TOR VERGATA Macroarea di Ingegneria

Univexsira prorrsrunror roms Dipartimento di Ingegneria Civile e Ingegneria Informatica

Synchronization in Distributed Systems

Corso di Sistemi Distribuiti e Cloud Computing
A.A. 2025/26

Valeria Cardellini

Laurea Magistrale in Ingegneria Informatica

Time in distributed systems

* Ina DS, processes are executed on network-
connected nodes that cooperate to complete a
computation and communicate via message
exchange

+ Observations:
— Algorithms require synchronization

— Processes running on different nodes in the DS must have a
common notion of time to perform synchronized actions
based on time

— Algorithms require event ordering, meaning determining
which event occurred before another

— In DS, time is important but problematic

Valeria Cardellini - SDCC 2025/26 1

Time in distributed systems

* In a centralized system, it is possible to determine the
order in which events occurred
— Shared memory and single clock

 Ina DS, itis impossible to have a single physical
clock common to all processes

* Yet, the global computation can be viewed as a total
order of events, by considering the time at which
events were generated

« For many distributed algorithms, it is crucial to
determine this time or, at the very least, establish the
ordering of events: how?

Valeria Cardellini - SDCC 2025/26

Time in distributed systems: solutions

« Solution 1: synchronizing physical clocks
— A physical clock counts the number of seconds

— Each node in the DS adjusts its physical clock to
be consistent with the clocks of other nodes or
with a reference clock

» Solution 2: synchronizing logical clocks
— Alogical clock counts the number of events

— In a DS, physical clock synchronization is not
necessary; only the ordering of events is
required (proposed by Leslie Lamport)

Valeria Cardellini - SDCC 2025/26

Model of distributed computation

« Components of DS: N processes and communication
channels

» Each process p; (1 <i < N) generates a sequence of events
— e/ k-th event generated by p;
— Internal events: state changes in the process
— External events: send/receive messages

» Evolution of computation represented with space-time
diagram
—;. ordering relation between two events in p;

e —; e’ if and only if e occurred before e’ in p;

PN
VAR

es! ej2esdest ed esf

_—
Valeria Cardellini - SDCC 2025/26 time 4

Timestamping

» Each process labels events with a timestamp

» Simple solution: each process labels events
according to its own physical clock

* Does this work?

— We can reconstruct the ordering of events on the same
node

— But what about the ordering of events on different nodes?

* In a distributed system, it is impossible to have a
single physical clock shared by all processes

n1 ® n2

m1 m2

n3
Valeria Cardellini - SDCC 2025/26 5

Synchronous vs. asynchronous DS

» Properties of a synchronous DS
1. There are constraints on the execution speed of each

process

- The execution time of each step is limited, with both lower and upper
bounds

2. Each message transmitted on a communication channel is
received within a limited time

3. Each process has a physical clock with a known and
limited clock drift rate from the real clock
- Clock drift: deviation of clock from the true time over a period

* In an asynchronous DS

— There are no constraints on the execution speed of
processes, the message transmission delay, or the clock
drift rate

Valeria Cardellini - SDCC 2025/26

Solutions to synchronize clocks

* First solution

— Synchronize physical clocks of processes with some
approximation using synchronization algorithms

— Each process labels events with the value of its physical
clock (which is synchronized with the other clocks with a
certain degree of approximation)

— Timestamping based on physical time (physical clock)

 [s it always possible to keep the approximation of
physical clocks limited?
— No, in an asynchronous DS

— In an asynchronous DS, timestamping cannot be based on
physical time; instead, it must be based on logical time
(logical clock)

Valeria Cardellini - SDCC 2025/26

Physical clock

» At real-time instant t, the OS reads the time from the
hardware clock H,(t) of the computer and generates
the software clock C,(t)= aH|t) + b which
approximately measures the physical time instant ¢
for p;

— E.g., C(t) is a 64-bit number that represents the number of
nanoseconds elapsed from a reference instant until time ¢

— In general, the clock is not perfectly accurate and may differ
from t

— If C; behaves well enough, it can be used for event
timestamping in p;
* What should the clock resolution be in order to
distinguish two events?

— Smaller than the time difference AT between two relevant
events

Valeria Cardellini - SDCC 2025/26

Physical clock in a DS

* In a SD physical clocks are different and can have
different values

» Skew: instantaneous difference between the values of
two clocks

» Drift: clocks measure time at different rates (due to
physical variations), so over time they diverge from
real time

 Drift rate: difference per unit of time between a
physical clock and an ideal clock

— E.qg., drift rate of 2 ysec/sec means that the clock increases by
1 sec + 2 msec every sec

— Dirift rate of standard quartz clocks: 106s/s (~1 s in 11-12
days)
— Drift rate of high-precision quartz clocks: 107 or 108 s/s

Valeria Cardellini - SDCC 2025/26

Universal Coordinated Time (UTC)

* |nternational reference time standard

« Based on atomic time, occasionally corrected using
astronomical time

— 1 second is defined as the time is takes for a cesium-133
atom to complete 9,192,631,770 transitions

* Physical clocks using atomic oscillators are extremely
accurate, with a drift rate as low as 1073 s/s

» Atomic clock outputs are broadcast by terrestrial
radio stations and satellites (e.g., GPS)
— In Italy, Istituto Galileo Ferraris

* Nodes equipped with receivers can synchronize their
clocks with these signals
— Accuracy of signals from terrestrial radio stations: 1 to 10 ms
— Accuracy of signals from satellites: 0.5 ms down to 50 ns

Valeria Cardellini - SDCC 2025/26

Synchronizing physical clocks

10

* How to synchronize physical clocks with the atomic
clock or with each other?

» External synchronization: the clocks C; (i=1, 2, ... N)
are synchronized with a time source S (UTC), such
that, for a given real-time interval /

|S(t) - C(t)| < afor 1 <i<Ninthe interval
— The clocks C; have an accuracy of a, where a>0

* Internal synchronization: two clocks C;and C; are

synchronized with each other, so that
|Ci(t) - C(t)] = for 1 <ij < Nin the interval /
— The clocks C; and C; have a precision of m, where >0

Valeria Cardellini - SDCC 2025/26

1"

Synchronizing physical clocks

Internal # External

synchronization - synchronization

 Internally synchronized clocks are not necessarily
synchronized externally

— All clocks can collectively drift from an external source while
still remaining synchronized with each other within a bound D

* If the set of processes is externally synchronized with
accuracy of a, then it is also internally synchronized
with a precision of 2a

Valeria Cardellini - SDCC 2025/26

Correctness of physical clocks

12

* A hardware clock H is correct if its drift rate is between
-p and +p with o >0

» If clock H is correct, the error made when measuring a
real-time interval [t, '] (with t’>t) is bounded:

(1-p) (- <H{E)-H{O)<(1+p)(-1)

— This avoids “jumps” in the clock value

a1
Clock time, H ‘?t d_(l;it =1
& o
.y S S
« For a software clock C, it is often & & M
. . . Qe d
sufficient to require monotonicity:) 6@;»\"9 t
t'>t= C(t) > C(f)
UTC, t

Valeria Cardellini - SDCC 2025/26

13

When to synchronize physical clocks?

» Due to the drift rate, after a certain time, the clocks in
a DS will become misaligned again — periodic
synchronization is required to realign them

* Let’s consider two clocks with the same maximum
drift rate p from UTC

« Assume that after synchronization, the two clocks
drift in opposite directions from UTC
— After At from synchronization, they will have deviated by at
most 2pAt
» To ensure that the difference between the two clocks
remains within a desired tolerance 6, they must be
resynchronized at least every 6/2p

Valeria Cardellini - SDCC 2025/26

Internal synchronization in synchronous DS

 Internal synchronization algorithm between 2
processes in a synchronous DS

— p4 sends its local clock value t to p, via a message m, with
transmission time Ty

— p, receives m and sets its clock to t + Tyo6p

* Tiasm IS Unknown, but since the system is synchronous T,,;, <
Ttrasm = 7-max
* Letu= (T, — Tmin) be the transmission time uncertainty

— Clock setting rule: if p, sets its clock to t + (T,,.x + Trin)/2, the
optimal lower bound on the clock skew is u/2
» Generalization: the algorithm can be extended to N
processes
— The optimal lower bound on the clock skew is u(1 — 1/N)

* Asynchronous DS
— Message delays are unknown and unbounded: T;..s, = Thin +
X, with x =2 0 and unknown
— Different physical clock synchronization algorithms are

required
Valeria Cardellini - SDCC 2025/26

14

15

Valeria Cardellini - SDCC 2025/26

Physical synchronization via a time service

A time service can provide the current time with a
given precision

— Equipped with a UTC receiver or a high-accuracy clock
The group of processes that needs to synchronize
uses a time service

— Time service types: centralized or distributed

Centralized time service
— Request-driven: Cristian’s algorithm (1989)
« External synchronization

— Broadcast-based: Berkeley Unix algorithm - Gusella &
Zatti (1989)

* Internal synchronization
Distributed time service

— Network Time Protocol (NTP)
« External synchronization
* Internet-scale

Valeria Cardellini - SDCC 2025/26

Cristian’s algorithm

16

A (passive) time server S receives the signal from a
UTC source — external synchronization

A process p requests the time by sending a request
mr and receives the time tin the reply m, from S

Process p sets its clock to t + T,,,14/2

— T,oung is the round-trip time measured by p, assume
symmetric network delay

My
O—+—0
Il

p Mt S
Observations
— A single time server may fail
» Solution: use a group of synchronized time servers
— Malicious time servers are not handled

— Reasonable accuracy only if T,,,,4 is small — suitable for
low-latency LAN

17

Cristian’s algorithm: example

Ty | 08:02:01.670

08:02:04.325 | T

08:02:02.130

_awi|
-
=

Teound = T1— To =460 ms
« Csetsitsclockto T, + T,,ynq/2 = 08:02:04.325 + 230
ms = 08:02:04.555

 Cclock increases by 2.425 s

Valeria Cardellini - SDCC 2025/26 18

Cristian’s algorithm: accuracy

Case 1: S cannot insert t into m; before min time units
have elapsed since p sent m,
— min is the minimum transmission time between p and S
Case 2: S cannot insert t into m, after the instant when
m, arrives at p minus min
* The time at S when m, arrives at p lies in the interval
[t + min, t+ T,,,,q - Min]
— Interval width: T,,,,q - 2 min
» Accuracy a: =(T,,,n4/2 - min)

Valeria Cardellini - SDCC 2025/26 : : 19

Berkeley algorithm

Internal synchronization algorithm for a group of
nodes

The master node (active time server) broadcasts a
request to all nodes, including itself, to get the clock
values of the other nodes (workers)

The master uses the RTTs to estimate the clocks of
the workers

— 9 difference between M clock and worker i clock City)
(calculated similarly to Cristian’s algorithm) CM(%. i
& = (Cu(t) + Cu(ts))/2 — Ci(t) M= Cuts)

Cu(ty) and Cy(t3): master’s clock at sending and receiving
Ci(t): worker i clock when reply is sent
Master calculates the average of of all §; (including
its own) and sends correction value to workers
— If backward adjustment needed: slow down clock

Valeria Cardellini - SDCC 2025/26 20

Berkeley algorithm: example

Time daemon

1 300 Cq? 3:00 0 dy 3:05 .5 adj

C,?

P adj,
@ d3 +15
|

@ d, -19
| Cs?
| Network |

o ey

O]) | |© CRE

2:50 3:25 2:50 3:25 3:05 3:05
Master broadcasts a Master calculates the Master sends a
request to all nodes average of clock correction value to each
differences: worker (adj; = avg - d;)

avg = (-10+25+0)/3 = 5

Valeria Cardellini - SDCC 2025/26 21

Berkeley algorithm: features

* Precision: depends on the maximum nominal RTT

— The master ignores clock values associated with RTTs
above this maximum

— Outliers are discarded to improve accuracy

* Fault tolerance

— Master failure: another node is elected as master using an
election algorithm

— Tolerance to arbitrary (Byzantine) behavior:
* Workers sending incorrect clock values

+ The master only considers clock values that differ from each
other by at most a specified threshold

Valeria Cardellini - SDCC 2025/26 22

Network Time Protocol (NTP)
» Time service for Internet (RFC 5905)

- Provides external synchronization accurate wrt UTC

- Configurable on multiple OSs
- On GNU/Linux: ntpd daemon for automatic synchronization,
ntpdate for manual synchronization

- Hierarchy of servers

— | Stratum 1 - Primary servers:

@ directly connected to UTC sources

(e.g., atomic clocks, GPS)

1
D D‘_’D — | Stratum 2 - Secondary servers:
// \\ / \\ / \\ synchronized by primary servers

5 ¥ \/ ¥ N
D 5 D o D D Leaf servers/synchronization
/ / // \\\\Z \ subnet: run on user machines,
¥ ‘BN receive time from higher-stratum

. d D/"’D D"—’D **D servers

Valeria Cardellini - SDCC 2025/26 23

NTP

 Architecture
— Scalable and robust time service
— Redundant time servers and network paths
— Authentication of time sources to prevent

« NTP fault tolerance and reconfiguration

— The synchronization subnet reconfigures automatically in
case of failures

— Primary server loses connection to UTC source: it becomes
a secondary server

— Secondary server loses connection to its primary (e.g.,
primary crashes): it can switch to another primary server

Valeria Cardellini - SDCC 2025/26

NTP: synchronization modes

24

1. Multicast mode
— Server in a high-speed LAN multicasts its clock to others

— Other servers set their clocks assuming a certain transmission
delay

— Accuracy: relatively low (no way to measure RTT)
2. Procedure call mode
— Server responds to requests like in Cristian’s algorithm
— Accuracy: higher than multicast
— Use case: when multicast is not available, makes sense for
smaller networks
3. Symmetric mode
— Server pairs exchange timing information
— Accuracy: very high
— Commonly used for higher-level hierarchical servers (Stratum 2
and above)

 All synchronization modes use UDP
Valeria Cardellini - SDCC 2025/26

25

NTP: symmetric mode

» Servers A and B exchange message pairs (m, m’) to
improve synchronization accuracy

» Servers exchange messages with timestamps

— A sends to B a message m, which contains:
« Timestamp T3 time when A sends m

— B responds to A with message m’, which contains:
+ Timestamp T,,: time when B receives m
* Timestamp T.,: time when B sends m’

— Arecords T; when it receives m’

— Time difference T.4-T,., may be non- negligible
Server B

LT

. Server A T ~ Time
* Timestamps allow servers to:

— Estimate round-trip delay

— Adjust their clocks more precisely
Valeria Cardellini - SDCC 2025/26

NTP: symmetric mode

* For each pair of messages m and m' exchanged
between two servers, NTP estimates: __

— Offset o; between the two clocks ~ e
— Round-trip delay di, which is the total

transmission time of m and m’ Server A Time

» Let’s define:

— o: real offset of clock B relative to clock A (o = clockg - clockp,)
— tand t: actual transmission times of messages m and m', respectively
» For each pair of messages:
T.,=Ts+t+o0o and T,=T,,+¢t-
where d;=t+t'=T,,- T3+ T;-T;4

» Subtracting the equation for T; from the one for T,,, we solve for o:
0=[(Tiz- Tig) * (Tis - T2 + (' - £)/2
The estimated offset o;is given by: 0; = [(Ti2 - Ti.3) + (T;.1 - T)l/2

The real offset ois: 0 = 0; + (' - t)/2
Valeria Cardellini - SDCC 2025/26 27

NTP: symmetric mode

» The accuracy of the offset estimation is determined by
the round-trip delay d

— Since both t and t’ are positive, the real offset o will lie within:
0,-dil2<0=<o0;+d/2

— Thus, o; is the estimated offset and its accuracy is d,/2

« NTP servers apply a statistical filtering algorithm on the
8 most recent <o;, d> pairs, choosing as the estimate of

o the o; value corresponding to the minimum d;

« They then apply a peer selection algorithm to possibly
change the peer used for synchronization

« NTP accuracy:
— 10 ms on the Internet ~ Perfect synchronization over
— 1mson LAN networks is actually impossible

Valeria Cardellini - SDCC 2025/26

Google’s TrueTime (TT)

28

 Distributed synchronized clock with bounded
non-zero error

— Designed by Google for Spanner, a global-scale,
multi-version, distributed NewSQL database

— Relies on a well-engineered tight clock
synchronization available on all Google servers
thanks to GPS and atomic clocks

— Enables applications to generate monotonically
increasing timestamps

— Cons: TT requires special hardware and custom-
build tight clock synchronization protocol, which is
infeasible for many systems

» Google also relies on its very high throughput, global
fiber optic network linking its data centers

Valeria Cardellini - SDCC 2025/26

29

Valeria Cardellini - SDCC 2025/26

Time in asynchronous DS

» Physical clock synchronization algorithms

— They (e.g., NTP) estimate transmission times to synchronize
clocks between nodes

— Accuracy depends on knowing the upper and lower bounds
of transmission times
 Limitations in asynchronous DS

— No constraints on transmission times — physical
synchronization is used in asynchronous DS but with limited
accuracy due to variable transmission times

— We cannot use physical time to order events occurring on
different nodes
» Logical time as a solution

— What really matters is that processes agree on the order of
events rather than the exact physical time at which events
occurred

— We use logical clocks (e.g., Lamport clocks) to maintain
event ordering across nodes

Logical time

30

* |dea: order events based on two intuitive
observations:

1. Two events that occurred on the same process p; happen
exactly in the order observed by p;

2. When a message is sent from p; to p;, the send event
happens before the receive event
« Lamport (1978) and the happened-before relation

— Leslie Lamport introduces the concept of the happened-
before relation (also known as causal ordering or
precedence relation)

—; . ordering relation between two events that occurred on p;
— : happened-before relation between any two events

L. Lamport, Time, Clocks and the Ordering of Events in Distributed Systems,
1978

Valeria Cardellini - SDCC 2025/26

31

Happened-before relation

Two events e and e’ are in the happened-before relation
(denoted by e — ¢€’) if one of the following is true:

1. 3 pi|e—e’

2. e =send(m) A e’ = receive(m)

e is the event of sending message m, and e'is the corresponding
receive event

3. de,e’,e’|(e—>e”’) AN(e">¢€)

The happened-before relation is transitive
By applying these rules, we can construct a sequence of
events e,, e, ..., e, that are causally ordered

Observations

— The happened-before relation defines a partial ordering
(properties: non-reflexive, anti-symmetric, transitive)

— The sequence ey, e,, ..., €, is not necessarily unique

— For a pair of events, they are not always related by a happened-
before relation. In such cases, the events are said to be
concurrent (denoted by ||)

Valeria Cardellini - SDCC 2025/26

Happened-before relation: example

Sequence s, = e/, 8,1, 8%, €32, €5%, 6%, e4*, 64°, &°
Sequence s, = e3', €42, .3, 4%, e;5°
Can you find another sequence?

Events e;' and e, are concurrent
e;!' > eyt and e, > e’

Valeria Cardellini - SDCC 2025/26

33

Scalar logical clock

» A monotonically increasing software counter (scalar
value), used to order events in DS
— Scalar logical clock (or Lamport clock): we call it “scalar” to
distinguish from vector clock
» Does not rely on physical clock

« Each process p; has its own scalar clock L;, and it
uses it to apply timestamps to events

» Denote L{e) as the timestamp, based on the scalar
clock, applied by process p; to event e

+ Key property: if e > e’ then L(e) < L(¢e’)

* Key observations:
— If L(e) < L(e’), itdoes not necessarily’'mean that e — e’;
however, L(e) < L(e’) implies thate —» e’
— The happened-before relation introduces a partial ordering of

events: in the case of concurrent events, it is impossible to

determine which event actually happens first
Valeria Cardellini - SDCC 2025/26

Scalar clock: update

34

» Scalar clock update algorithm by Lamport

» Initialization: each process p; initializes its scalar clock
LitoO(Vi=1,...,N)
» Internal event: before executing an internal event, p;
increments L;by 1: L, =L, + 1
« Sending a message: when p; sends message m to p;
— Increment the value of L L;=L; + 1
— Attach the timestamp t = L; to message m
— Execute the send(m) event
« Recelving a message: when p; receive message m
with timestamp ¢
— Update its scalar clock L; = max(t, L))
— Increment the value of Lz L;=L; + 1
— Execute the receive(m) event

Valeria Cardellini - SDCC 2025/26

35

Scalar clock: example

p: s : ‘ .
911 /612 913 614 €1

[0] lz/l [3] [9]

Pz e, 6,2 6,3t e,

Valeria Cardellini - SDCC 2025/26 36

Scalar clock: example

L= o L1—‘I L,=2 L,=6 L,=7 L,=8

o el 57
] Folps

31 e32 es® ezt

* Observations

— e4'— e,! and the respective timestamps reflect this causal
relationship (L1=1 and L,=2); indeed, if e,' — e, then L(e4)
<L(ez")

— e4' || e3! and the respective timestamps are equal (L{=1
and L;=1); indeed, ifL(e4') >L(e3') then e, % e’

— e,' || e3! and the respective timestamps differ (L,=2 and
L;=1); indeed, ifL(e,") > L(e3") then e," 4 &5’

Valeria Cardellini - SDCC 2025/26 37

Valeria Cardellini - SDCC 2025/26

Total ordering of events

* Problem: using a scalar clock, two or more events can
have the same timestamp. How can we establish a total
ordering of events to avoid two events occurring at the
same logical time?

« Solution: in addition to the scalar clock, we use the
process number on which the event occurred
— We establish a total ordering (<) between the processes

« Total order relation between events, denoted by e = e”.
if e is an event on process p; and e’is an event on
process p;, then e = e’if and only if:

1. L{e) < Lf(e’)v
2. L{e)=L(e)Ap;<p
« This relation is used in some distributed mutual

exclusion algorithms to ensure a total ordering of
events across processes

Total ordering of events: example

38

L,=0 L,=1L,=2 L=6 L,=7 L,=8

« e43 and e;* have the same scalar clock value: how
to order them?

« e.3= es;*since Li(e3) = Ls(e5*) and py < p;

Valeria Cardellini - SDCC 2025/26

39

Scalar clock and its limitation

» The scalar clock has the following property
— Ife—> e’ then L(e) < L(e’)
* However, it is not possible to guarantee that:
— If L(e) < L(e’),thene —» e’
See slide 36: L(e3') < L(e,") but e5'|| e,?
« Consequence: it is not possible to determine, by just
looking at scalar clocks, whether two events are
concurrent or not

« How to overcome this limitation?

* To solve this issue, vector clocks were introduced by
Mattern (1989) and Fidge (1991)

Valeria Cardellini - SDCC 2025/26 40

Vector clock

» A vector clock for a system with N processes is a
vector of N integers

« Each process p; maintains its own vector clock V;
* For process p;, V[i]is the local scalar clock

« Each process uses its own vector clock to assign
timestamps to events

« Similar to Lamport’s clock, the vector clock is
attached to the message m, and the timestamp
becomes vector-valued

» The vector clock captures the full characteristics of
the happened-before relation

e — e’if and only if V(e) < V(e

Valeria Cardellini - SDCC 2025/26 41

Vector clock: meaning and comparison

» Given the vector clock V;
— V[i]is the number of events generated by p;

— Vi[j]with i # jis the number of events that occurred at p,
which p; knows about

» Comparison of vector clocks
— V=Vifandonlyifvj V[j]=V'[j]
— VsVifandonlyif vVj V[jl<V'[j]
— V < V’(and thus the event associated with V precedes the
event associated with V') if and only if
e Vie[, .. ,N:V[i]sV'[i]
and
e Jjeinl, ..., N:V[jI<V'[j]
— V|| V' (and thus the event associated with V is concurrent to
the event associated with V’) se e solo se
e (V< V)and (V' < V)

Valeria Cardellini - SDCC 2025/26

Vector clock: update

 Initialization: each process p; initializes its own vector
clock Vi Vi[kl=F0 Vk=1,2,...,N

« Internal event: before executing an internal event, p;
increments its own vector clock component V;[i] by 1:
Vil = Vil + 1

« Sending a message: when p; sends message m to p;
— Increment its own clock component V;[i] by 1: V;[i] = V;[i] + 1
— Attach the vector timestamp t = V; to message m
— Execute the send(m) event

« Receiving a message: when p; receives message m
with timestamp t:
— Update its vector clock component for each process K:
Vi[Kl = max(tlKk], Vi[K) V k=1,2, ..., N
— Increment its own clock component V;[j] by 1: V;[j] = V;[j] + 1

— Execute the receive(m) event
Valeria Cardellini - SDCC 2025/26

Vector clock: example

P+ % ? * <
|

o
N
w
SN

o
E=a
D
N
o
D
N
w
IN
N

P2 ¢ : * .

P3 . o *

Valeria Cardellini - SDCC 2025/26 44

Using vector clocks to compare events

+ Let V(e) and V(e’) be the vector timestamps of two
events e and e’

» By comparing V(e) and V(e’), we can determine if the
events are in happened-before relationship or

concurrent
1 1
2 2 , ;
5 5 V(e) < V(e)and thus e —» e
% V'
1 1
2 0 V(e) = V’(e) and thus e || €’
0 2
% V'

Valeria Cardellini - SDCC 2025/26 45

Examples of applications of logical time

+ We will examine two applications of logical time:
1. Scalar clock for totally ordered multicasting
2. Vector clock for causally ordered multicasting

Message is delivered
Application sends message ~ % fo application
Adjust local clock Adjust local clock
and timestamp message

Middleware layer

Valeria Cardellini - SDCC 2025/26 46

Totally ordered multicasting: problem

« To ensure that concurrent updates on a replicated
database are seen in the same order by every
replica, you need to synchronize and order the
updates across all replicas, ensuring consistency

— py: add $100 to a bank account (initial value: $1000)
— p»: increment the account by 1%

— There are two replicas and, without synchronization, each
replica may apply the updates in a different order
* Replica #1 « 1111 (first p, and then p,)
* Replica #2 « 1110 (first p, and then p,)

% Update1 Update 2 .%

Replicated database

Update 1 is Update 2 is
performed before performed before
update 2 update 1

Valeria Cardellini - SDCC 2025/26 47

Totally ordered multicasting

» A totally ordered multicast is a multicast operation in
which all messages are delivered in the same order
to every recipient

* Assumptions:

— Reliable communication: no message loss occurs

— FIFO ordered communication: messages sent from p; to p;
are received by p; in the same order in which p; sent them p;

» Let's consider two solutions to implement totally
ordered multicasting
— Centralized
— Distributed, using scalar clocks

Valeria Cardellini - SDCC 2025/26 48

Totally ordered multicasting: solutions

» Centralized solution: a single coordinator (sequencer)
manages the order of messages)

* The sequencer ensures that messages are delivered
to all recipients in the same order
— Each process p, sends its update message to the sequencer

— The sequencer then assigns a unique sequence number to
each update message and multicasts the message

— Each process p; executes the update in the order of the
sequence numbers

/ Simple to implement P2 xsgh /. D3
X Single point of failure "o meor
X Potential bottleneck Sequencer | Assign sequence

numner 1 to msg
at the sequencer imsg1
P1

Valeria Cardellini - SDCC 2025/26 49

Valeria Cardellini - SDCC 2025/26

Totally ordered multicasting: solutions

» Distributed algorithm using scalar clocks

- Tag message with scalar clock: each update message msg;
sent by process p; is tagged with p;/'s scalar clock at the time of
sending

- Multicast the message: p; multicasts to all processes (including
itself)

- Queue messages locally: each receiving process p; places msg;
in a local queue queue;, sorted by timestamp (scalar clock
value)

- Acknowledge receipt: p; multicasts an ack for msg; to all
processes, indicating it has received the message

- Deliver message to application: p; delivers msg; to the
application only if all of the following conditions are met:
1. msg;is at the head of queue; (and all acks for msg; have been
received by p;)
2. for every other process py, there is a message msg, in queue; with
a timestamp greater than msg;
msg; is delivered only when p; knows that no other process can
multicast a message with a smaller or equal timestamp than msg;: this
ensures that all processes deliver messages in the same total order .,

Totally ordered multicasting: distributed

v/ Decentralized: no single point of failure and works
better than centralized one with larger systems

X Slightly more complex than centralized solution

X Communication cost:
— Ack overhead: O(N?) acks for each message

» Each process sends N-1 acks for each message it receives,
and this happens for every process in the system

* Mechanism designed by Lamport for state-machine
replication

Valeria Cardellini - SDCC 2025/26 51

State machine replication

« Software replication technique applied to a service that
can be implemented as a deterministic state machine

— Used to replicate the state of a machine (“state” can be any
data or process state) across multiple replicas

— A state machine consists of a series of states and transitions
between those states

— Each operation in the system causes a transition between
states: next state of service = f(current state, op)

— Deterministic state machine: for every given state and
operation, there is exactly one defined next state

» Each replica processes the

same sequence of operations in ﬁ‘iﬂ —~
. Y Y
the same order, ensuring that all . \/\“L/L e
replicas stay in sync (i.e., end UPp clients result W)
in the same state) State
Machine
Valeria Cardellini - SDCC 2025/26 52

State machine replication

« To achieve fault tolerance, service is replicated on
several nodes, all of them running a state machine
replication (SMR) middleware
— Set of replicas behaves as a “centralized” server

« Service makes progress as long as any majority of
replicas are up

* Replicas can recover by reapplying the operations in
the same order

« Used in systems that require strong consistency and
fault tolerance, such as distributed databases, file
systems, and distributed transaction systems

Valeria Cardellini - SDCC 2025/26 53

State machine replication

« Lamport’'s totally ordered multicast ensures
consistency, but it may face scalability challenges
— Particularly in systems with high latency or frequent failures

» Other well-known solutions for ensuring state-machine
replication we examine

— Paxos consensus algorithm
— Raft consensus algorithm

Valeria Cardellini - SDCC 2025/26

Causally ordered multicasting

» Ensures that a message is delivered only after all the
messages that causally precede it (i.e., events that are
causally related) have already been delivered
— Causal relation between two events: the second event is

potentially influenced by the first event, meaning there is a
cause-effect relationship

— Goal: deliver the cause before the effect to maintain the causal
order of events
— Weaker than totally ordered multicasting

* We do not require all messages to be delivered in a global total
order. Instead, we only require that causal relationships are
respected

— Example:
* p,sends messages m, and mg
* p,sends messages mc and mp
* My causes mg

» Delivery sequences that are compatible with causal ordering (and
FIFO ordering): my mgmemp my mgc MmgMmp My Me MpMg
but me m, mgmp is not valid
Valeria Cardellini - SDCC 2025/26

Valeria Cardellini - SDCC 2025/26

Causally ordered multicasting

» Assumptions: reliable and FIFO ordered communication

» Use vector clocks to solve the problem of causally
ordered multicasting in a decentralized way

« Algorithm

Sending the message: process p; sends the message m to all
other processes, attaching a vector timestamp (ts,;,). The
timestamp is p;’s vector clock (V)) at the time of sending the
message

Receiving the message: when p; receives m from p;, p; does not
immediately deliver the message to the application. Instead, p;
places the message in a waiting queue

* V|[i] counts the number of messages sent by p; to p;

Conditions for delivering the message: m will be delivered to the

application only if both of the following conditions are met:

tsplil = Vil + 1 p; has received the next message it expects from p;

Smlk] = VIK] V k=i p;has seen at least all the messages that p; has
seen up to that point

Causally ordered multicasting: example

56

* p;sends mto p,and p;
* p,receives m and then sends m* to p, and p;

Cause-effect relationship between m and m*

» Suppose that p; receives m* before it receives m

o

P3

Valeria Cardellini - SDCC 2025/26

The algorithm avoids the violation of causal ordering: p; will
hold m* in a waiting queue until m is delivered first

Clock update

p; sends msgq: Vil = V|[i] + 1
p; receives msg with ts,s,: V[K] = max{ V[K], tSpslK]

e

V,=(0,0,0) V,=(1,0,0) V,=(1,1,0)

m
V,=(0,0,0) V,=(1,1,0)
V,=(1,0,0) S
V4=(0,0,0) N\ Vs=(1,1,0)

— V7=(1,0,0)

57

Timestamps in practice

» Timestamps are useful for comparing events in DS, e.g.

— Reconciling object updates in distributed storage system

— Restoring system state after crash

1. Checkpoint the system: a checkpoint is created, capturing the
system’s state at a specific point in time; 2 Record events: each
event is recorded with a timestamp to track the order in which events
occurred; 3 After a crash: the checkpoint is restored, and the system
replays the events in order using the timestamps

* How to compare timestamps across different
processes?

1. Physical timestamps: rely on synchronization of
physical clocks across processes
— Use case: Google Spanner uses TrueTime to maintain
consistency
— Limitation: require all clocks to be synchronized, which can be
difficult in geographically distributed systems with high

latencies
Valeria Cardellini - SDCC 2025/26

Timestamps in practice

58

2. Logical timestamps: use scalar clocks to order events

— Use case: Oracle DB use systems change numbers based on
scalar clocks to track changes to data, ensuring that
operations are applied in the correct order

— Limitation: scalar clocks do not fully distinguish between
causally related events and concurrent events
3. Vector timestamps: extend logical timestamps by
using vector clocks

— Use case: Amazon DynamoDB uses vector clocks to
determine which object version is the most recent by
comparing vector timestamps

Valeria Cardellini - SDCC 2025/26

59

References

 Sections 5.1 and 5.2 of van Steen & Tanenbaum book
» Sections 14.1 - 14.4 of Coulouris et al. book

« Lamport, Time, clocks and the ordering of events in a distributed
system, Comm. ACM, 1978

« Raynal and Singhal, Logical time: Capturing causality in
distributed systems, IEEE Computer, 1996

Valeria Cardellini - SDCC 2025/26

60

