TOR VERGATA Macroarea di Ingegneria

Univexsira prorrsrunror roms Dipartimento di Ingegneria Civile e Ingegneria Informatica

Consistency and Replication

Corso di Sistemi Distribuiti e Cloud Computing
A.A. 2025/26

Valeria Cardellini

Laurea Magistrale in Ingegneria Informatica

Why replicate data?

» To increase DS availability when servers fail or
network is partitioned
— p = probability that 1 server fails
— p" = probability that n servers falil

— 1-p" = availability of service/system with n servers
* p=5% and n=1 => service is available 95% of time
* p=5% and n=3 => service is available 99.9875% of time

* To increase DS fault tolerance

— Under fail-stop model, if up to k of k+1 servers crash, at least
one is alive and can be used

+ Fail-stop: failed component simply stops functioning without
any additional erroneous behavior

— Protect against corrupted data

» To improve DS performance through scalability
— Scale with size and geographical areas

Valeria Cardellini - SDCC 2025/26 1

Replication cons

» What does data replication entail?
— Having multiple copies of same data
* We need to keep replicas consistent

— When one copy is updated we need to ensure that the other
copies are updated as well; otherwise the replicas will no
longer be the same

You (Roma) ° >
x.write(5)
Friend (NY) Py >
x.write(2) read&) >2
g London, Nel“}rerfands 33 Polz
: e
e AR
PR
o talia, ¢
Port:x;f - ' ae

' 5
Atlantic i : BN Wediterranc
ean A

Data center in North Carolina Data center in Ireland
Valeria Cardellini - SDCC 2025/26

Consistency: the fundamental issue

» Consistency maintenance is itself an issue
 How and when to update replicas?

* How to avoid significant performance loss due to
consistency, especially in large scale DS?
— Latency is non-negligible
* Inter-data center latency: from 10 ms to 250 ms
« Even inside data center: ~1 ms
— and impacts performance

* Amazon said: just an extra one tenth of second (i.e., 100 ms)
on the response times will cost 1% in sales

* Google said: a half a second (i.e., 500 ms) increase in latency
will cause traffic to drop by a fifth

Valeria Cardellini - SDCC 2025/26

Consistency: what we need

» To keep replicas consistent, we generally need to
ensure that all conflicting operations on the same data
are done in the the same order everywhere

« Conflicting operations (from transactions world):

— Read-write conflict: a read operation and a write
operation act concurrently
— Write-write conflict: two concurrent write operations

« Guaranteeing global ordering on conflicting operations
may be too costly (requires global synchronization),
thus downgrading scalability

« Solution: weaken consistency requirements so that
global synchronization can be avoided and we get a
“consistent” and efficient system

‘ Different consistency models

Valeria Cardellini - SDCC 2025/26

Consistency models

» Distributed data store: distributed collection of
storage, physically distributed and replicated across
multiple processes

— E.g., distributed database, distributed file system, Cloud

storage Process Process Process
Local copy

Distributed data store

» Consistency model (or consistency semantics)

— Contract between a distributed data store and processes, in
which the data store specifies precisely what the results of
read and write operations are in presence of concurrency

Valeria Cardellini - SDCC 2025/26

Consistency models

« All consistency models try to return the last write
operation on the data as a result of data read
operation

» Consistency models differ in how the last write
operation is determined/defined and with respect fo
whom

« Data-centric consistency models
— Goal: provide a system-wide view of a consistent data store

» Client-centric consistency models

— Goal: provide a view of a consistent data store at a single
client level

— Faster but less accurate consistency management than
data-centric consistency

Valeria Cardellini - SDCC 2025/26

Choosing a consistency model

« No right or wrong consistency model
— There is no unique general solution (i.e., consistency model
that fits well all situations) but rather multiple solutions, that are
suitable to applications with different consistency requirements
» Non-trivial trade-off among easy of programmability,
cost/efficiency, consistency, and availability
— Low consistency is cheaper but it might result in higher
operational cost (e.g., overselling of products in a Web shop)
* Not all data need to be treated at the same level of
consistency

— Consider a Web shop: credit card and account balance
information require higher consistency levels, whereas user
preferences (e.g., “users who bought this item also bought... ")
can be handled at lower consistency levels

Valeria Cardellini - SDCC 2025/26

Data-centric consistency models

» Consistency models describe how and when different
data store replicas see operations order

— Replicas must agree on the global ordering of operations
before making them persistent

Valeria Cardellini - SDCC 2025/26

Data-centric consistency models we study

» Main consistency models based on ordering of read
and write operations on shared and replicated data

Slower read and Strict Stronger consistency
write operations models
Linearizability
Sequential
Faster read and Causal Weaker consistency
write operations ‘ Eventual models

« Strict consistency: strongest model

 Linearizability, sequential, causal and eventual
consistency: progressive weakening of strict
consistency

Valeria Cardellini - SDCC 2025/26

Modelli di consistenza: notazione

« Rappresentiamo il comportamento dei processi che
eseguono operazioni di lettura o scrittura sui dati
condivisi

— W((x)a: operazione di scrittura da parte del processo P; sul
dato x con valore scritto a

— Ri(x)b: operazione di lettura da parte del processo P; sul dato x
con valore letto b

P1: W(x)a
P2: R(x)a

Valeria Cardellini - SDCC 2025/26

Consistenza stretta: il modello ideale

10

Qualsiasi read su un dato x ritorna un valore
corrispondente al risultato piu recente della write su x

Consistenza stretta Violazione della consistenza stretta
P1: W(x)a P1: W(x)a |

P2: R(x)a P2: @@ R(x)a

« Write eseguita su tutte le repliche come singola
operazione atomica

- E’ come se ci fosse una copia unica, ovvero la write é vista
istantaneamente da tutti i processi

* Ordinamento temporale assoluto delle operazioni:
richiede un clock fisico globale

- No ambiguita su “piu recente”

Valeria Cardellini - SDCC 2025/26

1"

Implementing strict consistency

P1: W(x)a
P2: R(x)a

* To achieve it, one would need to ensure:
— Each read must be aware of, and wait for, each write
* Ry(x)a aware of W(x)a
* Clocks must be strictly synchronized
» But time between instructions << communication
time: strict consistency is tough to implement
efficiently

« Solution: linearizability and sequential consistency
— Slightly weaker models than strict consistency

— Still provide the illusion of single copy

* From the outside observer, the system should (almost) behave
as if there’s only a single copy

Valeria Cardellini - SDCC 2025/26 12

Linearizability

Each operation appeatrs to take effect instantaneously at
some point between its start and completion, as if there is
a global timeline for all operations

» Operations (op = read, write) receive global timestamp
using synchronized clock (e.g., NTP) sometime during
their execution

» All replicas execute operations in some total order

« That total order preserves the real-time ordering
between operations (and each process’ own local

ordering)
— If op A completes before op B begins, then A is ordered before
B in real-time

— If neither A nor B completes before the other begins, then
there is no real-time order. But there must be some total order
(i.e., same order for A and B)

Valeria Cardellini - SDCC 2025/26 13

Linearizability: properties

« Weaker model than strict consistency

« Sitill provides single-client, single-copy semantics
— That is, read/write behave as if there were

 a single client making all the requests in a given order
* over a single copy

» Aread op returns the most recent write, regardless of
the clients

« All subsequent reads should return the same result
until the next write, regardless of the clients

» Does not mandate any particular order for
overlapping operations
— The system needs to provide an ordering of ops

— The ordering should give an illusion that there is a single
copy

Valeria Cardellini - SDCC 2025/26

Linearizability: example

14

Pa | wix=1)

Ps F wix=2) -

Pc F wix=3) -

Po Fwix=t) | wix=5)

Pe |_ W(x=6) _|

P |rw=t | rv=2 | rn=3 | rn=6 {} =5 v*
Fra=1 —{ | rv=2 <} rv=5 -} rn=6 |- rv=s 4 X

F rg=1 —{ | rixr=4 —{ | ry=2 —{ | rix1=3 —{ |- rixs=6 —| v
P o=t | =4 <} rv=s 4} rv=6 4| rv=s - X

P

[9)

P

=

Valeria Cardellini - SDCC 2025/26

15

Linearizability: performance

You (Roma) " writ.e(5)

Friend (NY)

v

v

@ @
x.write(2) read(x) 2> 5

* How to implement linearizability? (see slide 2)
— Clients send read/write requests to Ireland DC (primary)
— lIreland datacenter propagates write to North Carolina DC
— Read never returns until propagation is done
— Linearizability? Yes
— Performance? No, because of WAN latencies
 Linearizability requires complete synchronization of
multiple replicas before write returns

* It makes less sense in global setting, but still makes
sense in local setting (e.g., within a single data center)

Valeria Cardellini - SDCC 2025/26

Consistenza sequenziale

16

Il risultato di una qualunque esecuzione e uguale a
quello ottenuto se le operazioni (di read e write) da parte
di tutti i processi sull’archivio di dati fossero esequite

— Secondo un ordine sequenziale

— e le operazioni di ogni singolo processo apparissero in questa
sequenza nell’ordine specificato dal suo programma

* Quando i processi sono in esecuzione concorrente,
qualunque alternanza (interleaving) di operazioni €
accettabile (purché rispetti 'ordine di programma), ma
tutti i processi vedono la stessa alternanza di
operazioni

Valeria Cardellini - SDCC 2025/26

17

Sequential consistency: properties

* Weaker model than linearizability
« Still provides single-client, single-copy semantics
» All replicas execute operations in some total order

» That total order preserves the program order of each
process between operations

— If process P issues op A before op B, then A is ordered
before B by P’s program order (i.e., preserves local ordering)

— If ops A and B and done by different processes then there is
no program order between them. But there must be some
total order

Valeria Cardellini - SDCC 2025/26 18

Sequential consistency: example

» Sequentially consistent data store

P1: W(x)a

P2: W(x)b

P3: R(x)b R(x)a
P4: R(x)b R(x)a

» Operation interleavings that satisfy program
order of each process (3 total order + process’
program ordering)

W2 (x)b Ra(x)b R4(x)b
W5 (x)b R4(X)b R3(x)b a Rs(x)a Rjz(x)a
Wa(x)b R3(x)b Ry(x)b a Rs(x)a Ra(x)a
W2 (x)b R4(x)b Rs(x)b a Rs(x)a Ry(x)a

Valeria Cardellini - SDCC 2025/26 19

1(X)a R4(X)a Rg(X)a

X

W
Wi
W, (x
W

(
(
(
(

N N’ N’ N

1(X

Sequential consistency:

example

« Data store that is not sequentially consistent

P1: W(x)a

P2: W(x)b

P3: R(x)b R(x)a
P4: Rix)a R(x)b

\

P3 and P4 read write

operations performed by P1
and P2 in a different order

« We cannot find any interleaving that

satisfies the

program order of each process, €e.g.,
— W, (x)a Ry(x)a Rs(x)a Wy(x)b Rs(x)b Ry(x)b violates P3

program order

— W,(x)b R3(x)b R4(x)b W4(x)a Rz(x)a R4(x)a violates P4

program order

Valeria Cardellini - SDCC 2025/26

Sequential consistency: performance

20

» Sequential consistency is programmer-friendly, but

hard to implement efficiently

— Writes should be applied in the same order across different

copies to keep the single-copy illusion

* How to implement sequential consistency?

— Use a global sequencer (centralized), or

— a totally ordered multicast protocol (decentralized)

Valeria Cardellini - SDCC 2025/26

21

Linearizability vs sequential consistency

 Linearizability is stronger than sequential consistency
« Both provide single-client, single-copy semantics

« With linearizability: interleaving across all processes
is pretty much determined on the basis of time

» With sequential consistency: freedom to interleave
operations coming from different processes, as long
as ordering from each process is preserved

* In a nutshell:
— Linearizability: 3 total order + real-time ordering
— Sequential: 3 total order + process’ program ordering

Valeria Cardellini - SDCC 2025/26

Casual and eventual consistency

» More relaxed consistency models are often used to
increase performance and availability and lower cost
— Causal consistency
— Eventual consistency
« But we lose the single-copy illusion

» Causal consistency

— We care about ordering causally-related write operations
correctly (e.g., Facebook post-like pairs)

* Eventual consistency

— As long as we can say all replicas converge to the same
copy eventually, we're fine

Valeria Cardellini - SDCC 2025/26

Casual consistency: informal example

» Consider these posts on a social network:
1. Oh no! My cat just jumped out the window.
2. [afew minutes later] Whew, the catnip plant broke her fall.

3. [reply from a friend] | love when that happens to cats!
i it

» Causality violation could result someone else reads:
1. Oh no! My cat just jumped out the window.
2. [reply from a friend] | love when that happens to cats!
3. Whew, the catnip plant broke her fall.

Valeria Cardellini - SDCC 2025/26
24

Consistenza causale

Operazioni di write che sono potenzialmente in relazione
di causa/effetto devono essere viste da tutti processi nello
stesso ordine. Operazioni di write concorrenti possono
essere viste in ordine differente da processi differenti

— In relazione di causa/effetto:

» read seguita da write sullo stesso processo: write &
(potenzialmente) causalmente correlata con read

» write di un dato seguita da read dello stesso dato su processi
diversi: read & (potenzialmente) causalmente correlata con write

» Si applica la proprieta transitiva: se P1 scrive x e P2 legge x e usa
il valore letto per scrivere y, la lettura di x e la scrittura di y sono
causalmente correlate

— Se due processi scrivono simultaneamente, le due write non
sono causalmente correlate (write concorrenti)
» Indebolimento della consistenza sequenziale

— Distingue tra operazioni che sono potenzialmente in relazione di
valeria Cardelini GBS @G HEtto e quelle che non lo sono

25

Consistenza causale: esempi

» Esempio di sequenza valida in un archivio di dati
causalmente consistente, ma non in un archivio
sequenzialmente consistente

— W,(x)b e W,(x)c sono write concorrenti: possono essere
viste dai processi in ordine differente

— Wy(x)a e W,(x)b sono write in relazione di causal/effetto

P1:m

(x)a
P2~ NRXa=CWKD) " oo, _
P3: Rx)a : R(x)c RXb :
P4: R(9a i Rogb Rge

No consistenza sequenziale

Valeria Cardellini - SDCC 2025/26

Causal consistency: examples

26

« Example 1: sequence of operations which is not valid
in a causally consistent data store

— W,(x)a and W,(x)b are causally related: must be seen in
same order by all processes

P1/W(x)a

P2: R(x)a W(x)b

P3: PR(b R()a :

P4 : Ra R(X)b Different order

« Example 2: sequence of operations which is valid in
a causally consistent data store

— W, (x)a and W,(x)b are concurrent: can be seen in different
order

— But not valid in a sequentially consistent data store
e T~
P2: ~—_ W(x)b)

Valeria Cardellini - SDCC 2025/26 P3: R(x)b R(x)a
P4: R(x)a R(x)b

27

Implementing causal consistency

* No longer single-copy illusion

— Concurrent writes can be applied in different orders
across copies

— Causally-related writes do need to be applied in the same
order for all copies
« Thanks to relaxed requirement on writes, latency is
less problematic

» However, we need a mechanism to keep track of
causally-related writes (i.e., which processes have
seen which writes)

— Build and maintain a dependency graph showing which
operations depend on which other operations

— Or use vector clocks: more amenable for computation

Valeria Cardellini - SDCC 2025/26

Relaxing consistency further:

28

» Let’s just do best effort to make things consistent:
eventual consistency
— Popularized by CAP theorem

Valeria Cardellini - SDCC 2025/26

29

Eventual consistency

* In a distributed data store characterized by

— Lack of concurrent updates (write-write conflicts) or easy
resolution of conflicts

— Strong prevalence of reads compared to writes (i.e., mostly
read)

* we can adopt a relaxed consistency model, called
eventual consistency (in Italian: eventual=finale)

« What it guarantees: if no new updates occur,
eventually all reads will return the last updated value

— That s, all replicas gradually become consistent within a
time window (called inconsistency window)

— Without failures, length of inconsistency window depends on:
communication latency, number of replicas, system load

* Model used in some Cloud storage services and
NoSQL data stores

Valeria Cardellini - SDCC 2025/26
30

Eventual consistency vs. strong consistency

Data Center 1 Data Center 2 — Eventual CO”Slstency
ST Replicate]
i A | - Replicas are always
......... T available to read
| Nodes | | Nodec |)
N | Xoa | - But some replica (e.g., C)
e ld Jd may be inconsistent with
* * ol the latest write

Data Center 1 Data Center 2
Strong consistency (e.g., w—) e
linearizability) R e L[|
- Replicas are always 5T N
i | lock fc | lock f
consistent e & o & o
- Butreplicas are not J e
available until update |—_—, |:| I:]

completes —

Valeria Cardellini - SDCC 2025/26
31

Eventual consistency: pros and cons

* Pros
v/ Simple and inexpensive to implement
v/ Fast reads and writes on local replica

— E.g., used by DNS: when authoritative name server updates a
resource record, other name servers store it for TTL period

« Cons

X No illusion of single copy

X Possible data inconsistency (staleness) caused by conflicting
writes: conflicts must be resolved by means of reconciliation
strategy

X Can make applications more complex to write: providing
stronger consistency falls on developer’s shoulder

* Developer must know which consistency model is provided by
data store

* |f read does not return the value of the most recent write,

developer must decide whethgr such incansistency. is
acceptable to application

Eventual consistency: reconciliation

32

» How to reconcile conflicting versions of replicas that
have diverged due to concurrent updates?

— Popular strategy: last write wins

* Tag data with vector clock as timestamp and use vector clock
to capture causality between different versions of data

» Popular solution in many systems (e.g., Cassandra)
— Alternatively, push conflict resolution to application which

invokes a user-specified conflict handler (e.g., done by
Amazon Dynamo)

 When to reconcile?

— Usually on read (e.g., Amazon Dynamo) so to provide an
“always-writable” experience (but slows down reads)

— Alternatives are: on write (reconcile during writes, slowing
down them) and asynchronous repair (correction is not part
of read or write ops)

Valeria Cardellini - SDCC 2025/26

33

Consistency and network partitions

Client + front end Client + front end

Network
withdraw(B, 4) ‘ T partition
deposit(B,3);

Replica managers

(8 —=) (8)

* Dilemma with network partitions

— To keep replicas consistent, you need to block waiting for
replicas update

* To outside observer, system appears to be unavailable

— If you don’t block and still serve requests from the two
partitions, then replicas will diverge
« System is available, but weaker consistency

* Which choice? CAP theorem explains this dilemma

Valeria Cardellini - SDCC 2025/26

CAP theorem

« CAP theorem

— Conjecture proposed by E. Brewer in 2000 and formally proved
by S. Gilbert and N. Lynch in 2002 under certain conditions

— One of the most important findings for distributed data stores
* Any networked shared-data system can have at most
two of the three desirable properties at any given time:
- Consistency (C): have a single up-to-date copy of data
“All the clients see the same view, even in presence of updates.”
- Availability (A) of that data (for updates)
“All clients can find some replica of data, even in presence of failure.”
- Partition tolerance (P)

“The system property holds even if the system is partitioned.”

Brewer’s slides at PODC 2000 https://people.eecs.berkeley.edu/~brewer/cs262b-
2004/PODC-keynote.pdf

Valeria Cardellini - SDCC 2025/26

CAP theorem

onsistency vailability

Tolerance to network Theorem: You can have at
artitions most two of these properties
for any shared-data system

PODC Keynote, July 19, 2000

Valeria Cardellini - SDCC 2025/26
36

Partition tolerance: why do we care?

» Network partitions can occur across data centers
when Internet gets disconnected

- Internet router outages As result of partition, network can lose
arbitrarily many messages sent from one

- Under-sea cables cut node to another

- DNS not working

» Network partitions can also occur within a datacenter
(e.g., rack switch outage), but less frequently

» We still desire DS to continue functioning normally
under network partitions — fix P

» According to CAP, consistency and availability cannot
be achieved at the same time when partition occurs
« Which one to give up? Consistency or Availability?
It's a design choice

Valeria Cardellini - SDCC 2025/26
37

CAP and network partitions

« If consistency is priority, forfeit
availability: CP system

« If availability is priority, forfeit
consistency: AP system

— Relaxed consistency model:
eventual consistency

Valeria Cardellini - SDCC 2025/26

CAP and network partitions

38

* When using CP and AP systems, developer needs to
be aware of what system offers

» CP system: may not be available to take a write

— If write fails because of system unavailability, developer has
to decide what to do with data to be written

« AP system: may always accept a write, but under
certain conditions a read will not reflect the result of
a recently completed write

— Developer has to decide whether application requires
access to the absolute latest update all the time

» Take-away message: CAP choice depends on
application requirements
— Blog different from financial exchange or shopping cart

Valeria Cardellini - SDCC 2025/26

39

CAP: example

« Booking system of Ace Hotel in New York uses a
replicated database with master server located in
Mumbai and one replica server in London

« Ann is trying to book a room on replica server
« Pathin is trying to do the same on master

* There is only a room available and the network link
between the two servers breaks

Valeria Cardellini - SDCC 2025/26

CAP: example

40

* CP system:
— Pathin can book the room
— Ann can see the room information but cannot book it

» AP system: both servers accept the room booking
— Overbooking!

» CA system: neither user can book any hotel room
— No tolerance to network partitions

Valeria Cardellini - SDCC 2025/26

41

ACID vs BASE

« ACID and BASE: contrasting approaches to
achieving data consistency in DS

» ACID: Atomicity, Consistency, Isolation, Durability
— Pessimistic approach: prevent conflicts from occurring
— Standard for relational DBMSs: Postgres and MySQL are CA

« BASE: Basically Available, Soft state, Eventual
consistency

— Optimistic approach: let conflicts occur, but detect them and
take action to sort them out

— Basically available: system is available most of the time and
there could exist a subsystem temporarily unavailable

— Soft state: data is not durable in the sense that its
persistence is left to developer that must take care of it

» Data is durable if its changes survive failures and recoveries

— Eventually consistent. system eventually converges to a

consistent state
Valeria Cardellini - SDCC 2025/26

ACID vs BASE

42

» Consistency

— ACID provides strong consistency, ensuring that data is
always in a consistent state

— BASE provides eventual consistency, allowing temporary
inconsistencies but ensuring convergence to a consistent
state over time

 Availability
— ACID system may experience limited availability during

certain operations or under system failures, as it prioritizes
consistency

— BASE system prioritizes availability and strives to remain
accessible even during failures or network partitions

Valeria Cardellini - SDCC 2025/26

43

ACID vs BASE

 Performance

— ACID system may incur higher latency and performance
overhead, requiring synchronous replication and strict
consistency enforcement

— BASE systems can achieve higher throughput and lower
latency due to their asynchronous replication and relaxed
consistency

 Use cases

— ACID is well-suited for applications that require strong data
integrity and consistency, e.g., financial systems or
transactional applications

— BASE is often used in large-scale DS, NoSQL data stores,
and web applications where high availability and horizontal
scalability are more critical than strict consistency

Valeria Cardellini - SDCC 2025/26

Protocolli di consistenza data-centrica

44

» Protocollo di consistenza: implementazione di uno
specifico modello di consistenza

« Analizziamo protocolli di consistenza data-centrica
linearizzabile e sequenziale
— Protocolli primary-based

» Operazioni di scrittura eseguite su una sola replica (quella
primaria), che successivamente assicura che gli aggiornamenti
siano opportunamente ordinati ed inoltrati alle altre repliche

— Protocolli replicated-write
» Operazioni di scrittura eseguite su molteplici repliche

Valeria Cardellini - SDCC 2025/26

45

Protocolli primary-based

» Anche detti protocolli primary-backup o di
replicazione passiva (o leader-based replication)

— Ad ogni dato x & associata una replica primaria (leader) che
ha il compito di coordinare le operazioni di scrittura di x sulle
repliche secondarie (follower)

— L’operazione di lettura di x pud essere eseguita su ogni
replica (ad es. replica locale al client)
* Protocolli primary-based di tipo remote-write

— L’operazione di scrittura di x € inviata alla replica primaria
(eventualmente remota), che poi la inoltra alle repliche
secondarie coordinandone I'aggiornamento

» Protocolli primary-based di tipo local-write

— La copia primaria di x migra verso la replica locale rispetto al
client per 'operazione di scrittura; la replica locale inoltra
'operazione di scrittura alle altre repliche

— Non esaminato

Valeria Cardellini - SDCC 2025/26 46

Primary-based: protocolli remote-write

Client Client

Primary server
for |tem X Backup server
wi| |ws R1| |R2
\A/5

W

W1. Write request R1. Read request

W2. Forward request to primary R2. Response to read . .

WS8. Tell backups to update In flgura' prOtOCOHO

W4. Acknowledge update M

WS5. Acknowledge write completed remOte write bloccante

» Tipicamente usati nei DB distribuiti (e.g., MySQL, PostgreSQL), in
alcuni data store NoSQL (e.g., MongoDB), nei MQS (Kafka) e file
system distribuiti, ovvero quando si richiede un elevato grado di
tolleranza ai guasti

« Svantaggi

— Lentezza in caso di repliche distribuite geograficamente

— Scarsa scalabilita al’aumentare del numero di repliche

Valeria Cardellini - SDCC 2025/26
47

Primary-based remote-write: example

Follower
replica

User 1234
configures new
profile picture

% read-write queries

update users
set picture_url ='me-new.jpg’

Leader
replica

Replication streams

read-only queries

Y

select * from users

Data change

. where user_id = 1234
where user_id = 1234 table: users <
primary key: 1234 Foll
column: icture_url ollower
) P y : User 2345
old_value: me-old.jpg replica)
views user

new_value: me-new.jpg

transaction: 987654321 1234's profile

Valeria Cardellini - SDCC 2025/26

Primary-based: bloccante

« Aggiornamento delle repliche da parte della replica
primaria tramite /og shipping

« Aggiornamento delle repliche in modo bloccante o non
bloccante per il client

1. Bloccante (o replicazione sincrona):

— La replica primaria notifica al client che la scrittura €& stata
completata su tutte le repliche

— Modello di consistenza: linearizzabilita

— Vantaggi: maggiore tolleranza a guasti (repliche sincronizzate),
incluso crash della replica primaria

— Svantaggi: lentezza (il client attende I'aggiornamento di tutte le

i x op(arg) p; x ok(res) p.
repliche) ‘ =)
i y b
clientprocess p; == t
invocatio response
1 m__ @ @)
primary: replica x —
update\ ik / .
backup: replica x 2 object x
Valeria Cardellini - SDCC 2025/26 3 \ / ack
backup: replica x

Primary-based: non bloccante

2. Non bloccante (o replicazione asincrona):

— La replica primaria notifica al client che la scrittura € stata
completata solo su di essa

— Modello di consistenza: sequenziale

— Vantaggi: minore attesa per il client, piu adatto per repliche in
numero elevato e distribuite geograficamente

— Svantaggi: minore tolleranza ai guasti e perdita della
linearizzabilita

Valeria Cardellini - SDCC 2025/26

Protocolli replicated-write

50

* Rispetto ai protocolli primary-based:

— No controllo centralizzato delle scritture da parte
della replica primaria

— Scritture eseguite su molteplici repliche

* Approcci
— Replicazione attiva (o multi-leader replication)
— Protocolli basati su quorum

Valeria Cardellini - SDCC 2025/26

51

Replicated-write: replicazione attiva

* Replicazione attiva
— Lettura su replica locale
— Scrittura su ogni replica

» Soluzione gia esaminata (state-machine replication):
perché?

— Per mantenere la consistenza delle repliche, occorre inviare
in multicast la scrittura a tutte le repliche

x op(arg) p; x ok(res) pi

| \

: Y Y
client process p, =— 7 }

invocations !
responses
replicax1 \ — /
; , object x
\ /

2

replica x

. 3
replica x

Valeria Cardellini - SDCC 2025/26

Replicated-write: replicazione attiva

52

* Qual ¢ il problema da risolvere?
— Scritture in ordine diverso sulle repliche

insert into data
(key, value)

values ('x; 1) time
Client A % R e - o R R R R R >

Leader 1 @ -- >

insert... insert...
value =1 value =1

update... Dependent update
value =2 arrives before insert

ClientB % --------------------------------------- >
update data

setvalue = value + 1
where key ='x’

Valeria Cardellini - SDCC 2025/26

53

Replicated-write: replicazione attiva

Occorre eseguire le operazioni di scrittura nello stesso

ordine su tutte le repliche

Come? Multicasting totalmente ordinato
— Centralizzato tramite sequencer
» Scarsa scalabilita e single point of failure
— Decentralizzato usando clock scalare

» Scalabilita limitata in sistemi a larga scala a causa di elevato
numero di messaggi

— Decentralizzato usando un protocollo di consenso distribuito
* E.g., Raft

Modello di consistenza data-centrica supportato

— Consistenza sequenziale

— Consistenza linearizzabile

Valeria Cardellini - SDCC 2025/26

Replicated-write: protocolli guorum-based

54

Votazione attuata da un softoinsieme di repliche
Consideriamo N repliche di un dato x
— Quindi un totale di N voti

Ad ogni dato € associato un numero di versione
— Ad ogni operazione di scrittura, il numero di versione viene
incrementato
L’operazione di lettura di x richiede un quorum per la
lettura Nk per garantire che venga letta l'ultima
versione di x

L’operazione di scrittura su x richiede un quorum per
la scrittura N, per assegnare il numero di versione

Gifford, Weighted voting for replicated data, Proc. ACM SOSP 1979
https://dl.acm.org/doi/pdf/10.1145/800215.806583

Valeria Cardellini - SDCC 2025/26

55

Protocolli guorum-based: condizioni

* Per N e N, valgono le condizioni
a) N+ Ny >N
b) Ny, > N/2

a) per impedire conflitti lettura-scrittura

b) per impedire conflitti scrittura-scrittura (un solo
scrittore alla volta puo ottenere il quorum per la
scrittura)

Se a) e b) sono entrambe soddisfatte, si garantisce la
consistenza sequenziale

Valeria Cardellini - SDCC 2025/26 56

Setting read and write quorums

Read quorum

““—;l"“—
@
)
2=

1 Write quorum 1

Correct choice for Nz and Ny,

Correct choice for Nr and Ny,

Write-write conflicts may
occur (being N,, <= N/2)

Valeria Cardellini - SDCC 2025/26 57

Setting read and write quorums

» Some specific settings for Nz and N,

1. Ng=1e N,=N
« Called ROWA (Read Once Write All)
» Fast reads but slow writes

2. Ny=1e Ng=N
» Called RAWO (Read All Write Once)
» Fast writes but slow reads
» Be careful: conflicting writes may occur (being Ny, <= N/2)

3. Ny= Ng=N/2 +1
« Called Majority
« Both reads and writes are relatively slow, but high availability
* Practical use: quorum-based storage systems allow
users to choose between strong and eventual
consistency by selecting different read and write
quorums (e.g., Cassandra)

Valeria Cardellini - SDCC 2025/26

Cloud storage and consistency

58

» Cloud storage services have often adopted weak
consistency models
— Eventual consistency: most popular for a long time
— New trend towards strong consistency, see AWS S3

. AWS S3 (until 2020)

— Eventual consistency: after a PUT call, inconsistency window
where data has been accepted and durably stored, but not yet

visible to all GET or LIST requests

Application Application Application Application

PUT (Obj, “1”) | GET (Ob PUT (Obj, “2”) GET (Obj) GET (Ob3j)

l lI l lI ll“z ”
Req uest Obkct Comistenw Co
gt e e
& Processed e

S

Amazon S3

—m—

Valeria Cardellini - SDCC 2025/26

59

Cloud storage and consistency

« Amazon S3 consistency model (now)

https://docs.aws.amazon.com/AmazonS3/latest/userguide/\Welcome.ht
ml#ConsistencyModel
“Amazon S3 provides strong read-after-write consistency for
PUT and DELETE requests of objects in your Amazon S3
bucket in all AWS Regions. This behavior applies to both writes
to new objects as well as PUT requests that overwrite existing
objects and DELETE requests”

But...

“Amazon S3 does not support object locking for concurrent
writers. If two PUT requests are simultaneously made to the
same key, the request with the latest timestamp wins. If this is
an issue, you will need to build an object-locking mechanism
into your application”

“Bucket configurations have an eventual consistency model.
This means that if you delete a bucket and immediately list all
buckets, the deleted bucket might still appear in the list.”

Valeria Cardellini - SDCC 2025/26

Data store systems and consistency

60

Some NoSQL data stores offer tunable consistency:
user can tradeoff between consistency and latency

Amazon’s DynamoDB: user can choose eventually

consistent reads or strongly consistent reads
https://docs.aws.amazon.com/amazondynamodb/latest/developerqui
de/HowltWorks.ReadConsistency.html

— Strongly consistent reads experience higher read latency,
twofold reduction in read throughput and cost more

Similarly for Google’s Cloud Datastore

https://cloud.google.com/datastore/docs/articles/balancing-strong-
and-eventual-consistency-with-google-cloud-datastore

Cassandra provides quorum-based consistency,

where quorums are configurable
https://cassandra.apache.org/doc/5.0/cassandra/architecture/dynamo
.html#tunable-consistency
— N+W >R and W >= N/2 +1: strong consistency but higher
latency

Valeria Cardellini - SDCC 2025/26

61

References

e Sections 7.1, 7.2, and 7.5 of van Steen &
Tanenbaum book

» Sections 18.3 of Coulouris et al. book

Valeria Cardellini - SDCC 2025/26

62

