
Corso di Sistemi Distribuiti e Cloud Computing
A.A. 2025/26

Valeria Cardellini

Laurea Magistrale in Ingegneria Informatica

Microservices and
Serveless Computing

Macroarea di Ingegneria
Dipartimento di Ingegneria Civile e Ingegneria Informatica

Microservices

• Architectural style for distributed applications
• Structures an application as a collection of loosely

coupled services
• Not entirely new: derives from SOA and Web services

– But with some significant differences

• Focuses on how to build, manage, and evolve
architectures composed of small, self-contained units

• Key characteristics
– Modularization: application decomposed into a set of

independently deployable services, that are loosely coupled
and cooperating

– Rapid deployment and scalability
– Data management: services typically own their memory

persistence layer (e.g., relational DBs and NoSQL data stores)

Valeria Cardellini – SDCC 2025/26 1

Service Oriented Architecture (SOA)
• Architectural paradigm for designing loosely coupled

distributed sw systems
• Definition https://docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf

SOA is a paradigm for organizing and utilizing
distributed capabilities that may be under the control of
different ownership domains. It provides a uniform
means to offer, discover, interact with and use
capabilities to produce desired effects consistent with
measurable preconditions and expectations

• Properties of SOA https://www.w3.org/TR/ws-arch/
– Logical view of services
– Message-oriented and description-oriented
– Service granularity and network orientation
– Platform neutral

2Valeria Cardellini – SDCC 2025/26

SOA: Core entities

• 3 interacting entities
1. Service requestor (or consumer): requests service

execution
2. Service provider: implements and exposes the service
3. Service registry: publishes the service and enables

discovery

Valeria Cardellini – SDCC 2025/26 3

Web services
• Web services: implementation of SOA
• Definition https://www.w3.org/TR/ws-arch/

– Web service: software system designed to support
interoperable machine-to-machine (M2M)
interaction over a network

– Web service interface described in a machine-
processable format

– Other systems interact with web service in a
manner prescribed by its description using SOAP
messages, typically conveyed using HTTP

Valeria Cardellini – SDCC 2025/26 4

Web services
• Large ecosystem of standards and specification (more

than 60), among which:
– Service description : WSDL (Web Service Description Language)
– Communication: SOAP (Simple Object Access Protocol)
– Service registry: UDDI (Universal Description, Discovery and

Integration)
– Business process definition: BPEL (Business Process Execution

Language), BPMN (Business Process Model and Notation)
– SLA: WSLA

Valeria Cardellini – SDCC 2025/26 5

• Wide variety of technologies
– Including ESB (Enterprise Service Bus):

integration platform for routing, mediation,
transformation, and communication;
commonly used in enterprise SOA systems

SOA vs. microservices
• Heavyweight vs. lightweight

- SOA: heavyweight middleware (e.g., ESB)
- Microservices: lightweight technologies

• Protocols
– SOA: web services protocols
– Microservices: RESTful APIs and HTTP, often JSON-based

• Architectural view
– SOA: integration solution
– Microservices: to build complete applications

• Data ownership
– SOA: often shared databases or centralized data models
– Microservices: each service owns its own data store

• Deployment and lifecycle
– SOA: services often deployed together or coordinated
– Microservices: independent deployment and versioning

Va
le

ria
 C

ar
de

llin
i –

SD
C

C
 2

02
5/

26

6

Microservices and containers
• Microservices are an ideal complement to container-

based virtualization
– “One microservice instance per container”

• Each microservice packaged as a container image
• Each instance deployed as a container

– Containers enable runtime management (scaling,
migration)

• Pros and cons:
✓ Scale out/in by changing the number of container replicas
✓ Scale up/down by adjusting container resources
✓ Isolation of microservice instance
✓ Resource limits per service
✓ Fast build and startup
✗ Require container orchestration to manage multi-container

applications
Valeria Cardellini – SDCC 2025/26 7

Microservices: benefits
• Increased software agility

– Each microservice is an independent unit of development,
deployment, operation, versioning, and scaling

– Encapsulation via APIs: interaction occurs through well-
defined APIs that hide implementation details

– Container-based virtualization

• Improved scalability and fault isolation
• Increased reusability across business domains
• Improved data security
• Faster development and delivery
• Greater team autonomy

Valeria Cardellini – SDCC 2025/26 8

Microservices: concerns

• Increased network traffic
– Remote service calls introduce network latency

• Higher system complexity
• Increased operational complexity

– Deployment, monitoring, and management

• More difficult testing and debugging
– End-to-end and distributed testing are harder

Valeria Cardellini – SDCC 2025/26 9

Microservices and scalability

• How to achieve scalability of microservices?
– Run multiple instances of the same microservice
– Load balance requests across instances

• Prefer stateless services
– No state stored in the service instance
– Scale faster and more easily than stateful services

Valeria Cardellini – SDCC 2025/26 10

Stateless service

https://www.cloudcomputingpatterns.org/stateless_component/

Valeria Cardellini – SDCC 2025/26

• Does not store client or session state internally
• State handled externally (e.g., database, cache)
• Easier to scale out
• More tolerant to service failures

11

Stateful service

https://www.cloudcomputingpatterns.org/stateful_component/
Valeria Cardellini – SDCC 2025/26

• Stores state internally
• Multiple instances of a scaled-out service must

synchronize state
• Required to provide consistent, unified behavior
• State management adds complexity and latency
• How can multiple service instances maintain a

synchronized internal state while scaling?

12

Stateful service: scaling approaches
• Centralized storage

– All instances read/write state to a shared database or cache

• State replication
– Replicate state across instances

• Event sourcing / CQRS patterns
– Store changes as events; rebuild state per instance

• State partitioning (or sharding)
– Divide state into independent partitions
– Each instance handles a subset of the state

• Sticky sessions (less used)
– Route requests from the same client to the same instance

• Tradeoffs
– Adds operational complexity
– Can limit elastic scalability compared to stateless services

Valeria Cardellini – SDCC 2025/26 13

Microservice patterns
Va

le
ria

 C
ar

de
llin

i –
SD

C
C

 2
02

5/
26

14

Service discovery

• Microservice clients need to
locate service instances
– Instances have dynamic network

locations (IP address, port)
– The set of instances changes

due to auto-scaling, failures,
upgrades

• Service discovery provides
– Registration: microservice

instances register themselves
when they start

– Lookup / resolution: clients can
find service instances
dynamically

Valeria Cardellini – SDCC 2025/26 15

Service discovery: patterns

1. Service registry
– A database of services, instances and network locations
– Instances register at startup and deregistered at shutdown
– Clients query the registry to find available instances

Valeria Cardellini – SDCC 2025/26 16

Service discovery: patterns

2. Client-side service discovery
– Client determines service network location and load

balances requests among them
– Client queries Service Registry, uses a load-balancing

algorithm to pick an instance, and sends request directly to
chosen instance
https://microservices.io/patterns/client-side-discovery.html

Valeria Cardellini – SDCC 2025/26 17

Service discovery: patterns

3. Server-side service discovery
– Client sends request to load balancer at a known location
– Load balancer queries Service Registry and routes request

to an available instance
https://microservices.io/patterns/server-side-discovery.html

Valeria Cardellini – SDCC 2025/26 18

Microservice patterns

Va
le

ria
 C

ar
de

llin
i –

SD
C

C
 2

02
5/

26

19

Communication styles

• Synchronous communication
– Request/response style
– Mechanisms: HTTP/REST, RPC
– Typically, one-to-one interaction
✗ Can reduce availability if service is slow or down

• Asynchronous communication
– Event-driven or message-based
– Mechanisms: pub/sub systems, message queues, related

protocols
– Supports one-to-one or one-to-many interaction
✓ Improves resilience and decoupling

Valeria Cardellini – SDCC 2025/26 20

Communication styles

• Example of synchronous vs. asynchronous
communication

Valeria Cardellini – SDCC 2025/26 21

Service interaction
• Microservices can interact according to 2 patterns:

– Orchestration
– Choreography

• Orchestration: centralized approach
– A single centralized process (orchestrator, conductor or

message broker) coordinates interactions
– Orchestrator invokes and combines services, which may be

unaware of the composition

Valeria Cardellini – SDCC 2025/26 22

Orchestrator

Orchestration and choreography

• Choreography: decentralized approach
– Interaction defined by exchange of messages, rules, and

agreements between services
– Services react to events/messages directly, without a central

coordinator

Valeria Cardellini – SDCC 2025/26 23

Orchestration and choreography: example
• Workflow for customer creation

Valeria Cardellini – SDCC 2025/26 24Source: S. Newman, “Building Microservices”, O’Really, 2015

Orchestration

Choreography

Orchestration vs choreography

• Orchestration:
✓ Simpler and more popular
✗ SPoF and potential performance bottleneck
✗ Tight coupling between orchestrator and services
✗ Higher network traffic and latency

• Choreography
✓ Lower coupling and operational complexity
✓ Increased flexibility and easier to change individual

services
✗ Services must be aware of each other’s locations
✗ Harder to observe and debug
✗ Implementing guarantees like reliable delivery is more

challenging

Valeria Cardellini – SDCC 2025/26 25

Microservice patterns
Va

le
ria

 C
ar

de
llin

i –
SD

C
C

 2
02

5/
26

26

Decomposition patterns
• Monolithic application: built and deployed as a single

unit
• Decomposing into microservices is mostly an art

– No single “best” strategy
– Multiple decomposition patterns exist

https://microservices.io/patterns

Valeria Cardellini – SDCC 2025/26 27

Decomposition patterns
• Design considerations

– Stable architecture
• Decomposition boundaries should not change frequently

– High cohesion
• Each service implements a small set of strongly related functions

– Common Closure Principle (CCP)
• Things that change together should be packaged together
• A change should ideally affect only one service

– Loose coupling
• Each service exposes an API that encapsulates its

implementation
• Internal changes should not affect clients

– Testability
• Each service should be independently testable

– Team size and ownership
• Service small enough for a “two-pizza team” (≈ 6–10 people)
• Teams should be autonomous, with minimal coordination

Valeria Cardellini – SDCC 2025/26 28

Main decomposition patterns
• Example: e-commerce app that takes orders from

customers, verifies inventory and available credit, and
ships them

1. Decompose services based on business capability
– Business capability: a function the business performs to

generate value
– Organizational/business view
– Good for initial decomposition and team alignment
– E.g., Order Management is responsible for orders, Customer

Management for customers

Valeria Cardellini – SDCC 2025/26 29

Main decomposition patterns
2. Decompose by domain-driven design (DDD)

subdomain
– A domain is divided into multiple subdomains, each one

corresponding to a different part of the business
– Domain-modeling view
– Good for complex domains with rich business rules
– E.g., Order Management, Inventory, Product Catalogue,

Delivery

Valeria Cardellini – SDCC 2025/26 30

Microservice patterns

Va
le

ria
 C

ar
de

llin
i –

SD
C

C
 2

02
5/

26

31

Reliability patterns: Circuit breaker

• Problem: how to prevent a network or service
failure from cascading to other services?

• Solution: a service client invokes a remote
service via a proxy that behaves like an
electrical circuit breaker
– Requests flow normally while the circuit is

closed
– When failures exceed a threshold, the circuit

opens and requests fail immediately (optional
fallback response)

– After a timeout, the circuit enters half-open
state and allows limited test requests

– On success, it closes again; on failure, it
reopens and restarts the timeout

Valeria Cardellini – SDCC 2025/26 32

https://microservices.io/patterns/reliability/circuit-breaker.html

Data patterns: Database per service

Valeria Cardellini – SDCC 2025/26 33

• Pros and cons
✓ Helps ensure loose coupling among services
✓ Each service can use the most appropriate DB type (e.g., KV data store,

graph database)
✗ Transactions spanning multiple services are more complex
✗ Managing multiple DBs increases operational complexity

• A dedicated DB server per service is not required
• Options: private tables per service, schema per service, database

server per service
https://microservices.io/patterns/data/database-per-service.html

• Problem: which database
architecture?

• Solution: each microservice
keeps its persistent data private
and accessible only via its API.
Service transactions involve
only that service’s DB

Data patterns: Saga
• Problem: each service has its own DB, but some transactions

span multiple services: how to maintain data consistency across
services without using distributed transactions (e.g., two-phase
commit)?

• Solution: implement each cross-service transaction as a saga
• Saga: a sequence of local transactions

– Each local transaction updates its DB and publishes a
message/event to trigger the next transaction

– If a local transaction fails, the saga executes compensating
transactions to undo changes made by preceding transactions
(rollback)

Valeria Cardellini – SDCC 2025/26 34https://microservices.io/patterns/data/saga.html

Payment
Service

Stock
Service

Data patterns: Saga

Valeria Cardellini – SDCC 2025/26 35

Choreography

• 2 ways to coordinate a saga:
– Choreography: each local transaction publishes events that

trigger local transactions in other services
– Orchestration

Data patterns: Saga

Valeria Cardellini – SDCC 2025/26 36

Orchestration

• 2 ways to coordinate a saga:
– Choreography
– Orchestration: a central orchestrator tells each service which

local transaction to execute

Data patterns: orchestration-based Saga
• Let’s consider orchestration-based saga

– Source: MSc thesis by Andrea Cifola
http://www.ce.uniroma2.it/courses/sdcc2122/slides/Microservice_SAGAexample.pdf

Valeria Cardellini – SDCC 2025/26 37

Data patterns: event sourcing

• In the saga, we also use another pattern: event
sourcing https://microservices.io/patterns/data/event-sourcing.html
– Problem: a service participating in a saga must atomically

update its DB and publishes messages/events to the
orchestrator to avoid data inconsistencies

– Solution: persist a sequence of domain events representing
state changes; store events in an append-only event store (a
DB of events); service state can be reconstructed by
replaying events

Valeria Cardellini – SDCC 2025/26 38

Event store

Data patterns: CQRS

• Problem: how to query data from multiple services in
a microservice architecture? How to separate read
and write load to scale each independently?

• Solution: use a view DB, a read-only replica designed
to support queries
– Application keeps the view updated by subscribing to

domain events published by the service that owns the data
https://microservices.io/patterns/data/domain-event.html

• Known as Command Query Responsibility
Segregation (CQRS), i.e., separate commands
(writes) from queries (reads) for a data store
https://microservices.io/patterns/data/cqrs.html

Valeria Cardellini – SDCC 2025/26 39

Microservices observability challenge

Valeria Cardellini – SDCC 2025/26 40

• Service distribution, even at large scale: difficult to
monitor and capture causal and temporal
relationships among microservices

• Need for monitoring
– To debug the application
– To analyze performance and latency, including tail latency

Microservices observability challenge

• Need for monitoring
– To analyze service dependencies
– To identify the root cause of anomalies, which requires:

• Constructing a service dependency graph that shows the
sequence of invoked microservices

• Localizing the root cause microservices using the graph, traces,
logs, and KPIs

Valeria Cardellini – SDCC 2025/26 41

A request is passed through
multiple microservices with
different functionalities

Microservice patterns
Va

le
ria

 C
ar

de
llin

i –
SD

C
C

 2
02

5/
26

42

Observability patterns: Log aggregation

• Problem: how to understand application behavior and
troubleshoot problems?

• Solution: use a centralized logging service that
aggregates logs from all microservice instances
– DevOps team can search and analyze logs and configure

alerts triggered by specific log messages
– E.g., AWS CloudWatch, Splunk

✗ Centralized (if physical, not only logical)
✗ Handling large volumes of logs requires substantial

infrastructure
https://microservices.io/patterns/observability/application-logging.html

Valeria Cardellini – SDCC 2025/26 43

Observability patterns: Distributed tracing

• Problem: how to understand complex app behavior
and troubleshoot problems?

• Solution: instrument microservices with code to
– Assign a unique request ID (trace ID) to each user request
– Pass the trace ID through all microservices involved in

handling the request
– Include the trace ID in log messages
– Record trace context (e.g., start time, operation, duration) in

a distributed store

✗ Storing and aggregating traces may require
significant infrastructure
https://microservices.io/patterns/observability/distributed-tracing.html

Valeria Cardellini – SDCC 2025/26 44

Monitoring microservices: tools
• Dapper

– Google’s distributed tracing system
– Based on spans and traces

• Span: individual unit of work in an application(e.g., HTTP request,
call to DB); includes operation name, start time, and duration

• Trace: collection of spans in a parent/child relationship (can be
seen as a DAG); shows how requests propagate through services
and other components

Valeria Cardellini – SDCC 2025/26 45
Barroso er al., Dapper, a large-scale distributed systems tracing infrastructure, 2010

trace spans

Monitoring microservices: tools

• Dapper trace sampling and storage
• Traces are sampled using an adaptive rate

– Why sample traces?
• Storing all traces consume excessive storage, generate high

network traffic, and introduce significant application overhead
– Sampling rate adjusts dynamically based on traffic volume

and system behavior

• Trace collection and storage
– Span data is written to local log files by each service
– Dapper daemons pull the logs and send them through a

collection infrastructure
– Traces are stored in BigTable, with one row per trace ID

Valeria Cardellini – SDCC 2025/26 46

Monitoring microservices: tools
• Open-source distributed tracing tools

– Jaeger https://www.jaegertracing.io
• Inspired by Dapper, supports large-scale trace analysis (optionally

via Spark/Flink)
– Zipkin https://zipkin.io

• Lightweight distributed tracing system
– OpenTelemetry https://opentelemetry.io

• Industry-standard instrumentation framework
• Broad language support
• Integrated with popular frameworks and libraries
• Exports traces to multiple backends (e.g., Jaeger, Zipkin)

• Need for standards to support interoperability across
tracing tools

– W3C Trace Context defines a standardized format for
propagating tracing data https://www.w3.org/TR/trace-context-2/

Valeria Cardellini – SDCC 2025/26 47

Example microservices app
• Google’s Online Boutique

https://github.com/GoogleCloudPlatform/microservices-demo
– Online store where users can browse items, add them to

the cart, and purchase them
• Composed of 11 microservices written in different

languages
– Polyglot microservices: a “renaissance” in programming

language diversity

• How to build a polyglot application?
1. REST and JSON as message interchange format
2. gRPC and protocol buffers as IDL and message

interchange format: chosen approach in Online
Boutique

Valeria Cardellini – SDCC 2025/26 48

Online Boutique: architecture

Valeria Cardellini – SDCC 2025/26 49

Online Boutique: features
• Composed of 10 microservices (plus a load

generator), written in different languages and
communicating using gRPC

• Technologies demonstrated by Google Online
Boutique:
– Kubernetes and Google Kubernetes Engine (GKE):

container orchestration
– gRPC: we know it J
– Istio / Cloud Service: service mesh for traffic management,

security and observability
– Google Cloud Observability: monitoring, logging, and

tracing on Google Cloud
https://cloud.google.com/products/observability

– Locust: load testing tool https://locust.io
– Skaffold: command line tool for Kubernetes and containers

development https://skaffold.dev
Valeria Cardellini – SDCC 2025/26 50

Microservice technologies timeline

Valeria Cardellini – SDCC 2025/26 51
From "Microservices: The Journey So Far and Challenges Ahead”.

Generations: at the beginning

• 4 generations of microservice architectures
• 1st generation: containers and orchestration

– Container-based virtualization (e.g., Docker)
– Service discovery, e.g.,

• etcd https://etcd.io: distributed reliable key-value store
• Zookeeper

– Monitoring tools: enable runtime monitoring and analysis
of microservice resources behavior at different levels of
detail

• Graphite https://graphiteapp.org
• InfluxDB https://www.influxdata.com
• Prometheus https://prometheus.io/

Valeria Cardellini – SDCC 2025/26 52

Generations: container orchestration

• Container orchestration
– E.g., Kubernetes, Docker Swarm
– Automates container deployment, scaling, and management
– Abstracts physical/virtual infrastructure from developers

• Limitation
– Application-level fault tolerance implemented inside

microservice code

Valeria Cardellini – SDCC 2025/26 53

Generations: service discovery and fault tolerance
• 2nd generation service discovery tools and fault-

tolerant (FT) communication libraries
– Goal: enable more efficient and reliable service-to-service

communication
– Use FT communication libraries implementing resiliency

patterns: circuit breaker, fallback, retry/timeout

Valeria Cardellini – SDCC 2025/26 54

Generations: service discovery and fault tolerance

• Examples:
– Consul: initially service discovery, now service mesh

https://developer.hashicorp.com/consul
– Finagle: protocol-agnostic FT RPC library

https://github.com/twitter/finagle
– Resilience4j: Java FT library with multiple resiliency

patterns https://resilience4j.readme.io

• Limitation
– Developers must explicitly integrate FT libraries into

application code

Valeria Cardellini – SDCC 2025/26 55

Generations: service mesh
• 3rd generation: service mesh and sidecar proxies

– Encapsulate communication concerns: service discovery, load
balancing, security, fault tolerance, observability

– Benefits
• Abstract communication logic away from application code
• Improve software reuse
• Provide a homogeneous communication interface

Valeria Cardellini – SDCC 2025/26 56

Service mesh
• A dedicated infrastructure layer for microservice apps

that facilitates service-to-service communication
• Provided features (no need to embed them into

application logic) https://servicemesh.es
– Traffic management: service discovery, load balancing,

routing
– Security: authentication, encryption, and authorization

between services
– Resilience: circuit breaking, retries, timeouts, and fallbacks
– Observability: monitoring, logging, and tracing service

interactions

• Popular products:
– Istio https://istio.io
– Linkerd https://linkerd.io
– Consul https://www.consul.io

Valeria Cardellini – SDCC 2025/26 57

Service mesh: architecture
• Composed of data plane and control plane
• Data plane: decentralized

– Sidecar proxies deployed alongside each microservice
– Each proxy handles inbound and outbound traffic for the

service it is attached to

• Control plane: centralized

Valeria Cardellini – SDCC 2025/26 58

– Centralized configuration
management for all proxies

• Recent approach: proxyless
service mesh
– Moves service-to-service

communication from sidecar proxies to application or a
lightweight, centralized proxy

– Traffic management, security, and observability are still
managed by the mesh

✓ Reduces resource overhead and simplifies deployment

Generations: serverless

Valeria Cardellini – SDCC 2025/26 59

• 4th generation: Function as a Service (FaaS) and
serverless computing
– Further simplify microservice development and delivery

Serverless computing

• Cloud computing model that abstracts server
management and low-level infrastructure decisions
away from users through full automation

• Key characteristics
– Users develop, run, and manage application code (functions)
– No need to provision, manage, or scale computing resources
– The runtime environment is fully managed by the cloud (or

private platform) provider

• Note: serverless does not mean no servers
– Functions still run on servers, we simply do not manage or

care about them

Valeria Cardellini – SDCC 2025/26 60

Serverless through an analogy
• Services for moving homes

Valeria Cardellini – SDCC 2025/26 61

serverless

IaaS/PaaS
cloud

self-hosting

Serverless: many definitions
Va

le
ria

 C
ar

de
llin

i –
SD

C
C

 2
02

5/
26

62

Serverless: many definitions

Kounev et al., Serverless Computing: What It Is, and What It Is Not?,
Comm. ACM, 2023

Serverless computing is a cloud computing paradigm encompassing a
class of cloud computing platforms that allow one to develop, deploy, and
run applications (or components thereof) in the cloud without allocating
and managing virtualized servers and resources or being concerned about
other operational aspects.
The responsibility for operational aspects, such as fault tolerance or the
elastic scaling of computing, storage, and communication resources to
match varying application demands, is offloaded to the cloud provider.
Providers apply utilization-based billing: they charge cloud users with fine
granularity, in proportion to the resources that applications actually
consume from the cloud infrastructure, such as computing time, memory,
and storage space.

Valeria Cardellini – SDCC 2025/26 63

Serverless, FaaS and BaaS
• Function as a Service (FaaS) and serverless often

used interchangeably, some discussion on difference
• FaaS is the most prominent model of serverless

computing
– Can be defined as "a serverless computing platform where the unit

of computation is a function that is executed in response to triggers
such as events or HTTP requests" (Kounev et al.)

• Backend as a Service (BaaS)
– Provides developers with backend functions via API, such as

authentication, data storage, real-time messaging, and push
notifications

– Examples:
• AWS DynamoDB (no-demand mode): pay-per-request pricing

and automatic scaling
• Google Cloud Firestore (NoSQL document DB) and Pub/Sub
• AWS Amplify: serverless development platform that simplifies

building, deploying, and managing web and mobile applications
Valeria Cardellini – SDCC 2025/26 64

Serverless: features
• Ephemeral compute resources

– May exist only for the duration of a function invocation
✗ Cold start: if no container or microVM is ready, the function

waits until a new instance is launched

• Automated (i.e., zero configuration) elasticity
– Compute resources auto-scale transparently from zero to

peak load and back

• True pay-per-use: fine-grained and utilization-based
– E.g., AWS Lambda pricing is based on the number of

invocation requests and the duration it takes for code to run

65Valeria Cardellini – SDCC 2025/26

Serverless: features
• Event-driven execution

– Functions are triggered by events (e.g., file upload,
message queue, HTTP request)

– Infrastructure is dynamically allocated to execute the
function code in response to the event

• NoOps (no operations)
– Simplifies the deployment process: no need for developers

to manage scaling, capacity planning, or infrastructure
maintenance

– Developers focus only on business logic

• Supports diverse applications
– Use cases range from enterprise automation and real-time

data analytics to scientific computing and ML inference

66Valeria Cardellini – SDCC 2025/26

Serverless application: a first example
• Propagating updates in a social media app in a

serverless fashion
1. User creates and sends a status update
2. Platform orchestrates operations needed to propagate the

update inside the social media platform and to user’s
friends using serverless (AWS Lambda) and other cloud
services (AWS DynamoDB and SNS)

3. Friends receive the update

Valeria Cardellini – SDCC 2025/26 67

Serverless Cloud services
• Several Cloud providers offer serverless computing

as fully managed service on their public clouds
– AWS Lambda https://aws.amazon.com/lambda/

• See hands-on course
• Lambda@Edge: functions at the edge

https://aws.amazon.com/lambda/edge/
– Azure Functions https://azure.microsoft.com/products/functions
– Google Cloud Run Functions

https://cloud.google.com/functions

• User has limited knobs to control performance
– Amount of memory allocated to function (CPU ~ memory)
– Auto-scaling is handled automatically by the cloud provider

• Cloud platforms also offer supporting services to
operate serverless ecosystems
– E.g., event notifications, storage, message queues, DBs

Valeria Cardellini – SDCC 2025/26 68

Example: AWS reference Web app
• A simple “to-do list” web app that allows registered

users to create, update, view, and delete to-do items
• Event-driven web app uses AWS Lambda and Amazon

API Gateway for the business logic, DynamoDB as
database, and Amplify Console to host static content

Valeria Cardellini – SDCC 2025/26 69

https://github.com/aws-samples/lambda-
refarch-webapp

Example: Google Cloud Run Functions
• “Hello World” example from Google using Go

– Basic web server that replies with “Hello, World!”
https://docs.cloud.google.com/run/docs/quickstarts/build-and-
deploy/deploy-go-service

Valeria Cardellini – SDCC 2025/26 70

Serverless: state
• Stateless functions are easy to manage (horizontal

scalability, fast recovery)
– However, stateless functions are not enough for some

applications (e.g., ML, streaming)

• How to support stateful computation?
1. Externalize state (e.g., handed over to an external shared

storage system), so functions themselves remain stateless
• Requires efficient access to shared state, so to keep auto-

scaling benefits
2. Embed state into the serverless runtime: the serverless

platform manages state transparently and colocates it with
computation; the state is automatically persisted, replicated,
and recovered
• Examples: Azure Stateful Functions, Cloudflare Durable Objects

• What about transactions?
https://cacm.acm.org/practice/transactions-and-serverless-are-made-for-each-other/

Valeria Cardellini – SDCC 2025/26 71

Serverless: challenges and limitations
• Performance

– Cold starts
“Starting a new function instance involves loading the runtime and your code.
Requests that include function instance startup, called cold starts, can be slower
than requests routed to existing function instances.” Google Cloud Run Functions

– Autoscaling: can introduce performance variability, especially
during traffic spikes

• Programming languages
– Language support varies by cloud provider
– Choice of language affects cold start times, function

performance, and cost
• Security

– E.g., more entry points, financial exhaustion attacks
• Resources

– Limits on resource amount (e.g., in AWS Lambda per-function
memory between 128 MB and 10 GB)

– GPU support
72

Low
er flexibility

Valeria Cardellini – SDCC 2025/26

Serverless: challenges and limitations
• Cost-saving

– Not always cost-saving for users, possibly leading to expense
explosion

– Not cost-saving: high, predictable traffic, long-running
applications, complex applications, high memory/CPU needs

• Vendor lock-in
– Serverless offerings are tied to specific cloud providers

73Valeria Cardellini – SDCC 2025/26

Composition of serverless functions
• Write small, simple, stateless functions

– Complex functions are hard to understand, debug, and
maintain

– Separate code from data structures

• Compose multiple functions in a workflow

Valeria Cardellini – SDCC 2025/26 74

Example: AWS Step Functions

Valeria Cardellini – SDCC 2025/26 75

• AWS Step Functions: serverless orchestration
service that allows developers to coordinate multiple
Lambda functions into a single workflow

• Example: process photo after its upload to S3

Open-source serverless platforms

• Can run on commodity hardware
• Popular serverless platforms

– Apache OpenWhisk https://openwhisk.apache.org
– OpenFaaS https://www.openfaas.com
– Fission https://fission.io
– Knative https://knative.dev
– Nuclio https://nuclio.io

• Most platforms rely on Kubernetes for orchestration
and management of serverless functions
– Configuration and management of containers inside which

functions run
– Container scheduling and service discovery
– Elasticity management

Valeria Cardellini – SDCC 2025/26 76

OpenWhisk
• Distributed serverless platform that executes

functions in response to events
https://openwhisk.apache.org

• Functions run inside Docker containers
• Support for multiple container orchestration

frameworks

Valeria Cardellini – SDCC 2025/26 77

OpenWhisk
• Developers write functions, called actions

– In any supported programming language
– Actions are dynamically deployed, scheduled, and run in

response to associated events (via triggers) from external
sources (feeds) or from HTTP requests

• Functions can be combined into compositions

Valeria Cardellini – SDCC 2025/26 78

OpenWhisk: architecture
• Powered by multiple frameworks

– NGINX: entry point that receives HTTP requests and
forwards them to Controller

– Controller: translates HTTP requests into invocations of the
appropriate action; manages the lifecycle of actions and
coordinates between other components

– CouchDB (document-oriented NoSQL data store): stores
authentication and authorization info, action code, ...

Valeria Cardellini – SDCC 2025/26 79

– Kafka: mediates communication
between Controller and Invokers

– Docker: used by Invokers to
execute action code

OpenFaaS
• Distributed serverless framework, built on top of

Docker and Kubernetes https://www.openfaas.com

• Layered architecture
– OpenFaaS gateway: provides REST API to manage and

scale functions, record metrics
– NATS: used for asynchronous function execution and

queuing https://nats.io
– Prometheus: provides metrics and enables auto-scaling

https://prometheus.io

Valeria Cardellini – SDCC 2025/26 80

OpenFaaS
• Conceptual workflow

– Gateway can be accessed through its REST API, CLI or UI
– Prometheus collects metrics which are made available via

gateway’s API and are used for auto-scaling
– NATS enables function invocations to run asynchronously

Valeria Cardellini – SDCC 2025/26 81

https://docs.openfaas.com/architecture/stack/

Serverless in the compute continuum
• Open-source serverless platforms typically rely on

centralized components, which make them unsuitable
for the compute continuum

• We are developing Serverledge, a decentralized
FaaS framework: thesis opportunities!
https://github.com/serverledge-faas/serverledge

Valeria Cardellini – SDCC 2025/26 82

Russo Russo et al., Decentralized Function-as-a-Service for the Edge-Cloud Continuum,
Percom 2023 http://www.ce.uniroma2.it/publications/serverledgePerCom2023.pdf

References
• Lewis and Fowler, Microservice,

https://martinfowler.com/articles/microservices.html
• Lewis and Fowler, Microservice guides,

https://martinfowler.com/microservices
• Richardson, Microservice architecture, https://microservices.io
• Jamshidi et al., Microservices: The journey so far and challenges

ahead, IEEE Software, 2018
https://ieeexplore.ieee.org/iel7/52/8354413/08354433.pdf

• Roberts, Serverless architectures,
https://martinfowler.com/articles/serverless.html

• Kounev et al., Serverless computing: What it is, and what it is
not?, Comm. ACM, 2023 https://dl.acm.org/doi/pdf/10.1145/3587249

Valeria Cardellini – SDCC 2025/26 83

