
Corso di Sistemi Distribuiti e Cloud Computing
A.A. 2025/26

Valeria Cardellini

Laurea Magistrale in Ingegneria Informatica

Consensus in Distributed Systems

Macroarea di Ingegneria
Dipartimento di Ingegneria Civile e Ingegneria Informatica

Tipi di failure
• In che modo possono fallire i componenti di un SD?
• Diversi tipi di failure:

– Crash: il componente si arresta, ma aveva funzionato
correttamente fino a quel momento

– Omissione: il componente non risponde ad una richiesta
– Fallimento nella temporizzazione: il componente risponde

ma il tempo di risposta supera l’intervallo specificato
– Fallimento nella risposta: la risposta del componente non è

corretta
• Fallimento nel valore
• Fallimento nella transizione di stato

– Fallimento arbitrario (o bizantino): il componente può
produrre una risposta arbitraria con tempi arbitrari

• Guasto bizantino: sintomi diversi ad osservatori diversi
• I crash sono i fallimenti più innocui, quelli bizantini i

più gravi

Valeria Cardellini - SDCC 2025/26 1

Modelli di failure
• Problema nei SD: distinguere tra componente che ha

subito un crash ed uno che è solo troppo lento
– Esempio: il processo P attende dal processo Q una risposta,

che tarda ad arrivare
• Q è soggetto ad un fallimento nella temporizzazione o ad una

omissione?
• Il canale di comunicazione tra P e Q è soggetto ad un guasto?

• Modelli di failure: dal meno al più grave
– Fallimento fail-stop: Q ha subito crash e P può scoprire il

fallimento (tramite timeout o preannuncio)
– Fallimento fail-silent: Q ha subito crash o omissione, ma P

non può distinguerli
– Fallimento fail-safe: Q ha subito un fallimento arbitrario, ma

senza conseguenze
– Fallimento fail-arbitrary: Q ha subito un fallimento arbitrario

non osservabile
Valeria Cardellini - SDCC 2025/26 2

Rilevare i fallimenti
• Per mascherare i fallimenti, bisogna innanzitutto

rilevarli
• Failure detection per rilevare il fallimento di un

processo
1. Attiva: invio di un messaggio e timeout per rilevare se un

processo è fallito
• Soluzione più usata, adatta per fallimento fail-stop

2. Passiva: attesa di ricevere un messaggio
3. Proattiva: come effetto collaterale dello scambio di

informazioni tra vicini (ad es. disseminazione delle
informazioni basata su gossiping)

• Difficoltà con timeout
– Come impostare il valore del timeout? Ok nei SD sincroni, ma

in quelli asincroni?
– Inoltre, timeout dipende anche dall’applicazione
– Come distinguere tra fallimenti dei processi o della rete?

Valeria Cardellini - SDCC 2025/26 3

Practical failure detection
• How to reliably detect that a process has crashed
• Model

– Each process has a failure detector, that provides it with a list
of processes it suspects to have crashed

– Process P probes process Q and waits for a response
– If Q responds, Q is considered alive by P
– If Q does not respond within timeout t, Q is suspected crashed

• Synchronous system: suspected = crashed

• Practical implementation
– If P does not receive a heartbeat from Q within timeout t,

P suspects Q
– If Q later responds to P, P stops suspecting Q and increases t
– Note: if Q has crashed, P will keep suspecting Q

Valeria Cardellini - SDCC 2025/26 4

Distributed failure detection
• How to efficiently detect failures in large-scale DS
• Goal: design failure detectors that are both scalable

and efficient
– Efficiency: failures are detected quickly and accurately

(without too many mistakes)

• Idea: exploit gossip protocols, where nodes
periodically exchange failure information

• Hierarchical approach
– Nodes are grouped hierarchically to reduce the number of

messages passed during failure detection
✓ Improves scalability and reduce message overhead

Gupta et al., On Scalable and Efficient Distributed Failure Detectors, PODC 2001
https://dl.acm.org/doi/epdf/10.1145/383962.384010

Valeria Cardellini - SDCC 2025/26 5

Distributed failure detection
• Failure detection algorithms:

– Quorum-based detection: requires a subset of nodes
(quorum) to agree before declaring a failure
ü Balances reliability and communication cost

– Eventual detection: guarantees detection over time but not
immediately after a failure
ü May involve temporary false negatives, but is suitable for large

systems

Valeria Cardellini - SDCC 2025/26 6

Resilienza dei processi
• In ingegneria: resilienza = capacità di un materiale di

resistere a forze di rottura
• Nei SD: capacità del SD di fornire e mantenere un

livello di servizio accettabile in presenza di guasti e
minacce alla normale operatività

• Come mascherare in un SD il guasto di un
processo?

 Replicando e distribuendo la computazione in un
gruppo di processi

Valeria Cardellini - SDCC 2025/26
7

Gruppi e mascheramento dei guasti

• Consideriamo un gruppo di processi
• Un gruppo composto da N processi è k-fault tolerant

se può mascherare k guasti concorrenti
– k è detto grado di tolleranza ai guasti

• Quanto deve essere grande un gruppo k-fault
tolerant?
– Dipende dal modello di failure

Valeria Cardellini - SDCC 2025/26 8

Gruppi e mascheramento dei guasti
• Quanto deve essere grande un gruppo k-fault

tolerant?
– Fallimento fail-stop o fail-silent ® N >= k+1 processi

• Nessun processo del gruppo produrrà un risultato errato, quindi
è sufficiente il risultato di un solo processo non guasto

– Fallimento arbitrario e il risultato del gruppo è definito tramite
un meccanismo di voto ® N >=2k+1 processi

• Abbiamo bisogno di 2k+1 processi non guasti in modo che il
risultato corretto possa essere ottenuto con un voto a
maggioranza

• Assunzioni importanti:
1. I processi sono identici
2. I processi eseguono i comandi nello stesso ordine
– Per essere certi che tutti i processi facciano esattamente la stessa

cosa

Valeria Cardellini - SDCC 2025/26 9

Consenso nei sistemi distribuiti
• Assunzione: consideriamo ora che i processi del

gruppo non siano identici, ovvero che ci sia una
computazione distribuita

• Obiettivo: i processi non guasti del gruppo devono
raggiungere un consenso (accordo) unanime su uno
stesso valore (es. il prossimo comando da eseguire) in
un numero finito di passi, nonostante la presenza di
processi guasti
– Esempi di consenso: elezione di un coordinatore, mutua

esclusione, commit di una transazione

• Che tipo di guasti?
– Guasti non bizantini (es. crash, omissioni)
– Guasti bizantini

Valeria Cardellini - SDCC 2025/26 10

Consensus = agreement?
• In the course we treat these terms as synonyms
• But for the theoretical DS community the two terms

refer to very similar but not identical problems
– Agreement problem: a single process has the initial value
– Consensus problem: all processes have an initial value

• We’ll consider 3 consensus algorithms
1. Paxos (only overview)
2. Raft
3. Byzantine generals
– The first two focuns on consensus, the last on agreement

(see original algorithm by Lamport)

• Let us first examine the necessary conditions for
consensus and the FLP impossibility result

Valeria Cardellini - SDCC 2025/26 11

Consenso distribuito: quando può essere raggiunto
• Consideriamo le diverse tipologie di:

– processi
– ritardi di comunicazione
– ordinamento dei messaggi
– trasmissione dei messaggi

• Processi: sincroni o asincroni?
– Processi sincroni: operano in modalità lock-step, ovvero

esiste c >= 1 tale che se un processo ha eseguito c+1
passi, ogni altro processo ha eseguito almeno 1 passo

• Ritardo nella comunicazione: limitato o illimitato?
• Ordinamento dei messaggi: messaggi consegnati

nello stesso ordine in cui sono stati inviati oppure
senza ordine?

• Trasmissione dei messaggi: unicast o multicast?
Valeria Cardellini - SDCC 2025/26

12

Consenso distribuito: quando può essere raggiunto

• Quali sono le condizioni necessarie per poter
raggiungere il consenso in un SD soggetto a guasti?

Valeria Cardellini - SDCC 2025/26
13

FLP impossibility result
• FLP impossibility result:
Fischer, Lynch and Patterson, “Impossibility of distributed consensus
with one faulty process”, 1985

– In an asynchronous model with an unbounded but finite
message delay, where only one processor might crash, there is
no distributed algorithm that solves the consensus problem

– They prove that no asynchronous algorithm for agreeing on a
one-bit value can guarantee that it will terminate in the presence
of crash faults
• And this is true even if no crash actually occurs!

• The good news: impossibility means “is not always
possible”
– FLP proves that any fault-tolerant algorithm solving consensus

has runs that never terminate, but these runs are extremely
unlikely (“probability is zero”)

Valeria Cardellini - SDCC 2025/26
14

FLP impossibility result
• What makes consensus hard? Membership in an

asynchronous environment:
1) we can’t detect failures reliably because process speeds and

channel delays are not bounded
2) a faulty process stops sending messages but a “slow”

message might confuse us

• Are distributed and Cloud systems asynchronous?
– Not in the sense of the definition used in the FLP result, where

asynchronous systems have no common clocks and make no
use of time, and networks never lose messages but can delay
them arbitrarily long

– In practice we have partially synchronous systems: most of
the time, we can assume the system to be synchronous, yet
there is no bound on the time that a system is asynchronous
• And we can reliably detect crash failures (see slide 4)

Valeria Cardellini - SDCC 2025/26
15

Paxos

• Fault-tolerant consensus protocol run by N processes
to tolerate up to k failures (where N >= 2k+1) in an
asynchronous system

• Important and widely studied/used protocol
– Perhaps the most important consensus protocol
– The dominant offering for consensus in asynchronous

systems

• Rather a family of consensus protocols
– Cheap Paxos, fast Paxos, generalized Paxos, byzantine

Paxos, …

• We consider the basic version:
L. Lamport, “Paxos made simple”, ACM SIGACT News, Vol. 32, No.
4, Dec. 2001.

Valeria Cardellini - SDCC 2025/26
16

The history of Paxos
• Elegant and relatively simple algorithm

– but “the original presentation was Greek to many readers”
because presented through the allegory of a fictitious ancient
Greek parliamentary government on the island of Paxos

• See the original paper The part-time parliament
– “Inspired by my success at popularizing the consensus problem by

describing it with Byzantine generals, I decided to cast the algorithm
in terms of a parliament on an ancient Greek island.”

– “To carry the image further, I gave a few lectures in the persona of
an Indiana-Jones-style archaeologist.”

– “My attempt at inserting some humor into the subject was a dismal
failure. People who attended my lecture remembered Indiana Jones,
but not the algorithm. People reading the paper apparently got so
distracted by the Greek parable that they didn't understand the
algorithm.” (L. Lamport)

• “The Paxos algorithm, when presented in plain
English, is very simple.” (L. Lamport)

Valeria Cardellini - SDCC 2025/26 17

Paxos: distributed system model
Assumptions (rather weak and realistic)
• Partially synchronous system (it may even be asynchronous)

with non-arbitrary failures
• Processes communicate with one another by sending

messages
• Communication between processes may be unreliable,

indeed messages:
– Take arbitrarily long to be delivered
– May be duplicated or lost
– Corrupted messages can be detected and thus subsequently

ignored

Valeria Cardellini - SDCC 2025/26
18

Paxos: distributed system model
Assumptions (rather weak and realistic)
• Processes:

– Set of processes that run Paxos is known a-priori
– Operate at arbitrary speed
– Are fail-stop: may exhibit crash failures but not arbitrary failures
– Can be restarted and rejoin if they fail
– Can remember some information if restarted after failure

(accessing a persistent storage that survives crashes)
– Do not collude (i.e., do not team up to produce a wrong result)

Valeria Cardellini - SDCC 2025/26
19

Paxos: a quorum-based protocol

• Problem: get a set of processes to reach consensus
on a single proposed value
– no value proposed ® no value chosen
– value chosen ® processes should learn the chosen value

• Main idea: a quorum-based protocol
– Proposals are associated with a unique sequence number
– Processes vote on each proposal
– A proposal approved by a majority will get passed
– Size of majority is “well known” because potential

membership of system was known a-priori
– A process considering two proposals approves the one with

the larger sequence number

Valeria Cardellini - SDCC 2025/26
20

Paxos requirements

• Safety requirements
– Only a value that has been proposed may be chosen
– Only a single value is chosen
– A process never learns that a value has been chosen unless

it really has been chosen

• Don’t care what value is chosen, just as long as it
satisfies those three requirements

• Liveness requirements
– Some proposed value is eventually chosen
– If a value has been chosen, a process can learn the value

Valeria Cardellini - SDCC 2025/26
21

Paxos compromise
• Remember FLP impossibility result

– No asynchronous consensus algorithm can guarantee both
liveness and safety

• However, asynchrony of FLP is overly pessimistic
• Real systems are usually partially synchronous

– System behavior is close to synchronous “most of the time”,
sometimes goes asynchronous

• Practical compromise
– Compromise liveness when system behaves asynchronously
– But never safety

• Therefore
– Paxos does not guarantee liveness
– Might never terminate, but in practice it does terminate

Valeria Cardellini - SDCC 2025/26
22

Paxos roles

• Learners learn which value
was chosen and report final
decision back to clients

• Processes can play 1, 2, or
all 3 roles
– Thinking of these roles as being

separate makes Paxos easier
to understand

Valeria Cardellini - SDCC 2025/26
23

• A process may play 3 different roles:
– Proposer, acceptor, learner

• Proposers propose a value to be chosen on behalf of
clients

• Acceptors (i.e., voters) decide which value to choose

Paxos: some ideas
1. One acceptor makes things really easy:

– But this isn’t distributed at all: if acceptor fails, game over!

• So, let’s have multiple acceptors, each of which can
accept a proposed value

2. A value is chosen once a simple majority of acceptors
accepts it
– If m acceptors, then > m/2 need to accept

• Why does this work?
– Any two majorities of acceptors must have at least one acceptor

in common
– An acceptor can accept only one value at a time
– Therefore, any two majorities that choose a value must choose

the same value

• Just need to make sure acceptors do not accept
something else once a value is chosen

Valeria Cardellini - SDCC 2025/26 24

Paxos: some ideas
3. Acceptors need a way to distinguish one proposal

from another
• Proposers assign a unique sequence number to each

proposal they make
• A proposal has two parts:

– Proposal number (i.e., the unique identifier)
– Proposed value (could be a decision value or some other

information, such as “Frank’s new salary” or “Position of Air
France flight 21”)

• There can be multiple distinct proposals for the same
value
– But they differ by the proposal number

4. Stable storage, preserved during failures, is used to
maintain information that must be remembered in
case of failure

Valeria Cardellini - SDCC 2025/26 25

Paxos: some ideas
5. Paxos use a multiple-round approach

• Once a decision on a value is reached in a round,
decisions in all subsequent rounds must agree
– Once decision is reached on a value, Paxos must force

future proposers to select that same value

• Within each round, finding consensus is a two-phase
process, where each phase consists of:
– a request sent from a proposer to a group of acceptor
– a reply from the acceptors to the proposer

• The two phases are:
1) Prepare
2) Accept

26Valeria Cardellini - SDCC 2025/26

Paxos: the two phases
• At high level:

1) Prepare
– A proposer asks a majority of acceptors whether anyone

already received a proposal
– If the answer is no, propose a value

2) Accept
– If a majority of acceptors agree to this value, then that is our

consensus

• Goals of the two phases:
Prepare

– Proposers check whether a value has already been
chosen

– Older proposals that have not yet completed are blocked

Accept
– Ask acceptors to accept a specific value

27Valeria Cardellini - SDCC 2025/26

Paxos algorithm: phase 1
• Phase 1 (prepare):

a) A proposer selects a proposal number n and sends a
prepare request with number n to a majority of acceptors

b) If an acceptor receives a prepare request with number n:
• If n is greater than the proposal number of any prepare request

the acceptor has responded to, the acceptor promises not to
accept any lower-numbered proposals and replies with the
highest-numbered proposal and the proposed value the
acceptor has accepted, if any

• Otherwise the acceptor does not respond (or responds with a
negative ack)

Valeria Cardellini - SDCC 2025/26 28

Paxos algorithm: phase 2
• Phase 2 (accept):

a) If the proposer receives a response to its prepare requests
for the proposal numbered n from a majority of acceptors, it
sends an accept request to each of those acceptors for a
proposal numbered n with a value v which is the value of
the highest-numbered proposal among the responses of
phase 1 (if no acceptor had accepted a proposal up to this
point, then the proposer may choose any value for its
proposal)

b) If an acceptor receives an accept request for n, it accepts
the proposal unless it has already responded to a prepare
request having a number greater than n

• Definition of chosen
– A value is chosen at proposal number n iff majority of

acceptors accept that value in phase 2 of the proposal
number

Valeria Cardellini - SDCC 2025/26 29

Paxos properties

• Any proposal number is unique

• Any two sets of acceptors have at least one acceptor
in common

• The value sent out in the accept phase is the value of
the highest-numbered proposal of all the responses
received in the prepare phase

Valeria Cardellini - SDCC 2025/26 30

Paxos: example (without failures)
• Proposers are p1 and p2

• Acceptors are a1, a2, and a3

1° round, prepare phase
– p1 sends prepare request for proposal 1 to a1 and a2
– a1 and a2 reply to p1
– p2 sends prepare request for proposal 2 to a2 and a3
– a2 and a3 reply to p2

Valeria Cardellini - SDCC 2025/26 31

Paxos: example (without failures)
1° round, accept phase

– p1 sends accept request to a1 and a2 for proposal 1 with value
“pepperoni”

• p1 got to select which value to propose
– a1 accepts proposal 1
– a2 does not accept proposal 1 (the older proposal is blocked)

• a2 promised p2 it would not accept proposals < 2

Valeria Cardellini - SDCC 2025/26 32

Paxos: example (without failures)
1° round, accept phase (continued)

– p2 sends accept request to a2 and a3 for proposal 2 with value
“mushrooms”

• p2 also got to select which value to propose
– a2 accepts proposal 2
– a3 accepts proposal 2
– {a2, a3} is a majority of acceptors, so proposal 2 is chosen

• The chosen value is “mushrooms”

Valeria Cardellini - SDCC 2025/26 33

Paxos: example (without failures)
2° round, prepare phase

– p1 sends prepare request for proposal 3 to a1 and a2
– a1 replies; it last accepted proposal 1 for “pepperoni”
– a2 replies; it last accepted proposal 2 for “mushrooms”

2° round, accept phase
– p1 sends accept request to a1 and a2 for proposal 3 with

value “mushrooms”
• Value must match the one from proposal 2

– a1 and a2 accept proposal 3

Valeria Cardellini - SDCC 2025/26 34

Paxos: what about learners?

• There are some options to learn a chosen value:
a) Each acceptor, whenever it accepts a proposal,

informs all the learners
✗ Lots of messages to be sent

b) Acceptors inform a distinguished learner (usually
the proposer) and let the distinguished learner
broadcast the result
✗Single point of failure

c) Compromise with a set of distinguished learners?
✓ Limits number of messages needed
✓ All distinguished learners need to fail to cause a

problem

Valeria Cardellini - SDCC 2025/26 35

Paxos: distinguished proposer (or leader)
• Multiple dueling proposers that propose conflicting

values may stall the protocol (because of FLP result)

• Paxos guarantees progress (i.e., liveness) if only one
of the proposers is eventually chosen as leader

• Therefore, in many Paxos implementations there is
only one active proposer (i.e., leader)
– Other proposers send proposals only when the current

leader fails, and a new one needs to be elected
Valeria Cardellini - SDCC 2025/26 36

p q

time

<propose,n1>
<propose,n2>

<accept(n1,v1)>
<accept(n2,v2)>

<propose,n3>
<propose,n4>... ...

p completes phase 1 for proposal number n1.
Another proposer q then completes phase 1 for
proposal number n2 > n1. p’s phase 2 accept
requests for proposal numbered n1 are ignored
because at least one acceptor has promised not
to accept any new proposal numbered less than
n2. So, p then begins and completes phase 1 for
new proposal number n3 > n2, causing the
second phase 2 accept requests of q to be
ignored. And so on.

State machine replication and consensus protocols

• State machine replication (SMR): general approach to build
fault-tolerant systems based on replicated servers
– Each replica has a state machine (SM) and we want to make it fault-

tolerant
– A log is a list of commands that are received and stored; this list is

read sequentially and used as input by SM
– Using a consensus protocol, each SM processes the same list of

commands in the log and thus produces the same series of results
and arrives at the same series of states

Valeria Cardellini - SDCC 2025/26 37

SMR and Paxos
• Paxos is applied to achieve SMR

– SM commands and their sequencing (the order in which they
appear) are the values to agree

– But requires one instance of Paxos per command: many
instances of Paxos are executed simultaneously!

• Multi-Paxos is a more efficient solution to reduce the
number of messages
– Why multi? Multiple rounds from a stable leader
– Prepare phase only in first round, then only accept phase in

next rounds
• After first round, leader enters into to a galloping mode where it

sends successive accept messages when it receives a majority
of acks for previous accept request

• Galloping mode may be interrupted by leader crashing, in that
case new leader must be elected

Valeria Cardellini - SDCC 2025/26 38

Paxos: other common use patterns

• Besides SMR, there are other common use patterns
of Paxos, including:

• Log replication
– To duplicate data across different nodes (different from SMR

whose goal is to make copies of server state)

• Synchronization service
– To control concurrent access to shared data

• Configuration management
– Leader election, group membership, service discovery, and

metadata management

Valeria Cardellini - SDCC 2025/26 39

Paxos in practice
• Some DSs that use Paxos

– The first ones: Petal (distributed virtual disks) and Frangipani
(scalable distributed file system)

– Chubby: Google’s distributed lock service used in BigTable,
Google Analytics and other Google products

• Zookeeper uses a Paxos-variant protocol called Zab
– Spanner: Google’s globally distributed NewSQL database
– XtreemFS: fault-tolerant distributed file system for WANs
– Mesos: uses Paxos to manage its replicated log
– LibPaxos: implementations for your app

• However, getting Paxos right in practice is hard
– E.g., how to implement a globally unique proposal number
– See Paxos made live paper by Google researchers

Valeria Cardellini - SDCC 2025/26 40

Raft
• Consensus algorithm developed in 2014 at Stanford

University https://raft.github.io
– RAFT: Replicated And Fault Tolerant

• Goals:
– Designed to be easier to understand, implement and

validate than Paxos
– Complete foundation for implementation

• Paxos not complete enough for real implementations, the
algorithm is specified in a way that is detached from real-world
implementation issues and use cases

• Paxos implementations need extensive proofs and verification
of their own, detaching them further from the original
theoretical results

– Equivalent and as efficient as Paxos for log replication

Valeria Cardellini - SDCC 2025/26 41

Raft: features
• System model similar to Paxos’ one

– Delayed/lost messages, fail stop (not Byzantine)

• Equivalent to (multi-)Paxos in fault-tolerance and
performance

• Differences from Paxos
– Problem decomposed into relatively independent sub-

problems (leader election and log replication)
– Addresses all major pieces needed for practical systems

• Rapid and widespread adoption
– Many implementations currently listed on Raft home page,

>10 versions in production
– Some systems using Raft: etcd, CockroachDB, Consul,

Hazelcast

Valeria Cardellini - SDCC 2025/26 42

Raft: overview
• Raft is implemented on a cluster of servers, each of

which hosts:
– State machine (provided service)
– Log that contains inputs fed into state machine
– Raft protocol

• One of the servers is elected to be the leader, the
others function as followers

• Clients send commands only to the leader, who
forwards them to followers

• Each of the servers stores received commands in
a log

Valeria Cardellini - SDCC 2025/26 43

Raft: overview
• Raft is a state machine replication

protocol
– Each server has a state machine and a

log: state machine is what we want to make
fault-tolerant (e.g., key-value pairs) through
replication

44

– The state machine is a deterministic program that specifies the
desired behavior of the cluster as a whole

– The state machine processes a sequence of commands, given
by external clients; they interact with the system as if it were a
single node running a single copy of the state machine

– Each server simulates a copy of the state machine
– Protocol goal: to maintain consistency across the copies of the

state machine by ensuring proper log replication

Valeria Cardellini - SDCC 2025/26

Raft: overview

• Two major components of Raft
1. Leader election

– Select one of the servers to act as leader
– Leader is responsible for log replication to followers
– In case of leader crash, choose new leader

2. Log replication (normal operation)
– Goal: make sure that replicated state machine is up to date

across a majority of servers in the cluster
– Leader accepts commands from clients, appends them to its

log (note that log is append-only)
– Leader replicates its log to other servers (overwriting

inconsistencies)

• Let’s examine Raft using
http://thesecretlivesofdata.com/raft/

Valeria Cardellini - SDCC 2025/26 45

Raft: server state
• A server can be in 1 of 3 states:

– Leader (at most one leader per term)
– Candidate

• If followers don’t hear from a leader (heartbeat) by their own
election timeout then they can become a candidate

• Request votes from other nodes
• Can become the leader if gets majority vote (leader election)

– Follower

Valeria Cardellini - SDCC 2025/26 46

Raft: leader election

Va
le

ria
 C

ar
de

llin
i -

SD
C

C
 2

02
5/

26

47

• At most one leader per term
– Some term has no leader because of failed election (split vote)

• Each server maintains currentTerm value (no global view)
– Each server has its own local view of time that is represented by its

currentTerm; it increases monotonically over time
• Election timeout

⎼ Follower waits until become
candidate

• Election term starts if follower
doesn’t see a leader
- Candidate votes for self, and sends

out RequestVote RPCs to all the
other servers

- Receiving servers vote on candidate
iff they haven’t voted yet this term

- Election timeout reset

Raft: log replication
• Client sends command to leader
• Leader appends command to its log
• Leader sends AppendEntries RPCs to all followers in

order to replicate all changes to all servers
– AppendEntries message sent by leader to followers at periodic

intervals specified by heartbeat timeout
– Followers acknowledge AppendEntries message
– Once the leader receives acks from a majority of servers, it

executes the command on its state machine and returns result
to client, and the log entry is considered committed

Valeria Cardellini - SDCC 2025/26 48

Raft: log replication
• Once new log entry is committed:

– Leader notifies followers of committed entries in subsequent
AppendEntries RPCs

– Followers execute committed commands in their state
machines

• Election term will continue until a follower stops
receiving heartbeats and becomes a candidate

Valeria Cardellini - SDCC 2025/26 49

Raft: properties
• Raft guarantees safety

– At most one leader per term
– Logs are kept consistent
– Only a node with an up-to-date log can become a leader

• Raft also provides a liveness guarantee
– If there are “sufficiently few failures”, then the system will

eventually process and respond to all client commands

• Raft is tolerant to network partitions
– Log uncommitted so long as no majority
– Majority as seen in face of partition, e.g. 2+3 partition
– Recovery

• Old leader steps down when sees higher term
• Rolls backs uncommitted entries and matches new leader’s log

Valeria Cardellini - SDCC 2025/26 50

Byzantine scenario

Valeria Cardellini - SDCC 2025/26 51

Attack!

Wait…

Attack!

Attack!
No, wait!

Surrender!
Wait…

51

Accordo in presenza di fallimenti bizantini
• In presenza di fallimenti bizantini, per sopravvivere ad

attacchi di k processi guasti e raggiungere l’accordo
distribuito occorre avere N >= 3k+1 processi
– E’ il problema dei generali bizantini (definito da Lamport)
– Idea: si vuole raggiungere l’accordo se attaccare una città

oppure ritirarsi tra un gruppo di generali fedeli, essendoci k
generali traditori ® occorrono 2k+1 generali fedeli

• Se non ci sono più dei 2/3 di generali fedeli, non è possibile
raggiungere l’accordo

• P3 non riesce a capire chi sia il traditore tra P1 e P2

Valeria Cardellini - SDCC 2025/26 52

Problema dell’accordo bizantino

• Assunzioni:
– Processi sincroni
– Comunicazione unicast
– Ordinamento dei messaggi
– Ritardi limitati

• Ci sono N generali (ovvero processi) ed ogni
processo i fornisce un valore vi agli altri processi
– vi rappresenta la forza della truppa del generale i

• Obiettivo: far costruire ad ogni processo un vettore V
di dimensione N tale che se il processo i è non
guasto allora V[i] = vi, altrimenti V[i] è non definito

Valeria Cardellini - SDCC 2025/26 53

Problema dell’accordo bizantino
• Come raggiungere l’accordo nel caso di 3 processi che

funzionano correttamente ed 1 fraudolento (N=4, k=1)?
– Per semplicità assumiamo vi = i

Passo 1: ogni processo Pi
invia il suo valore vi agli altri

Passo 2: i risultati del
passo 1 sono riuniti in
vettori V

Passo 3: ogni processo invia il
proprio vettore agli altri

Passo 4: voto di maggioranza sui
valori ricevuti: se Pi funziona
correttamente, V[i] = vi

1 2 ? 4

Valeria Cardellini - SDCC 2025/26
54

Problema dell’accordo bizantino
• Perché con 2 processi che funzionano correttamente

ed 1 processo fraudolento (N=3, k=1) non si riesce a
raggiungere l’accordo?

Passo 1: ogni processo
invia il suo valore agli altri

Passo 2: i risultati del
passo 1 sono riuniti in
vettori

Passo 3: ogni processo invia il
proprio vettore agli altri

Passo 4: voto di maggioranza
sui valori ricevuti ? ? ?

Valeria Cardellini - SDCC 2025/26 55

Lamport’s algorithm for Byzantine agreement
(oral message)

Algorithm OM(0)
1. The commander sends his value to every lieutenant
2. Each lieutenant uses the value he receives from the

commander, or uses the value RETREAT if he receives no
value

Algorithm OM(k), k>0
1. The commander sends his value to every lieutenant
2. For each i, let vi be the value Lieutenant i receives from the

commander, or else be RETREAT if he receives no value.
Lieutenant i acts as the commander in Algorithm OM(k-1) to
send the value vi to each of the N-2 other lieutenants

3. For each i and each j ¹i, let vj be the value Lieutenant i
received from Lieutenant j in step 2 (using Algorithm OM(k-1)),
or else RETREAT if he received no such value. Lieutenant i
uses the value majority (v1, …, vN-1)

Valeria Cardellini - SDCC 2025/26 56

Lamport et al, The Byzantine Generals Problem, ACM Transactions on
Programming Languages and Systems, 1982

Demo: OM(1), L3 as traitor

C

L1 L2 L3

a a
a

a a a a ? ?

L2 L3 L1 L3 L1 L2

L2

OM(1)

OM(0)

L1 said C said ‘a’
C said ‘a’
L3 said C said ‘?’

Result: majority(a, a, ?) = a

Valeria Cardellini - SDCC 2025/26 57

Demo: OM(1), C as traitor

C

L1 L2 L3

a r
a

a a r r a a

L2 L3 L1 L3 L1 L2

L2

OM(1)

OM(0)

L1 said C said ‘a’
C said ‘r’
L3 said C said ‘a’

L2 result: majority(a, r, a) = a;

L1 C said ‘a’
L2 said C said ‘r’
L3 said C said ‘a’

L1 result: majority (a, r, a) = a

Valeria Cardellini - SDCC 2025/26 58

Byzantine fault tolerance (BFT) in practice
• What about the performance of Byzantine generals

algorithm?
– k+1 synchronous rounds: quite slow
– O(Nk) messages: high traffic

• BFT protocols were long considered too expensive to
be practical

• In 1999 Practical Byzantine Fault Tolerance (PBFT)
algorithm was proposed
– Thousands of requests per second with only sub-millisecond

increases in latency
– PBFT triggered a renaissance in BFT research

Valeria Cardellini - SDCC 2025/26
59

Byzantine fault tolerance and blockchains
• Blockchain systems require BFT to ensure

consensus in the presence of faulty or malicious
node

• Bitcoin uses Nakamoto Consensus protocol
– Leader is elected through Proof of Work (PoW): nodes

compete to solve a puzzle
– First node to solve it becomes the leader, generating a new

block and appending it to the blockchain

• Proof of Stake (PoS):
– Used by Ethereum 2.0 and others
– Nodes (validators) are selected based on the amount of

cryptocurrency they hold and stake
– More energy-efficient than PoW

Valeria Cardellini - SDCC 2025/26
60

References
• Sections 8.1, 8.2, 8.3 and 5.4.4 of van Steen & Tanenbaum

book

• Lamport, Paxos made simple, ACM SIGACT News, 2001.
• The Paper Trail, Consensus Protocols: Paxos, 2009. (html)

• References on Raft
– Raft paper: In Search of an Understandable Consensus

Algorithm (extended version), 2014
– Talk on Raft by John Ousterhout, 2016

https://youtu.be/vYp4LYbnnW8
– Another Raft visualization: https://raft.github.io/raftscope/

• Lamport et al, The Byzantine Generals Problem, ACM
Transactions on Programming Languages and Systems, 1982

Valeria Cardellini - SDCC 2025/26 61

