TOR VERGATA Macroarea di Ingegneria

e Dipartimento di Ingegneria Civile e Ingegneria Informatica

Communication in Distributed Systems
Message Oriented Middleware

Corso di Sistemi Distribuiti e Cloud Computing
A.A. 2025/26

Valeria Cardellini

Laurea Magistrale in Ingegneria Informatica

Message-oriented communication

» RPC provides distribution transparency over socket
programming
» But still coupling between interacting entities
— Temporal: caller waits for a reply
— Spatial: shared data
— Functionality and communication are tightly coupled
* How to improve decoupling and flexibility?

* Message-oriented communication
— Transient
» Berkeley sockets, Message Passing Interface (MPI)
— Persistent
* Message Oriented Middleware (MOM)

Valeria Cardellini — SDCC 2025/26 1

Message-oriented middleware

« Communication middleware that supports sending
and receiving messages in a persistent way
— Provides intermediate-term storage for messages

» Loose coupling among system/app components
— Supports temporal and spatial decoupling
— Can also support synchronization decoupling

» Goals: increase performance, scalability, and
reliability
— Commonly used in serverless and microservice architectures
« Communication patterns:

— Message queue
— Publish-subscribe (pub/sub)

Related systems:

— Message queue system (MQS)

— Pub/sub system
Valeria Cardellini — SDCC 2025/26

Message queue pattern

« Messages sent to a queue are stored until retrieved
by a consumer

* Multiple producers can send messages to the queue

» Multiple consumers can receive messages from the
queue

« Communication is one-to-one: each message is
delivered to a single consumer

* Use cases:
— Task scheduling, load balancing, logging or tracing

Valeria Cardellini — SDCC 2025/26

Message queue pattern

A sends a message to B B processes the message and
— .. sends a response back to A
message
- send request
= resources locked
-consuiog «potconauming o « sond response
s
Queue receives nd ey
Senvice A stores message Service B
(1) Queue receives and |
® Service A kgl bous Service B
request
o 1
« release resources * receive request
and memory
J ——
«lockaway
eeeeeeee
i
Queue send: memory £
Service A message Service B
Queue send
Service A emonse Service B
(5]
« not consuming « process request
memory l

* PIoCess response
« then release
resource:

memory

0 Service A Service B

Valeria Cardellini — SDCC 2025/26

Message queue API

« Typical calls in MQS:

— put: non-blocking send
* Inserts a message into the queue immediately

— get: blocking receive
« Waits until the queue is non-empty and retrieve a message
» Variant: can search for a specific message in the queue

— poll: non-blocking receive
» Checks the queue and retrieves a message if available
* Never blocks

— notify: non-blocking receive

* Installs a callback handler that is automatically invoked
when a message arrives in the queue

Valeria Cardellini — SDCC 2025/26

Publish/subscribe pattern

* Producers (publishers) send asynchronous
messages, such as event notifications

» Consumers (subscribers) express interest in specific
topics by subscribing

* Decoupling in time and space: publishers and
subscribers do not need to interact directly

» Supports one-to-many communication, unlike
message queues

Subscriber 1 (S1
Publisher 1 a . a /' 59

PubSubService
b (Publisher-Subscriber b,c
Publisher 2 Service) Subscriber 2 (S2)
/ Topic Subscribers \
c
Publisher 3 a,c Subscriber 3 (S3)

a §1,53

b S2

c $2,83

Valeria Cardellini — SDCC 2025/26

Publish/subscribe pattern

* Multiple consumers can subscribe to a topic, with or
without filters

* An event dispatcher collects subscriptions and route
messages to all matching subscribers
— For scalability, the dispatcher is typically distributed

» High degree of decoupling among components
— Components can be easily added or removed: ideal for
dynamic environments
« Use cases:
— Event notification, multicasting

» Comparison with message queue

Feature | Message queue | Publsub

Delivery One-to-one One-to-many

Consumers Single consumer per Multiple consumers per

message message
Valeria Cardellini — SDCC 2025/26

Publish/subscribe API

« Typical calls in a pub/sub system:
— publish(event): called by a publisher to publish an
event
+ Events can be any data type and may include meta-data
— subscribe(filter_expr, notify_cb, expiry) -
sub_handle: called by a subscriber to subscribe to
events

* Inputs: filter expression, reference to a notification callback,
and subscription expiry time

» Returns a subscription handle

— notify cb(sub_handle, event): called by pub/sub
system to deliver to a matching event to subscribers

— unsubscribe(sub_handle): called by the subscriber to
remove the subscription

Valeria Cardellini — SDCC 2025/26

MOM functionalities

« MOM simplifies distributed communication by handling:
— Addressing: locating the recipient(s) for messages
— Routing: delivering messages along appropriate paths
— Availability of application components (or applications)
— Message format transformations

g N

Message-oriented Middleware

8 m—
@~ X -
D Rge CI)_’!J

1
.’
A .
I\
Transform RN
5

i Mg
’

E @&

Exactly-once At-least-once Transaction-based Timeout-based
Delivery Delivery Delivery Delivery

X
~(D-
Py
-

Valeria Cardellini — SDCC 2025/26

MOM functionalities

» Let's analyze
— Delivery semantics
— Delivery model
— Message routing
— Message transformations

Valeria Cardellini — SDCC 2025/26

MOM delivery semantics

10

<=1

At-most-once delivery
« Each message is delivered no more than once
+ Messages may be lost, but are never redelivered

1+
At-least-once delivery .

 Messages are never lost, but they may be delivered multiple
times

— Since messages can be duplicated, the consumer-side application
must be able to handle duplicate processing (or be sure that re-
processing the same message does not cause errors)

* Mechanism:
— Consumer sends ack for each message;

MOM resends message if ack is missing ‘
‘

Valeria Cardellini — SDCC 2025/26

Producer Consumer

1"

MOM delivery semantics

Exactly-once delivery E]

* Message is delivered exactly once to consumer

* Mechanisms
— Deduplication logic: MOM filters message duplicates
+ Each message has a unique ID

— ldempotent consumers: can safely process the same
message multiple times

— Messages survive MOM failures

Message

Producer L, 2 2 Filter

1 2
_(-IZI- D>
= i =

Message
ID

Valeria Cardellini — SDCC 2025/26

MOM delivery semantics

Consumer

12

Transaction-based delivery

« Guarantees messages are deleted from the queue
only after they have been successfully received and
processed by the consumer

* Mechanism

— MOM and consumer participate in a transaction: read and
delete operations are part of the transaction, ensuring ACID
properties

« Commit: if successful, the message is permanently deleted

* Rollback: if the transaction fails, the message remains in the

‘ + ACID Transaction,

cwrite ' eread
Producer —lp (::0 —lp Consumer

Valeria Cardellini— SDCC 202526 = ts=ssssssssssssss

13

MOM delivery semantics

Timeout-based delivery

* Ensures messages are delivered at least once while
preventing duplicate consumption

* Mechanism

— Message is not deleted immediately from the queue, but
marked as invisible until visibility timeout expires

— Invisible message cannot be read by another consumer

— After consumer’s ack of message receipt, message is
deleted from queue

e(;e't visible o -

o“mte
—_
Producer —() Consumer
u u acknowledge
/edelele °set invisible e 6
set visible
visibility

Valeria Cardellini — SDCC 2025/26 timeout

MOM delivery model

14

« How messages are retrieved by subscribers or
consumers

» Options: push vs. pull delivery

« Push: MOM actively notifies the receiver(s) when a
message is available

» Pull: receiver(s) periodically polls MOM for new

messages
| » Rec. A l Rec. A
MOM MOM
| _ Rec.B i Rec. B
Push delivery Pull delivery

Valeria Cardellini — SDCC 2025/26

15

Message routing in MOM

* Queues are managed by queue managers (QMs)
— Applications can only put messages into a local queue
— Applications can only retrieve a message from a local queue
« QMs are responsible for routing messages between
local queues and remote queues

— Act as message-queuing relays, communicating with
distributed applications and other QMs

— Form an overlay network

— Some QMs may operate only as routers, without storing
messages Look up

Source queue contact address Destination queue

manager [~ of destination manager
queue manager
— Logical
— queue-level

address (name) 7|

A

Address lookup
database

Local OS Local 0OS

| _Contact
address

Valeria Cardellini — SDCC 2025/26 Network 6

Message routing: overlay network

» Overlay network for message routing

— Each QM maintains a routing table to map queue names to
their location

Sender A

* Overlay network
. Application -
maintenance _ Applcation
— Static overlays: routing tables @:&“L R2 %}f]
Message
are set up and managed E\\ 5 |TE
Send queue \4 :
manually e | e —
. pplication
+ Easier to configure but less T
flexible TN T)
< 11
— Dynamic overlays: routing G:% » E Receiver B
tables are updated at runtime sgplestion oo
» More complex but supports

scalable and adaptive routing

Valeria Cardellini — SDCC 2025/26 17

Application heterogeneity: message broker

* Problem: new and existing apps rarely share a
common data format, how to integrate them into a
single, coherent system?

» Solution: message broker
— Handles application heterogeneity in MOM
* Responsibilities

— Message transformation: uses a repository of conversion
rules to transform message types

— Content-based routing: routes messages based on content or

type

» Scalability and reliability: usually implemented in a
distributed manner e Message broker
pplication B|:r|0|k:e|r-;)l-u|g__ilns g Application

f Queuin: N

MiREEEEIRIE
Local OS Local OS T Local OS

Valeria Cardellini — SDCC 2025/26 L i, I —JJ_

MOM frameworks

« Main MOM systems and libraries
— Apache ActiveMQ
— Apache Kafka
— Apache Pulsar
— IBM MQ
— NATS
— RabbitMQ
— Redis
— ZeroMQ
» Note: distinction between queue-based and pub/sub
patterns is sometimes blurred

— Some frameworks support both patterns, e.g., NATS, Pulsar
and Kafka (with specific configurations)

— Others only one, e.g., Redis is pub/sub only, ZeroMQ is
queue only

Valeria Cardellini — SDCC 2025/26

MOM frameworks

e Cloud-based MOM services

Amazon Simple Queue Service (SQS)
Amazon Simple Notification Service (SNS)
CloudAMQP: RabbitMQ as a Service
Google Cloud Pub/Sub

Microsoft Azure Service Bus

* Note

Valeria Cardellini —

Cloud MOMs abstract infrastructure management, allowing
developers to focus on messaging patterns

Many support both queue and pub/sub patterns

SDCC 2025/26 20

Amazon Simple Queue Service (SQS) |8

* Reliable, scalable cloud-based message queue
service

Designed to decouple application components, allowing
them to run independently and asynchronously
Supports integration across different languages and
technologies

* Architecture

Valeria Cardellini —

Message queues fully managed by AWS
Queues are distributed across multiple SQS servers
Replication within a region: messages stored on multiple

servers for high availability vz Deuaon
Components SQsS Servers))
Pull delivery model: @
consumers poll the queue ; . %o
to retrieve messages el ° 0°
9 00 oo

SDCC 2025/26 21

Amazon SQS: Message handling

» Consumer must delete message after processing
— Queue = temporary holding location, not permanent storage
— Message retention period: configurable (max 14 days)

* Implements timeout-based delivery

— When a consumer retrieves a message, it remains in the
queue but becomes invisible to others (visibility timeout)

— If processing succeeds, the consumer deletes the message

omponent 1 sends Visibilty

— If processing fails, the timeout 0 mEiit. ey

expires and the message _;

becomes visible again

Component 2
Valeria Cardellini — SDCC 2025/26 U

22

Amazon SQS: Polling and queue types

Consumers poll the queue to receive messages

— Short polling: queries only a subset of SQS servers (may
return empty)

— Long polling: queries all servers, wait for messages (reduces
empty responses)

Queue types: standard or FIFO
Standard queue (default)

— Best-effort ordering: messages

o|||« FHE-E-E-a

. Standard
may arrive out-of-order Queue
— Duplicates possible
* FIFO queue

b|[|<
FIFO Queue

— Guarantees in-order delivery
(sent=processed order)

— No duplicates

X Lower throughput

Valeria Cardellini — SDCC 2025/26 23

Amazon SQS: API

* CreateQueue, ListQueues, DeleteQueue
— Create a new queue, list all queues, delete an existing queue
« SendMessage

— Add a message to queue (message size up to 256 KB)
— For larger payloads: store on S3 and send an S3 reference
instead
« ReceiveMessage
— Retrieve one or more messages

— Retrieve up to 10 messages: can specify the maximum
number of messages to fetch (from 1 to 10)

— No filtering before delivery
— Post-delivery filtering

* If a consumer wants to filter messages, it must inspect message
body or attributes after receiving the messages and decide
whether to process or discard them

Valeria Cardellini — SDCC 2025/26

Amazon SQS: API

24

* DeleteMessage
— Remove a specified message from the queue after processing
e ChangeMessageVisibility

— Change the visibility timeout of a specific message in the
queue

— A message remains in the queue until explicitly deleted by the
consumer

— Default visibility timeout: 30 sec.

« SetQueueAttributes, GetQueueAttributes

— Modify queue attributes (e.g., message retention), retrieve
current queue settings

Valeria Cardellini — SDCC 2025/26

25

Amazon SQS: example
» Photo processing service using SQS

— Goal: use SQS to decouple the front-end and back-end
components, ensuring load balancing and fault tolerance

— Front-end uploads a photo to S3 and sends to back-end an SQS
message containing the S3 link

— A pool of EC2 instances (back-end) retrieves messages from the
queue

» Each instances gets a photo, processes it (e.g., resize) and delete the
message after processing

- If processing fails, the Autoscaling group . Autoscaling group
message becomes O [i 1 Messageoont
.. . —sS i } ! ! i ..
visible again after the ; M i ; v
visibility timeout, NN | T
allowing another @/‘ — i allX a
instance to retry L ./ SQSqueue T ;
* The back-end pool can -
be scaled horizontally E
based on the number of 33 bucket

messages in the queue Valeria Cardellini — SDCC 2025/26 2

Apache Kafka %

« Open-source, distributed event streaming platform

* Designed to
— Publish and subscribe to streams of events
— Store event streams durably and reliably
— Process event streams

« Started by LinkedIn in 2010, now Apache project
« Used at scale by LinkedIn, Netflix, Uber, and many

others @
« Written in Java and Scala N

» Horizontally scalable and fault-tolerant
» High-throughput ingestion

— Billions of events

Valeria Cardellini — SDCC 2025/26

Kafka at a glance

producer producer producer

\l‘/

kafka
cluster

A4
consumer consumer consumer

» Kafka topics: Kafka stores streams of events (aka
messages or records) in categories known as topics

» Kafka cluster: composed of servers called brokers,
which can span multiple data centers or cloud regions
— Brokers receive and store events

* Producers: publish (write) events to a Kafka topic

« Consumers: subscribe to Kafka topics, read published
events and process them
— A topic can have 0, 1, or many subscribing consumers

Valeria Cardellini — SDCC 2025/26 28

Kafka: topics and partitions

» Topic: category to which events are published
» For each topic, Kafka cluster maintains a partitioned log

* Log (data structure): append-only, totally ordered
sequence of events

« Partitioned log: each topic is split into a pre-defined
number of partitions

— Partition: the unit of parallelism for a topic

Partition 111.E
0 O(1(2(3(4|5|6(|7|8]|9

i :\
Par11ItI0n ol1l2l3]a|5l6]|7]|8!9 : -+ /‘.’Vrites
Partition 1)1}

2 012

Old » New
Valeria Cardellini — SDCC 2025/26

29

Kafka: partitions and parallelism

» Parallelism and scalability come from having multiple
partitions per topic

* Producers publish events to topic partitions

« Consumers read events from the topic

» Each partition is:
— A numbered, ordered, immutable sequence of records
— Appended to, never modified (immutable records)

— Similar to a commit log Producers
« Every record has a Lwrites
monotonically increasing Tilq!
0[1]2]|3(4(5|6(7(8[9]y]1n1
offset .
— Uniquely identifies each /reads\
record W|th|n a partition Consumer A Consumer B
(offset=9) (offset=11)
Valeria Cardellini — SDCC 2025/26 30

Kafka: partitions and design choices

» Improve scalability: topic partitions are distributed
across multiple brokers

v 1/0 throughput increases through parallel reads and writes
» Multiple producers can write concurrently to different partitions

* Multiple consumers can read concurrently from different
partitions

Broker 1 Broker 2 Broker 3

I

i

i o L _

; opic A opic A Topic A
i (Partition 0) (Partition 1) (Partition 2)
i

i

* Topic A -3 Partitions
* Topic B -2 Partitions

Topic B Topic B
(Partition 0) (Partition 1)

Valeria Cardellini — SDCC 2025/26 31

Kafka: partitions and design choices

» Improve fault tolerance: partitions can be replicated
across brokers
— Each partition has:
* 1 leader: handles all writes and reads
» 0 or more followers: replicate the leader data
» Replication-factor = total number of replicas (including
leader)
— Replication-factor = N — up to N-1 brokers can fail without

i Broker 1 Broker 2 Broker 3

Producer

¢ Topic B -2 Partitions

i Topic B Topic B | * Replication factor of 2
! (Partition 0) NN (Partition 1) 3§ !
! [Leader] '\.\O//c';,) [Leader] 's.'?%//. !
& N %, ‘\"e,/. !
N AN % !
) : B Topic B S Topic B :
/ : (Partition 0) k (Partition 1) :
i [Follower] [Follower] |
1 1
O i

Valeria Cardellini — SDCC 2025/26 32

Kafka: partitions and design choices

« Simplify data consistency management: only leader
handles all reads and writes
— Producers write to the leader, consumers read from the leader
— Followers replicate the leader and serve as backups

— Followers can be:
* in-sync: fully updated with the leader
+ out-of-sync: lagging behind the leader

Pull changes
T SR ntEr |
1 v
Partition O Partition O Partition O
Producer
Write (Leader) (Follower) (Follower)
—_— —_— —
i e e a
Pull changes

Valeria Cardellini — SDCC 2025/26 33

Kafka: partitions and design choices

» Share responsibility and balance load: each broker
acts as leader for some partitions and follower for
others

» Coordination across brokers is managed by Apache
Zookeeper or KRaft
— Handles leader election
— Maintains cluster metadata

H Broker 1 Broker 2 Broker 3 H

Producer
R * Topic B -2 Partitions
Replication Topic B H * Replication factor of 2

F-r--- 1 -> (Partition 1) i
[Follower]

(Partition 1)
[Leader]

|Leader}

U All Reads Topic B Replication Topic B !
Consume e : (Partition 0) 3! Aukduialy = —> (Partition 0) :
W ; [Leader] [Follower] ;
Valeria Cardellini — SDCC 2025/26 34

Kafka: producers

* Producers = data sources

» Publish events to topics of their choice

— Send events directly to the broker that is leader for the target
partition (no routing tier)

» Responsible for assigning events to partitions using:
— Key-based partitioning
» Event contains a partition key (e.g., order ID, user ID)

+ Partition is chosen by hashing the key

« Example: if key=user_id, all events for the same user go to the
same partition

— Round-robin partitioning
» Default if no key is specified
— Custom partitioning
» A partitioner can be provided to implement a custom partitioning logic
« Multiple producers can write concurrently to the same
artition

Valeria Cardellini — SDCC 2025/26 35

Kafka: consumers

» Kafka uses a pull-based delivery model for consumers

« A consumer track its progress using offset
— Offset identifies which events have been consumed

» Multiple consumers can be read the same partition,
each reading at different offsets

Partition
[i:}[::lIIIIIIHI IIII IHHI [::} [E:J
N\ \
f

/

P 3

Consumer-1 Consumer-2
(offset 3) (offset 5)

Valeria Cardellini — SDCC 2025/26 36

Kafka: consumers

* Why pull?

* Push model
— Broker actively pushes events to consumers
X Broker must manage
 Different consumers with their needs and capabilities
* Transmission rate control

* Timing decisions: whether to send a message immediately or
accumulate more data to send later

* Pull model
— Consumers control event retrieval from broker
— Consumers maintain an offset to identify the next event to read

v More scalable and flexible

* Less burden on brokers

» Consumers can pull events when ready, adjusting the rate
X If no events are available, consumers may end up busy

waiting for events to arrive
Valeria Cardellini — SDCC 2025/26 37

Kafka: consumers

* How can consumers read in a fault-tolerant way?

— After a consumer reads events, it stores its committed offset
in a special Kafka topic called __consumer_offsets

— In case of crash, the consumer can recover by reading
events from the committed offset

— By default, auto-commit is enabled

Valeria Cardellini — SDCC 2025/26

Kafka: message retention and storage

« Kafka brokers store messages reliably on disk
» Messages are stored in log segments (files on disk)

» Unlike other message queue and pub/sub systems,
Kafka does not delete messages after delivery, but
retains messages based on size or time

* Issue: how to free up disk space?

— Topics are configured with retention time (how long events
should be stored)

— Upon expiry, events are marked for deletion
— Alternatively, retention can be specified in bytes

» On each broker, messages are flushed from the
broker’s in-memory buffer to the disk

— Alog flush policy controls when messages are written to disk
(time interval and number of messages)

Valeria Cardellini — SDCC 2025/26

Hands-on Kafka

* Preliminary steps
— Download and install Kafka

» Configure Kafka properties in server.properties

— E.g., listeners which are network interfaces on Kafka
broker: 1isteners=PLAINTEXT://localhost:9092

— E.g., log flush policy
— Start Kafka environment
« Kafka can use KRaft or ZooKeeper (we will use KRaft)
— Alternatively, start ZooKeeper first
« Start Kafka broker (default port: 9092)
$ bin/kafka-server-start config/kafka.properties

Valeria Cardellini — SDCC 2025/26

Hands-on Kafka

40

» Let’'s use Kafka CLI to create a topic, publish and
consume events to/from topic, and delete it

» Create a topic named test with 1 partition and no
replication (replication-factor=1)

$ kafka-topics --create --bootstrap-server localhost:9092
--replication-factor 1 --partitions 1 --topic test

— Bootstrap server: an initial broker used by the producer to
connect to the Kafka cluster

— It provides the producer with metadata about the cluster,
including a list of all the brokers

— Multiple bootstrap servers for fault tolerance and load
balancing

— Once the producer discovers the partition leader, it can start
sending messages

Valeria Cardellini — SDCC 2025/26

41

Hands-on Kafka

* Produce messages into the topic

$ kafka-console-producer --bootstrap-server localhost:9692 \
--topic test

>msg 1

>msg 2

« Consume messages from the beginning of the topic
$ kafka-console-consumer --bootstrap-server localhost:9092 \

--topic test --from-beginning

« Consume messages from a given offset (e.g., 2) of a specific
partition (e.g., partition 0) of the topic

$ kafka-console-consumer --bootstrap-server localhost:9092 \
--topic test --offset 2 --partition ©

Produce messages with key
$ kafka-console-producer --bootstrap-server localhost:9092 \
--topic test --property parse.key=true --property key.separator=:
>course:sdcc
>university:Tor Vergata

Valeria Cardellini — SDCC 2025/26 42

Hands-on Kafka

 List available topics
$ kafka-topics --1list --bootstrap-server localhost:9092

* Delete a topic
$ kafka-topics --delete --bootstrap-server localhost:9092 \
--topic test

» Stop Kafka

$ kafka-server-stop

— If Zookeper: $ zookeeper-server-stop

Valeria Cardellini — SDCC 2025/26 43

Kafka: consumer group

* Consumer Group: set of consumers that cooperate to
consume data from a topic and share a group ID
— A Consumer Group represents a logical subscriber
— Topic partitions are divided among consumers in the group
* Reassigned when consumers join/leave the group
— Each event is delivered to only one consumer within the group
— Each group maintains its own offset per topic partition

Parﬁtion ° m m m Par“tion ‘

consumer—group-application

Valeria Cardellini — SDCC 2025/26 44

Kafka: consumer group

* How can many consumers read the same events?

— By using different group IDs: consumers in different groups
can independently read the same events from the same topic

« Example: microservices communicating through Kafka

Shipping Service

Payment Service —>| I I I I I I

payment_events Notification Service

* When we scale microservices
— Each microservice has its own consumer group

Shipping service 1

Shipping service 2

| Partition 0

| Partition 1

payment_events

! | Notification service 1| !

i Notification service 2

Valeria Cardellini — SDCC 2025/26 notification_group 45

Hands-on Kafka: consumer group

Launch a consumer in a consumer group named my -
group
$ kafka-console-consumer \
--bootstrap-server localhost:9092 \
--topic test \
--group my-group

Open two more terminal windows and run two additional
consumers in my-group

— Each consumer will be assigned to a different topic partition
Produce messages in the topic and see how they are
distributed among the consumers

— Each consumer will read the messages from its assigned
partition

Valeria Cardellini — SDCC 2025/26

Kafka: replication

» Topic partitions are replicates across brokers for fault
tolerance
— Leader-follower model: followers replicate the leader log

— Replication is asynchronous: periodically, followers pull
messages from the leader in order, using offsets

— In-sync replicas (ISR): the leader and any followers that are
updated with the leader’s log

— Durability (no message loss) is guaranteed as long as at least
one in-sync replica is available

— If the leader crashes, one in-sync replica is elected as new

leader

Producer — |

Kafka Cluster

Broker1 |

Broker 2

' Broker3

o

Partition1

+1

Partition1

| ||

Partition1

|

Partition2

i

_4

Partition2

7

Partition2

|

Partition3

|

Partition3

I8

Valeria Cardellini — SDCC 2025/26

47

Kafka: event ordering guarantees

« Events written by a producer to a topic partition are

appended in the order they are sent
message: m1 m2 m3 m4 mb
offset: 10 11 12 13 15

« Consumer reads events in the same order they are
stored in the partition
m1 —-m2 - m3 - m4 - mb
« Kafka provides ordering guarantees, but only within a
partition
— Total order of events within each partition (per-partition
ordering)
« Kafka does not preserve order across partitions of
the same topic

* In practice, per-partition ordering combined with key-
based partitioning is sufficient for most applications

Valeria Cardellini — SDCC 2025/26 48

Kafka: write guarantees

« Controlled by acks and min.insync.replicas

» acks (producer setting): how many in-sync replicas
must acknowledge a write before the producer
considers it successful

— acks=0: no ack (fire and forget)
— acks=1: wait for leader only
— acks=all: wait for all ISR replicas
 min.insync.replicas (topic/cluster setting): minimum
number of ISR replicas that must acknowledge a write
for it to succeed

« Strong durability: acks=all + min.insync.replicas>=2
— Example: replication-factor=3

min.insync.replicas=1: only leader
* min.insync.replicas=2: leader + 1 follower (recommended)
* min.insync.replicas=3: leader + 2 followers (highest durability)

Valeria Cardellini — SDCC 2025/26 49

Kafka: read and visibility guarantees

» Message durability: depends on acks + ISR
size/status
— A write is kept only if enough in-sync replicas acknowledge it
(as required by acks and min.insync.replicas)
* Message availability: consumers can read messages
as soon as they are appended to the leader’s log
— Replication to followers is asynchronous
— Exception: transactional consumers (read_committed)

* A write is successful only if:
1. The leader appends the message, and

2. The acknowledgment requirements (acks and
min.insync.replicas) are satisfied

— If reqs cannot be met, write is rejected (not visible to
consumers)

Valeria Cardellini — SDCC 2025/26 50

Kafka: delivery semantics

« At-most-once: guarantees that events are never re-
delivered but may be lost
— Producer disables retries (i.e., acks=0 on producer)

Broker 101 1 1 EE
PRODUCER @l Send data to leader B84 " ol k18 21 s Wat R Fali 74 Ha o Ll o R
C il Partition O (leader) 0 1 [m

acks=0

— Consumer commits its offset before processing event

* What happens if the consumer crashes after committing but
before processing?

Valeria Cardellini — SDCC 2025/26 51

Kafka: delivery semantics

» At-least-once (default): guarantees no event loss,
but events may be duplicated

— Producer waits for ack only from the partition leader; if no
ack, it retries

— How? Set acks=1 on producer

— Consumer commits its offset after processing an event
» What happens if the consumer crashes before committing?

--------- Send [EICRGACELLIg ------ -

Broker 101 1 1
PRODUCER e 1 2 3 4 5 6 7 8 9 R --
= Partition O (leader) 0 1 jl m *
espond to every write request
acks=1
Valeria Cardellini — SDCC 2025/26 52

Kafka: delivery semantics

« Exactly-once: guarantees no event loss, no duplicates,
but at the cost of higher latency and lower throughput
— Producer: acks=all
» Waits for ack from all in-sync partition replicas

— |ldempotent producer: detect duplicates caused by retries
* Producer ID and sequence number are added to each event

— Durability: min.insync.replicas >=2
— Transactions enabled: atomic writes across partitions +
transactional offset commits + read_committed consumers

— Not fully exactly-once — - [.

(replica)

r i)Mathias Verraes X
é/ @mathiasverraes - Follow

There are only two hard problems in distributed systems:
2. Exactly-once delivery 1. Guaranteed order of messages

2. Exactly-once delivery PR g
8:40 PM - Aug 14, 2015 Broker 101
SO EEEn -

@ 68 @ Reply (@ Copylink | «--ccc- (leader)

Read 81 replies

acks=all

Broker 103

: rol
Meeeeeen » Partition 0 e 1 2 3 4 51

Valeria Cardellini - SDCC 2025/26 (epica 53

Kafka: delivery semantics

» Take-away message: choose delivery semantics that
fit your application

— At-most-once: prioritize speed (e.g., telemetry, if some data
loss is acceptable)

— At-least-once: prioritize reliability (e.g., email notifications)

— Exactly-once: prioritize correctness (e.g., financial
transactions)

Valeria Cardellini — SDCC 2025/26

Kafka: trade-offs

54

» Consistency vs. availability trade-off
— Kafka ensures strong consistency per partition: all in-sync
replicas are up-to-date with the leader

— If the leader fails and no ISR follower is available, the
partition becomes unavailable

» Latency vs. durability trade-off
— Producers control durability via acks
» acks=all: highest durability, higher latency (waits for all ISRs)

* acks=1: lower latency, but messages may be lost if leader
crashes

» acks=0: lowest latency, highest risk of loss

— Lower latency increases the chance of data loss in case of
failure

Valeria Cardellini — SDCC 2025/26

55

Kafka: from ZooKeeper to KRaft

» Zookeeper: distributed coordination service used for
managing distributed systems
— Provides locking, leader election, monitoring

* Role of ZooKeeper in Kafka

— Metadata management: list of brokers, @’@@

Zookeeper

configuration for topics and partitions
- Leader election: to determine partition leader
— Cluster health monitoring I A
« Cons

X Operational complexity: separate Zookeeper cluster

X Scalability: as Kafka cluster grows, Zookeeper becomes
bottleneck

X Single point of failure for coordination: if Zookeeper is
unavailable, Kafka brokers may be unable to manage
metadata, elect new leader, and know broker status

Valeria Cardellini — SDCC 2025/26 56

Kafka: from ZooKeeper to KRaft

» Apache Kafka Raft (KRaft)

— Kafka-native consensus protocol that replaces Zookeeper for
metadata management and leader election

— Kafka itself stores metadata and partition leader information
— Raft protocol coordinates metadata updates
— KRaft is used for leader election

* Pros _Q_’

V' Simplified architecture
V' Improved scalability

v/ Better fault tolerance: metadata replicated to all
brokers, making failover faster

KRaft

I R —
I S

Valeria Cardellini — SDCC 2025/26 57

Kafka: APls

» A set of APIs for interacting with Kafka Producers
* Producer API: allows clients to il I Bl B e

publish data to Kafka topics \ ' // App
« Consumer API: allows clients t0 connectors 332@ PStream
consume data from Kafka topics s \rfipepssors
» Connect API: integrates external / v \
systems (databases, file systems) pop || Aep || Aep
as data sources and sinks Consumers

— Pre-built connectors: AWS S3, Lambda, MySQL, Postgres, ...

« Admin API: manages clusters and resources (topics,
partitions, brokers, etc.)

« Streams API: for real-time processing of streaming data

Valeria Cardellini — SDCC 2025/26 58

Kafka: client libraries

« Kafka officially provides an SDK for Java
— Fully featured (supports all APIs except Admin), actively
maintained
« Community-driven Kafka client libraries for other
languages, including
- Go
+ Confluent
» Kafka-go
— Python
* Confluent

Valeria Cardellini — SDCC 2025/26 59

Interacting with MOM: messaging protocols

» Application-layer open standard protocols for MOM
interaction

— AMQP (Advanced Message Queueing Protocol)
« Binary protocol
— MQTT (Message Queue Telemetry Transport)

* Binary, lightweight protocol, for low-bandwidth and low-power
devices, commonly used in loT applications

— STOMP (Simple Text Oriented Messaging Protocol)

« Simple, text-based protocol, commonly used in web
applications and real-time communication

+ Goals:
— Platform- and vendor-agnostic

— Interoperability: facilitates communication between different
MOMs

Valeria Cardellini — SDCC 2025/26

Messaging protocols and loT

60

» Widely used in Internet of Things (loT)

— Messaging protocols enable data exchange between
sensors and services that process data

AMQP BROKER

Exchange Queue
Publish Routes Consumes
]

e it

« Advantages on MOM in loT
— Decoupling: separate data producers from consumers
— Resiliency: MOM provides temporary message storage

— Traffic spikes handling: MOM can persist data and process it
eventually

Valeria Cardellini — SDCC 2025/26

61

AMQP: features

» Open standard messaging protocol, supported by
industry
— Version 1.0, approved in 2014 by ISO and IEC

» Application-level, binary protocol

— Based on TCP with additional reliability mechanisms (delivery
semantics)

* Programmable protocol
— Entities and routing schemes are primarily defined by apps

» Designed to provide reliable, scalable and secure
messaging
» Supports queue-based and pub/sub patterns

* Implementations

— Apache ActiveMQ, RabbitMQ, Azure Event Hubs, Pika (Python

client library), .
Valeria Cardellini — SDCC 2025/26 62

AMQP: architecture

» 3 key actors: publishers, subscribers, and brokers
— Brokers manage and route messages

* AMQP entities (within - J. - =
broker): queues’ PUBLISHER w
ROUT m
exchanges and INiile

bindings
— Queues: storage units that hold messages
— Exchanges: routing entities that determined how messages
are distributed to queues
» Like post offices or mailboxes
— Bindings: rules that define how messages are distributed to
queues
— Message delivery

* Push delivery: brokers push messages to consumers subscribed
to queues

» Pull delivery: consumers pull messages from queues on demand
Valeria Cardellini — SDCC 2025/26 63

AMQP: routing

Direct exchange routing

» Types of AMQP exchanges

— Direct exchange: delivers
messages to queues based
on message routing key

» Use case: routing to specific

queues based on exact
matching

— Fanout exchange: delivers
messages to all queues that
are bound to the exchange

» Use case: broadcasting to
multiple queues

Valeria Cardellini — SDCC 2025/26

AMQP: routing

64

» Types of AMQP exchanges
— Topic exchange: delivers messages to one or more queues
based on topic matching
* Routing key can include wildcards
» Use case: commonly used to implement pub/sub patterns

» Enables multicast routing, e.g., targeted notifications to users in
different regions

« Example: a message with routing key
"location.northAmerica.newYork" will be delivered to
gueues bound with patterns like "location.northAmerica.#",
"location.#", "*.newYork"

— Headers exchange: delivers messages based on message
headers

* To route on multiple attributes that are expressed as message
headers instead of routing key

+ Use case: complex multi-attribute matching

Valeria Cardellini — SDCC 2025/26

65

AMQP: messages

+ AMQP defines two message types:
— Bare messages: raw messages supplied by sender

— Annotated messages: modified by intermediaries (e.g.,
brokers) during transit by adding headers and annotations

* Message header conveys delivery parameters
— Including durability requirements, priority, time to live

Annotated message

header delivery- | message- | properties |application- | application-| footer
annotations| annotations| properties data

I
Bare message

Valeria Cardellini — SDCC 2025/26

RabbitMQ FaRabbit

66

* Open-source message broker

Consume
Publish BROKER

PRODUCER CONSUMER

& RabbitMQ

Subscribe

* Multiple messaging protocols supported
— AMQP, MQTT, and STOMP

» Push delivery model (can also support pull)
* FIFO ordering guarantee at queue level

» Cross-platform
— Can run on multiple operating systems and cloud environments

» Wide range of development tools (Java, Go, Python, ...)

Valeria Cardellini — SDCC 2025/26

67

RabbitMQ: architecture

* Producers do not publish Message flow in RabbitMQ
messages directly to PRODUCER = @
queues (BROKER]

* Producer sends messages
to an exchange, which
routes messages to one or
more queues with the help
of bindings and routing

EXCHANGE
® -

Binding Binding @

keyS § [RabbitMQ J
— Binding: link between an ,_
exchange and a queue CONSUMER @] ®

« RabbitMQ broker can be distributed, e.g., forming a

cluster

— Supports quorum queues: durable, replicated FIFO queues

based on Raft consensus algorithm
Valeria Cardellini — SDCC 2025/26

RabbitMQ: delivery semantics

68

» At-most-once delivery by default

— Consumer does not explicitly send acks (autoAck = truein
the consumer settings); if the consumer fails before
processing the message, the message will be lost

» At-least-once can be configured

— Explicit message ack must be configured (autoAck =

false in the consumer settings) and
required to send an explicit ack after
the message

Valeria Cardellini — SDCC 2025/26

the consumer is
successfully processing

69

RabbitMQ: use cases

1. Store and forward messages sent by (B)—— | hello
a producer and received by a
consumer (message queue)

®—> Queue

B!

2. Distribute tasks among multiple
workers (work queue)

Q
3. Deliver messages to many
consumers (pub/sub) using a Q “
message exchange Q

4. Routing messages: producer sends

messages to an exchange, that orange— | Q, —’©
selects the queue based on binding
rules and routing keys Q black__ ;

5. Run a function on consumer and green— ©
wait for result (RPC)

request: RPC Server
@ Reply ‘
reply
Valeria Cardellini— SDCC 2025/26 70

RabbitMQ and Go

« Let's use RabbitMQ, Go and AMQP (messaging
protocol) for:

Ex. 1: Message queue

@——> hello ———»@

Ex. 2: Work queue

@—» Queue
Code on Teams/course website \@

Valeria Cardellini — SDCC 2025/26 71

RabbitMQ and Go

* Preliminary steps:

1. Install RabbitMQ and start RabbitMQ server on localhost (port
5672)

$ rabbitmg-server

— RabbitMQ CLI tool: rabbitmqgctl
$ rabbitmqctl stop
$ rabbitmqgctl status

Some useful commands for rabbitmqctl
list_channels

list_consumers
list_queues
reset
— Also web Ul for management and monitoring (port 15672)
2. Install Go AMQP client library
$ go get github.com/rabbitmqg/amgp@91-go
Details on ampq:

Valeria Cardellini — SDCC 2025/26

RabbitMQ and Go: example 1

1. Message queue pattern

— Support single producer, single consumer or multiple
producers, multiple consumers

— Note that:

* Message is delivered to only one consumer
* Delivery is push-based

send.go RabbitMQ broker receive.go

®—> hello ——»@

Valeria Cardellini — SDCC 2025/26

73

72

RabbitMQ and Go: example 2

2. Work queue pattern

— Version 1 (new_task _v1.go and worker_v1.go):

* Multiple consumers: tasks are distributed among consumers in
a round-robin fashion

* Message loss scenario: if consumer crashes after the message
is delivered by RabbitMQ but before completing the task, the
message is lost

auto-ack=true: message is considered to be successfully
delivered as soon as it is sent to consumer (“fire-and-forget”)
— Version 2 (new_task_v1.go and worker_v2.go):

» Set auto-ack=false in Consume and add explicit ack in
consumer to tell RabbitMQ that message has been processed
and RabbitMQ can safely discard it

* What happens when RabbitMQ is restarted while there are
pending messages?
* Which delivery semantics with explicit acks?

Valeria Cardellini — SDCC 2025/26

RabbitMQ and Go: example 2

74

2. Work queue pattern

— Version 3 (new_task_v3.go and worker_v3.go):

* Use a durable queue so messages are persisted to disk and
survives RabbitMQ crash and restart

* Queue declared with durable=true in QueueDeclare

— Version 4 (new_task _v3.go and worker_v4.go):

» Improve task distribution by preventing a worker from
receiving a new message while it still has unacknowledged
messages

» Achieved using channel prefetch (Qos) setting

RabbitMQ broker worker_v1.go

worker_v2.go
worker_v3.go

< worker_v4.go

new_task_v1.go

new_task_v3.go ®—> Queue

Valeria Cardellini — SDCC 2025/26

75

Multicast communication

* Multicast communication: a group communication
pattern where data is sent to multiple receivers (but not
all) at once

— Can be one-to-many or many-to-many

— One-to-many multicast apps: video/audio resource distribution,
file distribution

— Many-to-many multicast apps: conferencing tools, multiplayer
games, interactive distributed simulations

— Broadcast: special case of multicast, where data is sent to all
receivers

« Cannot be implemented via unicast replication (source
sends indivudual copies to each receiver): lack of
scalability

— Solution: replicate data only when needed

Valeria Cardellini — SDCC 2025/26

Types of multicast

76

* How to realize multicast
— Network-level multicast (IP-level)

« Packet replication and routing managed by network
routers

e Uses IP Multicast

X Limited in usage due to the need for specific router
support and network infrastructure

— Application-level multicast
* Replication and routing managed by the hosts

Valeria Cardellini — SDCC 2025/26

77

Application-level multicast

« Basic idea:
— Organize nodes into an overlay network
— Use the overlay network to disseminate data
— Can be structured or unstructured

« Structured application-level multicast

— Explicit communication paths

— How to build a structured overlay network?

« Tree: one path between each pair of nodes (e.g., tree building
based on Chord)

» Mesh: multiple paths between each pair of nodes

* Unstructured application-level multicast

— No predefined communication paths, typically relying on
random connections between nodes

Valeria Cardellini — SDCC 2025/26

Unstructured application-level multicast

78

* How to realize unstructured application-level
multicast

v Flooding
* Node P sends the multicast message m to all its neighbors

» Each neighbor forwards m to all its neighbors (except to P)
if it has not seen m before

v Random walk

* Node P sends multicast message m to a randomly chosen
neighbor

* The chosen neighbor forwards m to another randomly
chosen neighbor

<~ Gossiping

Valeria Cardellini — SDCC 2025/26

79

Gossip-based protocols

» Gossip-based protocols (or algorithms) are
probabilistic (aka epidemic algorithms)

— Gossiping effect: information spreads within a group just as
it would be in real-life social interactions

— Strongly related to epidemics, by which a disease is spread
by infecting members of a group, which in turn can infect
others

» Allow information dissemination in large-scale
networks through random choice of successive
receivers among those known to sender

— Each node sends the message to a randomly chosen
subset of nodes in the network

— Each receiving node will forward the message to another
randomly chosen subset, and so on

Valeria Cardellini — SDCC 2025/26

Origin of gossip-based protocols

80

« Proposed in 1987 by Demers et al. as a solution for
data consistency in replicated databases with
hundreds of servers

— Assumption: no write conflicts (i.e., independent updates)
— Updates are initially performed at one replica server

— Each replica shares its updated state with only a few
selected neighbors

— Update propagation is /azy, i.e., not immediate
— Eventually, each update should reach every replica

Demers et al., Epidemic Algorithms for Replicated Database Maintenance,
PODC 1987

Valeria Cardellini — SDCC 2025/26

81

Why gossiping in large-scale DSs?

» Several attractive properties of gossip-based
information dissemination for large-scale distributed
systems

— Simplicity of gossiping algorithms
— No centralized control or management (and related
bottleneck)

— Scalability: each node sends only a limited number of
messages, independently from system size

— Reliability and robustness: thanks to message redundancy

Valeria Cardellini — SDCC 2025/26

Who uses gossiping? Examples

82

« AWS S3 uses a gossip protocol to rapidly
disseminate information throughout its system. This
allows S3 to quickly route around failed or
unreachable servers, among other things

« Amazon’s Dynamo uses gossiping for node failure
detection

» BitTorrent uses a gossip-based information exchange

« Cassandra uses gossiping for group membership and
node failure detection

» Gossip dissemination pattern

Valeria Cardellini — SDCC 2025/26

83

Strategies to spread updates

» Let’s consider the two principal operations

1. Anti-entropy: each node periodically selects another
node randomly and exchanges updates (i.e., state
differences), with the goal of having identical states
on both node afterwards

2. Rumor spreading: a node that has a new update
(i.e., has been contaminated) periodically selects F
(F >=1) peers and sends them the update
(contaminating them); a node that has received an
update can stop further distributing it

Valeria Cardellini — SDCC 2025/26 84

Anti-entropy

« Goal: increase node state similarity, thus decreasing
“disorder” (the reason for the name!)

* Node P selects node Q randomly: how does P
update Q7?

 Different update strategies: P hoice @

1. Push: P only pushes its own R
updates to Q choice
2. Pull: Ponly pulls new updates from () O

Q data
3. Push-pull: Pand Q send updates to _choice
each other, i.e., P and Q exchange data O

updates

Valeria Cardellini — SDCC 2025/26 85

Anti-entropy: performance

* Push-pull

— Fast and message-saving strategy: takes O(In N) rounds to
disseminate updates to N nodes, using O(N In In N)

messages

— Round (or gossip cycle): time interval in which every node

initiates an exchange

10000 |
8000
6000
4000 4 ———

—— push
pushpull

2000

of oblivious nodes

0

..........

T T
0 5

T T
10 15

T
20

T
25

10000 { mm——

1000 +

100
== pull
104 — push
pushpull

of oblivious nodes

-
.

T T
12 14

Valeria Cardellini — SDCC 2025/26

Rumor spreading

t T T
16 18 20
Number of rounds (detailed)

T
22

T
24

86

* Node P, having an update to report, contacts a randomly

chosen node Q and forwards the update

» If Q has already been updated, P may lose interest in

spreading the update further; with probability pg,, P stops

contacting other nodes

» Fraction s of oblivious nodes (nodes that have not yet

been updated) is equal to

§ = e_(l/Pstop"‘l)(l_s)

Consider 10,000 nodes

Number of oblivious nodes

o

o

S
1

o

N

o
1

o

-

(&)
1

o

=

o
1

o

o

a
1

T T T T T
0.2 0.4 0.6 0.8 1.0
Probability that a node stops spreading a rumor

1/Pstop

S

Ns

N O oA 0N =

0.203188
0.059520
0.019827
0.006977
0.002516
0.000918
0.000336

2032
595
198

70
25
9
3

« To improve information dissemination (especially when

Pstop IS high), combine rumor spreading with anti-entropy
Valeria Cardellini — SDCC 2025/26

87

Framework for gossiping protocols

 Two nodes P and Q, where P selects Q to exchange
information with
— Pruns at each round (A time units)

Active thread (node P): Passive thread (node Q):

selectPeer(&Q)

selectToSend(&buf)

sendTo(Q, buf) - > receiveFromAny(&P, &req)
selectToSend(&buf)

receiveFrom(Q, &resp) <----- sendTo(P, buf)

selectToKeep(view, resp) selectToKeep(view, req)

processData(view) processData(view)

selectPeer: randomly select a node to send the gossip message to
selectToSend: select some entries from node’s local view to send
selectToKeep: select which received entries to store in node’s local view;
remove duplicate entries

g&r)marrec and van Steen, Gossiping in distributed systems, SIGOPS Oper. Syst. Rev.,
7

Valeria Cardellini — SDCC 2025/26 88

Framework for gossiping protocols

« Simple? Not quite
« Several crucial aspects

— Node selection to gossip: many alternatives including

» Uniformly selecting from the set of currently available (alive)
nodes

» Selecting the peer that has been least contacted (e.g., used by
CoachroachDB)

— Data exchanged
* What is exchanged is highly application-dependent
» Choice of update strategy

— Data processing
« Again, highly application-dependent

Valeria Cardellini — SDCC 2025/26 89

Gossiping vs flooding: example

» Information dissemination is the classic and most
popular application of gossiping protocols in DSs
— Gossiping is generally more efficient than flooding

* Flooding-based information dissemination

— Each node that receives a message forwards it to all its
neighbors (including the sender)

— Message is eventually discarded when TTL reaches O
Round 1 Round 2 Round 3

Sent messages: 18

Valeria Cardellini — SDCC 2025/26 Reached nodes: 8 out of 9,

Gossiping vs flooding: example

« Use an example of rumor spreading algorithm

— The node sends the message to each of its neighbors with
probability p

for each msg m
if random(0@,1) < p then send m

Round 1 Round 2 Round 3
Sent messages: 11

p p p
P p
Reached nodes: 7 out 9

Valeria Cardellini — SDCC 2025/26 91

Gossiping vs flooding

» Gossiping key features
— Probabilistic
— Localized decision, yet leads to a global state
— Lightweight
— Fault-tolerant
* Flooding pros and cons
v Universal coverage and minimal state information needed
X Can flood the network with redundant messages
» Gossiping goals

— Reduce redundant transmissions compared to flooding while
attempting to retain its advantages

— However, due to its probabilistic nature, it cannot guarantee
that all the peers are reached and it generally takes longer to
complete than flooding

Valeria Cardellini — SDCC 2025/26

Other application domains of gossiping

92

» Besides information dissemination...

» Group membership
— To know the list of nodes in DS (who is part of the system)

* Peer sampling
— To select nodes from a larger set of available nodes to
interact with
» Resource management in large-scale DS
— Including monitoring and failure detection

» Distributed computations for data aggregation in
large-scale DS (e.g., sensor network)
— Computation of aggregates, e.g., sum, average, maximum,
minimum
— Example: computing average
* Letv;;and v;; be the values at time t stored at nodes / and j

» During a gossip exchange, i and j exchange their current local
value v; and v; and adjust it to

Visdin Vi1 —(vyit Vij)12
Valeria Cardellini — SDCC 2025/26

93

Gossiping case studies

1. Blind counter rumor mongering: example of gossip-
based disseminatio protocol

2. Bimodal multicast: builds on gossiping to provide
reliable multicast

Valeria Cardellini — SDCC 2025/26

Blind counter rumor mongering

94

« Why this name?

— Rumor mongering (def.: “the act of spreading rumors”, also
known as gossip): a node with a “hot rumor” periodically
infects other nodes

— Blind: the node loses interest regardless of who the recipient
is (why)
— Counter: the node loses interest after a fixed number of
contacts (when)
« Two parameters to control gossiping
— B: max number of neighbors a message is forwarded to

— F: number of times a node forwards the same message to its
neighbors

Portman and Seneviratne, The cost of application-level broadcast in a
fully decentralized peer-to-peer network, ISCC 2002

Valeria Cardellini — SDCC 2025/26

95

Blind counter rumor mongering

» Gossiping protocol

A node n initiates a broadcast by sending message m to B
of its neighbors, chosen at random

When node p receives a message m from node g
If p has received m no more than F times
p sends m to B neighbors, chosen uniformly at random,
among those that p believes have not yet seen m

— Note that p knows whether its neighbor r has already seen m
only if p has previously sent m to r, or if p has received m from r

» Performance (B=F=2) compared to flooding
— Lower number of messages: ~50%
— Incomplete coverage: ~90%
— Slower dissemination: ~2x

Valeria Cardellini — SDCC 2025/26 926

Bimodal multicast

» Aka pbcast (probabilistic broadcast)

» 2-phase protocol:

1. Message distribution: a process sends a multicast
message with no particular reliability guarantees

2. Gossip repair: after receiving a message, a process
begins to gossip about it to a set of peers

» Gossip occurs at regular intervals, giving processes a chance
to compare their states and fill gaps in their message sequence

» Used by Fastly CDN for cache invalidation

Birman et al., Bimodal multicast, ACM Trans. Comput. Syst., 1999
Valeria Cardellini — SDCC 2025/26 97

Bimodal multicast: message distribution

Send messages

P1

/ © __ :failed
P2 messages
P3 7 //

A 7

Ps L)

Ps ;‘

time

« Start with unreliable multicast to rapidly distribute
messages

 Partial distribution may occur:
— Some message may not reach all nodes

— Some process may be faulty
Valeria Cardellini — SDCC 2025/26 098

Bimodal multicast: gossip repair
Send digests

P1
P2

Ps
P4
Ps /
Ps

» Periodically (e.g., every 100 ms), each process
sends a digest describing its state to a randomly
selected process

« The digest only identifies messages, without
including them

Valeria Cardellini — SDCC 2025/26 99

Bimodal multicast: gossip repair

P1
P2

P3
P4
Ps

Ps

Solicit message copies

The recipient checks the gossip digest
against its own message history and requests

copies of any missing messages from the
process that sent the gossip

Valeria Cardellini — SDCC 2025/26

Bimodal multicast: gossip repair

100

* Processes reply to solicitations received during a

Send message copies

gossip round by retransmitting the requested
messages

* Some optimizations exist (not examined)

Valeria Cardellini — SDCC 2025/26

101

Bimodal multicast: why “bimodal”?

« Are there two phases?

* No; dual “modes” of result Pbcast bimodal delivery distribution

1. Bimodal delivery i || oot gt

tt - bb : 1.E+00 ™1 high probability
pattern: pbcast is —

. .E-05 1
almost always delivered '

to most or to few
processes, and almost
never to some
processes

1.E-10 1

1.E-16

1.E-20 1

p{#processes=k}

1.E-25 A

1.E-30

Atomicity = almost all or
almost none

2. Bimodal delivery latencies: one distribution of very low
latencies (messages arriving without loss in the initial phase)

and a second distribution with higher latencies (messages that

had to be repaired afterward)

Valeria Cardellini — SDCC 2025/26

Pub-sub event matching

Q 5 0 15 20 25 30 35 40 45 S0

number of processes to deliver pbcast

102

Publisher Subscriber Subscriber

" Read/Delivery
N @)

> Notification

Data item @ Subscription O

Y

Publish/subscribe middleware Match

» Subscriber specifies which events it is interested in
(subscription S)

» Publisher publishes event N: does N match S?
» Challenge: efficiently implement event matching

Valeria Cardellini — SDCC 2025/26

103

Event matching: centralized architecture

Naive solution: centralized architecture

— Single server handles all subscriptions and notifications

» Server responsibilities:

— Handles subscriptions from subscribers
— Receives events from publishers

— Checks events against subscriptions

— Notifies matching subscribers

v/ Simple to realize, feasible for small-scale

deployments

X Scalability
X SPOF

Valeria Cardellini — SDCC 2025/26

Event matching: distributed architecture

104

« Achieve matching scalability
» Simple solution: partition subscriptions

1.

Hierarchical architecture: master distributes
matching across multiple workers
— Each worker stores and handles a subset of subscriptions

— Master receives events and distribute them to workers for
matching

— Partitioning strategy

» Topic-based pub/sub: hash topic names to map subscriptions
and events to workers

X Single master
Flat architecture: no single master, matching is
spread across distributed servers

— Partitioning strategy
* Topic-based pub/sub: hash topic names to select server

Valeria Cardellini — SDCC 2025/26

105

Event matching: distributed architecture

Other solutions: decentralized servers (overlay
network)

Challenge: how to route notifications to subscribers?

1. Unstructured overlay: use flooding or gossiping to
disseminate event notifications

— Store a subscription at only one server, but disseminate
notifications to all servers: matching is distributed across
servers

— Selective routing: install filters to ignore paths toward nodes
that are not interested, reducing unnecessary messages
2. Structured overlay: use a DHT to disseminate event
notifications

Valeria Cardellini — SDCC 2025/26 106

References

» Chapter 4 and Section 5.6 of van Steen & Tanenbaum book

+ Kafka doc
« Conductor's Kafkademy
« Kafka: A Distributed Messaging System for Log Processing

« Sax, Apache Kafka, Encyclopedia of Big Data Technologies, 2018

+ RabbitMQ

» Montresor, Gossip and epidemic protocols, Wiley Encyclopedia of
Electrical and Electronics Engineering, 2017

« The cost of application-level broadcast in a fully decentralized
peer-to-peer network

 Bimodal multicast

Valeria Cardellini — SDCC 2025/26 107

