Macroarea di Ingegneria
Dipartimento di Ingegneria Civile e Ingegneria Informatica

Mutual Exclusion and Election
in Distributed Systems

Corso di Sistemi Distribuiti e Cloud Computing
A.A. 2025/26

Valeria Cardellini

Laurea Magistrale in Ingegneria Informatica

Main properties of algorithms for
concurrent and distributed systems

» Safety: nothing bad will happen
— Undesirable states will not occur

— Example: If two processes attempt to write to the same
resource at the same time, no data corruption or race
conditions happen

* Liveness: something good will eventually happen

— The system will make progress and avoid situations where it
stops (deadlock or starvation)

— Example: if a process requests a resource, it will eventually
get it

Valeria Cardellini - SDCC 2025/26 1

Valeria Cardellini - SDCC 2025/26

Mutual exclusion

* N processes want to access a shared resource

« Goal: ensure that each process can exclusively
access a shared resource without interference from
others

« Components of mutual exclusion algorithm:

— Critical section (CS): the part of the code where a process
accesses the shared resource

— Trying protocol (TP): instructions that occur before entering
the CS, ensuring no conflicts

— Exit protocol (EP): instructions that occur after exiting the
CS, releasing the resource for others

Valeria Cardellini - SDCC 2025/26

Properties of mutual exclusion algorithms

* Mutual exclusion (ME) or safety
— At most one process at a time can execute in CS
No deadlock (ND)
— If one or more processes are blocked in their TS, at least one
process will eventually enter and exit the CS
No starvation (NS) or absence of indefinite
postponement
— No process remains blocked forever in the TS; every request to
enter the CS is eventually satisfied
Observations:
— NS = ND, but ND # NS
— NS and ND are liveness properties
— NS is also a fairness property: every process eventually gets
access
Ordering

— Requests to enter the CS are served in order of arrival
(according to the happened-before relation)
— Stronger fairness than NS: ordering = NS, but not viceversa

Valeria Cardellini - SDCC 2025/26

Mutual exclusion in concurrent systems

« Mutual exclusion originated in concurrent systems

« Early mutual exclusion algorithms are based on the
use of shared variables to coordinate N processes
» Dijkstra’s algorithm (1965)
— Designed for single-processor systems
— Guarantees ME and ND, does not guarantee NS
» Lamport’s bakery algorithm (1974)
— Designed for shared-memory multiprocessor systems
— Guarantees ME, ND, and NS

Code

Pr ~1 I+ Ncs | | — P4
L1
/><\ TP <] |

T -

EP
Ps - —

NCS Ps

Valeria Cardellini - SDCC 2025/26

Lamport’s bakery algorithm

» Solution inspired by a real-world situation
— Waiting to be served at a bakery

« Assumptions on concurrent system model

— Processes communicate by reading and writing to shared
variables

— Reading and writing to a shared variable are not atomic
operations

» A process may write while another is reading the same variable
— Each shared variable is owned by a process:

+ Everyone can read it, but only the owner can write to it

* No process can perform two writes simultaneously

— The execution speeds of processes are not correlated
» Shared variables:

— num[1,..,N]: array of integers, initialized to @

— choosing[1,..,N]: array of booleans, initialized to false
* Local variable: 1:integerin the range [1,..,N]

Lamport’s bakery algorithm

// non-critical section

// take a ticket

choosing[i] = true; // start choosing a ticket
num[i] = 1 + max(num[x] : 1 £ x £ N);
choosing[i] = false; // finish choosing the ticket

[/ . wait until its number is called, comparing with others
for j =1 to N do

// busy waiting while process j is choosing

while choosing[j] do NoOp();

// busy waiting until p; has the smallest number
// ties are broken by favoring the process with smaller id
while num[j] # @ and {num[j], j} < {num[i], i} do NoOp();

// critical section Precedence relation < on ordered integer pairs:
{a,b} <{c,d}ifa<cORifa=cAND b <d
num[i] = @; // release the ticket
// end of critical section
Valeria Cardellini - SDCC 2025/26

Lamport’s bakery algorithm

* Doorway

— When p; starts the EP, it notifies the other processes by
setting choosing[1i]

— p, takes a ticket number equal to one plus the maximum of
the ticket numbers chosen by the other processes

— Other processes may concurrently enter the doorway (ticket
selection phase)

— Example of doorway execution

choosing[1]=true num[1]=1+max{numlj]: 1<j <3}=2
P1 — .
choosing[2]=true hum[2]=1+max{num[j]: 1<j <3}=1
P2 — >
o choosing[3]=true num[3]=1+max{numl[j]: 1<j <3}=2
3 — — >

Valeria Cardellini - SDCC 2025/26

Lamport’s bakery algorithm

* Ba

P1
P2 —

Ps —

Valeria Cardellini

- SDCC 2025/26

kery
p; must check that it is next in line among the processes waiting
to enter the CS

The first while loop allows all processes in the doorway to finish
choosing their ticket
The second while loop keeps p; waiting until:

* |ts ticket number becomes the smallest among all waiting
processes

* Any process with the same ticket number has a larger process ID
Observation:

+ Cases where the same ticket number is chosen are resolved using
the process ID as a tie-breaker

Example of bakery execution

num[1]=2 choosing[1]=false while nugm[j] num([1]=0
. CS
num[2]=1 choosing[2]=false while choasing][j] num[2]=§
— - — - >
CS

le

num[3]=2 choosing[3]=false wh

choosing[j] wzhzle numl[j]

Lamport’'s bakery algorithm: properties

* ME property

Ensured because if p; is in the doorway and p; is in the
bakery, then {numl[j], j} < {numli],i}

* NS property

No process waits forever, because eventually its ticket
number becomes the minimum

* Ordering

Valeria Cardellini -

If p; enters the bakery before p; enters the doorway, then p;

will enter the CS before p;

SDCC 2025/26

Distributed mutual exclusion: model

« Communication

Processes communicate via message passing; cannot
directly access each other’s variables

A process sends a request and receives a reply with the
value
Message transmission delays are unknown but finite

Reliable channels: messages are delivered correctly, FIFO-
ordered, with no duplicates or spurious messages (received
but never sent)

« System

Valeria Cardellini

N processes p; (i=1, ..., N)

Asynchronous

Processes are fail-free (no crashes)

Each process spends a finite time in the CS

- SDCC 2025/26

Adapting Lamport’s bakery algorithm

10

» Adapting Lamport’s bakery algorithm to DS

Each process p; acts as a server for its own local variables
num[i] and choosingi]

Communication is via message passing: processes read other
processes’ local variables using request-reply messages

« Works correctly, but...

X

X

X

Valeria Cardellini

High communication cost to enter CS: 6N messages
* Must read 3N variables (N for doorway, 2N for bakery)
» Each variable read requires 2 messages

Latency depends on the slowest process-channel
combination

Efficiency and scalability are limited
* No cooperation among processes

- SDCC 2025/26

1"

Distributed ME: considered algorithms

1. Permission-based algorithms

— A process requesting access to the shared resource asks for
permission, which can be managed:
» Centrally (coordinator-based)

 Distributed (Lamport’s distributed algorithm, Ricart and
Agrawala’s algorithm)

2. Token-based algorithms

— A special message, called a foken, circulates among
processes
* The token is unique at any time
* Only the process holding the token can access the shared resource

— Token management can be distributed
3. Quorum-based (voting) algorithms

— A process requests votes from a subset of processes before
accessing the shared resource

— Example: Maekawa’s algorithm

Valeria Cardellini - SDCC 2025/26

Distributed ME: performance metrics

12

* Main metrics to evaluate distributed ME algorithms

* Number of messages to enter and exit the CS
— Indicates the network bandwidth consumption

» Number of messages to enter the CS

— Indicates the waiting time before a process can enter the
CS

Valeria Cardellini - SDCC 2025/26

13

Permission-based: centralized algorithm

Process pi that requires access to the
CS sends an access request
(ENTER) to the central coordinator

If the CS is free, the coordinator
informs p; that access is granted
(GRANTED)

Otherwise, the coordinator enqueues
the request using a FIFO policy and
informs p; that access is denied
(DENIED)

— Alternatively, in case of synchronous
DS, it does not reply (see figure)

When p; releases the resource, it
notifies the coordinator (RELEASED)

© ® @
ENTER % GRANTED
/ ’_‘ Queue is

empt
Coordinator PY

@© O

Request

@/ o reply
© O

RELEASED
GRANTED

The coordinator removes the first
pending request from the queue and ﬂ
sends GRANTED to its sender

Valeria Cardellini - SDCC 2025/26

Centralized algorithm

14

* Properties
- Guarantees safety and liveness
* NS and ND: only if the coordinator and processes do not fail

- Ordering

* FIFO ordering is guaranteed according to the order in which
requests arrive at the coordinator

* Not according to the order in which requests are sent or the
order in which processes request entry to the CSO

* Pros and cons
v/ The simplest to implement

v The most efficient in terms of number of messages

* Only 3 messages (ENTER, GRANTED, and RELEASE) are
required to enter and exit the CS

X The coordinator is a SPOF and a potential performance
bottleneck

X If a process fails while in the CS, RELEASE is lost

Valeria Cardellini - SDCC 2025/26

15

Permission-based: Lamport’s distributed algorithm

» Each process p; uses a scalar clock to timestamp
messages (plus total ordering =) and maintains a

local queue

— The queue stores CS access requests from other
processes

— The scalar clock is incremented before sending messages
and after receiving messages

Valeria Cardellini - SDCC 2025/26 16

Lamport’s distributed algorithm

 Algorithm rules:

— Requesting CS access: p; sends a request message REQ(ti, pi)
with timestamp ti (its scalar clock) to all other processes and
inserts REQ(t;, pi) into its local queue

— Receiving a request: when p; receives a request from p; it
inserts REQ(t;, pi) into its queue and sends an ACK message to
Pi

— Entering the CS: p; enters the CS if and only if:

* REQ(t;, p;) precedes all other requests in the queue (i.e., {t;, pi} is
the minimum according to =)

* p; has received from every other process a message (ACK or
REQ) with a timestamp greater than t; (according to =)

— Exiting the CS: piremoves REQ(t;, pi) from its queue and sends
a RELEASE message to all other processes

— Receiving a RELEASE: when p; receives a RELEASE from p; it
removes REQ(ti, pi) from its queue

Valeria Cardellini - SDCC 2025/26 17

Lamport’'s distributed algorithm

» Similar to the distributed algorithm for totally ordered

multicast &

« Guarantees safety, liveness, and ordering

— Ordering: requests are served according to their timestamp,
based on scalar clock, and process id

» Performance: requires 3(N-1) messages to enter and

exit the CS:

— N-1 REQUEST messages

— N-1 ACK messages

— N-1 RELEASE messages

Valeria Cardellini - SDCC 2025/26

18

Permission-based: Ricart and Agrawala algorithm

» Optimization of Lamport’s distributed algorithm
— Scalar clock (and =) and local queue

A process that wants to enter
the CS sends a REQUEST
message to all other processes
containing:

- its own process ID

- timestamp based on scalar

clock

It then waits for a reply from all
other processes

After receiving all REPLY
messages, it enters the CS
Upon exiting the CS, it sends a
REPLY message to the
processes with queued
requests

Valeria Cardellini - SDCC 2025/26

A process that receives a
REQUEST message may:

- Not be in the CS and not want
to enter it — sends a REPLY
to the sender

- Beinthe CS — does not reply
and places the request in its
local queue

- Want to enter the CS —
compares its own timestamp
and ID with the received
timestamp and ID. The smaller
pair wins: if the other process
wins — sends a REPLY; if it
wins — does not reply and
places the request in its local
queue

Ricart and Agrawala’s algorithm

» Local variables for each process

— #replies: number of REPLY messages received (initialized to 0)

State € {Requesting, CS, NCS} (initialized to NCS)

— Q: queue of pending requests (initially empty)
— Last_Req: timestamp of the REQUEST message (initialized to 0)
— Num: scalar clock (initialized to 0)

« Each process pi executes the following algorithm

Begin

1. State = Requesting;

2. Num = Num+1; Last Req = Num;
3. forj=1to N-1 send REQUEST to pj;
4. Wait until #replies=N-1;

5. State = CS;

6. CS

7. VreQsend REPLY tor

8. Q={; State=NCS; #replies=0;

Upon receipt of REQUEST(t) from pj

1. if State=CS or (State=Requesting
and {Last_Req, i} < {t, j})

2. theninsert{t,j}in Q

else send REPLY to pj

w

4. Num = max(t, Num)

Upon receipt of REPLY from pj
1. #replies = #replies+1

Valeria Cardellini - SDCC 2025/26

20

Ricart and Agrawala’s algorithm: example

P1 >
Num=0, Last_Req=0
{1,2}
nes R
P2 >
Num=0, Last_Req=0 =1, Last_Req=1

ps‘

Num=0, Last Req=0 : p, sends a
request for CS

Valeria Cardellini - SDCC 2025/26

21

Ricart and Agrawala’s algorithm: example

P1
Num=0, Last Req=0 /

{1,2}
NeS R

v

P2

v

=1, Last_Req=1
(,2) REPLY
P3 : ,
Num=0, Last_Req=0 ps receives the : Num=max(1, 0)=1
request from p,
and replies

Valeria Cardellini - SDCC 2025/26

Ricart and Agrawala’s algorithm: example

p, also sends a
request for the CS

‘ R Num=1, Last_Req=1

{1, 2} {1, 1}

‘ R {1, 1}

=1, Last_Req=1

P1

v

P2

v

REPLY

P3 >
Num=1, Last_Req=0

Valeria Cardellini - SDCC 2025/26

Ricart and Agrawala’s algorithm: example

P1

P2

Ps

Valeria

p; receives the {Last_Req, i} <{t, j}?
request from P2 {1’ 1} < {1, 2}7 si
R Num=1, Last_ Req=1

>
>

{1,2}

@ i

{1, 1}

v

=1, Last_Req=1

REPLY:

\4

Num=1, Last_Req=0

P1

P2

Ps

Cardellini - SDCC 2025/26 24
L] ’ L .
Ricart and Agrawala’s algorithm: example
p; does not reply to p,
and queues the request
Num=1,
‘ R Last Req=1 {12}
— >
——— Num=max(1,1) =1
1,2
{ (. 1}
NeS R {1, 1 \
=1, Last_Req=1 "
REPLY:
Num=1, Last_Req=0]
Valeria Cardellini - SDCC 2025/26 25

Ricart and Agrawala’s algorithm: example

. Num=1, Q {1 2}
o R Last Rec =1__ :
! —/ Num =1 i
1}
nes .
P2 AN >
=1, Last_Reqg=1 /
REPLY
‘ REPLY
P3 >
Num=1, Last_Req=0 Num = max(1,1) = 1

ps receives the
request from p;
and replies

Valeria Cardellini - SDCC 2025/26

Ricart and Agrawala’s algorithm: example

26

‘ Num=1,
R Last_Req=1

v

P1

p, recgives the
request from p;

nes R
{Last_Req, i} < {t, j}?
REPLY {1,2}<{1, 13?2 no

REPLY

P2
=1, Last_Req=1

P3
Num=1, Last_Req=0 Num =1

Valeria Cardellini - SDCC 2025/26

27

Ricart and Agrawala’s algorithm: example

‘ Num=1, Q {1 2}
R Last_Req=1_ ’
—

{1, 1}

P1

v

@ i

P2

v

=1, Last_Req=1 Num =)/2 receives the
reply from
REPLY Ply from Pa
‘ REPLY
p3 >
Num=1, Last_Req=0 Numi=1

Valeria Cardellini - SDCC 2025/26

Ricart and Agrawala’s algorithm: example

28

Q
Num=1,
‘ R Last Req=1_ {12}
\J
{1, 1}7F

P1

v

o feplies to the
re¢quest from p,

e R

P2

=1, Last_Reqg=1 Num =
REPLY

REPLY

Ps

Num=1, Last_Req=0 Num =1

Valeria Cardellini - SDCC 2025/26

29

Ricart and Agrawala’s algorithm: example

p, receives the

. Num=1, Q {1 2}: reply from p,
o, R Last_ Req=1__ #replies=1
— Num y‘
{1, 1) REPLY
R b=
. eplies=1
P2 > >
=1, Last_Req=1
REPLY
‘ REPLY
P3 >
Num=1, Last_Req=0 Num =1
Valeria Cardellini - SDCC 2025/26 30

Ricart and Agrawala’s algorithm: example

p; receives the
Q Num=1 reply also from
‘ - Num=1, 02 D3 ar]d enter CS
D1 Last_Req=1_ replies=2
—/ Num % 1

{1 1}REPLY

e R

eplies=1
P2 >
=1, Last_Req=1
REPLY
‘ REPLY
P3 >
Num=1, Last_Req=0 Num =1

Valeria Cardellini - SDCC 2025/26 31

Ricart and Agrawala’s algorithm: example

Q p1 exits the CS and

Num=1 Q I:I replies to p,
R Last_Req=1r\(‘n#replies=0

P1 —
{1 1}REPLY REPLY
Dy 1.1} eplies=1 R

#replies=2 #replies=0
REPLY p, receives the

REPLY reply also from p;
and enter the CS

v

Ps

\4

Num =1

Valeria Cardellini - SDCC 2025/26

Ricart and Agrawala’s algorithm: example

32

* Pros
v Fully distributed, like Lamport’s algorithm
* No central coordinator

v Fewer messages than Lamport’s algorithm
* No RELEASE message; ACKs are deferred until exit from CS

* Only 2(N-1) messages per CS execution: N-1 REQUEST
messages, N-1 REPLY messages

v Literature reports further optimizations (not covered)
reducing messages to N

» Cons (like Lamport’s algorithm)

X If any process fails, no one can enter the CS — requires a
failure detection mechanism

X Every process can become a bottleneck
» Every process participates in every decision
X Must know the membership of the multicast group

Valeria Cardellini - SDCC 2025/26

33

Token-based algorithms

« An auxiliary resource called a token is used

— Other distributed algorithms also use tokens (e.g., leader
election)

» The algorithm must define:
— How token requests are made
— How the token is maintained and granted

* In a token-based algorithm, at any time there is
exactly one token holder
— This guarantees safety (mutual exclusion)

« Many token-based ME algorithms exist in the
literature; we analyze:

— Decentralized (or perpetuum mobile): token management is
decentralized and the token moves through the system

Valeria Cardellini - SDCC 2025/26 34

Token-based: decentralized algorithm

» Processes are logically organized in a (unidirectional)
ring
— No relation between the ring topology and the physical
interconnection of nodes

* The token travels from one process to the next
— Passes from p; to p(+1) mod N

» The process holding the token can enter the CS

« If a process receives the /'% Ty,
token but does not want to o \
enter the CS, it passes the /)
token to the next process)
\ a
. “
~—

Valeria Cardellini - SDCC 2025/26 35

Valeria Cardellini - SDCC 2025/26

Token-based: decentralized algorithm

v Safety: guaranteed

v/ NS: guaranteed if the ring is unidirectional
v/ ND: guaranteed if the token is not lost

* Ordering?

X Network bandwidth is consumed transmitting the
token even when no process wants to enter the CS

X Token loss requires token regeneration
X Temporary failures may lead to multiple tokens
» Crash of individual processes:

— Ring must be reconfigured if a process fails

— If the token holder fails, the token must be regenerated
and the next token owner elected

Valeria Cardellini - SDCC 2025/26

36

Quorum-based algorithms

» |dea: to enter the CS, a process only needs to collect
votes from a subset of processes (quorum), not from all

processes
» Voting within the subset:

— The processes vote to determine which process is authorized to

enter the CS

— A process can vote for only one process per turn
» \Voting set V;: subset of {p4,..., py}, associated with each

process p;

A process p; to enter the CS
— Sends a request to all other 7

members of V; /

— Waits for a reply from all
members of V,

— Upon receiving all the replies
from V; members, it enters CS

— Upon exiting the CS, it sends a_+~
release to all members of V;

A process p;in V;that receives a

request

— If the process is in CS or has
already replied after receiving the
last release, it does not reply and
queues the request

— Otherwise, it replies immediately
with a reply

A process that receives a release:

— Extracts one request from the

queue and sends a reply 27

Maekawa's algorithm

» Each process p; executes the following algorithm:
Initialization
state = RELEASED;
voted = FALSE;
CS entry section for p;
state = WANTED;
multicast request to all processes in V; (including itself);
wait until (number of replies received = K); /I K=|V|
state = HELD;
Upon receiving a request from p; (i # j)
if (state = HELD or voted = TRUE) then
queue request from p; without replying;

else
send reply to p; // vote in favour of p;
voted = TRUE;
end if Valeria Cardellini - SDCC 2025/26 38

Maekawa's algorithm

Exit protocol from CS for p,
state = RELEASED;
multicast release to all processes in V;;
if (queue of requests is non-empty) then
remove head of queue — from p, say;
send reply to p,; /] vote in favour of p,
voted = TRUE;

else
voted = FALSE;
end if
On receipt of a release from p; (j # i)
if (queue of requests is non-empty) then
remove head of queue — from p, say;
send reply to p,; // vote in favour of p,

voted = TRUE;
else

voted = FALSE;
end if

Valeria Cardellini - SDCC 2025/26 39

Maekawa's algorithm: voting set

» How is the voting set V; defined for p,?
1. VinViz@ Vi,j

— Every pair of voting has non-null intersection: why?
2.|V|=K Vi

— All processes have voting sets with the same cardinality K
(same effort for each process)

3. Each process p; belongs exactly to K voting sets
— Equal responsibility for every process

4. pieV; N=7

— To reduce the numer of transmitted messages V.=(12.3)

» The optimal solution that Va={1,4.5}
minimizes Kis K =[VN | N=3 Ve={1,6,7)
V,={1,2} V,={2,4,6}

V3={1 ,3} V5={2,5,7}

V,={2,3} V7={3,4,7}

V5={3,5,6}

Valeria Cardellini - SDCC 2025/26

40

Maekawa's algorithm: properties and performance

» Safety is guaranteed

— Voting sets are constructed to ensure they have a non-
empty intersection

— If a quorum grants access to the CS for a process, no other
gquorum can grant the same permission
« Liveness is not guaranteed
— Deadlock can occur
— The algorithm can be made deadlock-free with additional
messages
» Performance

— To enter and exit the CS, 3VN messages are required (2VN
to enter and YN to exit)

* More efficient than Ricart and Agrawala for large-scale
systems, since 3VN < 2(N-1) for N > 4

Valeria Cardellini - SDCC 2025/26

41

Maekawa algorithm: deadlock example

P ={p1, p2 p3}
Vi={ps P2}, Vo={p2 ps}, V3={ps, p;1}
Deadlock situation

* p4, P, and p; simultaneously request entry to the CS

* p4, P2, and p; each set voted=TRUE and wait for a response
from the other processes

* There is a circular waiting th

7
7

at causes the deadlock

Voted=TRUE

ted=TRUE
S ybted=TRUE

Valeria Cardellini - SDCC 2025/26 42

Comparison of distributed ME algorithms

Algorithm #msg to enter #msg to enter | Issues
and exitthe CS | the CS
Permission- 3 2 Coordinator crash
based
centralized
Ricart Agrawala | 2(N-1) 2(N-1) Crash of any process
Token-based Da 1a w (se Da 0 a N-1 Token loss
decentralized anello Crash of any process
bidirezionale)
Maekawa 3VN 24N Possible deadlock

Valeria Cardellini - SDCC 2025/26 43

Distributed election algorithms

» Many distributed algorithms require a coordinator (or
leader), e.q.,
— Sequencer in totally ordered multicast
— Coordinator in mutual exclusion
» Problem: how to elect the coordinator at runtime?
— The existing coordinator can crash
— Election requires reaching distributed consensus
» Two classic election algorithms
— Bully algorithm
— Ring election algorithm (Fredrickson & Lynch)

Valeria Cardellini - SDCC 2025/26

Distributed election: model

44

« System with N processes p;,i=1, ..., N
* Processes may crash

* Reliable communication: messages are neither lost,
corrupted, nor duplicated

« Each process can hold at most one election at a time

« Each process has a unique |ID and the non-faulty
process with the highest ID is elected

* Processes can crash, but will eventually recover

Valeria Cardellini - SDCC 2025/26

45

Distributed election: properties

« Safety: only the non-faulty process with the highest
ID is elected as leader

- The election result does not depend on which process
started the election

- If multiple processes start an election at the same time, a
single winner is eventually announced

« Liveness: at any time, some process is eventually
elected as leader

Valeria Cardellini - SDCC 2025/26 46

Bully algorithm (Garcia-Molina)

* “Node with highest ID bullies its way into leadership”

» Steps

— Detection: p; notices that the leader is not responding and
initiates an election

— Election message: p; sends an ELECTION message to all
processes with higher IDs (pj+1, Pi+2, -+, PN)

— If no one responds, p; becomes the new leader and
announces victory to all processes sending a
COORDINATOR message

— If px (k>i) receives an ELECTION message from p;, it replies
OK, takes over and starts a new election

— If p; receives an OK, it sits back

» Outcome: the non-faulty process with the highest ID
is elected as leader

* Note: a new or restarted process that does not know
the leader can trigger a new election

Valeria Cardellini - SDCC 2025/26 47

Bully algorithm: example

@G) O,

20 0,0 6
Electi OK
o < ection e ° e @

@O%,, © @®@ O,

Previous coordinator
has crashed

@) (b))
p4 initiates the election psand pg stop p, ps and pg initiate a new election

» Y@

@ OK

@®@

Which is a strong assumption?

Synchronous DS (or at least
partially sync with no
unbounded delay), so that we
can use some timeout

mechanism to identify faulty
leader

(e)

(d) . .
Pe Stops ps pe Wins the election and becomes the new leader
Valeria Cardellini - SDCC 2025/26

48

Bully algorithm: communication cost

« Communication cost = how many messages

« Best case: the process with the second highest
identifier notices leader’s failure
— It can immediately select itself as leader and then send N-2
COORDINATOR messages = O(N) messages
» Worst case (assuming no process fails during
election): the process with the lowest id initiates the
election

— It sends N-1 ELECTION messages to the other processes,
which themselves initiate each one an election

((N-1) + (N-2) + ... + 1) + N-1 = O(N?) messages

Valeria Cardellini - SDCC 2025/26 49

Ring algorithm (Fredrickson and Lynch)

* Processes are organized in a logical ring (unidirectional)
— Each process knows at least its successor

» p;notices that the leader is failed and initiates election
— pisends ELECTION message to p(i:1moq v With its own id
— If pisnmod nv IS faulty, p; skips over it and goes to the next process
along the ring, until a non-faulty process is located

— At each step, the receiver adds its own id to the listin ELECTION
message and forwards the message to the next process

— Eventually, ELECTION
message gets back to p;,
which identifies the
highest id in the list and
circulates
COORDINATOR

[6,0,1] [6,0,1,2] [6,0,1,2,3]

~~.,____.__“"_________Y
‘ [3,4,5,6,0,1] [3,4,5,6,0,1,2]

3.4,5.6,0] [6.0.1,2,3,4]

. [6,0]
message to inform j
i 3,4,5,6
everyone else about the g S
new leader \@/@
, . [6] [6,0,1,2,3,4,5]
Valeria Cardellini - SDCC 2025/26 50

Ring algorithm: communication cost

* Requires 2N messages
— N for ELECTION message, N for COORDINATOR message

« But messages are larger than in Bully algorithm

Valeria Cardellini - SDCC 2025/26
51

Election algorithms: properties

Both algorithms assume reliable communication

Ring election:

- Works for synchronous and asynchronous systems

- Works for any N and does not require any process to know
how many processes are in the ring

Fault tolerance with respect to process failure

- What happens if a process crashes during election? It
depends on algorithm and crashed process

- Additional mechanisms may be needed, e.g., ring

reconfiguration
« Something to consider:
- What happens in case of network partition? <|) M CID
Multiple new leaders, one per partition 6 RN <|>
Valeria Cardellini - SDCC 2025/26 52

References

e Sections 5.3 and 5.4 of van Steen & Tanenbaum book
* Sections 15.2 and 15.3 of Coulouris et al. book

Valeria Cardellini - SDCC 2025/26 53

