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Time in distributed systems

• In a DS, processes are executed on network-
connected nodes that cooperate to complete a 
computation and communicate via message 
exchange

• Observations:
– Algorithms require synchronization
– Processes running on different nodes in the DS must have a 

common notion of time to perform synchronized actions 
based on time

– Algorithms require event ordering, meaning determining 
which event occurred before another

– In DS, time is important but problematic
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Time in distributed systems

• In a centralized system, it is possible to determine the 
order in which events occurred
– Shared memory and single clock

• In a DS, it is impossible to have a single physical 
clock common to all processes

• Yet, the global computation can be viewed as a total 
order of events, by considering the time at which 
events were generated

• For many distributed algorithms, it is crucial to 
determine this time or, at the very least, establish the 
ordering of events: how?
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Time in distributed systems: solutions

• Solution 1: synchronizing physical clocks
– A physical clock counts the number of seconds
– Each node in the DS adjusts its physical clock to 

be consistent with the clocks of other nodes or 
with a reference clock

• Solution 2: synchronizing logical clocks
– A logical clock counts the number of events
– In a DS, physical clock synchronization is not 

necessary; only the ordering of events is 
required (proposed by Leslie Lamport)
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Model of distributed computation
• Components of DS: N processes and communication 

channels
• Each process pi (1 ≤ i ≤ N) generates a sequence of events

– ei
k: k-th event generated by pi

– Internal events: state changes in the process
– External events: send/receive messages

• Evolution of computation represented with space-time 
diagram
®i: ordering relation between two events in pi

e ®i e’ if and only if e occurred before e’ in pi
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Timestamping
• Each process labels events with a timestamp
• Simple solution: each process labels events 

according to its own physical clock
• Does this work?

– We can reconstruct the ordering of events on the same 
node

– But what about the ordering of events on different nodes?

• In a distributed system, it is impossible to have a 
single physical clock shared by all processes
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Synchronous vs. asynchronous DS
• Properties of a synchronous DS

1. There are constraints on the execution speed of each 
process
− The execution time of each step is limited, with both lower and upper 

bounds

2. Each message transmitted on a communication channel is 
received within a limited time

3. Each process has a physical clock with a known and 
limited clock drift rate from the real clock
− Clock drift: deviation of clock from the true time over a period

• In an asynchronous DS
− There are no constraints on the execution speed of 

processes, the message transmission delay, or the clock 
drift rate
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Solutions to synchronize clocks
• First solution

– Synchronize physical clocks of processes with some 
approximation using synchronization algorithms

– Each process labels events with the value of its physical 
clock (which is synchronized with the other clocks with a 
certain degree of approximation)

– Timestamping based on physical time (physical clock)

• Is it always possible to keep the approximation of 
physical clocks limited?
– No, in an asynchronous DS
– In an asynchronous DS, timestamping cannot be based on 

physical time; instead, it must be based on logical time 
(logical clock)
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Physical clock
• At real-time instant t, the OS reads the time from the 

hardware clock Hi(t) of the computer and generates 
the software clock Ci(t)= aHi(t) + b which 
approximately measures the physical time instant t
for pi
– E.g., Ci(t) is a 64-bit number that represents the number of 

nanoseconds elapsed from a reference instant until time t
– In general, the clock is not perfectly accurate and may differ 

from t
– If Ci behaves well enough, it can be used for event 

timestamping in pi

• What should the clock resolution be in order to 
distinguish two events?
– Smaller than the time difference  ΔT between two relevant 

events

9

Physical clock in a DS
• In a SD physical clocks are different and can have 

different values
• Skew: instantaneous difference between the values of 

two clocks
• Drift: clocks measure time at different rates (due to 

physical variations), so over time they diverge from 
real time

• Drift rate: difference per unit of time between a 
physical clock and an ideal clock
– E.g., drift rate of 2 µsec/sec means that the clock increases by 

1 sec + 2 msec every sec
– Drift rate of standard quartz clocks: 10-6 s/s (~1 s in 11-12 

days)
– Drift rate of high-precision quartz clocks: 10-7 or 10-8 s/s

Valeria Cardellini  - SDCC 2025/26



Valeria Cardellini  - SDCC 2025/26 10

Universal Coordinated Time (UTC)
• International reference time standard
• Based on atomic time, occasionally corrected using 

astronomical time
– 1 second is defined as the time is takes for a cesium-133 

atom to complete 9,192,631,770 transitions

• Physical clocks using atomic oscillators are extremely 
accurate, with a drift rate as low as 10−13 s/s

• Atomic clock outputs are broadcast by terrestrial 
radio stations and satellites (e.g., GPS)
– In Italy, Istituto Galileo Ferraris

• Nodes equipped with receivers can synchronize their 
clocks with these signals
– Accuracy of signals from terrestrial radio stations: 1 to 10 ms
– Accuracy of signals from satellites: 0.5 ms down to 50 ns
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Synchronizing physical clocks

• How to synchronize physical clocks with the atomic 
clock or with each other?

• External synchronization: the clocks Ci (i = 1, 2, … N) 
are synchronized with a time source S (UTC), such 
that, for a given real-time interval I

|S(t) - Ci(t)| ≤ α for 1 ≤ i ≤ N in the interval I
– The clocks Ci have an accuracy of α, where α>0

• Internal synchronization: two clocks Ci and Cj are 
synchronized with each other, so that

|Ci(t) - Cj(t)| ≤ π for 1 ≤ i,j ≤ N in the interval I
– The clocks Ci and Cj have a precision of π, where π>0
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Synchronizing physical clocks

• Internally synchronized clocks are not necessarily 
synchronized externally
– All clocks can collectively drift from an external source while 

still remaining synchronized with each other within a bound D

• If the set of processes is externally synchronized with 
accuracy of α, then it is also internally synchronized 
with a precision of 2α

Internal 
synchronization

External 
synchronization

Valeria Cardellini  - SDCC 2025/26 13

Correctness of physical clocks
• A hardware clock H is correct if its drift rate is between 

-ρ and +ρ with ρ > 0
• If clock H is correct, the error made when measuring a 

real-time interval [t, t’] (with t’>t) is bounded:
(1 - ρ) (t’ - t) £ H(t’) - H(t) £ (1 + ρ) (t’ - t)

– This avoids “jumps” in the clock value

Clock time, H

dH
dH

dH• For a software clock C, it is often 
sufficient to require monotonicity:

t’ > t ⇒ C(t’) > C(t)
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When to synchronize physical clocks?

• Due to the drift rate, after a certain time, the clocks in 
a DS will become misaligned again ® periodic 
synchronization is required to realign them

• Let’s consider two clocks with the same maximum 
drift rate ρ from UTC

• Assume that after synchronization, the two clocks 
drift in opposite directions from UTC
– After Δt from synchronization, they will have deviated by at 

most 2ρΔt

• To ensure that the difference between the two clocks 
remains within a desired tolerance d, they must be 
resynchronized at least every d/2ρ
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Internal synchronization in synchronous DS
• Internal synchronization algorithm between 2 

processes in a synchronous DS
– p1 sends its local clock value t to p2 via a message m, with 

transmission time Ttrasm

– p2 receives m and sets its clock to t + Ttrasm
• Ttrasm is unknown, but since the system is synchronous Tmin ≤ 

Ttrasm ≤ Tmax
• Let u = (Tmax − Tmin) be the transmission time uncertainty

– Clock setting rule: if p2 sets its clock to t + (Tmax + Tmin)/2, the 
optimal lower bound on the clock skew is u/2

• Generalization: the algorithm can be extended to N
processes
– The optimal lower bound on the clock skew is u(1 − 1/N)

• Asynchronous DS
– Message delays are unknown and unbounded: Ttrasm = Tmin + 

x, with x ≥ 0 and unknown

– Different physical clock synchronization algorithms are 
required
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Physical synchronization via a time service
• A time service can provide the current time with a 

given precision
– Equipped with a UTC receiver or a high-accuracy clock

• The group of processes that needs to synchronize 
uses a time service
– Time service types: centralized or distributed

• Centralized time service
– Request-driven: Cristian’s algorithm (1989)

• External synchronization
– Broadcast-based: Berkeley Unix algorithm - Gusella & 

Zatti (1989)

• Internal synchronization

• Distributed time service
– Network Time Protocol (NTP)

• External synchronization 
• Internet-scale
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Cristian’s algorithm

mr

mtp S

• A (passive) time server S receives the signal from a 
UTC source → external synchronization

• A process p requests the time by sending a request 
mᵣ and receives the time t in the reply mₜ from S

• Process p sets its clock to t + Tround/2
– Tround is the round-trip time measured by p, assume 

symmetric network delay

• Observations
– A single time server may fail

• Solution: use a group of synchronized time servers
– Malicious time servers are not handled

– Reasonable accuracy only if Tround is small → suitable for 

low-latency LAN



Cristian’s algorithm: example

• Tround = T1 – T0 = 460 ms
• C sets its clock to Ts + Tround /2 = 08:02:04.325 + 230 

ms = 08:02:04.555
• C clock increases by 2.425 s
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Cristian’s algorithm: accuracy
Case 1: S cannot insert t into mt before min time units 

have elapsed since p sent mr
– min is the minimum transmission time between p and S

Case 2: S cannot insert t into mₜ after the instant when
mₜ arrives at p minus min

• The time at S when mₜ arrives at p lies in the interval      
[t + min, t + Tround - min]
– Interval width: Tround - 2 min

• Accuracy α: ±(Tround/2 - min)
p

S

Tround
Tround/2

minmin

mr

mtmr mt



Valeria Cardellini  - SDCC 2025/26 20

Berkeley algorithm
• Internal synchronization algorithm for a group of 

nodes
• The master node (active time server) broadcasts a 

request to all nodes, including itself, to get the clock 
values of the other nodes (workers)

• The master uses the RTTs to estimate the clocks of 
the workers
– di: difference between M clock and worker i clock 

(calculated similarly to Cristian’s algorithm)

di = (CM(t1) + CM(t3))/2 – Ci(t2) 
CM(t1) and CM(t3): master’s clock at sending and receiving
Ci(t2): worker i clock when reply is sent

• Master calculates the average of of all di (including 
its own) and sends correction value to workers
– If backward adjustment needed: slow down clock

M

iCM(t1)

CM(t3)

Ci(t2)

Valeria Cardellini  - SDCC 2025/26 21

Berkeley algorithm: example

Master broadcasts a 
request to all nodes

Master calculates the 
average of clock 
differences:                 
avg = (-10+25+0)/3 = 5

Master sends a 
correction value to each 
worker (adji = avg - di)

1

2 3

d1

d3
d2

adj2

adj1

adj3
C3?

C1?

C2?
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Berkeley algorithm: features
• Precision: depends on the maximum nominal RTT

– The master ignores clock values associated with RTTs 

above this maximum

– Outliers are discarded to improve accuracy

• Fault tolerance
– Master failure: another node is elected as master using an 

election algorithm

– Tolerance to arbitrary (Byzantine) behavior:

• Workers sending incorrect clock values
• The master only considers clock values that differ from each 

other by at most a specified threshold
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Network Time Protocol (NTP)
• Time service for Internet (RFC 5905)

− Provides external synchronization accurate wrt UTC

− Configurable on multiple OSs

− On GNU/Linux: ntpd daemon for automatic synchronization, 

ntpdate for manual synchronization

− Hierarchy of servers
Stratum 1 - Primary servers: 
directly connected to UTC sources 
(e.g., atomic clocks, GPS)

Stratum 2 - Secondary servers: 
synchronized by primary servers

Leaf servers/synchronization 
subnet: run on user machines, 
receive time from higher-stratum 
servers

Valeria Cardellini  - SDCC 2025/26
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NTP

• Architecture
– Scalable and robust time service

– Redundant time servers and network paths

– Authentication of time sources to prevent

• NTP fault tolerance and reconfiguration
– The synchronization subnet reconfigures automatically in 

case of failures

– Primary server loses connection to UTC source: it becomes 

a secondary server

– Secondary server loses connection to its primary (e.g., 

primary crashes): it can switch to another primary server

Valeria Cardellini  - SDCC 2025/26
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NTP: synchronization modes
1. Multicast mode

– Server in a high-speed LAN multicasts its clock to others
– Other servers set their clocks assuming a certain transmission 

delay
– Accuracy: relatively low (no way to measure RTT)

2. Procedure call mode
– Server responds to requests like in Cristian’s algorithm
– Accuracy: higher than multicast
– Use case: when multicast is not available, makes sense for 

smaller networks
3. Symmetric mode

– Server pairs exchange timing information
– Accuracy: very high
– Commonly used for higher-level hierarchical servers (Stratum 2 

and above)
• All synchronization modes use UDP

Valeria Cardellini  - SDCC 2025/26
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NTP: symmetric mode
• Servers A and B exchange message pairs (m, m’) to 

improve synchronization accuracy
• Servers exchange messages with timestamps

– A sends to B a message m, which contains:

• Timestamp Ti-3: time when A sends m
– B responds to A with message m’, which contains:

• Timestamp Ti-2: time when B receives m
• Timestamp Ti-1: time when B sends m’

– A records Ti when it receives m’
– Time difference Ti-1-Ti-2 may be non-negligible

• Timestamps allow servers to:

– Estimate round-trip delay
– Adjust their clocks more precisely
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NTP: symmetric mode
• For each pair of messages m and m' exchanged 

between two servers, NTP estimates: 

– Offset oᵢ between the two clocks

– Round-trip delay dᵢ, which is the total     
transmission time of m and m’

• Let’s define:

– o: real offset of clock B relative to clock A (o = clockB - clockA)
– t and t’: actual transmission times of messages m and m', respectively

• For each pair of messages:

Ti-2 = Ti-3 + t + o and    Ti = Ti-1 + t’ - o
where di = t + t’ = Ti-2 - Ti-3 + Ti - Ti-1

• Subtracting the equation for Ti from the one for Ti-2, we solve for o: 

o = [(Ti-2 - Ti-3) + (Ti-1 - Ti)]/2 + (t’ - t)/2

The estimated offset oi is given by: oi = [(Ti-2 - Ti-3) + (Ti-1 - Ti)]/2

The real offset o is: o = oi + (t’ - t)/2  
Valeria Cardellini  - SDCC 2025/26

Difference between the transmission 
times used to adjust the offset estimate
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NTP: symmetric mode
• The accuracy of the offset estimation is determined by 

the round-trip delay dᵢ
– Since both t and t' are positive, the real offset o will lie within:  

oi - di /2 ≤ o ≤ oi + di /2 

– Thus, oi is the estimated offset and its accuracy is di /2

• NTP servers apply a statistical filtering algorithm on the 
8 most recent <oi, di> pairs, choosing as the estimate of 
o the oj value corresponding to the minimum dj

• They then apply a peer selection algorithm to possibly 
change the peer used for synchronization 
https://www.eecis.udel.edu/~mills/ntp/html/warp.html

• NTP accuracy:
– 10 ms on the Internet

– 1 ms on LAN

Perfect synchronization over 
networks is actually impossible

Google’s TrueTime (TT)
• Distributed synchronized clock with bounded 

non-zero error
– Designed by Google for Spanner, a global-scale,  

multi-version, distributed NewSQL database
– Relies on a well-engineered tight clock 

synchronization available on all Google servers 
thanks to GPS and atomic clocks

– Enables applications to generate monotonically 
increasing timestamps

– Cons: TT requires special hardware and custom-
build tight clock synchronization protocol, which is 
infeasible for many systems

• Google also relies on its very high throughput, global 

fiber optic network linking its data centers 
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Time in asynchronous DS
• Physical clock synchronization algorithms

– They (e.g., NTP) estimate transmission times to synchronize 

clocks between nodes

– Accuracy depends on knowing the upper and lower bounds 

of transmission times

• Limitations in asynchronous DS
– No constraints on transmission times → physical 

synchronization is used in asynchronous DS but with limited 

accuracy due to variable transmission times

– We cannot use physical time to order events occurring on 

different nodes

• Logical time as a solution
– What really matters is that processes agree on the order of 

events rather than the exact physical time at which events 

occurred

– We use logical clocks (e.g., Lamport clocks) to maintain 

event ordering across nodes
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Logical time
• Idea: order events based on two intuitive 

observations:
1. Two events that occurred on the same process pi happen 

exactly in the order observed by pi

2. When a message is sent from pi to pj, the send event 

happens before the receive event

• Lamport (1978) and the happened-before relation
– Leslie Lamport introduces the concept of the happened-

before relation (also known as causal ordering or 

precedence relation)

®i : ordering relation between two events that occurred on pi

® : happened-before relation between any two events

L. Lamport, Time, Clocks and the Ordering of Events in Distributed Systems, 
1978 https://lamport.azurewebsites.net/pubs/time-clocks.pdf
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Happened-before relation
• Two events e and e’ are in the happened-before relation 

(denoted by e ® e’) if one of the following is true:
1. $ pi | e ®i e’
2. e = send(m) ∧ e’ = receive(m)

e is the event of sending message m, and e' is the corresponding 
receive event

3. $ e, e’, e’’ | (e ® e’’ ) ∧ (e’’ ® e’ ) 
The happened-before relation is transitive

• By applying these rules, we can construct a sequence of 
events e1, e2, …, en that are causally ordered

• Observations
– The happened-before relation defines a partial ordering 

(properties: non-reflexive, anti-symmetric, transitive)

– The sequence e1, e2, …, en is not necessarily unique

– For a pair of events, they are not always related by a happened-
before relation. In such cases, the events are said to be 
concurrent (denoted by ||)
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Happened-before relation: example

• Sequence s1 = e1
1, e2

1, e2
2 , e3

2, , e3
3 , e1

3 , e1
4 , e1

5 , e2
4

• Sequence s2 = e3
1, e1

2, e1
3 , e1

4, e3
5

• Can you find another sequence?

• Events e3
1 and e2

1 are concurrent
e3

1 ® e2
1 and e2

1 ® e3
1

p1

p2

p3
e3

1 e3
4 e3

5

e2
1

e2
2 e2

3

e1
1 e1

2 e1
3 e1

4

e2
4

e3
2 e3

3

e1
5
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Scalar logical clock
• A monotonically increasing software counter (scalar 

value), used to order events in DS
– Scalar logical clock (or Lamport clock): we call it “scalar” to 

distinguish from vector clock

• Does not rely on physical clock
• Each process pi has its own scalar clock Li, and it 

uses it to apply timestamps to events
• Denote Li(e) as the timestamp, based on the scalar 

clock, applied by process pi to event e
• Key property: if e ® e’ then L(e) < L(e’)
• Key observations:

– If L(e) < L(e’), it does not necessarily mean that e ® e’;
however, L(e) < L(e’) implies that e ® e’

– The happened-before relation introduces a partial ordering of 
events: in the case of concurrent events, it is impossible to 
determine which event actually happens first
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Scalar clock: update
• Scalar clock update algorithm by Lamport
• Initialization: each process pi initializes its scalar clock 

Li to 0 (" i = 1, …, N)
• Internal event: before executing an internal event, pi

increments Li by 1: Li = Li + 1
• Sending a message: when pi sends message m to pj

– Increment the value of Li: Li = Li + 1

– Attach the timestamp t = Li to message m 
– Execute the send(m) event

• Receiving a message: when pj receive message m 
with timestamp t
– Update its scalar clock Lj = max(t, Lj)

– Increment the value of Lj: Lj = Lj + 1

– Execute the receive(m) event
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Scalar clock: example

e1
1 e1

2 e1
3 e1

4 e1
5

0

0

0

p1

p2

p3
e3

1 e3
2 e3

3 e3
4 e3

5

e2
1 e2

2 e2
3 e2

4

1

2

1

2 6 7 8

3 7 9

4 5 6 8
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Scalar clock: example

• Observations
– e1

1 ® e2
1 and the respective timestamps reflect this causal 

relationship (L1=1 and L2=2); indeed, if e1
1 ® e2

1 then L(e1
1)

< L(e2
1) 

– e1
1 || e3

1 and the respective timestamps are equal (L1=1 

and L3=1); indeed, if L(e1
1) ³ L(e3

1) then e1
1 ® e3

1

– e2
1 || e3

1 and the respective timestamps differ (L2=2 and  

L3=1); indeed, if L(e2
1) ³ L(e3

1) then e2
1 ® e3

1

L2=0 L2=2 L2=3 L2=7 L2=9

L1=0 L1=1 L1=2 L1=6 L1=7 L1=8

L3=0 L3=1 L3=4 L3=5 L3=6 L3=8

p1

p2

p3
e3

1 e3
4 e3

5

e2
1 e2

2 e2
3

e1
1 e1

2 e1
3 e1

4

e2
4

e3
2 e3

3

e1
5
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Total ordering of events
• Problem: using a scalar clock, two or more events can 

have the same timestamp. How can we establish a total 
ordering of events to avoid two events occurring at the 
same logical time?

• Solution: in addition to the scalar clock, we use the 
process number on which the event occurred
– We establish a total ordering (≺) between the processes

• Total order relation between events, denoted by e Þ e’: 
if e is an event on process pi and e’ is an event on 
process pj, then e Þ e’ if and only if:
1. Li(e) < Lj(e’) ∨
2. Li(e) = Lj(e’) ∧ pi ≺ pj

• This relation is used in some distributed mutual 
exclusion algorithms to ensure a total ordering of 
events across processes
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Total ordering of events: example

• e1
3 and e3

4 have the same scalar clock value: how 
to order them?

• e1
3 Þ e3

4 since L1(e1
3) = L3(e3

4) and p1 ≺ p3

L2=0 L2=2 L2=3 L2=7 L2=9

L1=0 L1=1 L1=2 L1=6 L1=7 L1=8

L3=0 L3=1 L3=4 L3=5 L3=6 L3=8

p1

p2

p3
e3

1 e3
4 e3

5

e2
1 e2

2 e2
3

e1
1 e1

2 e1
3 e1

4

e2
4

e3
2 e3

3

e1
5
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Scalar clock and its limitation

• The scalar clock has the following property
– If e ® e’, then L(e) < L(e’)

• However, it is not possible to guarantee that:
– If L(e) < L(e’), then e ® e’

See slide 36: L(e3
1) < L(e2

1) but e3
1 || e2

1  

• Consequence: it is not possible to determine, by just 
looking at scalar clocks, whether two events are 
concurrent or not

• How to overcome this limitation? 
• To solve this issue, vector clocks were introduced by 

Mattern (1989) and Fidge (1991)
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Vector clock

• A vector clock for a system with N processes is a 
vector of N integers

• Each process pi maintains its own vector clock Vi

• For process pi, Vi[ i ] is the local scalar clock
• Each process uses its own vector clock to assign 

timestamps to events
• Similar to Lamport’s clock, the vector clock is 

attached to the message m, and the timestamp 
becomes vector-valued

• The vector clock captures the full characteristics of 
the happened-before relation

e® e’ if and only ifV(e) < V(e’)
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Vector clock: meaning and comparison

• Given the vector clock Vi
– Vi [ i ] is the number of events generated by pi

– Vi [ j ] with i ≠ j is the number of events that occurred at pj, 
which pi knows about

• Comparison of vector clocks
– V = V’ if and only if " j: V [ j ] = V’ [ j ]
– V ≤ V’ if and only if " j: V [ j ] ≤ V’ [ j ]
– V < V’ (and thus the event associated with V precedes the 

event associated with V') if and only if

• " i ∈ [1, …, N]: V [ i ] ≤ V’ [ i ] 
and

• $ j ∈ in [1, …, N]: V [ j ] < V’ [ j ]
– V || V’ (and thus the event associated with V is concurrent to 

the event associated with V’) se e solo se

• ¬(V < V’) and ¬(V’ < V) 

Valeria Cardellini  - SDCC 2025/26
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Vector clock: update
• Initialization: each process pi initializes its own vector 

clock Vi: Vi [k]=0  " k = 1, 2, …, N
• Internal event: before executing an internal event, pi

increments its own vector clock component Vi [i] by 1: 
Vi [i] = Vi [i] + 1

• Sending a message: when pi sends message m to pj
– Increment its own clock component Vi [i] by 1: Vi [i] = Vi [i] + 1

– Attach the vector timestamp t = Vi to message m
– Execute the send(m) event

• Receiving a message: when pj receives message m
with timestamp t:
– Update its vector clock component for each process K: 

Vj [k] = max(t[k], Vj [k]) " k = 1, 2, …, N
– Increment its own clock component Vj [j] by 1: Vj [j] = Vj [j] + 1

– Execute the receive(m) event
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Vector clock: example
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Using vector clocks to compare events

V(e) < V’(e) and thus e ® e’

V(e) ¹ V’(e) and thus e || e’

• Let V(e) and V(e’) be the vector timestamps of two 
events e and e’

• By comparing V(e) and V(e’), we can determine if the 
events are in happened-before relationship or 
concurrent

1
2
0

1
2
2

V V'

1
2
0

1
0
2

V V'



Examples of applications of logical time

• We will examine two applications of logical time:
1. Scalar clock for totally ordered multicasting
2. Vector clock for causally ordered multicasting
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Totally ordered multicasting: problem
• To ensure that concurrent updates on a replicated 

database are seen in the same order by every 
replica, you need to synchronize and order the 
updates across all replicas, ensuring consistency
– p1: add $100 to a bank account (initial value: $1000)

– p2: increment the account by 1%

– There are two replicas and, without synchronization, each 

replica may apply the updates in a different order

• Replica #1 ¬ 1111 (first p1 and then p2)
• Replica #2 ¬ 1110 (first p2 and then p1)
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Totally ordered multicasting
• A totally ordered multicast is a multicast operation in 

which all messages are delivered in the same order 
to every recipient

• Assumptions: 
– Reliable communication: no message loss occurs

– FIFO ordered communication: messages sent from pi to pj
are received by pj in the same order in which pi sent them pj

• Let’s consider two solutions to implement totally 
ordered multicasting 
– Centralized

– Distributed, using scalar clocks

Totally ordered multicasting: solutions
• Centralized solution: a single coordinator (sequencer) 

manages the order of messages) 
• The sequencer ensures that messages are delivered 

to all recipients in the same order
– Each process pi sends its update message to the sequencer

– The sequencer then assigns a unique sequence number to 

each update message and multicasts the message

– Each process pi executes the update in the order of the 

sequence numbers
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Sequencer

p2 p3

p1

msg
msg1

msg1

msg1

Assign sequence 
numner 1 to msg

✓ Simple to implement
✗ Single point of failure
✗ Potential bottleneck 

at the sequencer
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Totally ordered multicasting: solutions
• Distributed algorithm using scalar clocks

− Tag message with scalar clock: each update message msgi
sent by process pi is tagged with pi’s scalar clock at the time of 
sending

− Multicast the message: pi multicasts to all processes (including 
itself)

− Queue messages locally: each receiving process pj places msgi
in a local queue queuej, sorted by timestamp (scalar clock 
value)

− Acknowledge receipt: pj multicasts an ack for msgi to all 
processes, indicating it has received the message

− Deliver message to application: pj delivers msgi to the 
application only if all of the following conditions are met:

1. msgi is at the head of queuej (and all acks for msgi have been 
received by pj)

2. for every other process pk, there is a message msgk in queuej with 
a timestamp greater than msgi

msgi is delivered only when pj knows that no other process can 
multicast a message with a smaller or equal timestamp than msgi: this 
ensures that all processes deliver messages in the same total order

Totally ordered multicasting: distributed

✓ Decentralized: no single point of failure and works 
better than centralized one with larger systems

✗ Slightly more complex than centralized solution
✗ Communication cost:

– Ack overhead: O(N2) acks for each message

• Each process sends N-1 acks for each message it receives, 
and this happens for every process in the system 

• Mechanism designed by Lamport for state-machine 
replication
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State machine replication
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• Software replication technique applied to a service that 
can be implemented as a deterministic state machine 
– Used to replicate the state of a machine (“state” can be any 

data or process state) across multiple replicas

– A state machine consists of a series of states and transitions 

between those states

– Each operation in the system causes a transition between 

states: next state of service = f(current state, op)

– Deterministic state machine: for every given state and 

operation, there is exactly one defined next state

• Each replica processes the 
same sequence of operations in 
the same order, ensuring that all 
replicas stay in sync (i.e., end up 
in the same state)

State machine replication
• To achieve fault tolerance, service is replicated on 

several nodes, all of them running a state machine 
replication (SMR) middleware
– Set of replicas behaves as a “centralized” server

• Service makes progress as long as any majority of 
replicas are up

• Replicas can recover by reapplying the operations in 
the same order

• Used in systems that require strong consistency and 
fault tolerance, such as distributed databases, file 
systems, and distributed transaction systems
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State machine replication
• Lamport’s totally ordered multicast ensures 

consistency, but it may face scalability challenges 
– Particularly in systems with high latency or frequent failures

• Other well-known solutions for ensuring state-machine 
replication we examine
– Paxos consensus algorithm

– Raft consensus algorithm
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Causally ordered multicasting
• Ensures that a message is delivered only after all the 

messages that causally precede it (i.e., events that are 
causally related) have already been delivered
– Causal relation between two events: the second event is 

potentially influenced by the first event, meaning there is a 
cause-effect relationship

– Goal: deliver the cause before the effect to maintain the causal 
order of events

– Weaker than totally ordered multicasting

• We do not require all messages to be delivered in a global total 
order. Instead, we only require that causal relationships are 
respected

– Example: 

• p1 sends messages mA and mB

• p2 sends messages mC and mD
• mA causes mC

• Delivery sequences that are compatible with causal ordering (and 
FIFO ordering): mA mB mCmD mA mC mBmD mA mC mDmB
but mC mA mBmD is not valid



Va
le

ria
 C

ar
de

llin
i  

-S
D

C
C

 2
02

5/
26

56

Causally ordered multicasting
• Assumptions: reliable and FIFO ordered communication
• Use vector clocks to solve the problem of causally 

ordered multicasting in a decentralized way
• Algorithm

– Sending the message: process pi sends the message m to all 

other processes, attaching a vector timestamp (tsm). The 

timestamp is pi’s vector clock (Vi) at the time of sending the 

message

– Receiving the message: when pj receives m from pi, pj does not 

immediately deliver the message to the application. Instead, pj
places the message in a waiting queue

• Vj[i] counts the number of messages sent by pi to pj
– Conditions for delivering the message: m will be delivered to the 

application only if both of the following conditions are met:

1. tsm[i] = Vj[i] + 1       pj has received the next message it expects from pi
2. sm[k] ≤ Vj[k] " k¹i pj has seen at least all the messages that pi has 

seen up to that point
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Causally ordered multicasting: example 
• p1 sends m to p2 and p3

• p2 receives m and then sends m* to p1 and p3
– Cause-effect relationship between m and m*

• Suppose that p3 receives m* before it receives m
– The algorithm avoids the violation of causal ordering: p3 will 

hold m* in a waiting queue until m is delivered first

pi sends msg: Vi[i] = Vi[i] + 1

pj receives msg with tsmsg: Vj[k] = max{ Vj[k], tsmsg[k] }

p1

p2

p3

V1=(1,0,0)V1=(0,0,0)

V2=(0,0,0)

V3=(0,0,0)

m

V2=(1,0,0)
V2=(1,1,0)

V1=(1,1,0)

m*

V3=(1,0,0)
V3=(1,1,0)

Clock update



Timestamps in practice
• Timestamps are useful for comparing events in DS, e.g.

– Reconciling object updates in distributed storage system

– Restoring system state after crash

1. Checkpoint the system: a checkpoint is created, capturing the 
system’s state at a specific point in time; 2 Record events: each 
event is recorded with a timestamp to track the order in which events 
occurred; 3 After a crash: the checkpoint is restored, and the system 
replays the events in order using the timestamps

• How to compare timestamps across different 
processes?

1. Physical timestamps: rely on synchronization of 
physical clocks across processes
– Use case: Google Spanner uses TrueTime to maintain 

consistency

– Limitation: require all clocks to be synchronized, which can be 

difficult in geographically distributed systems with high 

latencies
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Timestamps in practice
2. Logical timestamps: use scalar clocks to order events

– Use case: Oracle DB use systems change numbers based on 

scalar clocks to track changes to data, ensuring that 

operations are applied in the correct order

– Limitation: scalar clocks do not fully distinguish between 

causally related events and concurrent events

3. Vector timestamps: extend logical timestamps by 
using vector clocks
– Use case: Amazon DynamoDB uses vector clocks to 

determine which object version is the most recent by 

comparing vector timestamps
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