight virtualization
• Overall result: overhead introduced by containers is

almost negligible
– Fast instantiation time

– Small per-instance memory footprint

– High density

•… but paid in terms of security

Valeria Cardellini - SDCC 2024/25
117

Virtualization Boot time Image size Memory
footprint

Programming
language
dependance

Live
migration

VM ~5/10 sec ~1 GB ~100 MB No Yes

Container ~0.8/1 sec ~50 MB ~5 MB No Non-native

Unikernel <10 msec <20 MB ~10 MB Partially No

Performance of virtualization approaches
• Lightweight virtualization is needed for edge

computing and compute continuum
• Overall result: no clearly winning solution so far, each

one has its own strengths and weaknesses

Valeria Cardellini - SDCC 2024/25
118

A functional and performance benchmark of lightweight virtualization platforms for
edge computing, EDGE 2022 https://ieeexplore.ieee.org/document/9860335

WebAssembly
• WebAssembly (Wasm): safe, portable, binary code

format designed for efficient execution and compact
representation https://webassembly.org

• Features
– Open standard https://www.w3.org/TR/wasm-core-2/

– Designed as portable compilation target for different

programming languages

• Born to safely execute JavaScript code in browsers

– Memory-safe, sandboxed execution

– Computational model based on stack VM

Valeria Cardellini - SDCC 2024/25 119

WebAssembly: features
• Wasm code is validated and executed in a memory-

safe, sandboxed environment
– Wasm interacts with host system via WebAssembly System

Interface (WASI)

– Wasm module cannot directly perform an OS system call

due to sandboxing, but imports equivalent WASI functions

instead

• Steps: write code in a variety of supported
languages, compile it to Wasm, and execute in a
Wasm runtime

Valeria Cardellini - SDCC 2024/25 120

WebAssembly: features
• Computational model is stack-based VM

https://en.wikipedia.org/wiki/Stack_machine

– Code consists of sequences of instructions executed in

order

– Instructions manipulate values on an operand stack
– Instructions pop argument values and push result values

– Simple instructions perform basic operations on data, pop

arguments from stack and push results back to it

• E.g., i64.add takes two i64 values from stack and pushes
the result onto the stack

– Control instructions alter control flow

• JVM is a famous example of stack-based VM

Valeria Cardellini - SDCC 2024/25
121

WebAssembly: example
• Factorial function written in C and its corresponding

WebAssembly code after compilation
– In .wat text format (human-readable textual representation of

Wasm)

Valeria Cardellini - SDCC 2024/25 122

WebAssembly: example
• Factorial function written in C and its corresponding

WebAssembly code after compilation
– In .wasm binary format

Valeria Cardellini - SDCC 2024/25 123

WebAssembly: pros and cons
ü Efficient: near-native execution speed
ü Secure: memory-safe sandboxed execution, which

prevents data corruption and security breaches
ü Language-, platform-, hardware-independent

– Does not privilege any particular language

– Can run as stand-alone VM

– Can be compiled on all modern architectures, desktop or

mobile devices and embedded systems

✗ In development
✗ Support is not equal for all languages
✗ Multiple runtimes (e.g., Wasmtime, Wasmer,

WasmEdge) with different features: challenging
choice

Valeria Cardellini - SDCC 2024/25 124

WebAssembly
• How to try: Wasm applications with Linux containers

in Docker (beta)
https://docs.docker.com/desktop/features/wasm/

$ docker run \
--runtime=io.containerd.wasmedge.v1 \
--platform=wasi/wasm \
secondstate/rust-example-hello

Valeria Cardellini - SDCC 2024/25
125

The full scenario

Valeria Cardellini - SDCC 2024/25
126

References
• Section 3.2 of van Steen & Tanenbaum book

• Sections 4.1, 4.4, 4.13, 5.1-5.5, 5.8 of Marinescu book

• Smith and Nair, The architecture of virtual machines, IEEE

Computer, 2005 https://ieeexplore.ieee.org/iel5/2/30853/01430629.pdf

• Bugnion et al., Hardware and software support for virtualization,

2017 https://kartikgopalan.github.io/680v/books/HSSV.pdf

• Agache et al., Firecracker: Lightweight virtualization for serverless

applications, NDSI 2020

https://www.usenix.org/conference/nsdi20/presentation/agache

• Kuenzer et al., Unikraft: fast, specialized unikernels the easy way,

EuroSys 2021 https://dl.acm.org/doi/pdf/10.1145/3447786.3456248

Valeria Cardellini - SDCC 2024/25
127

