
Corso di Sistemi Distribuiti e Cloud Computing
A.A. 2025/26

Valeria Cardellini

Laurea Magistrale in Ingegneria Informatica

Communication in Distributed Systems
Message Oriented Middleware

Macroarea di Ingegneria
Dipartimento di Ingegneria Civile e Ingegneria Informatica

Message-oriented communication

• RPC provides distribution transparency over socket
programming

• But still coupling between interacting entities
– Temporal: caller waits for a reply
– Spatial: shared data
– Functionality and communication are tightly coupled

• How to improve decoupling and flexibility?
• Message-oriented communication

– Transient
• Berkeley sockets, Message Passing Interface (MPI)

– Persistent
• Message Oriented Middleware (MOM)

Valeria Cardellini – SDCC 2025/26 1

Message-oriented middleware
• Communication middleware that supports sending

and receiving messages in a persistent way
– Provides intermediate-term storage for messages

• Loose coupling among system/app components
– Supports temporal and spatial decoupling
– Can also support synchronization decoupling

• Goals: increase performance, scalability, and
reliability
– Commonly used in serverless and microservice architectures

• Communication patterns:
– Message queue
– Publish-subscribe (pub/sub)

• Related systems:
– Message queue system (MQS)
– Pub/sub system

Valeria Cardellini – SDCC 2025/26 2

Message queue pattern
• Messages sent to a queue are stored until retrieved

by a consumer
• Multiple producers can send messages to the queue
• Multiple consumers can receive messages from the

queue
• Communication is one-to-one: each message is

delivered to a single consumer

• Use cases:
– Task scheduling, load balancing, logging or tracing

Valeria Cardellini – SDCC 2025/26 3

Message queue pattern

Valeria Cardellini – SDCC 2025/26 4

A sends a message to B B processes the message and
sends a response back to A

Message queue API
• Typical calls in MQS:

– put: non-blocking send
• Inserts a message into the queue immediately

– get: blocking receive
• Waits until the queue is non-empty and retrieve a message
• Variant: can search for a specific message in the queue

– poll: non-blocking receive
• Checks the queue and retrieves a message if available
• Never blocks

– notify: non-blocking receive
• Installs a callback handler that is automatically invoked

when a message arrives in the queue

Valeria Cardellini – SDCC 2025/26 5

Publish/subscribe pattern

Valeria Cardellini – SDCC 2025/26 6

• Producers (publishers) send asynchronous
messages, such as event notifications

• Consumers (subscribers) express interest in specific
topics by subscribing

• Decoupling in time and space: publishers and
subscribers do not need to interact directly

• Supports one-to-many communication, unlike
message queues

Publish/subscribe pattern

Valeria Cardellini – SDCC 2025/26 7

• Multiple consumers can subscribe to a topic, with or
without filters

• An event dispatcher collects subscriptions and route
messages to all matching subscribers
– For scalability, the dispatcher is typically distributed

• High degree of decoupling among components
– Components can be easily added or removed: ideal for

dynamic environments

• Use cases:
– Event notification, multicasting

• Comparison with message queue
Feature Message queue Pub/sub
Delivery One-to-one One-to-many
Consumers Single consumer per

message
Multiple consumers per
message

Publish/subscribe API

• Typical calls in a pub/sub system:
– publish(event): called by a publisher to publish an

event
• Events can be any data type and may include meta-data

– subscribe(filter_expr, notify_cb, expiry) →
sub_handle: called by a subscriber to subscribe to
events

• Inputs: filter expression, reference to a notification callback,
and subscription expiry time

• Returns a subscription handle
– notify_cb(sub_handle, event): called by pub/sub

system to deliver to a matching event to subscribers
– unsubscribe(sub_handle): called by the subscriber to

remove the subscription

Valeria Cardellini – SDCC 2025/26 8

MOM functionalities
• MOM simplifies distributed communication by handling:

– Addressing: locating the recipient(s) for messages
– Routing: delivering messages along appropriate paths
– Availability of application components (or applications)
– Message format transformations

https://www.cloudcomputingpatterns.org/message_oriented_middleware
Valeria Cardellini – SDCC 2025/26 9

MOM functionalities

• Let’s analyze
– Delivery semantics
– Delivery model
– Message routing
– Message transformations

Valeria Cardellini – SDCC 2025/26 10

MOM delivery semantics

At-most-once delivery
• Each message is delivered no more than once
• Messages may be lost, but are never redelivered

Valeria Cardellini – SDCC 2025/26 11

<=1

At-least-once delivery
• Messages are never lost, but they may be delivered multiple

times
– Since messages can be duplicated, the consumer-side application

must be able to handle duplicate processing (or be sure that re-
processing the same message does not cause errors)

• Mechanism:
– Consumer sends ack for each message;

MOM resends message if ack is missing

ConsumerProducer

MOM delivery semantics

Exactly-once delivery
• Message is delivered exactly once to consumer
• Mechanisms

– Deduplication logic: MOM filters message duplicates
• Each message has a unique ID

– Idempotent consumers: can safely process the same
message multiple times

– Messages survive MOM failures

Valeria Cardellini – SDCC 2025/26 12

ConsumerProducer

MOM delivery semantics

Transaction-based delivery
• Guarantees messages are deleted from the queue

only after they have been successfully received and
processed by the consumer

• Mechanism
– MOM and consumer participate in a transaction: read and

delete operations are part of the transaction, ensuring ACID
properties

• Commit: if successful, the message is permanently deleted
• Rollback: if the transaction fails, the message remains in the

queue

13

ConsumerProducer

Valeria Cardellini – SDCC 2025/26

MOM delivery semantics

Timeout-based delivery
• Ensures messages are delivered at least once while

preventing duplicate consumption
• Mechanism

– Message is not deleted immediately from the queue, but
marked as invisible until visibility timeout expires

– Invisible message cannot be read by another consumer
– After consumer’s ack of message receipt, message is

deleted from queue

Valeria Cardellini – SDCC 2025/26 14

ConsumerProducer

MOM delivery model

• How messages are retrieved by subscribers or
consumers

• Options: push vs. pull delivery
• Push: MOM actively notifies the receiver(s) when a

message is available
• Pull: receiver(s) periodically polls MOM for new

messages

Valeria Cardellini – SDCC 2025/26

MOM

Rec. A

Rec. B

Push delivery

MOM

Rec. A

Rec. B

Pull delivery

15

Message routing in MOM
• Queues are managed by queue managers (QMs)

– Applications can only put messages into a local queue
– Applications can only retrieve a message from a local queue

• QMs are responsible for routing messages between
local queues and remote queues
– Act as message-queuing relays, communicating with

distributed applications and other QMs
– Form an overlay network
– Some QMs may operate only as routers, without storing

messages

Valeria Cardellini – SDCC 2025/26 16

Message routing: overlay network
• Overlay network for message routing

– Each QM maintains a routing table to map queue names to
their location

Valeria Cardellini – SDCC 2025/26

• Overlay network
maintenance
– Static overlays: routing tables

are set up and managed
manually

• Easier to configure but less
flexible

– Dynamic overlays: routing
tables are updated at runtime

• More complex but supports
scalable and adaptive routing

17

Application heterogeneity: message broker
• Problem: new and existing apps rarely share a

common data format, how to integrate them into a
single, coherent system?

• Solution: message broker
– Handles application heterogeneity in MOM

• Responsibilities
– Message transformation: uses a repository of conversion

rules to transform message types
– Content-based routing: routes messages based on content or

type

• Scalability and reliability: usually implemented in a
distributed manner

Valeria Cardellini – SDCC 2025/26 18

MOM frameworks
• Main MOM systems and libraries

– Apache ActiveMQ https://activemq.apache.org
– Apache Kafka
– Apache Pulsar https://pulsar.apache.org
– IBM MQ https://www.ibm.com/products/mq
– NATS https://nats.io
– RabbitMQ
– Redis https://redis.io/
– ZeroMQ https://zeromq.org

• Note: distinction between queue-based and pub/sub
patterns is sometimes blurred
– Some frameworks support both patterns, e.g., NATS, Pulsar

and Kafka (with specific configurations)
– Others only one, e.g., Redis is pub/sub only, ZeroMQ is

queue only
Valeria Cardellini – SDCC 2025/26 19

MOM frameworks

• Cloud-based MOM services
– Amazon Simple Queue Service (SQS)
– Amazon Simple Notification Service (SNS)
– CloudAMQP: RabbitMQ as a Service
– Google Cloud Pub/Sub
– Microsoft Azure Service Bus

• Note
– Cloud MOMs abstract infrastructure management, allowing

developers to focus on messaging patterns
– Many support both queue and pub/sub patterns

Valeria Cardellini – SDCC 2025/26 20

Amazon Simple Queue Service (SQS)
• Reliable, scalable cloud-based message queue

service
– Designed to decouple application components, allowing

them to run independently and asynchronously
– Supports integration across different languages and

technologies

• Architecture
– Message queues fully managed by AWS
– Queues are distributed across multiple SQS servers
– Replication within a region: messages stored on multiple

servers for high availability

21Valeria Cardellini – SDCC 2025/26

– Pull delivery model:
consumers poll the queue
to retrieve messages

Amazon SQS: Message handling
• Consumer must delete message after processing

– Queue = temporary holding location, not permanent storage
– Message retention period: configurable (max 14 days)

• Implements timeout-based delivery
– When a consumer retrieves a message, it remains in the

queue but becomes invisible to others (visibility timeout)
– If processing succeeds, the consumer deletes the message

22Valeria Cardellini – SDCC 2025/26

– If processing fails, the timeout
expires and the message
becomes visible again

Amazon SQS: Polling and queue types
• Consumers poll the queue to receive messages

– Short polling: queries only a subset of SQS servers (may
return empty)

– Long polling: queries all servers, wait for messages (reduces
empty responses)

• Queue types: standard or FIFO
• Standard queue (default)

– Best-effort ordering: messages
may arrive out-of-order

– Duplicates possible

• FIFO queue
– Guarantees in-order delivery

(sent=processed order)
– No duplicates
✗ Lower throughput

23Valeria Cardellini – SDCC 2025/26

Amazon SQS: API
• CreateQueue, ListQueues, DeleteQueue

– Create a new queue, list all queues, delete an existing queue
• SendMessage

– Add a message to queue (message size up to 256 KB)
– For larger payloads: store on S3 and send an S3 reference

instead
• ReceiveMessage

– Retrieve one or more messages
– Retrieve up to 10 messages: can specify the maximum

number of messages to fetch (from 1 to 10)
– No filtering before delivery
– Post-delivery filtering

• If a consumer wants to filter messages, it must inspect message
body or attributes after receiving the messages and decide
whether to process or discard them

Valeria Cardellini – SDCC 2025/26 24
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/Welcome.html

Amazon SQS: API
• DeleteMessage

– Remove a specified message from the queue after processing
• ChangeMessageVisibility

– Change the visibility timeout of a specific message in the
queue

– A message remains in the queue until explicitly deleted by the
consumer

– Default visibility timeout: 30 sec.

• SetQueueAttributes, GetQueueAttributes
– Modify queue attributes (e.g., message retention), retrieve

current queue settings

Valeria Cardellini – SDCC 2025/26 25

Amazon SQS: example

Valeria Cardellini – SDCC 2025/26

• Photo processing service using SQS
– Goal: use SQS to decouple the front-end and back-end

components, ensuring load balancing and fault tolerance

– Front-end uploads a photo to S3 and sends to back-end an SQS
message containing the S3 link

– A pool of EC2 instances (back-end) retrieves messages from the
queue
• Each instances gets a photo, processes it (e.g., resize) and delete the

message after processing

26

S3 bucket

Autoscaling group

SQS queue

Autoscaling group
Message count

• If processing fails, the
message becomes
visible again after the
visibility timeout,
allowing another
instance to retry

• The back-end pool can
be scaled horizontally
based on the number of
messages in the queue

Apache Kafka
• Open-source, distributed event streaming platform

https://kafka.apache.org/

• Designed to
– Publish and subscribe to streams of events
– Store event streams durably and reliably
– Process event streams

• Started by LinkedIn in 2010, now Apache project
• Used at scale by LinkedIn, Netflix, Uber, and many

others
• Written in Java and Scala
• Horizontally scalable and fault-tolerant
• High-throughput ingestion

– Billions of events

27Valeria Cardellini – SDCC 2025/26

Kafka at a glance

• Kafka topics: Kafka stores streams of events (aka
messages or records) in categories known as topics

• Kafka cluster: composed of servers called brokers,
which can span multiple data centers or cloud regions
– Brokers receive and store events

• Producers: publish (write) events to a Kafka topic
• Consumers: subscribe to Kafka topics, read published

events and process them
– A topic can have 0, 1, or many subscribing consumers

28Valeria Cardellini – SDCC 2025/26

Kafka: topics and partitions
• Topic: category to which events are published
• For each topic, Kafka cluster maintains a partitioned log
• Log (data structure): append-only, totally ordered

sequence of events
• Partitioned log: each topic is split into a pre-defined

number of partitions
– Partition: the unit of parallelism for a topic

29Valeria Cardellini – SDCC 2025/26

Kafka: partitions and parallelism
• Parallelism and scalability come from having multiple

partitions per topic
• Producers publish events to topic partitions
• Consumers read events from the topic
• Each partition is:

– A numbered, ordered, immutable sequence of records
– Appended to, never modified (immutable records)
– Similar to a commit log

Valeria Cardellini – SDCC 2025/26 30

• Every record has a
monotonically increasing
offset
– Uniquely identifies each

record within a partition

Kafka: partitions and design choices
• Improve scalability: topic partitions are distributed

across multiple brokers
✓ I/O throughput increases through parallel reads and writes

• Multiple producers can write concurrently to different partitions
• Multiple consumers can read concurrently from different

partitions

Valeria Cardellini – SDCC 2025/26 31

Kafka: partitions and design choices
• Improve fault tolerance: partitions can be replicated

across brokers
– Each partition has:

• 1 leader: handles all writes and reads
• 0 or more followers: replicate the leader data

• Replication-factor = total number of replicas (including
leader)
– Replication-factor = N → up to N-1 brokers can fail without

losing data

Valeria Cardellini – SDCC 2025/26 32

Kafka: partitions and design choices
• Simplify data consistency management: only leader

handles all reads and writes
– Producers write to the leader, consumers read from the leader
– Followers replicate the leader and serve as backups
– Followers can be:

• in-sync: fully updated with the leader
• out-of-sync: lagging behind the leader

Valeria Cardellini – SDCC 2025/26 33

Kafka: partitions and design choices
• Share responsibility and balance load: each broker

acts as leader for some partitions and follower for
others

• Coordination across brokers is managed by Apache
Zookeeper or KRaft
– Handles leader election
– Maintains cluster metadata

Valeria Cardellini – SDCC 2025/26 34

Kafka: producers
• Producers = data sources
• Publish events to topics of their choice

– Send events directly to the broker that is leader for the target
partition (no routing tier)

• Responsible for assigning events to partitions using:
– Key-based partitioning

• Event contains a partition key (e.g., order ID, user ID)
• Partition is chosen by hashing the key
• Example: if key=user_id, all events for the same user go to the

same partition
– Round-robin partitioning

• Default if no key is specified
– Custom partitioning

• A partitioner can be provided to implement a custom partitioning logic

• Multiple producers can write concurrently to the same
partition

Valeria Cardellini – SDCC 2025/26 35

Kafka: consumers

• Kafka uses a pull-based delivery model for consumers
https://kafka.apache.org/documentation.html#design_pull

• A consumer track its progress using offset
– Offset identifies which events have been consumed

• Multiple consumers can be read the same partition,
each reading at different offsets

Valeria Cardellini – SDCC 2025/26 36

Kafka: consumers
• Why pull?
• Push model

– Broker actively pushes events to consumers
✗ Broker must manage

• Different consumers with their needs and capabilities
• Transmission rate control
• Timing decisions: whether to send a message immediately or

accumulate more data to send later

• Pull model
– Consumers control event retrieval from broker
– Consumers maintain an offset to identify the next event to read
✓ More scalable and flexible

• Less burden on brokers
• Consumers can pull events when ready, adjusting the rate

✗ If no events are available, consumers may end up busy
waiting for events to arrive

Valeria Cardellini – SDCC 2025/26 37

Kafka: consumers

• How can consumers read in a fault-tolerant way?
– After a consumer reads events, it stores its committed offset

in a special Kafka topic called __consumer_offsets
– In case of crash, the consumer can recover by reading

events from the committed offset
– By default, auto-commit is enabled

Valeria Cardellini – SDCC 2025/26 38

Kafka: message retention and storage
• Kafka brokers store messages reliably on disk
• Messages are stored in log segments (files on disk)
• Unlike other message queue and pub/sub systems,

Kafka does not delete messages after delivery, but
retains messages based on size or time

• Issue: how to free up disk space?
– Topics are configured with retention time (how long events

should be stored)
– Upon expiry, events are marked for deletion
– Alternatively, retention can be specified in bytes

• On each broker, messages are flushed from the
broker’s in-memory buffer to the disk
– A log flush policy controls when messages are written to disk

(time interval and number of messages)

Valeria Cardellini – SDCC 2025/26 39

Hands-on Kafka
• Preliminary steps

– Download and install Kafka
https://kafka.apache.org/downloads

• Configure Kafka properties in server.properties
– E.g., listeners which are network interfaces on Kafka

broker: listeners=PLAINTEXT://localhost:9092
– E.g., log flush policy

– Start Kafka environment
• Kafka can use KRaft or ZooKeeper (we will use KRaft)

⎼ Alternatively, start ZooKeeper first
• Start Kafka broker (default port: 9092)
$ bin/kafka-server-start config/kafka.properties

Valeria Cardellini – SDCC 2025/26 40

Hands-on Kafka
• Let’s use Kafka CLI to create a topic, publish and

consume events to/from topic, and delete it
• Create a topic named test with 1 partition and no

replication (replication-factor=1)
$ kafka-topics --create --bootstrap-server localhost:9092

--replication-factor 1 --partitions 1 --topic test
– Bootstrap server: an initial broker used by the producer to

connect to the Kafka cluster
– It provides the producer with metadata about the cluster,

including a list of all the brokers
– Multiple bootstrap servers for fault tolerance and load

balancing
– Once the producer discovers the partition leader, it can start

sending messages

Valeria Cardellini – SDCC 2025/26 41

Hands-on Kafka
• Produce messages into the topic
$ kafka-console-producer --bootstrap-server localhost:9092 \

--topic test
>msg 1
>msg 2

• Consume messages from the beginning of the topic
$ kafka-console-consumer --bootstrap-server localhost:9092 \

--topic test --from-beginning

• Consume messages from a given offset (e.g., 2) of a specific
partition (e.g., partition 0) of the topic

$ kafka-console-consumer --bootstrap-server localhost:9092 \
--topic test --offset 2 --partition 0

• Produce messages with key
$ kafka-console-producer --bootstrap-server localhost:9092 \

--topic test --property parse.key=true --property key.separator=:
>course:sdcc
>university:Tor Vergata

42Valeria Cardellini – SDCC 2025/26

Hands-on Kafka

• List available topics
$ kafka-topics --list --bootstrap-server localhost:9092

• Delete a topic
$ kafka-topics --delete --bootstrap-server localhost:9092 \

--topic test

• Stop Kafka
$ kafka-server-stop

– If Zookeper: $ zookeeper-server-stop

Valeria Cardellini – SDCC 2025/26 43

Kafka: consumer group
• Consumer Group: set of consumers that cooperate to

consume data from a topic and share a group ID
– A Consumer Group represents a logical subscriber
– Topic partitions are divided among consumers in the group

• Reassigned when consumers join/leave the group
– Each event is delivered to only one consumer within the group
– Each group maintains its own offset per topic partition

Valeria Cardellini – SDCC 2025/26 44

Kafka: consumer group

Valeria Cardellini – SDCC 2025/26

• How can many consumers read the same events?
– By using different group IDs: consumers in different groups

can independently read the same events from the same topic

• Example: microservices communicating through Kafka

• When we scale microservices
– Each microservice has its own consumer group

45

Hands-on Kafka: consumer group

• Launch a consumer in a consumer group named my-
group

$ kafka-console-consumer \
--bootstrap-server localhost:9092 \
--topic test \
--group my-group

• Open two more terminal windows and run two additional
consumers in my-group
– Each consumer will be assigned to a different topic partition

• Produce messages in the topic and see how they are
distributed among the consumers
– Each consumer will read the messages from its assigned

partition

Valeria Cardellini – SDCC 2025/26 46

Kafka: replication
• Topic partitions are replicates across brokers for fault

tolerance
– Leader-follower model: followers replicate the leader log
– Replication is asynchronous: periodically, followers pull

messages from the leader in order, using offsets
– In-sync replicas (ISR): the leader and any followers that are

updated with the leader’s log
– Durability (no message loss) is guaranteed as long as at least

one in-sync replica is available
– If the leader crashes, one in-sync replica is elected as new

leader

Valeria Cardellini – SDCC 2025/26 47

Kafka: event ordering guarantees
• Events written by a producer to a topic partition are

appended in the order they are sent
message: m1 m2 m3 m4 m5
offset: 10 11 12 13 15

• Consumer reads events in the same order they are
stored in the partition

m1 → m2 → m3 → m4 → m5

• Kafka provides ordering guarantees, but only within a
partition
– Total order of events within each partition (per-partition

ordering)

• Kafka does not preserve order across partitions of
the same topic

• In practice, per-partition ordering combined with key-
based partitioning is sufficient for most applications

Valeria Cardellini – SDCC 2025/26 48

Kafka: write guarantees
• Controlled by acks and min.insync.replicas
• acks (producer setting): how many in-sync replicas

must acknowledge a write before the producer
considers it successful
– acks=0: no ack (fire and forget)
– acks=1: wait for leader only
– acks=all: wait for all ISR replicas

• min.insync.replicas (topic/cluster setting): minimum
number of ISR replicas that must acknowledge a write
for it to succeed

• Strong durability: acks=all + min.insync.replicas>=2
– Example: replication-factor=3

• min.insync.replicas=1: only leader
• min.insync.replicas=2: leader + 1 follower (recommended)
• min.insync.replicas=3: leader + 2 followers (highest durability)

Valeria Cardellini – SDCC 2025/26 49

Kafka: read and visibility guarantees
• Message durability: depends on acks + ISR

size/status
– A write is kept only if enough in-sync replicas acknowledge it

(as required by acks and min.insync.replicas)

• Message availability: consumers can read messages
as soon as they are appended to the leader’s log
– Replication to followers is asynchronous
– Exception: transactional consumers (read_committed)

• A write is successful only if:
1. The leader appends the message, and
2. The acknowledgment requirements (acks and

min.insync.replicas) are satisfied
– If reqs cannot be met, write is rejected (not visible to

consumers)

Valeria Cardellini – SDCC 2025/26 50

Kafka: delivery semantics
• At-most-once: guarantees that events are never re-

delivered but may be lost
– Producer disables retries (i.e., acks=0 on producer)

– Consumer commits its offset before processing event
• What happens if the consumer crashes after committing but

before processing?

https://kafka.apache.org/documentation/#semantics
https://docs.confluent.io/kafka/design/delivery-semantics.html

Valeria Cardellini – SDCC 2025/26 51

acks=0

Kafka: delivery semantics
• At-least-once (default): guarantees no event loss,

but events may be duplicated
– Producer waits for ack only from the partition leader; if no

ack, it retries
– How? Set acks=1 on producer
– Consumer commits its offset after processing an event

• What happens if the consumer crashes before committing?

Valeria Cardellini – SDCC 2025/26 52

acks=1

acks=all

Kafka: delivery semantics
• Exactly-once: guarantees no event loss, no duplicates,

but at the cost of higher latency and lower throughput
– Producer: acks=all

• Waits for ack from all in-sync partition replicas
– Idempotent producer: detect duplicates caused by retries

• Producer ID and sequence number are added to each event
– Durability: min.insync.replicas >= 2
– Transactions enabled: atomic writes across partitions +

transactional offset commits + read_committed consumers
– Not fully exactly-once

Valeria Cardellini – SDCC 2025/26 53

Kafka: delivery semantics
• Take-away message: choose delivery semantics that

fit your application
– At-most-once: prioritize speed (e.g., telemetry, if some data

loss is acceptable)
– At-least-once: prioritize reliability (e.g., email notifications)
– Exactly-once: prioritize correctness (e.g., financial

transactions)

Valeria Cardellini – SDCC 2025/26 54

Kafka: trade-offs
• Consistency vs. availability trade-off

– Kafka ensures strong consistency per partition: all in-sync
replicas are up-to-date with the leader

– If the leader fails and no ISR follower is available, the
partition becomes unavailable

• Latency vs. durability trade-off
– Producers control durability via acks

• acks=all: highest durability, higher latency (waits for all ISRs)
• acks=1: lower latency, but messages may be lost if leader

crashes
• acks=0: lowest latency, highest risk of loss

– Lower latency increases the chance of data loss in case of
failure

Valeria Cardellini – SDCC 2025/26 55

Kafka: from ZooKeeper to KRaft
• Zookeeper: distributed coordination service used for

managing distributed systems https://zookeeper.apache.org/
– Provides locking, leader election, monitoring

• Role of ZooKeeper in Kafka
– Metadata management: list of brokers,

configuration for topics and partitions
- Leader election: to determine partition leader
- Cluster health monitoring

• Cons
✗ Operational complexity: separate Zookeeper cluster
✗ Scalability: as Kafka cluster grows, Zookeeper becomes

bottleneck
✗ Single point of failure for coordination: if Zookeeper is

unavailable, Kafka brokers may be unable to manage
metadata, elect new leader, and know broker status

Valeria Cardellini – SDCC 2025/26 56

Kafka: from ZooKeeper to KRaft
• Apache Kafka Raft (KRaft)

– Kafka-native consensus protocol that replaces Zookeeper for
metadata management and leader election

– Kafka itself stores metadata and partition leader information
– Raft protocol coordinates metadata updates
– KRaft is used for leader election

• Pros
✓ Simplified architecture
✓ Improved scalability
✓ Better fault tolerance: metadata replicated to all

brokers, making failover faster

Valeria Cardellini – SDCC 2025/26 57

Kafka: APIs

• A set of APIs for interacting with Kafka

Valeria Cardellini – SDCC 2025/26 58

– Pre-built connectors: AWS S3, Lambda, MySQL, Postgres, …

• Admin API: manages clusters and resources (topics,
partitions, brokers, etc.)

• Streams API: for real-time processing of streaming data
https://kafka.apache.org/documentation/#api

• Producer API: allows clients to
publish data to Kafka topics

• Consumer API: allows clients to
consume data from Kafka topics

• Connect API: integrates external
systems (databases, file systems)
as data sources and sinks

Kafka: client libraries
• Kafka officially provides an SDK for Java

– Fully featured (supports all APIs except Admin), actively
maintained

• Community-driven Kafka client libraries for other
languages, including
– Go

• Confluent https://github.com/confluentinc/confluent-kafka-go
• Kafka-go https://github.com/segmentio/kafka-go

– Python
• Confluent https://github.com/confluentinc/confluent-kafka-

python

Valeria Cardellini – SDCC 2025/26 59

Interacting with MOM: messaging protocols
• Application-layer open standard protocols for MOM

interaction
– AMQP (Advanced Message Queueing Protocol)

• Binary protocol
– MQTT (Message Queue Telemetry Transport) https://mqtt.org

• Binary, lightweight protocol, for low-bandwidth and low-power
devices, commonly used in IoT applications

– STOMP (Simple Text Oriented Messaging Protocol)
https://stomp.github.io/

• Simple, text-based protocol, commonly used in web
applications and real-time communication

• Goals:
– Platform- and vendor-agnostic
– Interoperability: facilitates communication between different

MOMs

Valeria Cardellini – SDCC 2025/26 60

Messaging protocols and IoT

Valeria Cardellini – SDCC 2025/26 61

• Widely used in Internet of Things (IoT)
– Messaging protocols enable data exchange between

sensors and services that process data

• Advantages on MOM in IoT
– Decoupling: separate data producers from consumers
– Resiliency: MOM provides temporary message storage
– Traffic spikes handling: MOM can persist data and process it

eventually

AMQP: features
• Open standard messaging protocol, supported by

industry
– Version 1.0, approved in 2014 by ISO and IEC
https://docs.oasis-open.org/amqp/core/v1.0/amqp-core-complete-v1.0.pdf

• Application-level, binary protocol
– Based on TCP with additional reliability mechanisms (delivery

semantics)

• Programmable protocol
– Entities and routing schemes are primarily defined by apps

• Designed to provide reliable, scalable and secure
messaging

• Supports queue-based and pub/sub patterns
• Implementations

– Apache ActiveMQ, RabbitMQ, Azure Event Hubs, Pika (Python
client library), …

Valeria Cardellini – SDCC 2025/26 62

AMQP: architecture

Valeria Cardellini – SDCC 2025/26 https://www.rabbitmq.com/tutorials/amqp-concepts 63

• 3 key actors: publishers, subscribers, and brokers
– Brokers manage and route messages

– Queues: storage units that hold messages
– Exchanges: routing entities that determined how messages

are distributed to queues
• Like post offices or mailboxes

– Bindings: rules that define how messages are distributed to
queues

– Message delivery
• Push delivery: brokers push messages to consumers subscribed

to queues
• Pull delivery: consumers pull messages from queues on demand

• AMQP entities (within
broker): queues,
exchanges and
bindings

AMQP: routing

• Types of AMQP exchanges
– Direct exchange: delivers

messages to queues based
on message routing key

• Use case: routing to specific
queues based on exact
matching

– Fanout exchange: delivers
messages to all queues that
are bound to the exchange

• Use case: broadcasting to
multiple queues

Valeria Cardellini – SDCC 2025/26 64

AMQP: routing
• Types of AMQP exchanges

– Topic exchange: delivers messages to one or more queues
based on topic matching

• Routing key can include wildcards
• Use case: commonly used to implement pub/sub patterns
• Enables multicast routing, e.g., targeted notifications to users in

different regions
• Example: a message with routing key
"location.northAmerica.newYork" will be delivered to
queues bound with patterns like "location.northAmerica.#",
"location.#", "*.newYork"

– Headers exchange: delivers messages based on message
headers

• To route on multiple attributes that are expressed as message
headers instead of routing key

• Use case: complex multi-attribute matching

Valeria Cardellini – SDCC 2025/26 65

AMQP: messages

• AMQP defines two message types:
– Bare messages: raw messages supplied by sender
– Annotated messages: modified by intermediaries (e.g.,

brokers) during transit by adding headers and annotations

• Message header conveys delivery parameters
– Including durability requirements, priority, time to live

Valeria Cardellini – SDCC 2025/26

Annotated message

66

RabbitMQ

Valeria Cardellini – SDCC 2025/26 67

• Open-source message broker https://www.rabbitmq.com/

• Multiple messaging protocols supported
– AMQP, MQTT, and STOMP

• Push delivery model (can also support pull)
• FIFO ordering guarantee at queue level
• Cross-platform

– Can run on multiple operating systems and cloud environments

• Wide range of development tools (Java, Go, Python, …)

RabbitMQ: architecture
• Producers do not publish

messages directly to
queues

• Producer sends messages
to an exchange, which
routes messages to one or
more queues with the help
of bindings and routing
keys
– Binding: link between an

exchange and a queue

Valeria Cardellini – SDCC 2025/26

Message flow in RabbitMQ

• RabbitMQ broker can be distributed, e.g., forming a
cluster https://www.rabbitmq.com/distributed.html
– Supports quorum queues: durable, replicated FIFO queues

based on Raft consensus algorithm
68

RabbitMQ: delivery semantics

• At-most-once delivery by default
– Consumer does not explicitly send acks (autoAck = true in

the consumer settings); if the consumer fails before
processing the message, the message will be lost

• At-least-once can be configured
– Explicit message ack must be configured (autoAck =

false in the consumer settings) and the consumer is
required to send an explicit ack after successfully processing
the message

Valeria Cardellini – SDCC 2025/26 69

RabbitMQ: use cases
1. Store and forward messages sent by

a producer and received by a
consumer (message queue)

2. Distribute tasks among multiple
workers (work queue)

3. Deliver messages to many
consumers (pub/sub) using a
message exchange

4. Routing messages: producer sends
messages to an exchange, that
selects the queue based on binding
rules and routing keys

5. Run a function on consumer and
wait for result (RPC)

Valeria Cardellini – SDCC 2025/26

https://www.rabbitmq.com/tutorials
70

RabbitMQ and Go
• Let’s use RabbitMQ, Go and AMQP (messaging

protocol) for:
Ex. 1: Message queue

https://www.rabbitmq.com/tutorials/tutorial-one-go

Ex. 2: Work queue
https://www.rabbitmq.com/tutorials/tutorial-two-go.html

Valeria Cardellini – SDCC 2025/26 71

Code on Teams/course website

RabbitMQ and Go
• Preliminary steps:
1. Install RabbitMQ and start RabbitMQ server on localhost (port

5672) https://www.rabbitmq.com/download.html
$ rabbitmq-server
– RabbitMQ CLI tool: rabbitmqctl

$ rabbitmqctl stop
$ rabbitmqctl status

Some useful commands for rabbitmqctl
list_channels
list_consumers
list_queues
reset

– Also web UI for management and monitoring (port 15672)
2. Install Go AMQP client library

$ go get github.com/rabbitmq/amqp091-go
Details on ampq: https://pkg.go.dev/github.com/rabbitmq/amqp091-go

Valeria Cardellini – SDCC 2025/26 72

RabbitMQ and Go: example 1
1. Message queue pattern

– Support single producer, single consumer or multiple
producers, multiple consumers

– Note that:
• Message is delivered to only one consumer
• Delivery is push-based

Valeria Cardellini – SDCC 2025/26 73

RabbitMQ brokersend.go receive.go

RabbitMQ and Go: example 2
2. Work queue pattern

– Version 1 (new_task_v1.go and worker_v1.go):
• Multiple consumers: tasks are distributed among consumers in

a round-robin fashion
• Message loss scenario: if consumer crashes after the message

is delivered by RabbitMQ but before completing the task, the
message is lost
auto-ack=true: message is considered to be successfully
delivered as soon as it is sent to consumer (“fire-and-forget”)

– Version 2 (new_task_v1.go and worker_v2.go):
• Set auto-ack=false in Consume and add explicit ack in

consumer to tell RabbitMQ that message has been processed
and RabbitMQ can safely discard it

• What happens when RabbitMQ is restarted while there are
pending messages?

• Which delivery semantics with explicit acks?

Valeria Cardellini – SDCC 2025/26 74

RabbitMQ and Go: example 2
2. Work queue pattern

– Version 3 (new_task_v3.go and worker_v3.go):
• Use a durable queue so messages are persisted to disk and

survives RabbitMQ crash and restart
• Queue declared with durable=true in QueueDeclare

– Version 4 (new_task_v3.go and worker_v4.go):
• Improve task distribution by preventing a worker from

receiving a new message while it still has unacknowledged
messages

• Achieved using channel prefetch (Qos) setting

Valeria Cardellini – SDCC 2025/26 75

RabbitMQ broker
new_task_v1.go
new_task_v3.go

worker_v1.go
worker_v2.go
worker_v3.go
worker_v4.go

Multicast communication
• Multicast communication: a group communication

pattern where data is sent to multiple receivers (but not
all) at once
– Can be one-to-many or many-to-many
– One-to-many multicast apps: video/audio resource distribution,

file distribution
– Many-to-many multicast apps: conferencing tools, multiplayer

games, interactive distributed simulations
– Broadcast: special case of multicast, where data is sent to all

receivers

• Cannot be implemented via unicast replication (source
sends indivudual copies to each receiver): lack of
scalability
– Solution: replicate data only when needed

Valeria Cardellini – SDCC 2025/26 76

Types of multicast

• How to realize multicast
– Network-level multicast (IP-level)

• Packet replication and routing managed by network
routers

• Uses IP Multicast
✗Limited in usage due to the need for specific router

support and network infrastructure

– Application-level multicast
• Replication and routing managed by the hosts

Valeria Cardellini – SDCC 2025/26 77

Application-level multicast

• Basic idea:
– Organize nodes into an overlay network
– Use the overlay network to disseminate data
– Can be structured or unstructured

• Structured application-level multicast
– Explicit communication paths
– How to build a structured overlay network?

• Tree: one path between each pair of nodes (e.g., tree building
based on Chord)

• Mesh: multiple paths between each pair of nodes

• Unstructured application-level multicast
– No predefined communication paths, typically relying on

random connections between nodes

Valeria Cardellini – SDCC 2025/26 78

Unstructured application-level multicast

• How to realize unstructured application-level
multicast
✓ Flooding

• Node P sends the multicast message m to all its neighbors
• Each neighbor forwards m to all its neighbors (except to P)

if it has not seen m before
✓ Random walk

• Node P sends multicast message m to a randomly chosen
neighbor

• The chosen neighbor forwards m to another randomly
chosen neighbor

!Gossiping

Valeria Cardellini – SDCC 2025/26 79

Gossip-based protocols
• Gossip-based protocols (or algorithms) are

probabilistic (aka epidemic algorithms)
– Gossiping effect: information spreads within a group just as

it would be in real-life social interactions
– Strongly related to epidemics, by which a disease is spread

by infecting members of a group, which in turn can infect
others

• Allow information dissemination in large-scale
networks through random choice of successive
receivers among those known to sender
– Each node sends the message to a randomly chosen

subset of nodes in the network
– Each receiving node will forward the message to another

randomly chosen subset, and so on

Valeria Cardellini – SDCC 2025/26 80

Origin of gossip-based protocols

• Proposed in 1987 by Demers et al. as a solution for
data consistency in replicated databases with
hundreds of servers
– Assumption: no write conflicts (i.e., independent updates)
– Updates are initially performed at one replica server
– Each replica shares its updated state with only a few

selected neighbors
– Update propagation is lazy, i.e., not immediate
– Eventually, each update should reach every replica

Demers et al., Epidemic Algorithms for Replicated Database Maintenance,
PODC 1987 https://dl.acm.org/doi/pdf/10.1145/41840.41841

Valeria Cardellini – SDCC 2025/26 81

Why gossiping in large-scale DSs?
• Several attractive properties of gossip-based

information dissemination for large-scale distributed
systems
– Simplicity of gossiping algorithms
– No centralized control or management (and related

bottleneck)
– Scalability: each node sends only a limited number of

messages, independently from system size
– Reliability and robustness: thanks to message redundancy

Valeria Cardellini – SDCC 2025/26 82

Who uses gossiping? Examples

• AWS S3 uses a gossip protocol to rapidly
disseminate information throughout its system. This
allows S3 to quickly route around failed or
unreachable servers, among other things

• Amazon’s Dynamo uses gossiping for node failure
detection

• BitTorrent uses a gossip-based information exchange
• Cassandra uses gossiping for group membership and

node failure detection
• Gossip dissemination pattern

https://martinfowler.com/articles/patterns-of-distributed-systems/gossip-
dissemination.html

Valeria Cardellini – SDCC 2025/26 83

Strategies to spread updates

• Let’s consider the two principal operations

1. Anti-entropy: each node periodically selects another
node randomly and exchanges updates (i.e., state
differences), with the goal of having identical states
on both node afterwards

2. Rumor spreading: a node that has a new update
(i.e., has been contaminated) periodically selects F
(F >= 1) peers and sends them the update
(contaminating them); a node that has received an
update can stop further distributing it

Valeria Cardellini – SDCC 2025/26 84

Anti-entropy

• Goal: increase node state similarity, thus decreasing
“disorder” (the reason for the name!)

• Node P selects node Q randomly: how does P
update Q?

• Different update strategies:
choice

data

Valeria Cardellini – SDCC 2025/26 85

choice

data

choice

data

P Q

1. Push: P only pushes its own
updates to Q

2. Pull: P only pulls new updates from
Q

3. Push-pull: P and Q send updates to
each other, i.e., P and Q exchange
updates

Anti-entropy: performance
• Push-pull

– Fast and message-saving strategy: takes O(ln N) rounds to
disseminate updates to N nodes, using O(N ln ln N)
messages

– Round (or gossip cycle): time interval in which every node
initiates an exchange

Valeria Cardellini – SDCC 2025/26 86

Rumor spreading

87Valeria Cardellini – SDCC 2025/26

• Node P, having an update to report, contacts a randomly
chosen node Q and forwards the update

• If Q has already been updated, P may lose interest in
spreading the update further; with probability pstop P stops
contacting other nodes

• Fraction s of oblivious nodes (nodes that have not yet
been updated) is equal to

• To improve information dissemination (especially when
pstop is high), combine rumor spreading with anti-entropy

Framework for gossiping protocols
• Two nodes P and Q, where P selects Q to exchange

information with
– P runs at each round (Δ time units)

Active thread (node P): Passive thread (node Q):
selectPeer(&Q)
selectToSend(&buf)
sendTo(Q, buf) -----> receiveFromAny(&P, &req)

selectToSend(&buf)
receiveFrom(Q, &resp) <----- sendTo(P, buf)
selectToKeep(view, resp) selectToKeep(view, req)
processData(view) processData(view)

selectPeer: randomly select a node to send the gossip message to
selectToSend: select some entries from node’s local view to send
selectToKeep: select which received entries to store in node’s local view;
remove duplicate entries
Kermarrec and van Steen, Gossiping in distributed systems, SIGOPS Oper. Syst. Rev.,
2007 https://www.distributed-systems.net/my-data/papers/2007.osr.pdf

Valeria Cardellini – SDCC 2025/26 88

Framework for gossiping protocols

• Simple? Not quite
• Several crucial aspects

– Node selection to gossip: many alternatives including
• Uniformly selecting from the set of currently available (alive)

nodes
• Selecting the peer that has been least contacted (e.g., used by

CoachroachDB)
– Data exchanged

• What is exchanged is highly application-dependent
• Choice of update strategy

– Data processing
• Again, highly application-dependent

Valeria Cardellini – SDCC 2025/26 89

Gossiping vs flooding: example
• Information dissemination is the classic and most

popular application of gossiping protocols in DSs
– Gossiping is generally more efficient than flooding

• Flooding-based information dissemination
– Each node that receives a message forwards it to all its

neighbors (including the sender)
– Message is eventually discarded when TTL reaches 0

Round 1 Round 2 Round 3

Sent messages: 18
Reached nodes: 8 out of 9Valeria Cardellini – SDCC 2025/26 90

Gossiping vs flooding: example
• Use an example of rumor spreading algorithm

– The node sends the message to each of its neighbors with
probability p

for each msg m
if random(0,1) < p then send m

p

p

p

p

p

p p

p

p p

p
Round 1 Round 2 Round 3

Sent messages: 11
Reached nodes: 7 out 9

Valeria Cardellini – SDCC 2025/26 91

Gossiping vs flooding
• Gossiping key features

– Probabilistic
– Localized decision, yet leads to a global state
– Lightweight
– Fault-tolerant

• Flooding pros and cons
✓ Universal coverage and minimal state information needed
✗ Can flood the network with redundant messages

• Gossiping goals
– Reduce redundant transmissions compared to flooding while

attempting to retain its advantages
– However, due to its probabilistic nature, it cannot guarantee

that all the peers are reached and it generally takes longer to
complete than flooding

Valeria Cardellini – SDCC 2025/26 92

Other application domains of gossiping
• Besides information dissemination…
• Group membership

– To know the list of nodes in DS (who is part of the system)
• Peer sampling

– To select nodes from a larger set of available nodes to
interact with

• Resource management in large-scale DS
– Including monitoring and failure detection

• Distributed computations for data aggregation in
large-scale DS (e.g., sensor network)
– Computation of aggregates, e.g., sum, average, maximum,

minimum
– Example: computing average

• Let vt,i and vt,j be the values at time t stored at nodes i and j
• During a gossip exchange, i and j exchange their current local

value vi and vj and adjust it to
vt+1,i, vt+1,j ←(vt,i + vt,j)/2

Valeria Cardellini – SDCC 2025/26 93

Gossiping case studies

1. Blind counter rumor mongering: example of gossip-
based disseminatio protocol

2. Bimodal multicast: builds on gossiping to provide
reliable multicast

Valeria Cardellini – SDCC 2025/26 94

Blind counter rumor mongering

• Why this name?
– Rumor mongering (def.: “the act of spreading rumors”, also

known as gossip): a node with a “hot rumor” periodically
infects other nodes

– Blind: the node loses interest regardless of who the recipient
is (why)

– Counter: the node loses interest after a fixed number of
contacts (when)

• Two parameters to control gossiping
– B: max number of neighbors a message is forwarded to
– F: number of times a node forwards the same message to its

neighbors

Valeria Cardellini – SDCC 2025/26 95

Portman and Seneviratne, The cost of application-level broadcast in a
fully decentralized peer-to-peer network, ISCC 2002

Blind counter rumor mongering
• Gossiping protocol
A node n initiates a broadcast by sending message m to B

of its neighbors, chosen at random
When node p receives a message m from node q

If p has received m no more than F times
p sends m to B neighbors, chosen uniformly at random,
among those that p believes have not yet seen m

– Note that p knows whether its neighbor r has already seen m
only if p has previously sent m to r, or if p has received m from r

• Performance (B=F=2) compared to flooding
– Lower number of messages: ~50%
– Incomplete coverage: ~90%
– Slower dissemination: ~2x

Valeria Cardellini – SDCC 2025/26 96

Bimodal multicast

• Aka pbcast (probabilistic broadcast)
• 2-phase protocol:

1. Message distribution: a process sends a multicast
message with no particular reliability guarantees

2. Gossip repair: after receiving a message, a process
begins to gossip about it to a set of peers
• Gossip occurs at regular intervals, giving processes a chance

to compare their states and fill gaps in their message sequence

• Used by Fastly CDN for cache invalidation
https://www.fastly.com/blog/building-fast-and-reliable-purging-system

Birman et al., Bimodal multicast, ACM Trans. Comput. Syst., 1999
Valeria Cardellini – SDCC 2025/26 97

Bimodal multicast: message distribution

• Start with unreliable multicast to rapidly distribute
messages

• Partial distribution may occur:
– Some message may not reach all nodes

– Some process may be faulty

Send messages
: failed

messages

p1

p2

p3

p4

p5

p6 time

Valeria Cardellini – SDCC 2025/26 98

Bimodal multicast: gossip repair

• Periodically (e.g., every 100 ms), each process
sends a digest describing its state to a randomly
selected process

• The digest only identifies messages, without
including them

Send digests
p1

p2

p3

p4

p5

p6

Valeria Cardellini – SDCC 2025/26 99

Bimodal multicast: gossip repair

• The recipient checks the gossip digest
against its own message history and requests
copies of any missing messages from the
process that sent the gossip

Solicit message copies
p1

p2

p3

p4

p5

p6

Valeria Cardellini – SDCC 2025/26 100

Bimodal multicast: gossip repair

• Processes reply to solicitations received during a
gossip round by retransmitting the requested
messages

• Some optimizations exist (not examined)

Send message copies
p1

p2

p3

p4

p5

p6

Valeria Cardellini – SDCC 2025/26 101

Bimodal multicast: why “bimodal”?
• Are there two phases?
• No; dual “modes” of result

Valeria Cardellini – SDCC 2025/26 102

2. Bimodal delivery latencies: one distribution of very low
latencies (messages arriving without loss in the initial phase)
and a second distribution with higher latencies (messages that
had to be repaired afterward)

1. Bimodal delivery
pattern: pbcast is
almost always delivered
to most or to few
processes, and almost
never to some
processes
Atomicity = almost all or
almost none

Either sender
fails…

… or data gets
through with

high probability

Pub-sub event matching

• Subscriber specifies which events it is interested in
(subscription S)

• Publisher publishes event N: does N match S?
• Challenge: efficiently implement event matching

Valeria Cardellini – SDCC 2025/26 103

Event matching: centralized architecture

• Naive solution: centralized architecture
– Single server handles all subscriptions and notifications

• Server responsibilities:
– Handles subscriptions from subscribers
– Receives events from publishers
– Checks events against subscriptions
– Notifies matching subscribers

✓ Simple to realize, feasible for small-scale
deployments

✗ Scalability
✗ SPOF

Valeria Cardellini – SDCC 2025/26 104

Event matching: distributed architecture
• Achieve matching scalability
• Simple solution: partition subscriptions
1. Hierarchical architecture: master distributes

matching across multiple workers
– Each worker stores and handles a subset of subscriptions
– Master receives events and distribute them to workers for

matching
– Partitioning strategy

• Topic-based pub/sub: hash topic names to map subscriptions
and events to workers

✗ Single master

2. Flat architecture: no single master, matching is
spread across distributed servers
– Partitioning strategy

• Topic-based pub/sub: hash topic names to select server
Valeria Cardellini – SDCC 2025/26 105

Event matching: distributed architecture

• Other solutions: decentralized servers (overlay
network)

• Challenge: how to route notifications to subscribers?
1. Unstructured overlay: use flooding or gossiping to

disseminate event notifications
– Store a subscription at only one server, but disseminate

notifications to all servers: matching is distributed across
servers

– Selective routing: install filters to ignore paths toward nodes
that are not interested, reducing unnecessary messages

2. Structured overlay: use a DHT to disseminate event
notifications

Valeria Cardellini – SDCC 2025/26 106

References
• Chapter 4 and Section 5.6 of van Steen & Tanenbaum book

• Kafka doc https://kafka.apache.org/documentation
• Conductor’s Kafkademy https://docs.conduktor.io/learn
• Kafka: A Distributed Messaging System for Log Processing

https://pages.cs.wisc.edu/~akella/CS744/F17/838-CloudPapers/Kafka.pdf
• Sax, Apache Kafka, Encyclopedia of Big Data Technologies, 2018

https://link.springer.com/rwe/10.1007/978-3-319-77525-8_196

• RabbitMQ https://www.rabbitmq.com

• Montresor, Gossip and epidemic protocols, Wiley Encyclopedia of
Electrical and Electronics Engineering, 2017
http://disi.unitn.it/~montreso/ds/papers/montresor17.pdf

• The cost of application-level broadcast in a fully decentralized
peer-to-peer network https://ieeexplore.ieee.org/document/1021785

• Bimodal multicast https://dl.acm.org/doi/pdf/10.1145/312203.312207

Valeria Cardellini – SDCC 2025/26 107

