
Corso di Sistemi Distribuiti e Cloud Computing
A.A. 2025/26

Valeria Cardellini

Laurea Magistrale in Ingegneria Informatica

Mutual Exclusion and Election 
in Distributed Systems

Macroarea di Ingegneria
Dipartimento di Ingegneria Civile e Ingegneria Informatica

Main properties of algorithms for 
concurrent and distributed systems

• Safety: nothing bad will happen
– Undesirable states will not occur
– Example: If two processes attempt to write to the same 

resource at the same time, no data corruption or race 
conditions happen

• Liveness: something good will eventually happen
– The system will make progress and avoid situations where it 

stops (deadlock or starvation)
– Example: if a process requests a resource, it will eventually 

get it

Valeria Cardellini  - SDCC 2025/26 1



Valeria Cardellini  - SDCC 2025/26 2

Mutual exclusion

• N processes want to access a shared resource
• Goal: ensure that each process can exclusively 

access a shared resource without interference from 
others

• Components of mutual exclusion algorithm:
– Critical section (CS): the part of the code where a process 

accesses the shared resource
– Trying protocol (TP): instructions that occur before entering 

the CS, ensuring no conflicts
– Exit protocol (EP): instructions that occur after exiting the 

CS, releasing the resource for others

Va
le

ria
 C

ar
de

llin
i  

-S
D

C
C

 2
02

5/
26

3

Properties of mutual exclusion algorithms
• Mutual exclusion (ME) or safety

– At most one process at a time can execute in CS
• No deadlock (ND)

– If one or more processes are blocked in their TS, at least one 
process will eventually enter and exit the CS

• No starvation (NS) or absence of indefinite 
postponement
– No process remains blocked forever in the TS; every request to 

enter the CS is eventually satisfied
• Observations:

– NS ⇒ ND, but ND ⇏ NS
– NS and ND are liveness properties
– NS is also a fairness property: every process eventually gets 

access
• Ordering 

– Requests to enter the CS are served in order of arrival 
(according to the happened-before relation)

– Stronger fairness than NS: ordering ⇒ NS, but not viceversa



Valeria Cardellini  - SDCC 2025/26 4

Mutual exclusion in concurrent systems
• Mutual exclusion originated in concurrent systems
• Early mutual exclusion algorithms are based on the 

use of shared variables to coordinate N processes
• Dijkstra’s algorithm (1965)

– Designed for single-processor systems
– Guarantees ME and ND, does not guarantee NS

• Lamport’s bakery algorithm (1974)
– Designed for shared-memory multiprocessor systems
– Guarantees ME, ND, and NS

Code
NCS
TP
CS
EP

NCS

p4

p5

p6

p1

p3

p2

5

Lamport’s bakery algorithm
• Solution inspired by a real-world situation

– Waiting to be served at a bakery

• Assumptions on concurrent system model
– Processes communicate by reading and writing to shared 

variables
– Reading and writing to a shared variable are not atomic 

operations
• A process may write while another is reading the same variable

– Each shared variable is owned by a process:
• Everyone can read it, but only the owner can write to it
• No process can perform two writes simultaneously

– The execution speeds of processes are not correlated

• Shared variables:
– num[1,…,N]: array of integers, initialized to 0
– choosing[1,…,N]: array of booleans, initialized to false

• Local variable: j: integer in the range [1,…,N]Va
le

ria
 C

ar
de

llin
i  

-S
D

C
C

 2
02

5/
26



Valeria Cardellini  - SDCC 2025/26 6

bakery

doorway

Lamport’s bakery algorithm

Precedence relation < on ordered integer pairs: 
{a,b} < {c,d} if a < c OR if a = c AND b < d

// non-critical section

// take a ticket
choosing[i] = true;        // start choosing a ticket
num[i] = 1 + max(num[x] : 1 ≤ x ≤ N);
choosing[i] = false;       // finish choosing the ticket

// wait until its number is called, comparing with others
for j = 1 to N do

// busy waiting while process j is choosing
while choosing[j] do NoOp();

// busy waiting until pᵢ has the smallest number
// ties are broken by favoring the process with smaller id
while num[j] ≠ 0 and {num[j], j} < {num[i], i} do NoOp();

// critical section

num[i] = 0;  // release the ticket
// end of critical section

Valeria Cardellini  - SDCC 2025/26 7

Lamport’s bakery algorithm
• Doorway

– When pi starts the EP, it notifies the other processes by 
setting choosing[i]

– pi takes a ticket number equal to one plus the maximum of 
the ticket numbers chosen by the other processes

– Other processes may concurrently enter the doorway (ticket 
selection phase)

– Example of doorway execution

p1

p2

p3

choosing[1]=true

choosing[2]=true

choosing[3]=true

num[1]=1+max{num[j]: 1£j £3}=2

num[2]=1+max{num[j]: 1£j £3}=1

num[3]=1+max{num[j]: 1£j £3}=2



Valeria Cardellini  - SDCC 2025/26 8

Lamport’s bakery algorithm
• Bakery

– pi must check that it is next in line among the processes waiting 
to enter the CS

– The first while loop allows all processes in the doorway to finish 
choosing their ticket

– The second while loop keeps pi waiting until:
• Its ticket number becomes the smallest among all waiting 

processes
• Any process with the same ticket number has a larger process ID

– Observation: 
• Cases where the same ticket number is chosen are resolved using 

the process ID as a tie-breaker
– Example of bakery execution

p1

p2

p3

num[1]=2

num[2]=1

num[3]=2

choosing[2]=false while choosing[j]

choosing[3]=false while choosing[j]

choosing[1]=false

while num[j]

while num[j]

num[2]=0

num[1]=0

CS

CS

Valeria Cardellini  - SDCC 2025/26 9

Lamport’s bakery algorithm: properties

• ME property
– Ensured because if pi is in the doorway and pj is in the 

bakery, then {num[j], j} < {num[i],i}

• NS property
– No process waits forever, because eventually its ticket 

number becomes the minimum

• Ordering
– If pi enters the bakery before pj enters the doorway, then pi

will enter the CS before pj



Valeria Cardellini  - SDCC 2025/26 10

Distributed mutual exclusion: model
• Communication

– Processes communicate via message passing; cannot 
directly access each other’s variables

– A process sends a request and receives a reply with the 
value

– Message transmission delays are unknown but finite
– Reliable channels: messages are delivered correctly, FIFO-

ordered, with no duplicates or spurious messages (received 
but never sent)

• System 
– N processes pi (i = 1, …, N)
– Asynchronous
– Processes are fail-free (no crashes)
– Each process spends a finite time in the CS

Valeria Cardellini  - SDCC 2025/26 11

Adapting Lamport’s bakery algorithm
• Adapting Lamport’s bakery algorithm to DS 

Each process pi acts as a server for its own local variables 
num[i] and choosing[i]
Communication is via message passing: processes read other 
processes’ local variables using request-reply messages

• Works correctly, but…
✗ High communication cost to enter CS: 6N messages

• Must read 3N variables (N for doorway, 2N for bakery)
• Each variable read requires 2 messages

✗ Latency depends on the slowest process-channel 
combination

✗ Efficiency and scalability are limited
• No cooperation among processes



Valeria Cardellini  - SDCC 2025/26 12

Distributed ME: considered algorithms
1. Permission-based algorithms

– A process requesting access to the shared resource asks for 
permission, which can be managed:

• Centrally (coordinator-based)
• Distributed (Lamport’s distributed algorithm, Ricart and

Agrawala’s algorithm)

2. Token-based algorithms
– A special message, called a token, circulates among 

processes
• The token is unique at any time
• Only the process holding the token can access the shared resource

– Token management can be distributed

3. Quorum-based (voting) algorithms
– A process requests votes from a subset of processes before 

accessing the shared resource
– Example: Maekawa’s algorithm

Distributed ME: performance metrics
• Main metrics to evaluate distributed ME algorithms
• Number of messages to enter and exit the CS

– Indicates the network bandwidth consumption

• Number of messages to enter the CS
– Indicates the waiting time before a process can enter the 

CS

Valeria Cardellini  - SDCC 2025/26 13



Valeria Cardellini  - SDCC 2025/26 14

Permission-based: centralized algorithm
• Process pᵢ that requires access to the 

CS sends an access request 
(ENTER) to the central coordinator

• If the CS is free, the coordinator 
informs pᵢ that access is granted 
(GRANTED)

• Otherwise, the coordinator enqueues 
the request using a FIFO policy and 
informs pᵢ that access is denied 
(DENIED)
– Alternatively, in case of synchronous 

DS, it does not reply (see figure)
• When pᵢ releases the resource, it 

notifies the coordinator (RELEASED)
• The coordinator removes the first 

pending request from the queue and 
sends GRANTED to its sender

ENTER GRANTED

RELEASED
GRANTED

Valeria Cardellini  - SDCC 2025/26 15

Centralized algorithm
• Properties

− Guarantees safety and liveness
• NS and ND: only if the coordinator and processes do not fail

− Ordering
• FIFO ordering is guaranteed according to the order in which 

requests arrive at the coordinator
• Not according to the order in which requests are sent or the 

order in which processes request entry to the CSO

• Pros and cons
✓ The simplest to implement
✓ The most efficient in terms of number of messages

• Only 3 messages (ENTER, GRANTED, and RELEASE) are 
required to enter and exit the CS

✗ The coordinator is a SPOF and a potential performance 
bottleneck

✗ If a process fails while in the CS, RELEASE is lost



16

Permission-based: Lamport’s distributed algorithm
• Each process pi uses a scalar clock to timestamp 

messages (plus total ordering Þ) and maintains a 
local queue 
– The queue stores CS access requests from other 

processes
– The scalar clock is incremented before sending messages 

and after receiving messages

Valeria Cardellini  - SDCC 2025/26

17

Lamport’s distributed algorithm
• Algorithm rules:

– Requesting CS access: pi sends a request message REQ(tᵢ, pᵢ) 
with timestamp tᵢ (its scalar clock) to all other processes and 
inserts REQ(tᵢ, pᵢ) into its local queue

– Receiving a request: when pj receives a request from pi it 
inserts REQ(tᵢ, pᵢ) into its queue and sends an ACK message to 
pi

– Entering the CS: pi enters the CS if and only if:
• REQ(ti, pi) precedes all other requests in the queue (i.e., {ti, pi} is 

the minimum according to Þ)
• pi has received from every other process a message (ACK or 

REQ) with a timestamp greater than ti (according to Þ)
– Exiting the CS: pᵢ removes REQ(tᵢ, pᵢ) from its queue and sends 

a RELEASE message to all other processes
– Receiving a RELEASE: when pj receives a RELEASE from pi it 

removes REQ(tᵢ, pᵢ) from its queue 

Valeria Cardellini  - SDCC 2025/26



Valeria Cardellini  - SDCC 2025/26 18

• Similar to the distributed algorithm for totally ordered 
multicast !

• Guarantees safety, liveness, and ordering
– Ordering: requests are served according to their timestamp, 

based on scalar clock, and process id

• Performance: requires 3(N−1) messages to enter and 
exit the CS:
– N−1 REQUEST messages
– N−1 ACK messages
– N−1 RELEASE messages

Lamport’s distributed algorithm

Valeria Cardellini  - SDCC 2025/26 19

Permission-based: Ricart and Agrawala algorithm
• Optimization of Lamport’s distributed algorithm 

– Scalar clock (and Þ) and local queue

• A process that wants to enter 
the CS sends a REQUEST 
message to all other processes 
containing:
− its own process ID
− timestamp based on scalar 

clock
• It then waits for a reply from all 

other processes
• After receiving all REPLY 

messages, it enters the CS
• Upon exiting the CS, it sends a 

REPLY message to the 
processes with queued 
requests

• A process that receives a 
REQUEST message may:
− Not be in the CS and not want 

to enter it → sends a REPLY 
to the sender

− Be in the CS → does not reply 
and places the request in its 
local queue

− Want to enter the CS → 
compares its own timestamp 
and ID with the received 
timestamp and ID. The smaller 
pair wins: if the other process 
wins → sends a REPLY; if it 
wins → does not reply and 
places the request in its local 
queue



Valeria Cardellini  - SDCC 2025/26 20

Ricart and Agrawala’s algorithm
• Local variables for each process

– #replies: number of REPLY messages received (initialized to 0)
– State Î {Requesting, CS, NCS} (initialized to NCS)
– Q: queue of pending requests (initially empty)
– Last_Req: timestamp of the REQUEST message (initialized to 0)
– Num: scalar clock (initialized to 0)

• Each process pᵢ executes the following algorithm
Begin
1. State = Requesting;
2. Num = Num+1; Last_Req = Num;
3. for j=1 to N-1 send REQUEST to pj;
4. Wait until #replies=N-1;
5. State = CS;
6. CS
7. " rÎQ send REPLY to r
8. Q=Æ; State=NCS; #replies=0;

Upon receipt of REQUEST(t) from pj
1. if State=CS or (State=Requesting 

and {Last_Req, i} < {t, j})
2. then insert {t, j} in Q
3. else send REPLY to pj
4. Num = max(t, Num)

Upon receipt of REPLY from pj
1. #replies = #replies+1

Valeria Cardellini  - SDCC 2025/26 21

Ricart and Agrawala’s algorithm: example

NCS

NCS

NCS

p2

p1

p3

R

p2 sends a 
request for CS

Num=1, Last_Req=1

Num=0, Last_Req=0

Num=0, Last_Req=0

Num=0, Last_Req=0

{1, 2}

{1, 2}



Valeria Cardellini  - SDCC 2025/26 22

Ricart and Agrawala’s algorithm: example

NCS

NCS

NCS

p2

p1

p3

R

p3 receives the 
request from p2

and replies

REPLY

Num=max(1, 0)=1Num=0, Last_Req=0

Num=0, Last_Req=0

{1, 2}

{1, 2}

Num=1, Last_Req=1

Valeria Cardellini  - SDCC 2025/26 23

Ricart and Agrawala’s algorithm: example

NCS

NCS

NCS

p2

p1

p3

R

p1 also sends a 
request for the CS

REPLY

Num=1, Last_Req=1R

{1, 2}

Num=1, Last_Req=0

Num=1, Last_Req=1

{1, 1}

{1, 1}

{1, 2}



Valeria Cardellini  - SDCC 2025/26 24

Ricart and Agrawala’s algorithm: example

NCS

NCS

NCS

p2

p1

p3

R

p1 receives the   
request from p2

REPLY

R

{1, 2}

Num=1, Last_Req=0

Num=1, Last_Req=1

{1, 1}

Num=1, Last_Req=1

{1, 1}

{1, 2}

{Last_Req, i} < {t, j}?
{1, 1} < {1, 2}? sì

Valeria Cardellini  - SDCC 2025/26 25

Ricart and Agrawala’s algorithm: example

NCS

NCS

NCS

p2

p1

p3

R

R

Num = max(1,1) = 1

{1,2}
Q

p1 does not reply to p2
and queues the request

REPLY

{1, 2}

{1, 2}

{1, 1}

{1, 1}

Num=1, 
Last_Req=1

Num=1, Last_Req=1

Num=1, Last_Req=0



Valeria Cardellini  - SDCC 2025/26 26

Ricart and Agrawala’s algorithm: example

NCS

NCS

NCS

p2

p1

p3

R

R

p3 receives the 
request from p1
and replies

Num = max(1,1) = 1

REPLY

Q

REPLY

{1, 2}

{1, 2}

{1, 1}

{1, 1}

Num=1, 
Last_Req=1

Num=1, Last_Req=1

Num=1, Last_Req=0

{1,2}

Num = 1

Valeria Cardellini  - SDCC 2025/26 27

Ricart and Agrawala’s algorithm: example

NCS

NCS

NCS

p2

p1

p3

R

R

p2 receives the 
request from p1

Q

REPLY

Num=1, Last_Req=1

Num=1, Last_Req=0

Num=1, 
Last_Req=1

{1, 2}

{1, 2}

{1, 1}

{1, 1}

REPLY

{1,2}

Num = 1

{Last_Req, i} < {t, j}?
{1, 2} < {1, 1}? no

Num = 1



Valeria Cardellini  - SDCC 2025/26 28

Ricart and Agrawala’s algorithm: example

NCS

NCS

NCS

p2

p1

p3

R

R

p2 receives the 
reply from p3

Q

#replies=1

REPLY

{1, 2}

{1, 2}

{1, 1}

{1, 1}

Num=1, Last_Req=1

Num=1, Last_Req=0

Num=1, 
Last_Req=1 {1,2}

Num = 1

REPLY

Num = 1

Num = 1

Valeria Cardellini  - SDCC 2025/26 29

Ricart and Agrawala’s algorithm: example

NCS

NCS

NCS

p2

p1

p3

R

R

p2 replies to the 
request from p1

REPLY

Q

REPLY

{1, 2}

{1, 2}

{1, 1}

{1, 1}

Num=1, Last_Req=1

Num=1, Last_Req=0

Num=1, 
Last_Req=1 {1,2}

REPLY

Num = 1

Num = 1

Num = 1



Valeria Cardellini  - SDCC 2025/26 30

Ricart and Agrawala’s algorithm: example

NCS

NCS

NCS

p2

p1

p3

R

R

p1 receives the 
reply from p2Q

#replies=1

#replies=1

REPLY

{1, 2}

{1, 2}

{1, 1}

{1, 1}

Num=1, Last_Req=1

Num=1, Last_Req=0

Num=1, 
Last_Req=1 {1,2}

REPLY

Num = 1

REPLY
Num = 1

Valeria Cardellini  - SDCC 2025/26 31

Ricart and Agrawala’s algorithm: example

NCS

NCS

NCS

p2

p1

p3

R

R

p1 receives the
reply also from 
p3 and enter CSQ

#replies=1

CS #replies=2

REPLY

{1, 2}

{1, 2}

{1, 1}

{1, 1}

{1,2}

REPLY

Num=1, Last_Req=1

Num=1, Last_Req=0

Num = 1
Num=1, 
Last_Req=1

Num = 1

REPLY
Num = 1



Valeria Cardellini  - SDCC 2025/26 32

Ricart and Agrawala’s algorithm: example

p2

p1

p3

REPLY

R

Num = 1

REPLY

REPLY

Q

#replies=1

CS CS NCS

Q

#replies=0

#replies=2
p2 receives the 
reply also from p1
and enter the CS

CS CS NCS

#replies=0

REPLY

p1 exits the CS and 
replies to p2

{1, 1}

{1, 1}

Num=1, 
Last_Req=1 {1,2}

Valeria Cardellini  - SDCC 2025/26 33

Ricart and Agrawala’s algorithm: example
• Pros

✓ Fully distributed, like Lamport’s algorithm
• No central coordinator

✓ Fewer messages than Lamport’s algorithm
• No RELEASE message; ACKs are deferred until exit from CS
• Only 2(N−1) messages per CS execution: N−1 REQUEST 

messages, N−1 REPLY messages
✓ Literature reports further optimizations (not covered) 

reducing messages to N

• Cons (like Lamport’s algorithm)
✗ If any process fails, no one can enter the CS → requires a 

failure detection mechanism
✗ Every process can become a bottleneck

• Every process participates in every decision
✗ Must know the membership of the multicast group



Valeria Cardellini  - SDCC 2025/26 34

Token-based algorithms
• An auxiliary resource called a token is used

– Other distributed algorithms also use tokens (e.g., leader 
election)

• The algorithm must define:
– How token requests are made
– How the token is maintained and granted

• In a token-based algorithm, at any time there is 
exactly one token holder
– This guarantees safety (mutual exclusion)

• Many token-based ME algorithms exist in the 
literature; we analyze:
– Decentralized (or perpetuum mobile): token management is 

decentralized and the token moves through the system

Valeria Cardellini  - SDCC 2025/26 35

Token-based: decentralized algorithm
• Processes are logically organized in a (unidirectional) 

ring
– No relation between the ring topology and the physical 

interconnection of nodes

• The token travels from one process to the next
– Passes from pi to p(i+1) mod N

• The process holding the token can enter the CS

pN

p
2

p3

p
4

Token

p1• If a process receives the 
token but does not want to 
enter the CS, it passes the 
token to the next process



Valeria Cardellini  - SDCC 2025/26 36

Token-based: decentralized algorithm
✓ Safety: guaranteed
✓ NS: guaranteed if the ring is unidirectional
✓ ND: guaranteed if the token is not lost
• Ordering? 
✗ Network bandwidth is consumed transmitting the 

token even when no process wants to enter the CS
✗ Token loss requires token regeneration
✗ Temporary failures may lead to multiple tokens
• Crash of individual processes:

– Ring must be reconfigured if a process fails
– If the token holder fails, the token must be regenerated 

and the next token owner elected

Va
le

ria
 C

ar
de

llin
i  

-S
D

C
C

 2
02

5/
26

37

Quorum-based algorithms
• Idea: to enter the CS, a process only needs to collect 

votes from a subset of processes (quorum), not from all 
processes

• Voting within the subset:
– The processes vote to determine which process is authorized to 

enter the CS
– A process can vote for only one process per turn

• Voting set Vi: subset of {p1,…, pN}, associated with each 
process pi • A process pj in Vi that receives a 

request
– If the process is in CS or has 

already replied after receiving the 
last release, it does not reply and 
queues the request

– Otherwise, it replies immediately 
with a reply

• A process that receives a release:
– Extracts one request from the 

queue and sends a reply

• A process pi to enter the CS
– Sends a request to all other 

members of Vi
– Waits for a reply from all 

members of Vi
– Upon receiving all the replies 

from Vi members, it enters CS
– Upon exiting the CS, it sends a 

release to all members of Vi



Valeria Cardellini  - SDCC 2025/26 38

Maekawa’s algorithm
• Each process pi executes the following algorithm:
Initialization

state = RELEASED;
voted = FALSE;

CS entry section for pi

state = WANTED;
multicast request to all processes in Vi (including itself);
wait until (number of replies received = K);   // K = |Vi|
state = HELD;

Upon receiving a request from pj (i ¹ j)
if (state = HELD or voted = TRUE) then

queue request from pj without replying;
else

send reply to pj;     // vote in favour of pj

voted = TRUE;
end if

Valeria Cardellini  - SDCC 2025/26 39

Maekawa’s algorithm
Exit protocol from CS for pi

state = RELEASED;
multicast release to all processes in Vi;
if (queue of requests is non-empty) then

remove head of queue – from pk say;
send reply to pk;      // vote in favour of pk
voted = TRUE;

else
voted = FALSE;

end if
On receipt of a release from pj (j ¹ i)

if (queue of requests is non-empty) then
remove head of queue – from pk say;
send reply to pk;      // vote in favour of pk
voted = TRUE;

else
voted = FALSE;

end if



Valeria Cardellini  - SDCC 2025/26 40

Maekawa’s algorithm: voting set
• How is the voting set Vi defined for pi?
1. Vi Ç Vj ¹ Æ " i, j

– Every pair of voting has non-null intersection: why?
2. |Vi| = K " i

– All processes have voting sets with the same cardinality K 
(same effort for each process)

3. Each process pi belongs exactly to K voting sets
– Equal responsibility for every process

4. pi Î Vi
– To reduce the numer of transmitted messages

V1={1,2}

V3={1,3}

V2={2,3}

V1={1,2,3}

V4={1,4,5}

V6={1,6,7}
V2={2,4,6}
V5={2,5,7}
V7={3,4,7}
V3={3,5,6}

• The optimal solution that 
minimizes K is K = N=3

N=7

Valeria Cardellini  - SDCC 2025/26 41

Maekawa’s algorithm: properties and performance
• Safety is guaranteed

– Voting sets are constructed to ensure they have a non-
empty intersection

– If a quorum grants access to the CS for a process, no other 
quorum can grant the same permission

• Liveness is not guaranteed
– Deadlock can occur
– The algorithm can be made deadlock-free with additional 

messages

• Performance
– To enter and exit the CS, 3ÖN messages are required (2ÖN

to enter and ÖN to exit)
• More efficient than Ricart and Agrawala for large-scale 

systems, since 3ÖN < 2(N-1) for N > 4



Valeria Cardellini  - SDCC 2025/26 42

Maekawa algorithm: deadlock example

V1 V3

V2

voted=TRUE

voted=TRUE
voted=TRUE

P = {p1, p2, p3}
V1 = {p1, p2 }, V2 = {p2, p3 }, V3 = {p3, p1 } 
Deadlock situation

• p1, p2, and p3 simultaneously request entry to the CS
• p1, p2, and p3 each set voted=TRUE and wait for a response 

from the other processes
• There is a circular waiting that causes the deadlock

p1

p2 p3

Valeria Cardellini  - SDCC 2025/26 43

Comparison of distributed ME algorithms

Algorithm #msg to enter 
and exit the CS

#msg to enter 
the CS

Issues

Permission-
based 
centralized

3 2 Coordinator crash

Ricart Agrawala 2(N-1) 2(N-1) Crash of any process

Token-based 
decentralized

Da 1 a ¥ (se 
anello
bidirezionale)

Da 0 a N-1 Token loss
Crash of any process

Maekawa 3ÖN 2ÖN Possible deadlock



Valeria Cardellini  - SDCC 2025/26 44

Distributed election algorithms

• Many distributed algorithms require a coordinator (or 
leader), e.g., 
– Sequencer in totally ordered multicast
– Coordinator in mutual exclusion

• Problem: how to elect the coordinator at runtime?
– The existing coordinator can crash
– Election requires reaching distributed consensus 

• Two classic election algorithms
– Bully algorithm 
– Ring election algorithm (Fredrickson & Lynch)

Distributed election: model

• System with N processes pi, i = 1, …, N
• Processes may crash
• Reliable communication: messages are neither lost, 

corrupted, nor duplicated
• Each process can hold at most one election at a time
• Each process has a unique ID and the non-faulty 

process with the highest ID is elected
• Processes can crash, but will eventually recover

Valeria Cardellini  - SDCC 2025/26 45



Distributed election: properties

• Safety: only the non-faulty process with the highest 
ID is elected as leader
– The election result does not depend on which process 

started the election
– If multiple processes start an election at the same time, a 

single winner is eventually announced

• Liveness: at any time, some process is eventually 
elected as leader

Valeria Cardellini  - SDCC 2025/26 46

Valeria Cardellini  - SDCC 2025/26 47

Bully algorithm (Garcia-Molina)
• “Node with highest ID bullies its way into leadership” 
• Steps

– Detection: pi notices that the leader is not responding and 
initiates an election

– Election message: pi sends an ELECTION message to all 
processes with higher IDs (pi+1, pi+2, …, pN)

– If no one responds, pi becomes the new leader and 
announces victory to all processes sending a 
COORDINATOR message

– If pk (k>i) receives an ELECTION message from pi, it replies 
OK, takes over and starts a new election

– If pi receives an OK, it sits back

• Outcome: the non-faulty process with the highest ID 
is elected as leader 

• Note: a new or restarted process that does not know 
the leader can trigger a new election



Valeria Cardellini  - SDCC 2025/26 48

Bully algorithm: example

p4 initiates the election p5 and p6 stop p4 p5 and p6 initiate a new election

p6 stops p5 p6 wins the election and becomes the new leader

Which is a strong assumption?
Synchronous DS (or at least 
partially sync with no 
unbounded delay), so that we 
can use some timeout 
mechanism to identify faulty 
leader

Bully algorithm: communication cost

• Communication cost = how many messages
• Best case: the process with the second highest 

identifier notices leader’s failure
– It can immediately select itself as leader and then send N-2 

COORDINATOR messages ⇒ O(N) messages

• Worst case (assuming no process fails during 
election): the process with the lowest id initiates the 
election
– It sends N-1 ELECTION messages to the other processes, 

which themselves initiate each one an election 
((N-1) + (N-2) + … + 1) + N-1 ⇒ O(N2) messages

Valeria Cardellini  - SDCC 2025/26 49



Valeria Cardellini  - SDCC 2025/26 50

Ring algorithm (Fredrickson and Lynch)
• Processes are organized in a logical ring (unidirectional)

– Each process knows at least its successor
• pi notices that the leader is failed and initiates election

– pi sends ELECTION message to p(i+1)mod N with its own id
– If p(i+1)mod N is faulty, pi skips over it and goes to the next process 

along the ring, until a non-faulty process is located
– At each step, the receiver adds its own id to the list in ELECTION 

message and forwards the message to the next process 

– Eventually, ELECTION 
message gets back to pi, 
which identifies the 
highest id in the list and 
circulates 
COORDINATOR 
message to inform 
everyone else about the 
new leader

Ring algorithm: communication cost

• Requires 2N messages
– N for ELECTION message, N for COORDINATOR message 

• But messages are larger than in Bully algorithm

Valeria Cardellini  - SDCC 2025/26
51



Election algorithms: properties
• Both algorithms assume reliable communication
• Ring election:

– Works for synchronous and asynchronous systems
– Works for any N and does not require any process to know 

how many processes are in the ring

• Fault tolerance with respect to process failure
– What happens if a process crashes during election? It 

depends on algorithm and crashed process
– Additional mechanisms may be needed, e.g., ring 

reconfiguration

• Something to consider:
– What happens in case of network partition? 

Multiple new leaders, one per partition

Valeria Cardellini  - SDCC 2025/26 52

!"#$%C'
"()*C "

References

• Sections 5.3 and 5.4 of van Steen & Tanenbaum book
• Sections 15.2 and 15.3 of Coulouris et al. book

Valeria Cardellini  - SDCC 2025/26 53


