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Tipi di failure

* In che modo possono fallire i componenti di un SD?
 Diversi tipi di failure:
— Crash: il componente si arresta, ma aveva funzionato
correttamente fino a quel momento
— Omissione: il componente non risponde ad una richiesta

— Fallimento nella temporizzazione: il componente risponde
ma il tempo di risposta supera l'intervallo specificato

— Fallimento nella risposta: la risposta del componente non &
corretta

* Fallimento nel valore
* Fallimento nella transizione di stato

— Fallimento arbitrario (o bizantino): il componente puo
produrre una risposta arbitraria con tempi arbitrari

* Guasto bizantino: sintomi diversi ad osservatori diversi
» | crash sono i fallimenti piu innocui, quelli bizantini |
piu gravi
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Modelli di failure

* Problema nei SD: distinguere tra componente che ha
subito un crash ed uno che & solo troppo lento

— Esempio: il processo P attende dal processo Q una risposta,
che tarda ad arrivare

* Q é soggetto ad un fallimento nella temporizzazione o ad una
omissione?

* |l canale di comunicazione tra P e Q é soggetto ad un guasto?
» Modelli di failure: dal meno al piu grave

— Fallimento fail-stop: Q ha subito crash e P pu0 scoprire |l
fallimento (tramite timeout o preannuncio)

— Fallimento fail-silent: Q ha subito crash o omissione, ma P
non puo distinguerli

— Fallimento fail-safe: Q ha subito un fallimento arbitrario, ma
senza conseguenze

— Fallimento fail-arbitrary: Q ha subito un fallimento arbitrario
non osservabile
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Rilevare i fallimenti

» Per mascherare i fallimenti, bisogna innanzitutto
rilevarli

» Failure detection per rilevare il fallimento di un
processo

1. Attiva: invio di un messaggio e timeout per rilevare se un
processo é fallito

» Soluzione piu usata, adatta per fallimento fail-stop
2. Passiva: attesa di ricevere un messaggio

3. Proattiva: come effetto collaterale dello scambio di
informazioni tra vicini (ad es. disseminazione delle
informazioni basata su gossiping)

« Difficolta con timeout

— Come impostare il valore del timeout? Ok nei SD sincroni, ma
in quelli asincroni?

— Inoltre, timeout dipende anche dall’applicazione

— Come distinguere tra fallimenti dei processi o della rete?
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Practical failure detection

» How to reliably detect that a process has crashed
* Model

— Each process has a failure detector, that provides it with a list
of processes it suspects to have crashed

— Process P probes process Q and waits for a response
— If Q responds, Q is considered alive by P
— If Q does not respond within timeout ¢, Q is suspected crashed
« Synchronous system: suspected = crashed
* Practical implementation

— |f P does not receive a heartbeat from Q within timeout ¢,
P suspects Q

— If Q later responds to P, P stops suspecting Q and increases t
— Note: if Q has crashed, P will keep suspecting Q
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Distributed failure detection

* How to efficiently detect failures in large-scale DS

» Goal: design failure detectors that are both scalable
and efficient

— Efficiency: failures are detected quickly and accurately
(without too many mistakes)

» Idea: exploit gossip protocols, where nodes
periodically exchange failure information

» Hierarchical approach

— Nodes are grouped hierarchically to reduce the number of
messages passed during failure detection

v Improves scalability and reduce message overhead

Gupta et al., On Scalable and Efficient Distributed Failure Detectors, PODC 2001
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Distributed failure detection

 Failure detection algorithms:

— Quorum-based detection: requires a subset of nodes
(quorum) to agree before declaring a failure
v Balances reliability and communication cost
— Eventual detection: guarantees detection over time but not
immediately after a failure

v May involve temporary false negatives, but is suitable for large
systems
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Resilienza dei processi

* Iningegneria: resilienza = capacita di un materiale di
resistere a forze di rottura
» Nei SD: capacita del SD di fornire e mantenere un

livello di servizio accettabile in presenza di guasti e
minacce alla normale operativita

« Come mascherare in un SD il guasto di un
processo?

Replicando e distribuendo la computazione in un
gruppo di processi
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Gruppi e mascheramento dei guasiti

» Consideriamo un gruppo di processi

* Un gruppo composto da N processi € k-fault tolerant
se pud mascherare k guasti concorrenti
— k & detto grado di tolleranza ai guasti

* Quanto deve essere grande un gruppo k-fault
tolerant?
— Dipende dal modello di failure
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Gruppi e mascheramento dei guasiti

* Quanto deve essere grande un gruppo k-fault
tolerant?

— Fallimento fail-stop o fail-silent - N >= k+1 processi

* Nessun processo del gruppo produrra un risultato errato, quindi
e sufficiente il risultato di un solo processo non guasto

— Fallimento arbitrario e il risultato del gruppo € definito tramite
un meccanismo di voto -»> N >=2k+1 processi
» Abbiamo bisogno di 2k+1 processi non guasti in modo che |l
risultato corretto possa essere ottenuto con un voto a
maggioranza
» Assunzioni importanti:
1. | processi sono identici
2. | processi eseguono i comandi nello stesso ordine

— Per essere certi che tutti i processi facciano esattamente la stessa
cosa
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Consenso nei sistemi distribuiti

» Assunzione: consideriamo ora che i processi del
gruppo non siano identici, ovvero che ci sia una
computazione distribuita

« Obiettivo: i processi non guasti del gruppo devono
raggiungere un consenso (accordo) unanime su uno
stesso valore (es. il prossimo comando da eseguire) in
un numero finito di passi, nonostante la presenza di
processi guasti
— Esempi di consenso: elezione di un coordinatore, mutua

esclusione, commit di una transazione

* Che tipo di guasti?

— Guasti non bizantini (es. crash, omissioni)
— Guasti bizantini
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Consensus = agreement?

* In the course we treat these terms as synonyms

» But for the theoretical DS community the two terms
refer to very similar but not identical problems
— Agreement problem: a single process has the initial value
— Consensus problem: all processes have an initial value

» We’'ll consider 3 consensus algorithms
1. Paxos (only overview)
2. Raft
3. Byzantine generals
— The first two focuns on consensus, the last on agreement
(see original algorithm by Lamport)
» Let us first examine the necessary conditions for
consensus and the FLP impossibility result
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Consenso distribuito: quando puo essere raggiunto

» Consideriamo le diverse tipologie di:
— processi
— ritardi di comunicazione
— ordinamento dei messaggi
— trasmissione dei messaggi
» Processi: sincroni o asincroni?

— Processi sincroni: operano in modalita /lock-step, ovvero
esiste ¢ >= 1 tale che se un processo ha eseguito c+1
passi, ogni altro processo ha eseguito almeno 1 passo

» Ritardo nella comunicazione: limitato o illimitato?

* Ordinamento dei messaggi: messaggi consegnati
nello stesso ordine in cui sono stati inviati oppure
senza ordine?

» Trasmissione dei messaggi: unicast o multicast?

Valeria Cardellini - SDCC 2025/26
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Consenso distribuito: quando puo essere raggiunto

» Quali sono le condizioni necessarie per poter
raggiungere il consenso in un SD soggetto a guasti?

Message ordering
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FLP impossibility result

* FLP impossibility result:
Fischer, Lynch and Patterson, “Impossibility of distributed consensus
with one faulty process”, 1985

- In an asynchronous model with an unbounded but finite
message delay, where only one processor might crash, there is
no distributed algorithm that solves the consensus problem

— They prove that no asynchronous algorithm for agreeing on a
one-bit value can guarantee that it will terminate in the presence
of crash faults

* And this is true even if no crash actually occurs!

* The good news: impossibility means “is not always
possible”

— FLP proves that any fault-tolerant algorithm solving consensus
has runs that never terminate, but these runs are extremely
e!gz é;grobability is zero”)

Valeria CardellinH rS]HgC

FLP impossibility result
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« What makes consensus hard? Membership in an
asynchronous environment:

1) we can’t detect failures reliably because process speeds and
channel delays are not bounded

2) a faulty process stops sending messages but a “slow”
message might confuse us

 Are distributed and Cloud systems asynchronous?

— Not in the sense of the definition used in the FLP result, where
asynchronous systems have no common clocks and make no
use of time, and networks never lose messages but can delay
them arbitrarily long

— In practice we have partially synchronous systems: most of
the time, we can assume the system to be synchronous, yet
there is no bound on the time that a system is asynchronous
* And we can reliably detect crash failures (see slide 4)

Valeria Cardellini - SDCC 2025/26

15



Paxos

» Fault-tolerant consensus protocol run by N processes
to tolerate up to k failures (where N >= 2k+1) in an
asynchronous system

» Important and widely studied/used protocol

— Perhaps the most important consensus protocol

— The dominant offering for consensus in asynchronous
systems

» Rather a family of consensus protocols
— Cheap Paxos, fast Paxos, generalized Paxos, byzantine

Paxos, ...

 \We consider the basic version:
L. Lamport, , ACM SIGACT News, Vol. 32, No.
4, Dec. 2001.

Valeria Cardellini - SDCC 2025/26

The history of Paxos
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» Elegant and relatively simple algorithm

— but “the original presentation was Greek to many readers”
because presented through the allegory of a fictitious ancient
Greek parliamentary government on the island of Paxos

» See the original paper

— “Inspired by my success at popularizing the consensus problem by
describing it with Byzantine generals, | decided to cast the algorithm
in terms of a parliament on an ancient Greek island.”

— “To carry the image further, | gave a few lectures in the persona of
an Indiana-Jones-style archaeologist.”

— “My attempt at inserting some humor into the subject was a dismal
failure. People who attended my lecture remembered Indiana Jones,
but not the algorithm. People reading the paper apparently got so
distracted by the Greek parable that they didn't understand the
algorithm.” (L. Lamport)

» “The Paxos algorithm, when presented in plain
English, is very simple.” (L. Lamport)

Valeria Cardellini - SDCC 2025/26
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Paxos: distributed system model

Assumptions (rather weak and realistic)
 Partially synchronous system (it may even be asynchronous)
with non-arbitrary failures

* Processes communicate with one another by sending
messages

« Communication between processes may be unreliable,
indeed messages:
— Take arbitrarily long to be delivered
— May be duplicated or lost

— Corrupted messages can be detected and thus subsequently
ignored

Valeria Cardellini - SDCC 2025/26 18

Paxos: distributed system model

Assumptions (rather weak and realistic)
* Processes:
— Set of processes that run Paxos is known a-priori
— Operate at arbitrary speed
— Are fail-stop: may exhibit crash failures but not arbitrary failures
— Can be restarted and rejoin if they fail

— Can remember some information if restarted after failure
(accessing a persistent storage that survives crashes)

— Do not collude (i.e., do not team up to produce a wrong result)

Valeria Cardellini - SDCC 2025/26 19



Paxos: a quorum-based protocol

* Problem: get a set of processes to reach consensus
on a single proposed value
— no value proposed — no value chosen
— value chosen — processes should learn the chosen value

« Main idea: a quorum-based protocol
— Proposals are associated with a unique sequence number
— Processes vote on each proposal
— A proposal approved by a majority will get passed

— Size of majority is “well known” because potential
membership of system was known a-priori

A process considering two proposals approves the one with
the larger sequence number

Valeria Cardellini - SDCC 2025/26
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Paxos requirements

« Safety requirements
— Only a value that has been proposed may be chosen

— Only a single value is chosen

— A process never learns that a value has been chosen unless
it really has been chosen

» Don'’t care what value is chosen, just as long as it
satisfies those three requirements

« Liveness requirements
— Some proposed value is eventually chosen
— If a value has been chosen, a process can learn the value

Valeria Cardellini - SDCC 2025/26
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Paxos compromise

 Remember FLP impossibility result

— No asynchronous consensus algorithm can guarantee both
liveness and safety

* However, asynchrony of FLP is overly pessimistic

* Real systems are usually partially synchronous

— System behavior is close to synchronous “most of the time”,
sometimes goes asynchronous

* Practical compromise

— Compromise liveness when system behaves asynchronously
— But never safety

* Therefore
— Paxos does not guarantee liveness
— Might never terminate, but in practice it does terminate

Valeria Cardellini - SDCC 2025/26
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Paxos roles

» A process may play 3 different roles:
— Proposer, acceptor, learner

* Proposers propose a value to be chosen on behalf of
clients

» Acceptors (i.e., voters) decide which value to choose

* Learners learn which value Clients‘ Single client request/response
was chosen and report final ¢ Proposer  Acceptor Learner>
decision back to clients 1 R ®:\/; ®f\/i .
* Processes can play 1, 2, or - -
_ \WAVAERV.V _
all 3 roles e A AVA R AVA
— Thinking of these roles as being (X /AL Bk /A2 O
separate makes Paxos easier c - ’//\/\\4 ‘//\/\\‘ ~
to understand S P
c ‘\y ®«— &« 0 |

Server process
Valeria Cardellini - SDCC 2025/26 Other request
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Paxos: some ideas

1. One acceptor makes things really easy:
— But this isn’t distributed at all: if acceptor fails, game over!

» So, let’s have multiple acceptors, each of which can
accept a proposed value

2. A value is chosen once a simple majority of acceptors
accepts it
— If m acceptors, then > m/2 need to accept

» Why does this work?

— Any two majorities of acceptors must have at least one acceptor
in common

— An acceptor can accept only one value at a time
— Therefore, any two majorities that choose a value must choose
the same value
» Just need to make sure acceptors do not accept

something else once a value is chosen
Valeria Cardellini - SDCC 2025/26

Paxos: some ideas
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3. Acceptors need a way to distinguish one proposal
from another

* Proposers assign a unique sequence number to each
proposal they make

» A proposal has two parts:

— Proposal number (i.e., the unique identifier)

— Proposed value (could be a decision value or some other
information, such as “Frank’s new salary” or “Position of Air
France flight 217)

» There can be multiple distinct proposals for the same
value

— But they differ by the proposal number

4. Stable storage, preserved during failures, is used to
maintain information that must be remembered in

case of failure
Valeria Cardellini - SDCC 2025/26
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Paxos: some ideas

5. Paxos use a multiple-round approach

* Once a decision on a value is reached in a round,
decisions in all subsequent rounds must agree

— Once decision is reached on a value, Paxos must force
future proposers to select that same value

« Within each round, finding consensus is a two-phase
process, where each phase consists of:
— arequest sent from a proposer to a group of acceptor
— areply from the acceptors to the proposer

* The two phases are:
1) Prepare
2) Accept

Valeria Cardellini - SDCC 2025/26

Paxos: the two phases
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« At high level:
1) Prepare

— A proposer asks a majority of acceptors whether anyone
already received a proposal

— If the answer is no, propose a value
2) Accept

— If a majority of acceptors agree to this value, then that is our
consensus

» Goals of the two phases:

Prepare

— Proposers check whether a value has already been
chosen

— Older proposals that have not yet completed are blocked
Accept

— Ask acceptors to accept a specific value
Valeria Cardellini - SDCC 2025/26
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Paxos algorithm: phase 1

» Phase 1 (prepare):

a) A proposer selects a proposal number n and sends a
prepare request with number n to a majority of acceptors

b) If an acceptor receives a prepare request with number n:

 If nis greater than the proposal number of any prepare request
the acceptor has responded to, the acceptor promises not to
accept any lower-numbered proposals and replies with the
highest-numbered proposal and the proposed value the
acceptor has accepted, if any

» Otherwise the acceptor does not respond (or responds with a
negative ack)

Valeria Cardellini - SDCC 2025/26

Paxos algorithm: phase 2
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» Phase 2 (accept):

a) If the proposer receives a response to its prepare requests
for the proposal numbered n from a majority of acceptors, it
sends an accept request to each of those acceptors for a
proposal numbered n with a value v which is the value of
the highest-numbered proposal among the responses of
phase 1 (if no acceptor had accepted a proposal up to this
point, then the proposer may choose any value for its
proposal)

b) If an acceptor receives an accept request for n, it accepts
the proposal unless it has already responded to a prepare
request having a number greater than n

* Definition of chosen

— Avalue is chosen at proposal number n iff majority of
acceptors accept that value in phase 2 of the proposal
number

Valeria Cardellini - SDCC 2025/26
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Paxos properties

* Any proposal number is unique

» Any two sets of acceptors have at least one acceptor
in common

» The value sent out in the accept phase is the value of
the highest-numbered proposal of all the responses
received in the prepare phase

Valeria Cardellini - SDCC 2025/26 30

Paxos: example (without failures)

* Proposers are p; and p,
» Acceptors are a4, a,, and a3

1° round, prepare phase

— p1 sends prepare request for proposal 1 to a; and a,
— a, and a, reply to p;
— p, sends prepare request for proposal 2 to a, and a;
— a, and az reply to p,

Acceptors Acceptors

Proposers
Proposers  prepare TC;F ° P Accepted prepare for 1
proposa
Prepare for Accepted prepare for1
proposal 1 e Prepare for proposal 2 Accepted prepare for 2
4‘ Reply to P2

DN

Prepare for proposal 2 °

Valeria Cardellini - SDCC 2025/26 31




Paxos: example (without failures)

1° round, accept phase
— p4 sends accept request to a; and a, for proposal 1 with value
“pepperoni”
* p, got to select which value to propose
— a4 accepts proposal 1
— a, does not accept proposal 1 (the older proposal is blocked)
* a, promised p, it would not accept proposals < 2

Acceptors

Accept request

proposal 1:v=
“pepperonj’

Proposers

Valeria Cardellini - SDCC 2025/26

Accepted prepare for 1

/A1: Accepts
A2: Declines. Promised A2 to not accept

\ proposals < 2

Accept reques
proposal 1:v =
“pepperoni”

Accepted prepare for 2

Paxos: example (without failures)
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1° round, accept phase (continued)

— P, sends accept request to a, and a; for proposal 2 with value
“mushrooms”

* p, also got to select which value to propose

— a, accepts proposal 2

— aj accepts proposal 2

— {a,, az} is a majority of acceptors, so proposal 2 is chosen
* The chosen value is “mushrooms”

Acceptors

Proposers

Accept request
proposal 2:v =
“mushrooms>

Accepted prepare for 2

A2: Accepts
A3: Accepts

Accept reques!
proposal 2:v =
Valeria Cardellini - SDCC 2025/26 “mushrooms”

Accepted prepare for 2
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Paxos: example (without failures)

2° round, prepare phase
— p4 sends prepare request for proposal 3 to a; and a,
— ay replies; it last accepted proposal 1 for “pepperoni”
— a, replies; it last accepted proposal 2 for “mushrooms”

2° round, accept phase

— p1 sends accept request to a; and a, for proposal 3 with
value “mushrooms”
* Value must match the one from proposal 2

— a4y and a, accept proposal 3

Acceptors

Accept request
Proposers . for Proposers o
proposal 3 “Mushrooms>
° A1: Last accepted proposal 1: 0 A1: Accepts
_ “Pepperoni” :
A2: Last accepted proposal 2: ‘ A2: Accepts
Accept reques

“Mushrooms”
Prepare for 3 vz The value must match the one from
proposal 3 proposal 3. v = proposal 2

“Mushrooms”

Valeria Cardellini - SDCC 2025/26 .H ll 34

Acceptors

Paxos: what about learners?

« There are some options to learn a chosen value:
a) Each acceptor, whenever it accepts a proposal,
informs all the learners
X Lots of messages to be sent

b) Acceptors inform a distinguished learner (usually
the proposer) and let the distinguished learner
broadcast the result
X Single point of failure

c) Compromise with a set of distinguished learners?
v Limits number of messages needed

v All distinguished learners need to fail to cause a
problem

Valeria Cardellini - SDCC 2025/26 35



Paxos: distinguished proposer (or leader)

» Multiple dueling proposers that propose conflicting
values may stall the protocol (because of FLP result)

P q p completes phase 1 for proposal number n;.
<propose,n;> Another proposer q then completes phase 1 for
<propose,n,> proposal number n, > n4. p’s phase 2 accept

requests for proposal numbered n; are ignored
<accept(nq,v4)> because at least one acceptor has promised not
<accept(n,,v,)> to accept any new proposal numbered less than
n,. So, p then begins and completes phase 1 for
new proposal number n; > n,, causing the
second phase 2 accept requests of q to be
ignored. And so on.

» Paxos guarantees progress (i.e., liveness) if only one
of the proposers is eventually chosen as leader

» Therefore, in many Paxos implementations there is

only one active proposer (i.e., leader)

— Other proposers send proposals only when the current
leader fails, and a new one needs to be elected

<propose,nz>
: <propose,n,>

time

Valeria Cardellini - SDCC 2025/26 36

State machine replication and consensus protocols

Command [
{log entry) i Consensus

‘ State machine
ram)

» State machine replication (SMR): general approach to build
fault-tolerant systems based on replicated servers

— Each replica has a state machine (SM) and we want to make it fault-
tolerant

— Alog is a list of commands that are received and stored; this list is
read sequentially and used as input by SM

— Using a consensus protocol, each SM processes the same list of
commands in the log and thus produces the same series of results

and arrives at the same series of states
Valeria Cardellini - SDCC 2025/26 37

State machine

Command
(log entry)

(the program)

—

2y
Command

{log entry) State machine

(the program)




SMR and Paxos

» Paxos is applied to achieve SMR

— SM commands and their sequencing (the order in which they
appear) are the values to agree

— But requires one instance of Paxos per command: many
instances of Paxos are executed simultaneously!
« Multi-Paxos is a more efficient solution to reduce the
number of messages
— Why multi? Multiple rounds from a stable leader

— Prepare phase only in first round, then only accept phase in
next rounds

 After first round, leader enters into to a galloping mode where it
sends successive accept messages when it receives a majority
of acks for previous accept request

» Galloping mode may be interrupted by leader crashing, in that
case new leader must be elected

Valeria Cardellini - SDCC 2025/26

Paxos: other common use patterns
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» Besides SMR, there are other common use patterns
of Paxos, including:
* Log replication

— To duplicate data across different nodes (different from SMR
whose goal is to make copies of server state)

« Synchronization service
— To control concurrent access to shared data

« Configuration management

— Leader election, group membership, service discovery, and
metadata management

Valeria Cardellini - SDCC 2025/26
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Paxos in practice

« Some DSs that use Paxos

— The first ones: Petal (distributed virtual disks) and Frangipani
(scalable distributed file system)

— Chubby: Google’s distributed lock service used in BigTable,
Google Analytics and other Google products

» Zookeeper uses a Paxos-variant protocol called Zab
— Spanner: Google’s globally distributed NewSQL database
— XtreemFS: fault-tolerant distributed file system for WANs
— Mesos: uses Paxos to manage its replicated log
- : implementations for your app

« However, getting Paxos right in practice is hard
— E.g., how to implement a globally unique proposal number

40

— See paper by Google researchers
While Paxos can be described with a page of pseudo-code, our
complete implementation contains several thousand lines of
C++ code. The blow-up is not due simply to the fact that we
used C++ instead of pseudo notation, nor because our code
style may have been verbose. Converting the algorithm into a
practical, production-ready system involved implementing
many features and optimizations — some published in the
Valeria Cardellini - SDCC 2025/26 literature and some not
« Consensus algorithm developed in 2014 at Stanford
University
— RAFT: Replicated And Fault Tolerant
« Goals:

— Designed to be easier to understand, implement and
validate than Paxos
— Complete foundation for implementation

» Paxos not complete enough for real implementations, the
algorithm is specified in a way that is detached from real-world
implementation issues and use cases

+ Paxos implementations need extensive proofs and verification
of their own, detaching them further from the original
theoretical results

— Equivalent and as efficient as Paxos for log replication

Valeria Cardellini - SDCC 2025/26
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Raft: features

» System model similar to Paxos’ one
— Delayed/lost messages, fail stop (not Byzantine)

» Equivalent to (multi-)Paxos in fault-tolerance and
performance

 Differences from Paxos

— Problem decomposed into relatively independent sub-
problems (leader election and log replication)

— Addresses all major pieces needed for practical systems

* Rapid and widespread adoption

— Many implementations currently listed on :
>10 versions in production

— Some systems using Raft: etcd, CockroachDB, Consul,
Hazelcast

Valeria Cardellini - SDCC 2025/26

Raft: overview
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» Raft is implemented on a cluster of servers, each of
which hosts:

— State machine (provided service)
— Log that contains inputs fed into state machine
— Raft protocol

 One of the servers is elected to be the leader, the
others function as followers

» Clients send commands only to the leader, who
forwards them to followers

» Each of the servers stores received commands in
a log Foower

Follower

[ Clients ]—-[ Leader Eollower.

Follower

it

Valeria Cardellini - SDCC 2025/26
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Raft: overview

« Raftis a state machine replication V
/@ Server

State Machine ) ||I
prOtOCOI Client Consensus X: 3
— Each server has a state machine and a Q Vodule
log: state machine is what we want to make /g @ o
fault-tolerant (e.g., key-value pairs) through |X93|yﬁ1|y99| é
replication

— The state machine is a deterministic program that specifies the
desired behavior of the cluster as a whole

— The state machine processes a sequence of commands, given
by external clients; they interact with the system as if it were a
single node running a single copy of the state machine

— Each server simulates a copy of the state machine

— Protocol goal: to maintain consistency across the copies of the
state machine by ensuring proper log replication

Valeria Cardellini - SDCC 2025/26 44

Raft: overview

« Two major components of Raft

1. Leader election
— Select one of the servers to act as leader
— Leader is responsible for log replication to followers
— In case of leader crash, choose new leader

2. Log replication (normal operation)

— Goal: make sure that replicated state machine is up to date
across a majority of servers in the cluster

— Leader accepts commands from clients, appends them to its
log (note that log is append-only)

— Leader replicates its log to other servers (overwriting
inconsistencies)

» Let's examine Raft using
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Raft: server state

* A server can be in 1 of 3 states:
— Leader (at most one leader per term)

— Candidate

« If followers don’t hear from a leader (heartbeat) by their own
election timeout then they can become a candidate

* Request votes from other nodes
» Can become the leader if gets maijority vote (leader election)

— Follower start
...................................... Passive (but expects
, froflower regular heartbeats)
discover
higher no
heartbeat
term
o | Issues RequestVote RPCs
Cand@ to get elected as leader
win
election
Issues AppendEntries RPCs:

* Replicate its log
* Heartbeats to maintain leadership
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Raft: leader election

« At most one leader per term
— Some term has no leader because of failed election (split vote)

« Each server maintains currentTerm value (no global view)

— Each server has its own local view of time that is represented by its
currentTerm; it increases monotonically over time

Term N Term N+1 Term N+2

 Election timeout i ' ~ \

o=l 1]

— Follower waits until become
candidate

* Election term starts if follower
doesn’t see a leader

- Candidate votes for self, and sends

| Become candidate |

currentTerm++, timeout
vote for self

out RequestVote RPCs to all the Send RequestVote RPCs
Other servers to other servers
.. } votes from majority RPC from leader
- Receiving servers vote on candidate
iff they haven’t voted yet this term Become leader, Become
y y send heartbeats follower

- Election timeout reset 47



Raft: log replication

» Client sends command to leader
» Leader appends command to its log

» Leader sends AppendEntries RPCs to all followers in
order to replicate all changes to all servers

— AppendEntries message sent by leader to followers at periodic
intervals specified by heartbeat timeout

— Followers acknowledge AppendEntries message

— Once the leader receives acks from a majority of servers, it
executes the command on its state machine and returns result
to client, and the log entry is considered committed

Valeria Cardellini - SDCC 2025/26

Raft: log replication
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* Once new log entry is committed:

— Leader notifies followers of committed entries in subsequent
AppendEntries RPCs

— Followers execute committed commands in their state
machines

» Election term will continue until a follower stops
receiving heartbeats and becomes a candidate

Valeria Cardellini - SDCC 2025/26
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Raft: properties

« Raft guarantees safety
— At most one leader per term
— Logs are kept consistent
— Only a node with an up-to-date log can become a leader

» Raft also provides a liveness guarantee

— If there are “sufficiently few failures”, then the system will
eventually process and respond to all client commands

» Raft is tolerant to network partitions
— Log uncommitted so long as no majority
— Majority as seen in face of partition, e.g. 2+3 partition
— Recovery

* Old leader steps down when sees higher term
* Rolls backs uncommitted entries and matches new leader’s log

Valeria Cardellini - SDCC 2025/26

Byzantine scenario
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Attack!
No, wait!
Surrender!
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Accordo in presenza di fallimenti bizantini

* In presenza di fallimenti bizantini, per sopravvivere ad
attacchi di k processi guasti e raggiungere I'accordo
distribuito occorre avere N >= 3k+1 processi

— E’ il problema dei generali bizantini (definito da Lamport)

— Idea: si vuole raggiungere I'accordo se attaccare una citta
oppure ritirarsi tra un gruppo di generali fedeli, essendoci k
generali traditori - occorrono 2k+1 generali fedeli

» Se non ci sono piu dei 2/3 di generali fedeli, non & possibile
raggiungere l'accordo

* P3 non riesce a capire chi sia il traditore tra P1 e P2

Valeria Cardellini - SDCC 2025/26

Problema dell’accordo bizantino
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* Assunzioni:
— Processi sincroni
— Comunicazione unicast
— Ordinamento dei messaggi
— Ritardi limitati

» Cisono N generali (ovvero processi) ed ogni
processo i fornisce un valore v; agli altri processi
— v;rappresenta la forza della truppa del generale i

» Obiettivo: far costruire ad ogni processo un vettore V
di dimensione N tale che se il processo i € non
guasto allora VJi] = v, altrimenti V[i] &€ non definito

Valeria Cardellini - SDCC 2025/26
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Problema dell’accordo bizantino

» Come raggiungere I'accordo nel caso di 3 processi che
funzionano correttamente ed 1 fraudolento (N=4, k=1)?

— Per semplicita assumiamo v; =i
Passo 1: ogni processo P;
<«— invia il suo valore v; agli altri

Passo 3: ogni processo invia il
proprio vettore agli altri

Faulty process 1

Passo 2: irisultatidel 1 Got(1,2,x,4) 1 Got 2 Got 4 Got

s 2 Got(1,2,y, 4) (1.2, x,4) (1,2, x,4)
passo 1 sono riuniti in 3 G ¥ by B wd

Y ot(1,2,3,4) (e.f, g.h) (1,2,v,4)

vettori - 4 Got(1,2,z, 4) (1,2, 2,4) (i, k1)

Passo 4: voto di maggioranza sui | | |

valori ricevuti: se P; funziona 12724

correttamente, V[i] = v; E—
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Problema dell’accordo bizantino
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» Perché con 2 processi che funzionano correttamente
ed 1 processo fraudolento (N=3, k=1) non si riesce a
raggiungere l'accordo?

Passo 1: ogni processo
<«— invia il suo valore agli altri

Passo 3: ogni processo invia il

Faulty process proprio vettore agli altri
Passo 2: i risultati del 1 Got(1,2,x) 1 Got 2 Got
passo 1 sono riunitiin 5 Got(1’ 5 V) m (1,2, x)
vettori — 3 Got(1.2.3) abAc (d, e f)
v
Passo 4: voto di maggioranza ,, ,

sui valori ricevuti
Valeria Cardellini - SDCC 2025/26

55



Lamport’s algorithm for Byzantine agreement
(oral message)

Algorithm OM(0)
1. The commander sends his value to every lieutenant

2. Each lieutenant uses the value he receives from the
commander, or uses the value RETREAT if he receives no
value

Algorithm OM(k), k>0
1.  The commander sends his value to every lieutenant

2. Foreach |, let v; be the value Lieutenant i receives from the
commander, or else be RETREAT if he receives no value.
Lieutenant i acts as the commander in Algorithm OM(k-1) to
send the value v; to each of the N-2 other lieutenants

3. Foreach jand each ;i let v; be the value Lieutenant i
received from Lieutenant j in step 2 (using Algorithm OM(k-1)),
or else RETREAT if he received no such value. Lieutenant j
uses the value maijority (v4, ..., Vp.1)
Lamport et al, , ACM Transactions on

Programming Languages and Systems, 1982
Valeria Cardellini - SDCC 2025/26

Demo: OM(1), L3 as traitor

OM(1)

OM(0)

e
P A AN RN
e u® 0.
‘ ——3 L1said C said ‘@’

C said ‘a’
L3 said C said ‘?’

Result: majority(a, a, ?) =a
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Demo: OM(1), C as traitor

OM(1)

' —3s L1said C said ‘a’ ' —3 Csaid ‘@’

C said ‘r L2 said C said ‘r’
L3 said C said ‘a’ L3 said C said ‘a’

L2 result: majority(a, r, a) = a; L1 result: majority (a, r, a) =

Valeria Cardellini - SDCC 2025/26

Byzantine fault tolerance (BFT) in practice
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« What about the performance of Byzantine generals
algorithm?
— k+1 synchronous rounds: quite slow
— O(N¥) messages: high traffic

« BFT protocols were long considered too expensive to
be practical

* In 1999 Practical Byzantine Fault Tolerance (PBFT)
algorithm was proposed

— Thousands of requests per second with only sub-millisecond
increases in latency

— PBFT triggered a renaissance in BFT research

Valeria Cardellini - SDCC 2025/26
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Byzantine fault tolerance and blockchains

« Blockchain systems require BFT to ensure
consensus in the presence of faulty or malicious
node

» Bitcoin uses Nakamoto Consensus protocol

— Leader is elected through Proof of Work (PoW): nodes
compete to solve a puzzle

— First node to solve it becomes the leader, generating a new
block and appending it to the blockchain

« Proof of Stake (PoS):

— Used by Ethereum 2.0 and others

— Nodes (validators) are selected based on the amount of
cryptocurrency they hold and stake

— More energy-efficient than PoW

Valeria Cardellini - SDCC 2025/26
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