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Tipi di failure
• In che modo possono fallire i componenti di un SD?
• Diversi tipi di failure:

– Crash: il componente si arresta, ma aveva funzionato 
correttamente fino a quel momento

– Omissione: il componente non risponde ad una richiesta
– Fallimento nella temporizzazione: il componente risponde 

ma il tempo di risposta supera l’intervallo specificato
– Fallimento nella risposta: la risposta del componente non è 

corretta
• Fallimento nel valore
• Fallimento nella transizione di stato

– Fallimento arbitrario (o bizantino): il componente può 
produrre una risposta arbitraria con tempi arbitrari

• Guasto bizantino: sintomi diversi ad osservatori diversi
• I crash sono i fallimenti più innocui, quelli bizantini i 

più gravi
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Modelli di failure
• Problema nei SD: distinguere tra componente che ha 

subito un crash ed uno che è solo troppo lento
– Esempio: il processo P attende dal processo Q una risposta, 

che tarda ad arrivare
• Q è soggetto ad un fallimento nella temporizzazione o ad una 

omissione?
• Il canale di comunicazione tra P e Q è soggetto ad un guasto?

• Modelli di failure: dal meno al più grave
– Fallimento fail-stop: Q ha subito crash e P può scoprire il 

fallimento (tramite timeout o preannuncio) 
– Fallimento fail-silent: Q ha subito crash o omissione, ma P 

non può distinguerli
– Fallimento fail-safe: Q ha subito un fallimento arbitrario, ma 

senza conseguenze
– Fallimento fail-arbitrary: Q ha subito un fallimento arbitrario 

non osservabile
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Rilevare i fallimenti
• Per mascherare i fallimenti, bisogna innanzitutto 

rilevarli
• Failure detection per rilevare il fallimento di un 

processo
1. Attiva: invio di un messaggio e timeout per rilevare se un 

processo è fallito
• Soluzione più usata, adatta per fallimento fail-stop

2. Passiva: attesa di ricevere un messaggio
3. Proattiva: come effetto collaterale dello scambio di 

informazioni tra vicini (ad es. disseminazione delle 
informazioni basata su gossiping)

• Difficoltà con timeout
– Come impostare il valore del timeout? Ok nei SD sincroni, ma 

in quelli asincroni? 
– Inoltre, timeout dipende anche dall’applicazione
– Come distinguere tra fallimenti dei processi o della rete?
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Practical failure detection
• How to reliably detect that a process has crashed
• Model

– Each process has a failure detector, that provides it with a list 
of processes it suspects to have crashed

– Process P probes process Q and waits for a response
– If Q responds, Q is considered alive by P
– If Q does not respond within timeout t, Q is suspected crashed

• Synchronous system: suspected = crashed

• Practical implementation
– If P does not receive a heartbeat from Q within timeout t, 

P suspects Q
– If Q later responds to P, P stops suspecting Q and increases t
– Note: if Q has crashed, P will keep suspecting Q
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Distributed failure detection
• How to efficiently detect failures in large-scale DS
• Goal: design failure detectors that are both scalable 

and efficient
– Efficiency: failures are detected quickly and accurately 

(without too many mistakes)

• Idea: exploit gossip protocols, where nodes 
periodically exchange failure information

• Hierarchical approach
– Nodes are grouped hierarchically to reduce the number of 

messages passed during failure detection
✓ Improves scalability and reduce message overhead

Gupta et al., On Scalable and Efficient Distributed Failure Detectors, PODC 2001
https://dl.acm.org/doi/epdf/10.1145/383962.384010 
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Distributed failure detection
• Failure detection algorithms:

– Quorum-based detection: requires a subset of nodes 
(quorum) to agree before declaring a failure
ü Balances reliability and communication cost

– Eventual detection: guarantees detection over time but not 
immediately after a failure
ü May involve temporary false negatives, but is suitable for large 

systems
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Resilienza dei processi
• In ingegneria: resilienza = capacità di un materiale di 

resistere a forze di rottura
• Nei SD: capacità del SD di fornire e mantenere un 

livello di servizio accettabile in presenza di guasti e 
minacce alla normale operatività

• Come mascherare in un SD il guasto di un 
processo?

 Replicando e distribuendo la computazione in un 
gruppo di processi
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Gruppi e mascheramento dei guasti

• Consideriamo un gruppo di processi
• Un gruppo composto da N processi è k-fault tolerant 

se può mascherare k guasti concorrenti 
– k è detto grado di tolleranza ai guasti 

• Quanto deve essere grande un gruppo k-fault 
tolerant? 
– Dipende dal modello di failure
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Gruppi e mascheramento dei guasti
• Quanto deve essere grande un gruppo k-fault 

tolerant? 
– Fallimento fail-stop o fail-silent ® N >= k+1 processi

• Nessun processo del gruppo produrrà un risultato errato, quindi 
è sufficiente il risultato di un solo processo non guasto

– Fallimento arbitrario e il risultato del gruppo è definito tramite 
un meccanismo di voto ® N >=2k+1 processi

• Abbiamo bisogno di 2k+1 processi non guasti in modo che il 
risultato corretto possa essere ottenuto con un voto a 
maggioranza

• Assunzioni importanti: 
1. I processi sono identici 
2. I processi eseguono i comandi nello stesso ordine
– Per essere certi che tutti i processi facciano esattamente la stessa 

cosa
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Consenso nei sistemi distribuiti
• Assunzione: consideriamo ora che i processi del 

gruppo non siano identici, ovvero che ci sia una 
computazione distribuita

• Obiettivo: i processi non guasti del gruppo devono 
raggiungere un consenso (accordo) unanime su uno 
stesso valore (es. il prossimo comando da eseguire) in 
un numero finito di passi, nonostante la presenza di 
processi guasti
– Esempi di consenso: elezione di un coordinatore, mutua 

esclusione, commit di una transazione

• Che tipo di guasti?
– Guasti non bizantini (es. crash, omissioni)
– Guasti bizantini
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Consensus = agreement?
• In the course we treat these terms as synonyms
• But for the theoretical DS community the two terms 

refer to very similar but not identical problems
– Agreement problem: a single process has the initial value
– Consensus problem: all processes have an initial value

• We’ll consider 3 consensus algorithms
1. Paxos (only overview)
2. Raft
3. Byzantine generals
– The first two focuns on consensus, the last on agreement 

(see original algorithm by Lamport)

• Let us first examine the necessary conditions for 
consensus and the FLP impossibility result
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Consenso distribuito: quando può essere raggiunto
• Consideriamo le diverse tipologie di: 

– processi
– ritardi di comunicazione
– ordinamento dei messaggi
– trasmissione dei messaggi

• Processi: sincroni o asincroni?
– Processi sincroni: operano in modalità lock-step, ovvero 

esiste c >= 1 tale che se un processo ha eseguito c+1 
passi, ogni altro processo ha eseguito almeno 1 passo

• Ritardo nella comunicazione: limitato o illimitato? 
• Ordinamento dei messaggi: messaggi consegnati 

nello stesso ordine in cui sono stati inviati oppure 
senza ordine?

• Trasmissione dei messaggi: unicast o multicast?
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Consenso distribuito: quando può essere raggiunto

• Quali sono le condizioni necessarie per poter 
raggiungere il consenso in un SD soggetto a guasti?
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FLP impossibility result
• FLP impossibility result:
Fischer, Lynch and Patterson, “Impossibility of distributed consensus 
with one faulty process”, 1985

– In an asynchronous model with an unbounded but finite 
message delay, where only one processor might crash, there is 
no distributed algorithm that solves the consensus problem

– They prove that no asynchronous algorithm for agreeing on a 
one-bit value can guarantee that it will terminate in the presence 
of crash faults
• And this is true even if no crash actually occurs!

• The good news: impossibility means “is not always 
possible”
– FLP proves that any fault-tolerant algorithm solving consensus 

has runs that never terminate, but these runs are extremely 
unlikely (“probability is zero”)
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FLP impossibility result
• What makes consensus hard? Membership in an 

asynchronous environment: 
1) we can’t detect failures reliably because process speeds and 

channel delays are not bounded
2) a faulty process stops sending messages but a “slow”

message might confuse us

• Are distributed and Cloud systems asynchronous?
– Not in the sense of the definition used in the FLP result, where 

asynchronous systems have no common clocks and make no 
use of time, and networks never lose messages but can delay 
them arbitrarily long 

– In practice we have partially synchronous systems:  most of 
the time, we can assume the system to be synchronous, yet 
there is no bound on the time that a system is asynchronous
• And we can reliably detect crash failures (see slide 4)
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Paxos

• Fault-tolerant consensus protocol run by N processes 
to tolerate up to k failures (where N >= 2k+1) in an 
asynchronous system

• Important and widely studied/used protocol 
– Perhaps the most important consensus protocol
– The dominant offering for consensus in asynchronous 

systems

• Rather a family of consensus protocols
– Cheap Paxos, fast Paxos, generalized Paxos, byzantine 

Paxos, …

• We consider the basic version:
L. Lamport, “Paxos made simple”, ACM SIGACT News, Vol. 32, No. 
4, Dec. 2001. 
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The history of Paxos
• Elegant and relatively simple algorithm 

– but “the original presentation was Greek to many readers”
because presented through the allegory of a fictitious ancient 
Greek parliamentary government on the island of Paxos

• See the original paper The part-time parliament
– “Inspired by my success at popularizing the consensus problem by 

describing it with Byzantine generals, I decided to cast the algorithm 
in terms of a parliament on an ancient Greek island.”

– “To carry the image further, I gave a few lectures in the persona of 
an Indiana-Jones-style archaeologist.”

– “My attempt at inserting some humor into the subject was a dismal 
failure. People who attended my lecture remembered Indiana Jones, 
but not the algorithm. People reading the paper apparently got so 
distracted by the Greek parable that they didn't understand the 
algorithm.” (L. Lamport)

• “The Paxos algorithm, when presented in plain 
English, is very simple.” (L. Lamport)
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Paxos: distributed system model
Assumptions (rather weak and realistic) 
• Partially synchronous system (it may even be asynchronous) 

with non-arbitrary failures
• Processes communicate with one another by sending 

messages
• Communication between processes may be unreliable, 

indeed messages: 
– Take arbitrarily long to be delivered
– May be duplicated or lost
– Corrupted messages can be detected and thus subsequently 

ignored

Valeria Cardellini - SDCC 2025/26
18

Paxos: distributed system model
Assumptions (rather weak and realistic) 
• Processes: 

– Set of processes that run Paxos is known a-priori
– Operate at arbitrary speed
– Are fail-stop: may exhibit crash failures but not arbitrary failures
– Can be restarted and rejoin if they fail
– Can remember some information if restarted after failure 

(accessing a persistent storage that survives crashes)
– Do not collude (i.e., do not team up to produce a wrong result)

Valeria Cardellini - SDCC 2025/26
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Paxos: a quorum-based protocol

• Problem: get a set of processes to reach consensus 
on a single proposed value
– no value proposed ® no value chosen
– value chosen ® processes should learn the chosen value

• Main idea: a quorum-based protocol
– Proposals are associated with a unique sequence number
– Processes vote on each proposal
– A proposal approved by a majority will get passed
– Size of majority is “well known” because potential 

membership of system was known a-priori
– A process considering two proposals approves the one with 

the larger sequence number
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Paxos requirements

• Safety requirements
– Only a value that has been proposed may be chosen
– Only a single value is chosen
– A process never learns that a value has been chosen unless 

it really has been chosen

• Don’t care what value is chosen, just as long as it 
satisfies those three requirements

• Liveness requirements
– Some proposed value is eventually chosen
– If a value has been chosen, a process can learn the value

Valeria Cardellini - SDCC 2025/26
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Paxos compromise
• Remember FLP impossibility result

– No asynchronous consensus algorithm can guarantee both 
liveness and safety

• However, asynchrony of FLP is overly pessimistic
• Real systems are usually partially synchronous

– System behavior is close to synchronous “most of the time”, 
sometimes goes asynchronous

• Practical compromise 
– Compromise liveness when system behaves asynchronously
– But never safety

• Therefore
– Paxos does not guarantee liveness
– Might never terminate, but in practice it does terminate
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Paxos roles

• Learners learn which value 
was chosen and report final 
decision back to clients

• Processes can play 1, 2, or 
all 3 roles
– Thinking of these roles as being 

separate makes Paxos easier 
to understand

Valeria Cardellini - SDCC 2025/26
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• A process may play 3 different roles:
– Proposer, acceptor, learner

• Proposers propose a value to be chosen on behalf of 
clients

• Acceptors (i.e., voters) decide which value to choose



Paxos: some ideas
1. One acceptor makes things really easy:

– But this isn’t distributed at all: if acceptor fails, game over!

• So, let’s have multiple acceptors, each of which can 
accept a proposed value

2. A value is chosen once a simple majority of acceptors 
accepts it
– If m acceptors, then > m/2 need to accept

• Why does this work?
– Any two majorities of acceptors must have at least one acceptor 

in common
– An acceptor can accept only one value at a time
– Therefore, any two majorities that choose a value must choose 

the same value

• Just need to make sure acceptors do not accept 
something else once a value is chosen

Valeria Cardellini - SDCC 2025/26 24

Paxos: some ideas
3. Acceptors need a way to distinguish one proposal 

from another
• Proposers assign a unique sequence number to each 

proposal they make
• A proposal has two parts:

– Proposal number (i.e., the unique identifier)
– Proposed value (could be a decision value or some other 

information, such as “Frank’s new salary” or “Position of Air 
France flight 21”)

• There can be multiple distinct proposals for the same 
value
– But they differ by the proposal number

4. Stable storage, preserved during failures, is used to 
maintain information that must be remembered in 
case of failure
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Paxos: some ideas
5. Paxos use a multiple-round approach

• Once a decision on a value is reached in a round, 
decisions in all subsequent rounds must agree
– Once decision is reached on a value, Paxos must force 

future proposers to select that same value

• Within each round, finding consensus is a two-phase 
process, where each phase consists of: 
– a request sent from a proposer to a group of acceptor 
– a reply from the acceptors to the proposer

• The two phases are: 
1) Prepare 
2) Accept
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Paxos: the two phases
• At high level:

1) Prepare
– A proposer asks a majority of acceptors whether anyone 

already received a proposal
– If the answer is no, propose a value

2) Accept
– If a majority of acceptors agree to this value, then that is our 

consensus

• Goals of the two phases: 
Prepare 

– Proposers check whether a value has already been 
chosen

– Older proposals that have not yet completed are blocked

Accept
– Ask acceptors to accept a specific value
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Paxos algorithm: phase 1
• Phase 1 (prepare):

a) A proposer selects a proposal number n and sends a 
prepare request with number n to a majority of acceptors

b) If an acceptor receives a prepare request with number n:
• If n is greater than the proposal number of any prepare request

the acceptor has responded to, the acceptor promises not to 
accept any lower-numbered proposals and replies with the 
highest-numbered proposal and the proposed value the 
acceptor has accepted, if any

• Otherwise the acceptor does not respond (or responds with a 
negative ack)
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Paxos algorithm: phase 2
• Phase 2 (accept):

a) If the proposer receives a response to its prepare requests 
for the proposal numbered n from a majority of acceptors, it 
sends an accept request to each of those acceptors for a 
proposal numbered n with a value v which is the value of 
the highest-numbered proposal among the responses of 
phase 1 (if no acceptor had accepted a proposal up to this 
point, then the proposer may choose any value for its 
proposal)

b) If an acceptor receives an accept request for n, it accepts 
the proposal unless it has already responded to a prepare 
request having a number greater than n

• Definition of chosen
– A value is chosen at proposal number n iff majority of 

acceptors accept that value in phase 2 of the proposal 
number
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Paxos properties

• Any proposal number is unique

• Any two sets of acceptors have at least one acceptor 
in common

• The value sent out in the accept phase is the value of 
the highest-numbered proposal of all the responses 
received in the prepare phase
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Paxos: example (without failures)
• Proposers are p1 and p2

• Acceptors are a1, a2, and a3

1° round, prepare phase
– p1 sends prepare request for proposal 1 to a1 and a2
– a1 and a2 reply to p1
– p2 sends prepare request for proposal 2 to a2 and a3
– a2 and a3 reply to p2
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Paxos: example (without failures)
1° round, accept phase

– p1 sends accept request to a1 and a2 for proposal 1 with value 
“pepperoni”

• p1 got to select which value to propose
– a1 accepts proposal 1
– a2 does not accept proposal 1 (the older proposal is blocked)

• a2 promised p2 it would not accept proposals < 2
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Paxos: example (without failures)
1° round, accept phase (continued)

– p2 sends accept request to a2 and a3 for proposal 2 with value 
“mushrooms”

• p2 also got to select which value to propose
– a2 accepts proposal 2
– a3 accepts proposal 2
– {a2, a3} is a majority of acceptors, so proposal 2 is chosen

• The chosen value is “mushrooms”
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Paxos: example (without failures)
2° round, prepare phase

– p1 sends prepare request for proposal 3 to a1 and a2
– a1 replies; it last accepted proposal 1 for “pepperoni”
– a2 replies; it last accepted proposal 2 for “mushrooms”

2° round, accept phase
– p1 sends accept request to a1 and a2 for proposal 3 with 

value “mushrooms”
• Value must match the one from proposal 2

– a1 and a2 accept proposal 3
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Paxos: what about learners?

• There are some options to learn a chosen value:
a) Each acceptor, whenever it accepts a proposal, 

informs all the learners
✗ Lots of messages to be sent

b) Acceptors inform a distinguished learner (usually 
the proposer) and let the distinguished learner 
broadcast the result
✗Single point of failure

c) Compromise with a set of distinguished learners?
✓ Limits number of messages needed
✓ All distinguished learners need to fail to cause a 

problem
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Paxos: distinguished proposer (or leader)
• Multiple dueling proposers that propose conflicting 

values may stall the protocol (because of FLP result)

• Paxos guarantees progress (i.e., liveness) if only one 
of the proposers is eventually chosen as leader

• Therefore, in many Paxos implementations there is 
only one active proposer (i.e., leader)
– Other proposers send proposals only when the current 

leader fails, and a new one needs to be elected
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p q

time

<propose,n1>
<propose,n2>

<accept(n1,v1)>
<accept(n2,v2)>

<propose,n3>
<propose,n4>... ...

p completes phase 1 for proposal number n1. 
Another proposer q then completes phase 1 for 
proposal number n2 > n1. p’s phase 2 accept 
requests for proposal numbered n1 are ignored 
because at least one acceptor has promised not 
to accept any new proposal numbered less than 
n2. So, p then begins and completes phase 1 for 
new proposal number n3 > n2, causing the 
second phase 2 accept requests of q to be 
ignored. And so on.

State machine replication and consensus protocols

• State machine replication (SMR): general approach to build 
fault-tolerant systems based on replicated servers 
– Each replica has a state machine (SM) and we want to make it fault-

tolerant
– A log is a list of commands that are received and stored; this list is 

read sequentially and used as input by SM
– Using a consensus protocol, each SM processes the same list of 

commands in the log and thus produces the same series of results 
and arrives at the same series of states
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SMR and Paxos
• Paxos is applied to achieve SMR

– SM commands and their sequencing (the order in which they 
appear) are the values to agree 

– But requires one instance of Paxos per command: many 
instances of Paxos are executed simultaneously!

• Multi-Paxos is a more efficient solution to reduce the 
number of messages
– Why multi? Multiple rounds from a stable leader
– Prepare phase only in first round, then only accept phase in 

next rounds
• After first round, leader enters into to a galloping mode where it 

sends successive accept messages when it receives a majority 
of acks for previous accept request

• Galloping mode may be interrupted by leader crashing, in that 
case new leader must be elected
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Paxos: other common use patterns

• Besides SMR, there are other common use patterns 
of Paxos, including:

• Log replication
– To duplicate data across different nodes (different from SMR 

whose goal is to make copies of server state)

• Synchronization service
– To control concurrent access to shared data

• Configuration management
– Leader election, group membership, service discovery, and 

metadata management
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Paxos in practice
• Some DSs that use Paxos

– The first ones: Petal (distributed virtual disks) and Frangipani 
(scalable distributed file system)

– Chubby: Google’s distributed lock service used in BigTable, 
Google Analytics and other Google products

• Zookeeper uses a Paxos-variant protocol called Zab
– Spanner: Google’s globally distributed NewSQL database
– XtreemFS: fault-tolerant distributed file system for WANs
– Mesos: uses Paxos to manage its replicated log
– LibPaxos: implementations for your app

• However, getting Paxos right in practice is hard
– E.g., how to implement a globally unique proposal number
– See Paxos made live paper by Google researchers
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Raft
• Consensus algorithm developed in 2014 at Stanford 

University https://raft.github.io
– RAFT: Replicated And Fault Tolerant

• Goals:
– Designed to be easier to understand, implement and 

validate than Paxos
– Complete foundation for implementation

• Paxos not complete enough for real implementations, the 
algorithm is specified in a way that is detached from real-world 
implementation issues and use cases

• Paxos implementations need extensive proofs and verification 
of their own, detaching them further from the original 
theoretical results

– Equivalent and as efficient as Paxos for log replication
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Raft: features
• System model similar to Paxos’ one 

– Delayed/lost messages, fail stop (not Byzantine)

• Equivalent to (multi-)Paxos in fault-tolerance and 
performance

• Differences from Paxos
– Problem decomposed into relatively independent sub-

problems (leader election and log replication)
– Addresses all major pieces needed for practical systems

• Rapid and widespread adoption
– Many implementations currently listed on Raft home page, 

>10 versions in production
– Some systems using Raft: etcd, CockroachDB, Consul, 

Hazelcast
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Raft: overview
• Raft is implemented on a cluster of servers, each of 

which hosts:
– State machine (provided service)
– Log that contains inputs fed into state machine
– Raft protocol

• One of the servers is elected to be the leader, the 
others function as followers

• Clients send commands only to the leader, who 
forwards them to followers

• Each of the servers stores received commands in 
a log
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Raft: overview
• Raft is a state machine replication 

protocol
– Each server has a state machine and a      

log: state machine is what we want to make 
fault-tolerant (e.g., key-value pairs) through 
replication

44

– The state machine is a deterministic program that specifies the 
desired behavior of the cluster as a whole

– The state machine processes a sequence of commands, given 
by external clients; they interact with the system as if it were a 
single node running a single copy of the state machine

– Each server simulates a copy of the state machine
– Protocol goal: to maintain consistency across the copies of the 

state machine by ensuring proper log replication
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Raft: overview

• Two major components of Raft
1. Leader election

– Select one of the servers to act as leader
– Leader is responsible for log replication to followers
– In case of leader crash, choose new leader

2. Log replication (normal operation)
– Goal: make sure that replicated state machine is up to date 

across a majority of servers in the cluster 
– Leader accepts commands from clients, appends them to its 

log (note that log is append-only)
– Leader replicates its log to other servers (overwriting 

inconsistencies)

• Let’s examine Raft using  
http://thesecretlivesofdata.com/raft/
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Raft: server state
• A server can be in 1 of 3 states:

– Leader (at most one leader per term)
– Candidate

• If followers don’t hear from a leader (heartbeat) by their own 
election timeout then they can become a candidate

• Request votes from other nodes
• Can become the leader if gets majority vote (leader election)

– Follower
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Raft: leader election
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• At most one leader per term
– Some term has no leader because of failed election (split vote)

• Each server maintains currentTerm value (no global view)
– Each server has its own local view of time that is represented by its 

currentTerm; it increases monotonically over time
• Election timeout

⎼ Follower waits until become 
candidate

• Election term starts if follower 
doesn’t see a leader 
- Candidate votes for self, and sends 

out RequestVote RPCs to all the 
other servers

- Receiving servers vote on candidate 
iff they haven’t voted yet this term 

- Election timeout reset



Raft: log replication
• Client sends command to leader
• Leader appends command to its log
• Leader sends AppendEntries RPCs to all followers in 

order to replicate all changes to all servers
– AppendEntries message sent by leader to followers at periodic 

intervals specified by heartbeat timeout
– Followers acknowledge AppendEntries message
– Once the leader receives acks from a majority of servers, it 

executes the command on its state machine and returns result 
to client, and the log entry is considered committed

Valeria Cardellini - SDCC 2025/26 48

Raft: log replication
• Once new log entry is committed:

– Leader notifies followers of committed entries in subsequent 
AppendEntries RPCs

– Followers execute committed commands in their state 
machines

• Election term will continue until a follower stops 
receiving heartbeats and becomes a candidate
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Raft: properties
• Raft guarantees safety

– At most one leader per term
– Logs are kept consistent
– Only a node with an up-to-date log can become a leader

• Raft also provides a liveness guarantee 
– If there are “sufficiently few failures”, then the system will 

eventually process and respond to all client commands 

• Raft is tolerant to network partitions
– Log uncommitted so long as no majority
– Majority as seen in face of partition, e.g. 2+3 partition
– Recovery 

• Old leader steps down when sees higher term
• Rolls backs uncommitted entries and matches new leader’s log
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Byzantine scenario
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Attack!

Wait…

Attack!

Attack! 
No, wait!  

Surrender!
Wait…
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Accordo in presenza di fallimenti bizantini
• In presenza di fallimenti bizantini, per sopravvivere ad 

attacchi di k processi guasti e raggiungere l’accordo 
distribuito occorre avere N >= 3k+1 processi
– E’ il problema dei generali bizantini (definito da Lamport)
– Idea: si vuole raggiungere l’accordo se attaccare una città 

oppure ritirarsi tra un gruppo di generali fedeli, essendoci k 
generali traditori ® occorrono 2k+1 generali fedeli

• Se non ci sono più dei 2/3 di generali fedeli, non è possibile 
raggiungere l’accordo

• P3 non riesce a capire chi sia il traditore tra P1 e P2
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Problema dell’accordo bizantino

• Assunzioni: 
– Processi sincroni
– Comunicazione unicast
– Ordinamento dei messaggi
– Ritardi limitati

• Ci sono N generali (ovvero processi) ed ogni 
processo i fornisce un valore vi agli altri processi
– vi rappresenta la forza della truppa del generale i

• Obiettivo: far costruire ad ogni processo un vettore V 
di dimensione N tale che se il processo i è non 
guasto allora V[i] = vi, altrimenti V[i] è non definito
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Problema dell’accordo bizantino
• Come raggiungere l’accordo nel caso di 3 processi che 

funzionano correttamente ed 1 fraudolento (N=4, k=1)?
– Per semplicità assumiamo vi = i 

Passo 1: ogni processo Pi 
invia il suo valore vi agli altri

Passo 2: i risultati del 
passo 1 sono riuniti in 
vettori V

Passo 3: ogni processo invia il 
proprio vettore agli altri

Passo 4: voto di maggioranza sui 
valori ricevuti: se Pi funziona 
correttamente, V[i] = vi

1 2 ? 4 
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Problema dell’accordo bizantino
• Perché con 2 processi che funzionano correttamente 

ed 1 processo fraudolento (N=3, k=1) non si riesce a 
raggiungere l’accordo? 

Passo 1: ogni processo 
invia il suo valore agli altri

Passo 2: i risultati del 
passo 1 sono riuniti in 
vettori

Passo 3: ogni processo invia il 
proprio vettore agli altri

Passo 4: voto di maggioranza 
sui valori ricevuti ? ? ?  
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Lamport’s algorithm for Byzantine agreement 
(oral message)

Algorithm OM(0)
1. The commander sends his value to every lieutenant
2. Each lieutenant uses the value he receives from the 

commander, or uses the value RETREAT if he receives no 
value

Algorithm OM(k), k>0
1. The commander sends his value to every lieutenant
2. For each i, let vi be the value Lieutenant i receives from the 

commander, or else be RETREAT if he receives no value. 
Lieutenant i acts as the commander in Algorithm OM(k-1) to 
send the value vi to each of the N-2 other lieutenants

3. For each i and each j ¹i, let vj be the value Lieutenant i
received from Lieutenant j in step 2 (using Algorithm OM(k-1)), 
or else RETREAT if he received no such value. Lieutenant i
uses the value majority (v1, …, vN-1)
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Lamport et al, The Byzantine Generals Problem, ACM Transactions on 
Programming Languages and Systems, 1982 

Demo: OM(1), L3 as traitor

C

L1 L2 L3

a a
a

a a a a ? ?

L2 L3 L1 L3 L1 L2

L2

OM(1)

OM(0)

L1 said C said ‘a’
C said ‘a’
L3 said C said ‘?’

Result: majority(a, a, ?) = a
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Demo: OM(1), C as traitor

C

L1 L2 L3

a r
a

a a r r a a

L2 L3 L1 L3 L1 L2

L2

OM(1)

OM(0)

L1 said C said ‘a’
C said ‘r’
L3 said C said ‘a’

L2 result: majority(a, r, a) = a;

L1 C said ‘a’
L2 said C said ‘r’
L3 said C said ‘a’

L1 result: majority (a, r, a) = a
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Byzantine fault tolerance (BFT) in practice
• What about the performance of Byzantine generals 

algorithm?
– k+1 synchronous rounds: quite slow
– O(Nk) messages: high traffic

• BFT protocols were long considered too expensive to 
be practical

• In 1999 Practical Byzantine Fault Tolerance (PBFT) 
algorithm was proposed 
– Thousands of requests per second with only sub-millisecond 

increases in latency
– PBFT triggered a renaissance in BFT research
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Byzantine fault tolerance and blockchains
• Blockchain systems require BFT to ensure 

consensus in the presence of faulty or malicious 
node

• Bitcoin uses Nakamoto Consensus protocol
– Leader is elected through Proof of Work (PoW): nodes 

compete to solve a puzzle
– First node to solve it becomes the leader, generating a new 

block and appending it to the blockchain

• Proof of Stake (PoS):
– Used by Ethereum 2.0 and others
– Nodes (validators) are selected based on the amount of 

cryptocurrency they hold and stake
– More energy-efficient than PoW
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