
Hands-on Cloud Computing Services
Lezione 2

Gabriele Russo Russo
University of Rome Tor Vergata, Italy

A.Y. 2025/26

Recap

▶ Amazon Web Services: regions, services, ...
▶ Elastic Compute Cloud (EC2)

▶ Instance, AMI, Security Group
▶ SSH, public/private keys

▶ Example web app: Photogallery
▶ Custom AMI for our app

2

Run Commands at Launch: cloud-init and User Data

▶ Creating a custom AMI allowed us to create new EC2 instances without manually
configuring the application every time

▶ Alternative approaches?
▶ Cloud providers allow you to run commands when instances are launched:

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/user-data.html
▶ In AWS, you can use the User Data option to specify:

▶ a Bash script
▶ cloud-init directives (https://cloudinit.readthedocs.io/en/latest/)

3

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/user-data.html
https://cloudinit.readthedocs.io/en/latest/

Test

▶ Create a new EC2 instance with the custom AMI

4

Next step

5

Amazon VPC

▶ Provision logically isolated sections of the AWS cloud
▶ Define virtual networks (IP ranges, subnets, gateways,. . .)
▶ May create a Virtual Private Network (VPN) connection between your own datacenter

and your VPC (hybrid cloud)
▶ No additional charges for creating and using the VPC itself.
▶ So far, we have used the default VPC

6

Amazon VPC: main building blocks

▶ In each AZ, we can define one or more subnets
▶ Routing Tables attached to subnets
▶ Internet Gateway

7

VPC Configuration: the hard way

▶ Create a new Virtual Private Cloud (VPC)
▶ We associate a block of (private) IP addresses to the VPC

▶ Subnets will be created within this block of addressess
▶ We can pick, e.g., 10.0.0.0/16

▶ We can create subnets: each subnet is associated with an Availability Zone (AZ)
▶ Let’s pick an AZ and create a subnet (e.g., 10.0.1.0/24)
▶ If you want (for debugging), you can require that EC2 instances in the subnet are also

assigned a public IP address
▶ Create an Internet Gateway (IG) to allow instances in the VPC to reach Internet;

associate it with the VPC
▶ Create a Route Table for the VPC and attach it to the subnet(s)
▶ Add a new rule in the table: 0.0.0.0\0 – target: IG
▶ Repeat the above steps for each subnet you want.

8

VPC Configuration: the easy way

▶ AWS released a new UI to ease VPC configuration
▶ Most the elements you need automatically created along with the VPC

▶ Subnets
▶ Routing Tables
▶ Internet Gateway (for public subnets)

9

Test

▶ Create a new EC2 instance in one of the newly created public subnets
▶ Start with the custom AMI
▶ Make sure to enable the assignment of a public IP address

10

Elastic Load Balancing (ELB)

▶ ELB automatically distributes incoming traffic across multiple targets (e.g., EC2
instances, containers, and IP addresses) in one or more Availability Zones

▶ It monitors the health of its registered targets and routes traffic only to the healthy
targets

▶ 4 types of ELB:
▶ Application Load Balancer (layer 5)
▶ Network Load Balancer (layer 4)
▶ Gateway Load Balancer (layer 3)
▶ Classic Load Balancer (legacy)

▶ We’ll use the Application LB today

11

ELB Configuration

▶ Create an ELB instance listening for HTTP requests on port 80
▶ ELB needs a security group: configure one to accept traffic on port 80
▶ We must also create a target group, to which ELB forwards requests

▶ Health check: use HTTP requests on port 80 with path /

▶ Create a few EC2 instances using our custom AMI in our subnets
▶ Register the instances with the target group
▶ Wait a few minutes (DNS...) and then try to connect at the ELB URL with the browser

Note:
▶ EC2 instances don’t need a public IP address any more
▶ EC2 instances can now use a stricter security group:

▶ Allowed source: 0.0.0.0/0 → <ID of ELB sec group>

12

ELB: Advanced Rules

▶ An ELB can have multiple rules associated to distribute requests
▶ Each rule can have one or more matching conditions
▶ e.g., you may use different rules for different types of HTTP requests

13

Auto scaling

▶ We want to dynamically provision the number of active instances
▶ Let’s use the Auto Scaling service of EC2

14

Auto Scaling + Photogallery

▶ Before starting, terminate manually launched instances
▶ Create a Launch Template for Photogallery
▶ Create an Auto Scaling Group that uses the new Launch Template
▶ Specify the VPC and the subnets where new instances should be launched
▶ Enable load balancing, associating the group with our ELB
▶ Set minimum and maximum number of instances (e.g., 2 and 5)
▶ Set an auto scaling policy
▶ Verify that new instances are automatically created

15

Recap

▶ We have seen how to deploy a web app using:
▶ EC2
▶ ELB
▶ Auto Scaling Groups

▶ Problem: infrastructure completely configured by hand
▶ error-prone and difficult to reproduce

16

AWS CLI

▶ Command Line Interface to interact with AWS
▶ Faster interaction compared to web console

▶ e.g., EC2 instance created with a single command

▶ Installation: check the official docs for Linux/Win/macOS
▶ https://aws.amazon.com/it/cli/

▶ AWS CloudShell provides an in-browser console where CLI commands are available
(useful for quick commands)

▶ Alternatively, Windows users may prefer the AWS Tools for PowerShell
▶ https://aws.amazon.com/it/powershell/

17

https://aws.amazon.com/it/cli/
https://aws.amazon.com/it/powershell/

AWS CLI: Configuration

▶ AWS CLI can be configured by:
▶ running aws configure, or
▶ editing ~/.aws/config and ~/.aws/credentials
▶ (slightly different paths on Windows)

▶ Key configuration options:
▶ AWS Access Key ID and AWS Secret Access Key
▶ default region to use (e.g., us-east-1)
▶ output format (json, text)

18

AWS CLI: example (1)

Create a new security group in our VPC:

$ aws ec2 create-security-group \
--group-name my-sg \
--description "My security group" \
--vpc-id <VPC_ID>

Set inbound traffic rules, e.g.:

$ aws ec2 authorize-security-group-ingress \
--group-id <ID> \
--protocol tcp --port 22 --cidr 0.0.0.0/0

We can see the properties of any SG:

$ aws ec2 describe-security-groups --group-ids <groupId>

19

AWS CLI: example (2)

Create an EC2 instance:

$ aws ec2 run-instances \
--image-id <ID AMI> \
--count 1 \
--instance-type t2.nano \
--key-name <MyKeyPair> \
--security-group-ids <sgId> \
--subnet-id <subnetId> \
--associate-public-ip-address

We can associate the instance with a tag:

$ aws ec2 create-tags --resources <instID> \
--tags Key=Name,Value=SDCC

20

AWS CLI: example (3)

We can get information about active instances:

$ aws ec2 describe-instances \
--filters "Name=tag:Name,Values=SDCC"

$ aws ec2 describe-instances \
--filters "Name=instance-type,Values=t2.nano"

To terminate the instance:

$ aws ec2 terminate-instances --instance-ids <ID>

21

IT Automation using Ansible

▶ Ansible delivers simple IT automation that ends repetitive tasks and frees up teams
for more strategic work.

▶ Available on Linux and macOS: https://docs.ansible.com/ansible/latest/
installation_guide/intro_installation.html
▶ Windows users might use a Linux-based VM

▶ Agentless: no need to pre-install software on the target machines
▶ Define WHAT you want to achieve, instead of HOW

▶ e.g., “Apache web server installed and started”
▶ Similar alternatives: Chef, Puppet, a bunch of Bash scripts, ...

22

https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html

Ansible: Key Concepts

▶ Playbooks (e.g., “deploy Photogallery”)
▶ Tasks (e.g., (“install Flask”)
▶ Modules (used to define single sub-tasks: e.g., file, archive, apt)

▶ Built-in modules
▶ Custom modules

▶ Inventory = hosts to be managed
▶ Static
▶ Dynamic

23

A playbook for Photogallery: inventory

▶ Create the inventory file hosts.ini
▶ (You may even put localhost in the inventory for testing)

▶ One line per host
▶ Possibly organized into groups (e.g., web, db, ...)
▶ We can add params for SSH authentication on the same line

Inventory file

[web]
18.185.19.141 ansible_user=’ec2-user’ \

ansible_ssh_private_key_file=’/path/to/keypair.pem’

Simple test using the ping module:
$ ansible -i hosts.ini -m ping all

24

A playbook for Photogallery

To deploy Photogallery we need to:
▶ Upload application files (module: copy)
▶ Install dependencies (modules: yum, pip)
▶ Install systemd unit file to start server at boot (module: copy)
▶ Enable systemd service (module: systemd)

Check deploy_gallery.yaml

$ ansible-playbook -v -i hosts.ini deploy_gallery.yaml
What happens if we try again?

$ ansible-playbook -v -i hosts.ini deploy_gallery.yaml

25

Ansible: Dynamic Inventory

▶ Ansible requires an inventory
▶ Not necessarily a static file
▶ AWS Inventory Source: run your playbooks using (a subset of) your EC2 instances as

target hosts (e.g., filtered by tag)
▶ Requires Ansible 2.9+
▶ A plugin required, easy to install:

$ ansible-galaxy collection install amazon.aws

26

Ansible: AWS Dynamic Inventory

▶ Create a YAML file (name MUST end with aws_ec2.(yml|yaml)
→ galleryInventory.aws_ec2.yaml

Test
ansible-inventory -i galleryInventory.aws_ec2.yaml --graph

Running the playbook
ansible-playbook -i galleryInventory.aws_ec2.yaml
--private-key=path/to/key.pem -u ec2-user deploy_gallery.yaml

27

Ansible: More Advanced Stuff

▶ Groups and Roles
▶ Templates
▶ Ansible Tower / AWX1

▶ Share playbooks / delegate
▶ Schedule workflows
▶ Dashboards

1https://github.com/ansible/awx
28

https://github.com/ansible/awx

Amazon S3

AWS Storage Services

AWS offers various storage services, including:

▶ S3: Simple Storage Service
▶ EBS: Elastic Block Storage
▶ EFS: Elastic File System

30

Amazon S3

▶ Amazon Simple Storage Service (S3)
▶ Scalable object storage service
▶ Pricing: https://aws.amazon.com/it/s3/pricing/
▶ Buckets and objects

31

https://aws.amazon.com/it/s3/pricing/

S3 for Photogallery

▶ Let’s create a bucket using S3 console
▶ Bucket name must be unique across all AWS regions and accounts
▶ We can choose who can access objects and buckets: https://docs.aws.amazon.

com/it_it/AmazonS3/latest/dev/example-bucket-policies.html
▶ For Photogallery, we want everyone to read objects

We can reference an object like this:

https://BUCKETNAME.s3.amazonaws.com/FILENAME

32

https://docs.aws.amazon.com/it_it/AmazonS3/latest/dev/example-bucket-policies.html
https://docs.aws.amazon.com/it_it/AmazonS3/latest/dev/example-bucket-policies.html

Using S3 through the CLI

$ aws s3 ls
$ aws s3 ls s3://mybucket
$ aws s3 cp prova.txt s3://mybucket/
$ aws s3 ls s3://mybucket
$ aws s3 rm s3://mybucket/prova.txt

Third-party clients also available: e.g., s3cmd

33

Hosting Static Web Content on S3

▶ Objects in a public bucket can be accessed through HTTP
▶ You can use S3 to host static web content

▶ a static website
▶ the frontend of a web application

▶ To enable web hosting on a bucket: https://docs.aws.amazon.com/AmazonS3/
latest/userguide/EnableWebsiteHosting.html

34

https://docs.aws.amazon.com/AmazonS3/latest/userguide/EnableWebsiteHosting.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/EnableWebsiteHosting.html

