Hands-on Cloud Computing Services

Lezione 2

Gabriele Russo Russo
University of Rome Tor Vergata, Italy

AY.2025/26

TOR VERGATA

UNIVERSITA DEGLI STUDI DI ROMA




Recap

» Amazon Web Services: regions, services, ...

» Elastic Compute Cloud (EC2)

> Instance, AMI, Security Group
» SSH, public/private keys

» Example web app: Photogallery
» Custom AMI for our app



Run Commands at Launch: cloud-init and User Data

> Creating a custom AMI allowed us to create new EC2 instances without manually
configuring the application every time

> Alternative approaches?

» Cloud providers allow you to run commands when instances are launched:
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/user-data.html

> In AWS, you can use the User Data option to specify:

> a Bash script
> cloud-init directives (https://cloudinit.readthedocs.io/en/latest/)


https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/user-data.html
https://cloudinit.readthedocs.io/en/latest/

Test

» Create a new EC2 instance with the custom AMI



Next step

EC2
Instance



Amazon VPC

v

Provision logically isolated sections of the AWS cloud
> Define virtual networks (IP ranges, subnets, gateways,...)

May create a Virtual Private Network (VPN) connection between your own datacenter
and your VPC (hybrid cloud)

» No additional charges for creating and using the VPC itself.
So far, we have used the default VPC

v

v



Amazon VPC: main building blocks

» |n each AZ, we can define one or more subnets
> Routing Tables attached to subnets
> Internet Gateway



VPC Configuration: the hard way

v

Create a new Virtual Private Cloud (VPC)
We associate a block of (private) IP addresses to the VPC

> Subnets will be created within this block of addressess
» We can pick, e.g., 10.0.0.0/16

We can create subnets: each subnet is associated with an Availability Zone (AZ)
Let’s pick an AZ and create a subnet (e.g., 10.0.1.0/24)

If you want (for debugging), you can require that EC2 instances in the subnet are also
assigned a public IP address

Create an Internet Gateway (IG) to allow instances in the VPC to reach Internet;
associate it with the VPC

Create a Route Table for the VPC and attach it to the subnet(s)
Add a new rule in the table: 0.0.0.0\0 - target: IG
Repeat the above steps for each subnet you want.



VPC Configuration: the easy way

> AWS released a new Ul to ease VPC configuration

> Most the elements you need automatically created along with the VPC
> Subnets
> Routing Tables
> Internet Gateway (for public subnets)



Test

» Create a new EC2 instance in one of the newly created public subnets
> Start with the custom AMI
> Make sure to enable the assignment of a public IP address

10



Elastic Load Balancing (ELB)

> ELB automatically distributes incoming traffic across multiple targets (e.g., EC2
instances, containers, and IP addresses) in one or more Availability Zones

> It monitors the health of its registered targets and routes traffic only to the healthy
targets

> 4 types of ELB:

» Application Load Balancer (layer 5)
» Network Load Balancer (layer 4)

> Gateway Load Balancer (layer 3)

> Classic Load Balancer (legacy)

> We'll use the Application LB today

11



ELB Configuration

» Create an ELB instance listening for HTTP requests on port 80

v

ELB needs a security group: configure one to accept traffic on port 80
We must also create a target group, to which ELB forwards requests
> Health check: use HTTP requests on port 80 with path /

> Create a few EC2 instances using our custom AMI in our subnets

v

> Register the instances with the target group

> Wait a few minutes (DNS...) and then try to connect at the ELB URL with the browser
Note:

» EC2 instances don’t need a public IP address any more

» EC2 instances can now use a stricter security group:
> Allowed source: 0.0.0.0/0 — <ID of ELB sec group>



ELB: Advanced Rules

» An ELB can have multiple rules associated to distribute requests
» Each rule can have one or more matching conditions
> e.g., you may use different rules for different types of HTTP requests

13



Auto scaling

> We want to dynamically provision the number of active instances
> Let's use the Auto Scaling service of EC2

14



Auto Scaling + Photogallery

vVVvVvYVvyVvyVvYVvyYyvyy

Before starting, terminate manually launched instances
Create a Launch Template for Photogallery
Create an Auto Scaling Group that uses the new Launch Template

Specify the VPC and the subnets where new instances should be launched
Enable load balancing, associating the group with our ELB

Set minimum and maximum number of instances (e.g., 2 and 5)

Set an auto scaling policy

Verify that new instances are automatically created

15



Recap

> We have seen how to deploy a web app using:

> EC2
> ELB
> Auto Scaling Groups

» Problem: infrastructure completely configured by hand
> error-prone and difficult to reproduce

16



AWS CLI

» Command Line Interface to interact with AWS
Faster interaction compared to web console
> e.g., EC2 instance created with a single command

A\

> Installation: check the official docs for Linux/Win/macOS
> https://aws.amazon.com/it/cli/
» AWS CloudShell provides an in-browser console where CLI commands are available
(useful for quick commands)
> Alternatively, Windows users may prefer the AWS Tools for PowerShell
P> https://aws.amazon.com/it/powershell/

17


https://aws.amazon.com/it/cli/
https://aws.amazon.com/it/powershell/

AWS CLI: Configuration

» AWS CLI can be configured by:

> running aws configure, or
> editing ~/.aws/config and ~/.aws/credentials
> (slightly different paths on Windows)

> Key configuration options:

> AWS Access Key IDand AWS Secret Access Key
> default region to use (e.g., us—east-1)
> output format (json, text)

18



AWS CLI: example (1)

Create a new security group in our VPC:

$ aws ec2 create-security-group \
--group-name my-sg \
--description "My security group" \
--vpc—-id <VPC_ID>

Set inbound traffic rules, e.g.:

$ aws ec2 authorize-security-group-ingress \
--group-id <ID> \
--protocol tcp --port 22 --cidr 0.0.0.0/0

We can see the properties of any SG:

$ aws ec2 describe-security-groups --group-ids <groupId>

19



AWS CLI: example (2)

Create an EC2 instance:

$ aws ec2 run-instances \
--image-id <ID AMI> \
--count 1 \
--instance-type t2.nano \
--key-name <MyKeyPair> \
--security-group-ids <sgId> \
--subnet-id <subnetId> \
--associate-public-ip-address

We can associate the instance with a tag:

$ aws ec2 create-tags --resources <instID> \
--tags Key=Name,Value=SDCC

20



AWS CLI: example (3)

We can get information about active instances:

$ aws ec2 describe-instances \
--filters "Name=tag:Name,Values=SDCC"
$ aws ec2 describe-instances \
--filters "Name=instance-type,Values=t2.nano"

To terminate the instance:

$ aws ec2 terminate-instances --instance-ids <ID>

21



IT Automation using Ansible

> Ansible delivers simple IT automation that ends repetitive tasks and frees up teams
for more strategic work.
> Available on Linux and macOS: https://docs.ansible.com/ansible/latest/
installation_guide/intro_installation.html
> Windows users might use a Linux-based VM

> Agentless: no need to pre-install software on the target machines
» Define WHAT you want to achieve, instead of HOW
> e.g., “Apache web server installed and started”

» Similar alternatives: Chef, Puppet, a-buneh-ef Bash-seripts, ...

22


https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html

Ansible: Key Concepts

» Playbooks (e.g., “deploy Photogallery”)
> Tasks (e.g., (“install Flask”)

» Modules (used to define single sub-tasks: e.g., file, archive, apt)
> Built-in modules
» Custom modules

» Inventory = hosts to be managed

> Static
» Dynamic

23



A playbook for Photogallery: inventory

» Create the inventory file hosts.ini
> (You may even put localhost in the inventory for testing)

» One line per host
> Possibly organized into groups (e.g., web, db, ...)
» We can add params for SSH authentication on the same line

Inventory file

[web]
18.185.19.141 ansible_user=’ec2-user’ \
ansible_ssh_private_key_file=’/path/to/keypair.pem’

Simple test using the ping module:

$ ansible -i hosts.ini -m ping all
24



A playbook for Photogallery

To deploy Photogallery we need to:
» Upload application files (module: copy)
> Install dependencies (modules: yum, pip)
> Install systemd unit file to start server at boot (module: copy)
» Enable systemd service (module: systemd)

Check deploy_gallery.yaml

$ ansible-playbook -v -i hosts.ini deploy_gallery.yaml
# What happens if we try again?
$ ansible-playbook -v -i hosts.ini deploy_gallery.yaml

25



Ansible: Dynamic Inventory

> Ansible requires an inventory
> Not necessarily a static file

> AWS Inventory Source: run your playbooks using (a subset of) your EC2 instances as
target hosts (e.g., filtered by tag)

> Requires Ansible 2.9+
> A plugin required, easy to install:

$ ansible-galaxy collection install amazon.aws

26



Ansible: AWS Dynamic Inventory

> Create a YAML file (hame MUST end with aws_ec2. (yml | yaml)
— galleryInventory.aws_ec2.yaml

ansible-inventory -i gallerylInventory.aws_ec2.yaml --graph

Running the playbook

ansible-playbook -i galleryInventory.aws_ec2.yaml
--private-key=path/to/key.pem -u ec2-user deploy_gallery.yaml




Ansible: More Advanced Stuff

» Groups and Roles

> Templates
» Ansible Tower / AWX1

> Share playbooks / delegate
» Schedule workflows
» Dashboards

https://github.com/ansible/awx

28


https://github.com/ansible/awx

Amazon S3



AWS Storage Services

AWS offers various storage services, including:

» S3: Simple Storage Service
» EBS: Elastic Block Storage
» EFS: Elastic File System

30



Amazon S3

» Amazon Simple Storage Service (S3)

> Scalable object storage service

» Pricing: https://aws.amazon.com/it/s3/pricing/
» Buckets and objects

31


https://aws.amazon.com/it/s3/pricing/

S3 for Photogallery

> Let's create a bucket using S3 console
> Bucket name must be unique across all AWS regions and accounts

» We can choose who can access objects and buckets: https://docs.aws.amazon.
com/it_it/AmazonS3/latest/dev/example-bucket-policies.html

» For Photogallery, we want everyone to read objects

We can reference an object like this:

https://BUCKETNAME. s3. amazonaws.com/FILENAME

32


https://docs.aws.amazon.com/it_it/AmazonS3/latest/dev/example-bucket-policies.html
https://docs.aws.amazon.com/it_it/AmazonS3/latest/dev/example-bucket-policies.html

Using S3 through the CLI

aws s3 1ls

aws s3 1ls s3://mybucket

aws s3 cp prova.txt s3://mybucket/
aws s3 1ls s3://mybucket

aws s3 rm s3://mybucket/prova.txt

H HF H P P

Third-party clients also available: e.g., s3cmd

33



Hosting Static Web Content on S3

» Obijects in a public bucket can be accessed through HTTP
> You can use S3 to host static web content

> a static website
> the frontend of a web application

> To enable web hosting on a bucket: https://docs.aws.amazon.com/AmazonS3/
latest/userguide/EnableWebsiteHosting.html

34


https://docs.aws.amazon.com/AmazonS3/latest/userguide/EnableWebsiteHosting.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/EnableWebsiteHosting.html

