TOR VERGATA Macroarea di Ingegneria

Cvivensira prcirsronr o1 zoums Dipartimento di Ingegneria Civile e Ingegneria Informatica

Microservices and
Serveless Computing

Corso di Sistemi Distribuiti e Cloud Computing
A.A. 2025/26

Valeria Cardellini

Laurea Magistrale in Ingegneria Informatica

Microservices

 Architectural style for distributed applications

» Structures an application as a collection of loosely
coupled services

» Not entirely new: derives from SOA and Web services
— But with some significant differences

« Focuses on how to build, manage, and evolve
architectures composed of small, self-contained units

» Key characteristics

— Modularization: application decomposed into a set of
independently deployable services, that are loosely coupled
and cooperating

— Rapid deployment and scalability
— Data management: services typically own their memory
persistence layer (e.g., relational DBs and NoSQL data stores)

Valeria Cardellini — SDCC 2025/26 1

Service Oriented Architecture (SOA)

 Architectural paradigm for designing loosely coupled
distributed sw systems

» Definition
SOA is a paradigm for organizing and utilizing
distributed capabilities that may be under the control of
different ownership domains. It provides a uniform
means to offer, discover, interact with and use

capabilities to produce desired effects consistent with
measurable preconditions and expectations

» Properties of SOA
— Logical view of services
— Message-oriented and description-oriented
— Service granularity and network orientation
— Platform neutral

Valeria Cardellini — SDCC 2025/26

SOA: Core entities

« 3 interacting entities

1. Service requestor (or consumer): requests service
execution

2. Service provider. implements and exposes the service
3. Service registry: publishes the service and enables

discovery
y HVS‘ervicer A
4 Description
(/ Service
"_\ Reglwy /’J
.\ /
Find Publish
Service
Service - Service
Requestor Provider ~——

Bind and Invoke

Service
Description

Valeria Cardellini — SDCC 2025/26

Web services

» Web services: implementation of SOA
» Definition
— Web service: software system designed to support

interoperable machine-to-machine (M2M)
interaction over a network

— Web service interface described in a machine-
processable format

— Other systems interact with web service in a
manner prescribed by its description using SOAP
messages, typically conveyed using HTTP

Valeria Cardellini — SDCC 2025/26

Web services

» Large ecosystem of standards and specification (more
than 60), among which:
— Service description : WSDL (Web Service Description Language)
— Communication: SOAP (Simple Object Access Protocol)

— Service registry: UDDI (Universal Description, Discovery and
Integration)

— Business process definition: BPEL (Business Process Execution
Language), BPMN (Business Process Model and Notation)

— SLA WSLA Cus}\omer ESB Prod\u/cer
€ <
« Wide variety of technologies
— Including ESB (Enterprise Service Bus): < —
integration platform for routing, mediation, & S
transformation, and communication;

commonly used in enterprise SOA systems

-
;y

S
> >
>

K.

!_V‘
|
S0}
m
w
=

- J

Valeria Cardellini — SDCC 2025/26

Valeria Cardellini — SDCC 2025/26

SOA vs. microservices

Heavyweight vs. lightweight
- SOA: heavyweight middleware (e.g., ESB)
- Microservices: lightweight technologies

Protocols

— SOA: web services protocols

— Microservices: RESTful APls and HTTP, often JSON-based
Architectural view

— SOA: integration solution

— Microservices: to build complete applications

Data ownership

— SOA: often shared databases or centralized data models
— Microservices: each service owns its own data store
Deployment and lifecycle

— SOA: services often deployed together or coordinated

— Microservices: independent deployment and versioning

Microservices and containers

Microservices are an ideal complement to container-
based virtualization

— “One microservice instance per container”
« Each microservice packaged as a container image
+ Each instance deployed as a container

— Containers enable runtime management (scaling,
migration)

Pros and cons:

V' Scale out/in by changing the number of container replicas
V' Scale up/down by adjusting container resources

v Isolation of microservice instance

v/ Resource limits per service

V' Fast build and startup

X Require container orchestration to manage multi-container
applications

Valeria Cardellini — SDCC 2025/26

Microservices: benefits

Increased software agility

— Each microservice is an independent unit of development,
deployment, operation, versioning, and scaling

— Encapsulation via APIs: interaction occurs through well-
defined APIs that hide implementation details

— Container-based virtualization

Improved scalability and fault isolation
Increased reusability across business domains
Improved data security

Faster development and delivery

Greater team autonomy

Valeria Cardellini — SDCC 2025/26

Microservices: concerns

Increased network traffic
— Remote service calls introduce network latency

Higher system complexity

Increased operational complexity
— Deployment, monitoring, and management
More difficult testing and debugging

— End-to-end and distributed testing are harder

Valeria Cardellini — SDCC 2025/26

Microservices and scalability

* How to achieve scalability of microservices?
— Run multiple instances of the same microservice
— Load balance requests across instances

* Prefer stateless services
— No state stored in the service instance
— Scale faster and more easily than stateful services

Valeria Cardellini — SDCC 2025/26 10

Stateless service

Does not store client or session state internally
State handled externally (e.g., database, cache)
Easier to scale out

More tolerant to service failures

B[;] Request: @:—
— }

=] conﬁlg7J [8 External State]

Valeria Cardellini — SDCC 2025/26 11

Stateful service

Stores state internally

Multiple instances of a scaled-out service must
synchronize state

Required to provide consistent, unified behavior
State management adds complexity and latency

How can multiple service instances maintain a
synchronized internal state while scaling?

A
Request A~
B “ ‘ g 8 Internal State
m
conﬁgl conﬁgl

Valeria Cardellini — SDCC 2025/26

Stateful service: scaling approaches

12

Centralized storage

— All instances read/write state to a shared database or cache
State replication

— Replicate state across instances

Event sourcing / CQRS patterns

— Store changes as events; rebuild state per instance
State partitioning (or sharding)

— Divide state into independent partitions

— Each instance handles a subset of the state
Sticky sessions (less used)

— Route requests from the same client to the same instance

Tradeoffs

— Adds operational complexity
— Can limit elastic scalability compared to stateless services

Valeria Cardellini — SDCC 2025/26

13

Valeria Cardellini — SDCC 2025/26

Microservice patterns

- The Microservice Architecture Pattern Language

Motivating Solution
-
Pattern Patten

Decompose by
business capabilty
v

subdomain

Service per team

Decomposition

[snared
| database [+

i Database architegt(re \

SOlUtionA == ----- - Solution 8

Database per
Service

General «————Specific

Event
sourcing

Service
Component Test

Server-side page
fragment
composition

Consumer-driven
contract test
Consumer-side
contract test

Client-side U
‘composition

Audtfog

Remote Procedure
Messaging |4~ - T

Invocati
~" —~

Application |
mefrics :
Distributed | [Health chea
racing APL
Exception Log
racking aggregation
Log deployments and changes | !

H Wicroservice H
H architecture T

Observability
i {Communication style :
 Application H v :
architectre cuem,smemmm' ‘ Seltregistation ‘ oy ‘
¥ ¥ i
H 1 External API
' Servics rogisty
: ervice
H £t deployment '
H host
e] KN s aryrogoaton
rrrrrr =]
Discovery
=S
e ion patterns
Senvice mesh
I
Copyright © 2024. Chris Richardson Consulting, Inc. Al rights reserved. Learn-Build- http://adopt. mi ices.io 14
S . d -
. . .
» Microservice clients need to e
changing
Dynamically
assigned

locate service instances

— Instances have dynamic network
locations (IP address, port)
— The set of instances changes

due to auto-scaling, failures,
upgrades

« Service discovery provides

— Registration: microservice
instances register themselves
when they start

— Lookup / resolution: clients can
find service instances
dynamically

Client or API
gateway

Valeria Cardellini — SDCC 2025/26

10.4.3.99:4545

?

10.4.3.20:333

How to load
balance?

REST
API

INSTANCE B

Registry
Client

SERVICE

REST
API
SERVICE

INSTANCE C

Registry
Client

15

Service discovery: patterns

1. Service registry
— A database of services, instances and network locations
— Instances register at startup and deregistered at shutdown
— Clients query the registry to find available instances

L
® Service Registry ©
Key
\ 4
\ / —>» Invokes
Service @ » Service
Consumer - Provider Microservice
Instance

Valeria Cardellini — SDCC 2025/26 16

Service discovery: patterns

2. Client-side service discovery
— Client determines service network location and load
balances requests among them

— Client queries Service Registry, uses a load-balancing
algorithm to pick an instance, and sends request directly to
chosen instance

Service Registry

Key

A 4

\

—) Invokes
Service Load Service

Consumer |Balancer Provider Microservice
Instance

Valeria Cardellini — SDCC 2025/26 17

Valeria Cardellini — SDCC 2025/26

Service discovery: patterns

3. Server-side service discovery
— Client sends request to load balancer at a known location

— Load balancer queries Service Registry and routes request
to an available instance

Service
Consumer

Valeria Cardellini — SDCC 2025/26

Service Registry

Load
Balancer

Key

Service
Provider

—)» Invokes

Microservice
Instance

Microservice patterns

18

Application

Solution

— Faten patterns

SOUtionA == ===~ - Solution 8

General «———Specific

Database per
Service

i shared
| datavase [

v

Decompose by
business capabity
v

i Database architegt(re \

subdomain

Service per team

Decomposition

Consumer-driven
contract test

| Application
‘architecture

| [Wicrosenves L
| rchtecure —

Transaction

log tailing
) Poll |
Transactlgnal H
messaging !

Application
metrics
Distributed Health check
tracing API
Exception Log
tracking aggregation

Copyright © 2024. Chris Richardson Consulting, Inc. Al rights reserved.

103 [
I el 3
i [Communication style i APlgateway | !
I T 1 ! 5 |
i v ! H - ;
P ; ! Cerksit dscvery | [sormgstason i[e
o | ‘ ' ' |
: : deployment ! : / | {External API
! Infrastructure patterns| : \ |
|| GRS e 4
H £ H
i ' Service registry
A Muliple Services i) v
b per host 4 Server-side
1 D [EmE] [
rrrrrr ’ “
H Discovery
| Sidecar w i
: H ion patterns
i Service mesh B
| D
Learn-Build http:/adopt.mi ices.io

19

Communication styles

« Synchronous communication
— Request/response style
— Mechanisms: HTTP/REST, RPC
— Typically, one-to-one interaction
X Can reduce availability if service is slow or down

* Asynchronous communication

protocols

Valeria Cardellini — SDCC 2025/26

Communication styles

— Event-driven or message-based
— Mechanisms: pub/sub systems, message queues, related

— Supports one-to-one or one-to-many interaction
V' Improves resilience and decoupling

20

» Example of synchronous vs. asynchronous

communication

Client

POST/orders

Create order

Client

Order request

channel

Client reply
channel

Valeria Cardellini — SDCC 2025/26

Order
Service

Order
Service

response

GET/consumers/id

GET/restaurant/id

Consumer request

channel

/(:0—

Order Service i
~~ reply channel

Restaurant request

channel

Consumer
Service

Restaurant
Service

Consumer
Service

Restaurant
Service

21

Service interaction

« Microservices can interact according to 2 patterns:
— Orchestration
— Choreography

» Orchestration: centralized approach

— A single centralized process (orchestrator, conductor or
message broker) coordinates interactions

— Orchestrator invokes and combines services, which may be

unaware of the composition
Orchestrator

\

Orchestration and choreography

Valeria Cardellini — SDCC 2025/26 29

» Choreography: decentralized approach

— Interaction defined by exchange of messages, rules, and
agreements between services

— Services react to events/messages directly, without a central

coordinator

-

Valeria Cardellini — SDCC 2025/26 23

Orchestration and choreography: example

. Customer
« Workflow for customer creation
Create custtjomer
- recor
Orchestration]
A A
Create points balance X Create loyalty Dispatch welcome Send welcome
Loyalty points bank record packin post email
T T T
. Send welcome pack .
Customer service Post service
Send welcome email .
P Email service
Choreography
possssssssoss-o=—f Loyalty points bank
]
\ 4
Publishes Customer created | __Subscribes | e
event
A
1
]
Customer service ittt Email service

Valeria Cardellini — SDCC 2025/26 Source: S. Newman, “Building Microservices”, O'Really, 2015 ,,

Orchestration vs choreography

* Orchestration:
v/ Simpler and more popular
X SPoF and potential performance bottleneck
X Tight coupling between orchestrator and services
X Higher network traffic and latency

» Choreography
v/ Lower coupling and operational complexity

v Increased flexibility and easier to change individual
services

X Services must be aware of each other’s locations
X Harder to observe and debug

X Implementing guarantees like reliable delivery is more
challenging

Valeria Cardellini — SDCC 2025/26 25

Microservice patterns

Motetig Solution patterns

Server-side page

SOlUtionA == ----- - Solution 8

Decompose by o[snared
General «———— Specilic business capabilty | database |[*°"
r | Database archites
subdomain

Service per team

IDecomposition

APl
Composiion

Application Infrastructure patterns
: Vorath !)
a.chel‘mfe H Transactional H
H Tessagng Exception Log |
i v racking aggregation | |
Messagng |o----of PoTdeTEGIS | || i :
; - - H Circuit Breaker) _og deployments and changes | |
Microsenvice i Observability :
architecture }-_’ H ,
| style : H APl gateway 1
i ; T !
Application T H ! v !
S farchitecture 3 S E— [sorogstaon | i[e
N : Serverless. | T T 4 1
('-Q : : : / : ! External API :
I 3 - —+ ; .
N b H ' |
Infrastructure patterns | o :
Q i :
(@] i § [servie registy
0 | i
| : v
H Server-side
= i 3rd party registration
= e
% | i Discovery
= |
©
(@] patterns
R
=
o ;
g =
Copyright © 2024. Chris Richardson Consulting, Inc. Al rights reserved. Learn-Build- i i http:/adopt. microservices.io 26

Decomposition patterns

« Monolithic application: built and deployed as a single
unit

* Decomposing into microservices is mostly an art
— No single “best” strategy
— Multiple decomposition patterns exist

ul

Microservice Microservice
i
(oY e (o)

Microservice Microservice Microservice Microservice
— — — —
— — — —
Monolithic Architecture Microservice Architecture

Valeria Cardellini — SDCC 2025/26 27

Decomposition patterns

« Design considerations
— Stable architecture
» Decomposition boundaries should not change frequently
— High cohesion
» Each service implements a small set of strongly related functions
— Common Closure Principle (CCP)
« Things that change together should be packaged together
* A change should ideally affect only one service
— Loose coupling

« Each service exposes an API that encapsulates its
implementation

* Internal changes should not affect clients
— Testability
» Each service should be independently testable
— Team size and ownership
» Service small enough for a “two-pizza team” (= 6-10 people)

 Teams should be autonomous, with minimal coordination
Valeria Cardellini — SDCC 2025/26

28

Main decomposition patterns

« Example: e-commerce app that takes orders from
customers, verifies inventory and available credit, and
ships them

1. Decompose services based on business capability

— Business capability: a function the business performs to
generate value

— Organizational/business view
— Good for initial decomposition and team alignment
— E.g., Order Management is responsible for orders, Customer

: ssssssssssssssssss ies

mmmmmmmmmm

% <<service>>
management

mmmmmmmmmm

eeeeeeeeeeeeeeeeeeee
mmmmmmmmmmmm

mmmmmmmmmm

Valeria Cardellini — SDCC 2025/26 i ! i | 29

Valeria Cardellini — SDCC 2025/26

Main decomposition patterns

2. Decompose by domain-driven design (DDD)
subdomain

— A domain is divided into multiple subdomains, each one
corresponding to a different part of the business

— Domain-modeling view

— Good for complex domains with rich business rules

— E.qg., Order Management, Inventory, Product Catalogue,
Delivery

Subdormain:
Order management

Order management service
Subdomain

Praduct catalog management

Product Catalog service

Inventory service

domain:
Delivery management

Subdomain:
Inventory management

Delivery service

Valeria Cardellini — SDCC 2025/26

Microservice patterns

Motivating Solution
I
Patten Patten

P r | t 5 i | Consumer-driven H Server-side page
SOlion A <= --- - > SoutonB | : ! [contract test i fragment
i Decompose by i Aggregate : HE B composition
o : N aty -- o Pelabase i : a4

i . H i [consumer

H . Hae H oo contract

| v LT i |

i Decompose by H

subdomain H Service,
i | Component Test
Service per team

Decomposition

Client-side Ul
‘composition

Event
sourcing

{ [oo
P e | PP

Transactional
messagir

Exception Log
racking aggregation | |

Service vy -
Template - p— H .
Vossagng |- -] Remle Pocedure | | H
: H — H Gircuit Breaker
H H Microsenvice | [Extemalized ~- —~ | H Log deployments and changes
i ! Chassis configuration % . H h
:] i Reliabilit : S
| [Wicosenice | L. S— Observability
] architecture T :)
i T ommunication style I APl gateway i
{Application [A H 3 v ;
{architecture : | : Clentside discovery | l Selt regisration i l Backands o ‘ :
""""""""""" | : Serverless, | T T : :
H : Seporment : : / i | External API
| Infrastructure patterns| .~ H ; \ :
H I Service registry i
Service
' i deployment ' :
H Multiple Services platform v v
! per host
; ‘ Suseate | |3m pary registaton
H Service-per- | o ... H
Container ¥
i | Discovery
Sidecar :
1C ication patterns
Service mesh
=

Copyright © 2024. Chris Richardson Consulting, Inc. All rights reserved. Learn-Build-Assess Microservices ~ http:/adopt.microservices.io

Reliability patterns: Circuit breaker

. circuit
client

* Problem: how to prevent a network or service FEE G

supplier

failure from cascading to other services? —’I:I_jil
- Solution: a service client invokes a remote e __ LT

service via a proxy that behaves like an : f‘;’;gzlcef::" :
electrical circuit breaker | : [

— Requests flow normally while the circuit is u > :
closed | o A 4-_—_"—-_-‘-&
— When failures exceed a threshold, the circuit * - = - - timeout! |

— timeout!
opens and requests fail immediately (optional =

[
> |
fallback response) —-—»r:l
— After a timeout, the circuit enters half-open < _.A__ - B _tﬁouun
state and allows limited test requests T et e

— On success, it closes again; on failure, it [1

reopens and restarts the timeout !
YAN
¢ — — — |
circuit open! |

Valeria Cardellini — SDCC 2025/26 32

Data patterns: Database per service

Problem: which database
architecture?

Solution: each microservice
keeps its persistent data private
and accessible only via its API.
Service transactions involve
only that service’'s DB

CUSTOMER table

D CUSTOMER_ID| ~ sTATUS TOTAL o CREDIT_LIMIT

4567 234 ACCEPTED | 8404430 24 100000

* Pros and cons
v/ Helps ensure loose coupling among services

v/ Each service can use the most appropriate DB type (e.g., KV data store,
graph database)

X Transactions spanning multiple services are more complex
X Managing multiple DBs increases operational complexity
» Adedicated DB server per service is not required

* Options: private tables per service, schema per service, database
server per service

Valeria Cardellini — SDCC 2025/26 33

Data patterns: Saga

Problem: each service has its own DB, but some transactions
span multiple services: how to maintain data consistency across
services without using distributed transactions (e.g., two-phase

commit)?
« Solution: implement each cross-service transaction as a saga

» Saga: a sequence of local transactions
— Each local transaction updates its DB and publishes a
message/event to trigger the next transaction
— If alocal transaction fails, the saga executes compensating
transactions to undo changes made by preceding transactions

(rollback)
Saga
Order Payment Stock
Service Message/event Service Message/event Service
Local Local Local
Transaction Transaction Transaction

34

Valeria Cardellini — SDCC 2025/26

Data patterns: Saga

« 2 ways to coordinate a saga:
— Choreography: each local transaction publishes events that
trigger local transactions in other services

— Orchestration

Choreography

Payment
Service

Stock
Service

i K
Order i
Service b

i1 Stock Done Event

Valeria Cardellini — SDCC 2025/26 35

Data patterns: Saga

« 2 ways to coordinate a saga:
— Choreography

— Orchestration: a central orchestrator tells each service which

local transaction to execute

Order
Service
CreateOrderX
3 \ 4

F o Y

Order Saga

Orchestrator
< /

Valeria Cardellini — SDCC 2025/26

Data patterns:

Orchestration

Message Broker

--

Execute Payment Command
Payment Channel

Prepare Order Command
Stock Channel

Order Saga
Reply Channel

__,_ (Payment
: Service |

Order
Prepared
Reply

" Payment Executed
Reply

orchestration-based Saga

36

» Let’s consider orchestration-based saga
— Source: MSc thesis by Andrea Cifola

Order Saga Orchestrator

Saga Orchestrator Log

Valeria Cardellini — SDCC 2025/26

Order
Service

OrderlD

item | Quantity | Price

f Payment)
_ Service

IPaymentiD User Amount

1

Alice 350%

Stock
Service

ElemID Type Available

1

shirt [

Order Events

Event Store

Payment Events

Stock Events

EventD | OrderlD |[Eventtype| Item Quantity Price
EventlD Paymenllevenl type| User Amount
EventlD | ElemID |Eventtype| Type Available

37

Data patterns: event sourcing

oooooooooooooooooooooo

ooooooooooo

nnnnnnnnnnnn

sssss
ssssss

Event store

* In the saga, we also use another pattern: event
sourcing

— Problem: a service participating in a saga must atomically
update its DB and publishes messages/events to the
orchestrator to avoid data inconsistencies

— Solution: persist a sequence of domain events representing

state changes; store events in an append-only event store (a

DB of events); service state can be reconstructed by
replaying events

Valeria Cardellini — SDCC 2025/26

Data patterns: CQRS

38

* Problem: how to query data from multiple services in
a microservice architecture? How to separate read
and write load to scale each independently?

« Solution: use a view DB, a read-only replica designed

to support queries

— Application keeps the view updated by subscribing to
domain events published by the service that owns the data

* Known as Command Query Responsibility
Segregation (CQRS), i.e., separate commands
(writes) from queries (reads) for a data store

Valeria Cardellini — SDCC 2025/26

39

Microservices observability challenge

» Service distribution, even at large scale: difficult to
monitor and capture causal and temporal
relationships among microservices

* Need for monitoring
— To debug the application
— To analyze performance and latency, including tail latency

0.07

Log Normal PDF

Response time distribution
0.06 1 P P(X>x)

P50=29 ms
L] — Pareto

Exponential

Probability

4 Normal
0.03 1pp5=21 ms

0.01 1 P95=71 ms “Tail” latency
P99=120 ms

0.00

T T v T
40 60 k 80 100 120 140J
Response time, ms

Valeria Cardellini — SDCC 2025/26 40

Microservices observability challenge

* Need for monitoring
— To analyze service dependencies

— To identify the root cause of anomalies, which requires:

» Constructing a service dependency graph that shows the
sequence of invoked microservices

 Localizing the root cause microservices using the graph, traces,
logs, and KPIs

multiple microservices with
different functionalities

rpc3
(Backend)

Valeria Cardellini — SDCC 2025/26 41

Valeria Cardellini — SDCC 2025/26

Microservice patterns

Copyright © 2024. Chris Richardson Consulting, Inc. All rights reserved. Learn-Build-Assess Microservices http://adopt.microservices. .io

Observability patterns: Log aggregation

42

* Problem: how to understand application behavior and
troubleshoot problems?

» Solution: use a centralized logging service that
aggregates logs from all microservice instances

— DevOps team can search and analyze logs and configure
alerts triggered by specific log messages

— E.g., AWS CloudWatch, Splunk
X Centralized (if physical, not only logical)

X Handling large volumes of logs requires substantial
infrastructure

Valeria Cardellini — SDCC 2025/26

43

Observability patterns: Distributed tracing

* Problem: how to understand complex app behavior
and troubleshoot problems?

« Solution: instrument microservices with code to
— Assign a unique request ID (frace ID) to each user request

— Pass the trace ID through all microservices involved in
handling the request

— Include the trace ID in log messages

— Record trace context (e.g., start time, operation, duration) in
a distributed store

X Storing and aggregating traces may require
significant infrastructure

Valeria Cardellini — SDCC 2025/26 44

Monitoring microservices: tools

» Dapper
— Google’s distributed tracing system

— Based on spans and fraces

» Span: individual unit of work in an application(e.g., HTTP request,
call to DB); includes operation name, start time, and duration

» Trace: collection of spans in a parent/child relationship (can be
seen as a DAG); shows how requests propagate through services
and other components

(time) —

Frontend.Request
(no parent id)
span id: 1

Backend.DoSomething
parent d: 1

span id: 3

\
% spans

rpc3
(Backend)

Barroso er al., , 2010
Valeria Cardellini — SDCC 2025/26

20 22 24 26 28 30

45

Monitoring microservices: tools

« Dapper trace sampling and storage

« Traces are sampled using an adaptive rate

— Why sample traces?

+ Storing all traces consume excessive storage, generate high
network traffic, and introduce significant application overhead

— Sampling rate adjusts dynamically based on traffic volume
and system behavior
» Trace collection and storage
— Span data is written to local log files by each service

— Dapper daemons pull the logs and send them through a
collection infrastructure

— Traces are stored in BigTable, with one row per trace ID

Valeria Cardellini — SDCC 2025/26

Monitoring microservices: tools

46

« Open-source distributed tracing tools

— Jaeger

 Inspired by Dapper, supports large-scale trace analysis (optionally
via Spark/Flink)

— Zipkin
« Lightweight distributed tracing system
— OpenTelemetry
* Industry-standard instrumentation framework
« Broad language support
« Integrated with popular frameworks and libraries
» Exports traces to multiple backends (e.g., Jaeger, Zipkin)

* Need for standards to support interoperability across
tracing tools

— W3C Trace Context defines a standardized format for
propagating tracing data

Valeria Cardellini — SDCC 2025/26

47

Example microservices app

» Google’s Online Boutique

— Online store where users can browse items, add them to
the cart, and purchase them

» Composed of 11 microservices written in different
languages
— Polyglot microservices: a “renaissance” in programming
language diversity
» How to build a polyglot application?
1. REST and JSON as message interchange format

2. gRPC and protocol buffers as IDL and message
interchange format: chosen approach in Online
Boutique

Valeria Cardellini — SDCC 2025/26 48

Online Boutique: architecture

@ python” &) LOCUST

R

User loadgenerator

HTTP HTTP

;w frontend checkout =

ad recommendation payment email

& @ python ﬂ\%\d? @ python

productcatalog shipping currency

GO GO nede

@ cart

Redis cache

Valeria Cardellini — SDCC 2025/26 49

Online Boutique: features

» Composed of 10 microservices (plus a load
generator), written in different languages and
communicating using gRPC

» Technologies demonstrated by Google Online
Boutique:

— Kubernetes and Google Kubernetes Engine (GKE):
container orchestration

— gRPC: we know it ©

— lIstio / Cloud Service: service mesh for traffic management,
security and observability

— Google Cloud Observability: monitoring, logging, and
tracing on Google Cloud

— Locust: load testing tool

— Skaffold: command line tool for Kubernetes and containers

development
Valeria Cardellini — SDCC 2025/26 50

Microservice technologies timeline

Foundations: service-oriented architecture, domain-driven design, design for failure, data isolation, infrastructure automation,
agility at scale, and end-to-end ownership
1
Containerization > LXC (2008), Docker (2013), rkt (2014)
!
Service discovery > Zookeeper (2008), Eureka (2012), etcd (2013), Synapse (2012), Consul (2014)
i
Monitoring > Graphite (2008), InfluxDB (2013), Sensu (2013), cAdvisor (2014), Prometheus (2014)
1

| Corlltainer A Ton Mesos (2009), Kubernetes (2014), Docker Swarm (2014),
: Amazon Elastic Container Service (2015), Nomad (2015)

| Fault-tolerant communication > Finagle (2011), Hystrix (2012), Proxygen (2014), Resilience4j (2016)

> Ansible (2012), Drone (2014), Spinnaker (2015),

| e Amazon Web Services CodePipeLine (2015), Otter (2016)

| Chaos engineerin Chaos Monkey (2012), Simian Army (2014), Pumba (2016),
9 9 Chaos Toolkit (2017)

Amazon Web Services Lambda (2014), Azure Functions (2016),
’ Serverless computing > Google Cloud Functions (2016), OpenWhisk (2016),
Spring Cloud Function (2017)

Linkerd (2016), Istio (2017), Conduit (2017)

2012 2013 2014 2015 2016 2017 2018 Time

>

i
1
1
i
1
1
1
i
i | Sidecar > SmartStack (2013), Prana (2014), Envoy (2016)
1
i
1
i
1
1
1
1
i
1

2008 2009 2010 2011
The first use of "microservices" as a

common architectural approach £y "Microservices: The Journey So Far and Challenges Ahead”.
Valeria Cardellini — SDCC 2025/26 51

Generations: at the beginning

» 4 generations of microservice architectures

« 1st generation: containers and orchestration
— Container-based virtualization (e.g., Docker)

— Service discovery, e.g.,
: distributed reliable key-value store

+ eted

+ Zookeeper

— Monitoring tools: enable runtime monitoring and analysis
of microservice resources behavior at different levels of

detail

* Graphite
* InfluxDB

* Prometheus

Valeria Cardellini — SDCC 2025/26

52

Generations: container orchestration

» Container orchestration
— E.g., Kubernetes, Docker Swarm
— Automates container deployment, scaling, and management
— Abstracts physical/virtual infrastructure from developers

* Limitation

— Application-level fault tolerance implemented inside
microservice code

4 N\ 4 N\
Service A Service B
» > :
Business Business
logic logic
(. J g J
Container A Container B

Valeria Cardellini — SDCC 2025/26

53

Generations: service discovery and fault tolerance

« 2" generation service discovery tools and fault-
tolerant (FT) communication libraries

— Goal: enable more efficient and reliable service-to-service
communication

— Use FT communication libraries implementing resiliency
patterns: circuit breaker, fallback, retry/timeout

[Discovery service]
4
Y
4 N
Service A Service B
Business Business
logic > logic
Discovery and Discovery and
fault tolerance fault tolerance
o J N J
, Container A Container B
Valeria Cardellini — SDCC 2025/26 e B ! 54

Generations: service discovery and fault tolerance

« Examples:
— Consul: initially service discovery, now service mesh

— Finagle: protocol-agnostic FT RPC library

— Resilience4j: Java FT library with multiple resiliency
patterns

* Limitation

— Developers must explicitly integrate FT libraries into
application code

Valeria Cardellini — SDCC 2025/26 55

Generations: service mesh

« 3 generation: service mesh and sidecar proxies

— Encapsulate communication concerns: service discovery, load
balancing, security, fault tolerance, observability
— Benefits
» Abstract communication logic away from application code
* Improve software reuse
* Provide a homogeneous communication interface

; [Discovery service] i
Sidecar Sidecar
s - - N
) Discovery and Discovery and)
Service A fault tolerance > | fault tolerance Service B
Business Traffic Traffic Business
logic management management logic
_ J N\ J
Container B

Valeria Cardellini — SDCC 2025/26

Service mesh

56

» A dedicated infrastructure layer for microservice apps
that facilitates service-to-service communication

* Provided features (no need to embed them into
application logic)
— Traffic management: service discovery, load balancing,
routing

— Security: authentication, encryption, and authorization
between services

— Resilience: circuit breaking, retries, timeouts, and fallbacks
— Observability: monitoring, logging, and tracing service
interactions
* Popular products:
— lIstio
— Linkerd
— Consul

Valeria Cardellini — SDCC 2025/26

57

Service mesh: architecture

» Composed of data plane and control plane

« Data plane: decentralized
— Sidecar proxies deployed alongside each microservice
— Each proxy handles inbound and outbound traffic for the
service it is attached to
» Control plane: centralized

— Centralized configuration
management for all proxies

* Recent approach: proxyless
service mesh
— Moves service-to-service control plane
communication from sidecar proxies to application or a
lightweight, centralized proxy

— Traffic management, security, and observability are still
managed by the mesh

v/ Reduces resource overhead and simplifies deployment
Valeria Cardellini— SDCC 2025/26 58

Service A Service B

Generations: serverless

» 4th generation: Function as a Service (FaaS) and
serverless computing
— Further simplify microservice development and delivery

f [Discovery service j ‘
! Sidecar Sidecar
' Discovery and Discovery and i .
Function A fault tolerance » | fault tolerance ! Function B
Business Traffic Traffic _:_> Business
logic management management ' logic
J N\ .,
[Function as a service]

Valeria Cardellini — SDCC 2025/26 59

Serverless computing

» Cloud computing model that abstracts server

management and low-level infrastructure decisions
away from users through full automation

» Key characteristics
— Users develop, run, and manage application code (functions)
— No need to provision, manage, or scale computing resources
— The runtime environment is fully managed by the cloud (or
private platform) provider
* Note: serverless does not mean no servers

— Functions still run on servers, we simply do not manage or
care about them

Valeria Cardellini — SDCC 2025/26

Serverless through an analogy

« Services for moving homes

0/---.

&>

Modern movers

laaS/PaaS E_-")

cloud

serverless

Traditional movers

self-hosting Q
®

Moving it yourself
(with family
and friends)

Valeria Cardellini — SDCC 2025/26

Packaging Delivery H Operations ‘
28 HRO SO [FnSe
52 g ; %.g D =B
agl O 2@ may
i g EDEE)a
28 -
M3 [Q&s Quoed

Yourself Yourself Yourself

Legal

e

All covered

8

Basic

P

Yourself

Financial Personnel

38

Fine-grained
Utilization-based Small team

il

o

Coarse-grained Large team

|

Yourself

5

Yourself

61

Valeria Cardellini — SDCC 2025/26

Serverless: many definitions

van Eyk et al., Serverless is More: From PaaS to Present Cloud Computing (135 cit.), IEEE IC, May 2018 [47]:

“Serverless Computing is a form of cloud computing which allows users to run E\¥:llgefi%Z=g! and [
ithout having to address the operational logicMIFunction-as-a-Service (FaaS) is a form of serverless computing
WaEIEYthe cloud provider manages the resources, lifecycle, and event-driven execution of user-provided functionsig

Hellerstein et al., Serverless Computing: One Step Forward, Two Steps Back (360 cit.). CIDR, Jan 2019 [23]:

“Serverless computing offers the attractive notion of a platform in the cloud where developers simply upload their code, and the
JElijelfillexecutes it on their behalf as needed at any scalefBEEEIneed not concern themselves with provisioning or
operating serversiENERdpay only for the compute resources used when their code is invokedMServerless is not only FaaSH
UNENECESE o] olelgCle Nl IS Ta e T MITJE1gY: the various multi-tenanted, ekl feIY(eE provided by the vendor.

In the case of AWS, this includes S3 (large object storage), DynamoDB (key-value storage), SQS (queuing services), SNS

(notification services), and more.”

Castro et al., The Rise of Serverless Computing (196 cit.), CACM, Dec 2019 [10]:

“Serverless computing is a platform that [R A L R e and runs code on-demand

T ROl VAT B (=R ER G R le CRER U Tallple]. This definition captures the two key features of serverless computing: (a) (e elll=le!
VA E RN GEVE=ERe e L) ...; serverless essentially supports Bezllnehier4=1e4 and avoids the need to pay for idle
servers. (b) [FES e ame [lgls Nitelsy 2= (R Ml A ... The main differentiators of serverless platforms is
Elillfine-grained resource charging only when code is runningh is a serverless computing platform where the
unit of computation is a function that is executed in response to triggers such as events or HTTP requests. Mobile Backend as-a-
VRN PPN - nd as-o-Service (BaaS) bears a close resembianc {o senverless compuinl

. Jonas,..., Patterson et al., Cloud Programming Simplified: A Berkeley View on Serverless Computing (485 cit.),

arXiv, Feb 2019 [26], refined in a follow up publication by the same authors What Serverless Computing Is and
Should Become: The Next Phase of Cloud Computing (75 cit.), CACM, May 2021 [41]

“In serverless computing, programmers create applications using high level abstractions offered by the cloud provider...
They may also use serverless object storage, message queues, key-value store databases, mobile client data sync, and so on,
a group of services offerings known collectively as Backend-as-a-Service (BaaS)#IManaged cloud function services are also called

you-go cost model instead of a reservation-based mode RN RN I e R oM SR (Yo R R
MAutomatic, rapid, and unlimited scaling resources up and down to match demand closely, from zero to practically infinitels

Legend: 6x 6x [4pay-per-usef¥qautoscaling/elasticityfc¥dBackend-as-a-Service]2y 62

Serverless: many definitions

Kounev et al., Serverless Computing: What It Is, and What It Is Not?,
Comm. ACM, 2023

Serverless computing is a cloud computing paradigm encompassing a

class of cloud computing platforms that allow one to develop, deploy, and

run applications (or components thereof) in the cloud
ing virtualized servers and resources or being concerned about

other operational aspectst

The responsibility for operational aspects, such as fault tolerance or the

to
match varying application demands, is offloaded to the cloud provider.
Providers apply : they charge cloud users with fine
granularity, in proportion to the resources that applications actually
consume from the cloud infrastructure, such as computing time, memory,
and storage space.

Valeria Cardellini — SDCC 2025/26 63

Serverless, FaaS and BaaS

» Function as a Service (FaaS) and serverless often
used interchangeably, some discussion on difference

* FaaS is the most prominent model of serverless
computing
— Can be defined as "a serverless computing platform where the unit

of computation is a function that is executed in response to triggers
such as events or HTTP requests" (Kounev et al.)

» Backend as a Service (BaaS)

— Provides developers with backend functions via API, such as
authentication, data storage, real-time messaging, and push
notifications

— Examples:

 AWS DynamoDB (no-demand mode): pay-per-request pricing
and automatic scaling
» Google Cloud Firestore (NoSQL document DB) and Pub/Sub

« AWS Amplify: serverless development platform that simplifies

building, deploying, and managing web and mobile applications
Valeria Cardellini — SDCC 2025/26

Serverless: features

64

* Ephemeral compute resources

— May exist only for the duration of a function invocation

X Cold start: if no container or microVM is ready, the function
waits until a new instance is launched

» Automated (i.e., zero configuration) elasticity

— Compute resources auto-scale transparently from zero to
peak load and back

» True pay-per-use: fine-grained and utilization-based

— E.g., AWS Lambda pricing is based on the number of
invocation requests and the duration it takes for code to run

Architecture Duration Requests

x86 Price

First 6 Billion GB-seconds / month $0.0000166667 for every GB-second $0.20 per 1M requests

Next 9 Billion GB-seconds / month $0.000015 for every GB-second $0.20 per 1M requests

Over 15 Billion GB-seconds / month $0.0000133334 for every GB-second $0.20 per 1M requests

Valeria Cardellini — SDCC 2025/26

65

Serverless: features

* Event-driven execution

— Functions are triggered by events (e.g., file upload,
message queue, HTTP request)

— Infrastructure is dynamically allocated to execute the
function code in response to the event
* NoOps (no operations)

— Simplifies the deployment process: no need for developers
to manage scaling, capacity planning, or infrastructure
maintenance

— Developers focus only on business logic

» Supports diverse applications

— Use cases range from enterprise automation and real-time
data analytics to scientific computing and ML inference

Valeria Cardellini — SDCC 2025/26 66

Serverless application: a first example

* Propagating updates in a social media app in a
serverless fashion
1. User creates and sends a status update

2. Platform orchestrates operations needed to propagate the
update inside the social media platform and to user’s
friends using serverless (AWS Lambda) and other cloud
services (AWS DynamoDB and SNS)

3. Friends receive the update

Post Status N Trigger DynamoDB
Update s Execution A
llb/,.s 5
Mobile Client APl Gateway Lambda Ssag _E __Push
Notlflcatlons

Qimnla Nntifiratin~, Service Mobile Users

Valeria Cardellini — SDCC 2025/26 67

Serverless Cloud services

« Several Cloud providers offer serverless computing
as fully managed service on their public clouds

— AWS Lambda

» See hands-on course
+ Lambda@Edge: functions at the edge

— Azure Functions
— Google Cloud Run Functions

» User has limited knobs to control performance
— Amount of memory allocated to function (CPU ~ memory)
— Auto-scaling is handled automatically by the cloud provider

» Cloud platforms also offer supporting services to
operate serverless ecosystems
— E.g., event notifications, storage, message queues, DBs

Valeria Cardellini — SDCC 2025/26 68

Example: AWS reference Web app

» A simple “to-do list” web app that allows registered
users to create, update, view, and delete to-do items

» Event-driven web app uses AWS Lambda and Amazon
API| Gateway for the business logic, DynamoDB as
database, and Amplify Console to host static content

e C ToboApp
GitHub Tpos(lorv : Hm
| addTodo
— i
| o\
i —> <«
\\\\\\\\\\\\\\ H
completeTodo
o\

eeeeeeeeee

Valeria Cardellini — SDCC 2025/26 u 69

Example: Google Cloud Run Functions

* “Hello World” example from Google using Go
— Basic web server that replies with “Hello, World!”

// Sample run-helloworld is a minimal Cloud Run service.
package main

import (
"fmt"
"log"
"net/http"

log.Print("starting server...")
http.HandleFunc("/", handler)

// Determine port for HTTP service
port := os.Getenv("PORT")
if port == "" {
port = "8080"
log.Printf("defaulting to port %s", port)
}

// Start HTTP server.
log.Printf("listening on port %s", port)
if err := http.ListenAndServe(":"+port, nil); err !'= nil {
log.Fatal(err)
}
}

func handler(w http.ResponseWriter, r *http.Request) {
name := os.Getenv("NAME")
if name == "" {
ame = "World"
}
fmt.Fprintf(w, "Hello %s!'\n", name)

Valeria Cardellini — SDCC 2025/26 }

Serverless: state

« Stateless functions are easy to manage (horizontal
scalability, fast recovery)
— However, stateless functions are not enough for some
applications (e.g., ML, streaming)
* How to support stateful computation?
1. Externalize state (e.g., handed over to an external shared

storage system), so functions themselves remain stateless

* Requires efficient access to shared state, so to keep auto-
scaling benefits

2. Embed state into the serverless runtime: the serverless
platform manages state transparently and colocates it with
computation; the state is automatically persisted, replicated,
and recovered

« Examples: Azure Stateful Functions, Cloudflare Durable Objects

* \What about transactions?

Valeria Cardellini — SDCC 2025/26

Serverless: challenges and limitations

* Performance
— Cold starts

“Starting a new function instance involves loading the runtime and your code.
Requests that include function instance startup, called cold starts, can be slower
than requests routed to existing function instances.” Google Cloud Run Functions

— Autoscaling: can introduce performance variability, especially
during traffic spikes

* Programming languages —

Aigixayy Jomon

— Language support varies by cloud provider
— Choice of language affects cold start times, function
performance, and cost
» Security
— E.g., more entry points, financial exhaustion attacks B
* Resources
— Limits on resource amount (e.g., in AWS Lambda per-function
memory between 128 MB and 10 GB)
— GPU support
Valeria Cardellini — SDCC 2025/26 - 72

Serverless: challenges and limitations

» Cost-saving

— Not always cost-saving for users, possibly leading to expense
explosion

— Not cost-saving: high, predictable traffic, long-running
applications, complex applications, high memory/CPU needs

* Vendor lock-in
— Serverless offerings are tied to specific cloud providers

Valeria Cardellini — SDCC 2025/26 73

Composition of serverless functions

» Write small, simple, stateless functions

— Complex functions are hard to understand, debug, and
maintain

— Separate code from data structures
« Compose multiple functions in a workflow

Model 1

Feature /

Extraction

Validity Persist
Check Metadata

O =

Structural Condition Busingss
Vertex Logic

Preprocessing

Reduce Size to
Generate

Thumbnails if not small enough
Function

Valeria Cardellini — SDCC 2025/26

Example: AWS Step Functions

» AWS Step Functions: serverless orchestration

service that allows developers to coordinate multiple
Lambda functions into a single workflow

« Example: process photo after its upload to S3

&

Photograph is
taken x (@
W, D
— i
AWS Lambda Amazon
e — [¢ Lambda invokes Rekognition
DL —' Rekognition API Object, scene and S ?
\/ C C activity detection S
C
L I
A s Lambda C Amazon
mazon is triggered N DynamoDB
Photo is uploaded AWS Step Functions Stores extracted
to 3 bucket Coordinate tasks for image metadata and
analysis Z} identified object
tags

AWS Lambda
Extracts image
metadata from S3
Object
(size, format, etc)

Valeria Cardellini — SDCC 2025/26

Open-source serverless platforms

« Can run on commodity hardware

» Popular serverless platforms
— Apache OpenWhisk
— OpenFaaS
— Fission
— Knative
— Nuclio

» Most platforms rely on Kubernetes for orchestration

and management of serverless functions

— Configuration and management of containers inside which
functions run

— Container scheduling and service discovery
— Elasticity management

Valeria Cardellini — SDCC 2025/26

OpenWhisk ¢ ¥

76

» Distributed serverless platform that executes
functions in response to events

AR

* Functions run inside Docker containers
» Support for multiple container orchestration

frameworks Y
%0 dock
kubernetes EEE; MESOS ;ﬁggs) cgri\;(;se

Valeria Cardellini — SDCC 2025/26

77

OpenWhisk

» Developers write functions, called actions

In any supported programming language

— Actions are dynamically deployed, scheduled, and run in

response to associated events (via triggers) from external
sources (feeds) or from HTTP requests

« Functions can be combined into compositions

Compositions

Valeria Cardellini — SDCC 2025/26

OpenWhisk: architecture

78

» Powered by multiple frameworks

NGINX: entry point that receives HTTP requests and
forwards them to Controller

Controller: translates HTTP requests into invocations of the
appropriate action; manages the lifecycle of actions and
coordinates between other components

CouchDB (document-oriented NoSQL data store): stores
authentication and authorization info, action code, ...

Kafka: mediates communication
between Controller and Invokers

Docker: used by Invokers to
execute action code

Valeria Cardellini — SDCC 2025/26

79

Sym

OpenFaaS |w

» Distributed serverless framework, built on top of
Docker and Kubernetes

« Layered architecture

— OpenFaaS gateway: provides REST API to manage and
scale functions, record metrics

— NATS: used for asynchronous function execution and
queuing

— Prometheus: provides metrics and enables auto-scaling

Cl/ Gitops @ GitHub 4 v GitLab
Layer ‘ Actions ArgoCD Self-hosted

Application .ﬂ OpenFaaS 9 m
Prometheus NATS
Layer openFaps cateway

Infrastructure . e ‘m‘ Container
e ‘ % KubernetesJ ‘ @ OCIImage ‘ @ Registry

Valeria Cardellini — SDCC 2025/26 30

OpenFaaS

» Conceptual workflow
— Gateway can be accessed through its REST API, CLI or Ul

— Prometheus collects metrics which are made available via
gateway’s API and are used for auto-scaling

— NATS enables function invocations to run asynchronously

. . service %‘
CLI/ tm\ /

— ul/ O(;)etnFaaS ?RUKD . faas-netes
REST opneaps Cateway NEEOYCRE

service:latest
CoIIect R.E. D “---Scale up/___
Metncs down

[Prometheus H gAlenManager] ‘%% g:;zﬁ; ’

java-fn:2.0

NATS
Streaming

Valeria Cardellini — SDCC 2025/26 81

Serverless in the compute continuum

» Open-source serverless platforms typically rely on
centralized components, which make them unsuitable
for the compute continuum

« We are developing Serverledge, a decentralized
FaaS framework: thesis opportunities!

Global

—
Cloud Region E @ Registry
|

‘)

A

Apy ot

nnnnnnnn

\ = f?equestt/Response
‘ ----------- Computation Offloading
Russo Russo et al., Decentralized Function-as-a-Service for the Edge-Cloud Continuum,

Percom 2023
Valeria Cardellini — SDCC 2025/26

References

82

 Lewis and Fowler, Microservice,
* Lewis and Fowler, Microservice guides,
* Richardson, Microservice architecture,

« Jamshidi et al., Microservices: The journey so far and challenges
ahead, IEEE Software, 2018

 Roberts, Serverless architectures,

« Kounev et al., Serverless computing: What it is, and what it is
not?, Comm. ACM, 2023

Valeria Cardellini — SDCC 2025/26

83

