
Corso di Sistemi Distribuiti e Cloud Computing
A.A. 2025/26

Valeria Cardellini

Laurea Magistrale in Ingegneria Informatica

OS-Level and Lightweight Virtualization

Macroarea di Ingegneria
Dipartimento di Ingegneria Civile e Ingegneria Informatica

OS-level virtualization

• Let’s consider operating system (OS) level
virtualization (or container-based virtualization)

• It allows running multiple isolated (sandboxed) user-
space instances on top of a single OS
– Such instances are called:

• containers
• jails
• zones

Valeria Cardellini - SDCC 2025/26 1

OS-level virtualization
• OS kernel allows the existence of multiple isolated

user-space instances, called containers
• Each container has:

- Its own set of processes, file systems, users, network
interfaces with IP addresses, routing tables, firewall rules, …

• Containers share the same OS kernel (e.g., Linux)

2Valeria Cardellini - SDCC 2025/26

OS-level virtualization: mechanisms
• Which OS kernel mechanisms are used to manage

containers?
– Containers need to isolate processes from each other in

terms of sw and hw (CPU, memory, …) resources

• Main mechanisms offered by Unix-like OS kernels
– chroot (change root directory)

• Allows changing the apparent root folder for the current
running process and its children

– cgroups (Linux-specific)
• Manage resources for groups of processes, such as CPU and

memory allocation
– namespaces (Linux-specific)

• Per-process resource isolation, ensuring that each container
has its own isolated environment

Valeria Cardellini - SDCC 2025/26 3

Mechanisms: namespaces
• Feature of Linux kernel that allows to isolate what a

set of processes can see in the operating
environment
– Includes resources such as processes, ports, files, …

• Kernel partitions resources so that one set of
processes can see a specific set of resources, while
another set of processes sees a different set of
resources

• 6 different types of namespaces

Valeria Cardellini - SDCC 2025/26 4

Mechanisms: namespaces
• mnt: isolates mount points seen by a container

– Virtually partitions the file system, so processes running in
separate mount namespaces cannot access files outside of
their mount point

• pid: isolates PID space, ensuring that each process
only sees itself and its children (PID 1, 2, 3, …)

• network: allows each container to have its dedicated
network stack
– Its own private routing table, set of IP addresses, socket

listings, firewall rules, and other network-related resources

• user: isolates user and group IDs
– E.g., allows a non-root user on host to be mapped to root user

within the container, without granting actual root access to
host

Valeria Cardellini - SDCC 2025/26 5

Mechanisms: namespaces
• uts (Unix timesharing): provides dedicated host and

domain names
– Allows processes to think they are running on servers with

different names, even though they share the same host

• ipc: provides dedicated shared memory for IPC
– E.g., separate Posix message queues for different

containers

Valeria Cardellini - SDCC 2025/26 6

Mechanisms: cgroups
• cgroups = control groups
• Limit, measure and isolate the use of hw resources

(CPU, memory, I/O, network) for a group of processes
• Exposed via a filesystem interface (similar to sysfs

and procfs)
– Default mount point: /sys/fs/cgroup/

• In a nutshell:
– namespaces implement information isolation: what a

container can see
– cgroups implement resource isolation: how many resources a

container can use

Valeria Cardellini - SDCC 2025/26 7

OS-level virtualization: pros
• VMM-based vs container-based virtualization

Valeria Cardellini - SDCC 2025/26 8

In a nutshell: lightweight vs. heavyweight

OS-level virtualization: pros
vs. VMM-based virtualization (type-1)
✓ Near-native performance

– No VMM indirection for system calls

✓ Fast startup and shutdown
– Seconds (even msec) per container vs. minutes per VM

✓ High density
– Hundreds of containers per physical machine (PM)

✓ Small footprint
– Container images are smaller since they exclude the OS

kernel

✓ Memory efficiency
– Containers can share memory pages on the same PM

✓ Portability and interoperability
– Apps run across environments

Valeria Cardellini - SDCC 2025/26 9

OS-level virtualization: cons
vs. VMM-based virtualization (type-1)
✗ Less flexible

– Only supports native apps for the OS kernel (e.g., no Windows
container on Linux host)

– Cannot run different OS kernels on same PM; however, can
run multiple Linux distributions (e.g., Ubuntu, CentOS)

✗ Weaker isolation
– Process-level isolation leads to higher performance

interference on shared resources

✗ Higher security risks
– A kernel vulnerability affects the entire system
– Since containers share the kernel, one compromised container

can impact other containers and the host

✗ Reduced hardware/device isolation
– Device passthrough is more difficult and less secure

10Valeria Cardellini - SDCC 2025/26

OS-level virtualization: products

Valeria Cardellini - SDCC 2025/26 11

• Docker
– Most popular container engine
– Provides application containers

• Package and run a single application with its dependencies
– Supports Open Container Initiative (OCI) standards

https://opencontainers.org

• LXC (LinuX Containers) https://linuxcontainers.org/lxc/
– Supported by mainline Linux kernel
– Provides system containers

• Run a whole OS user space with multiple processes, but share
the host kernel

OS-level virtualization: products

Valeria Cardellini - SDCC 2025/26 12

• Podman https://podman.io
– Supports OCI; Docker compatible CLI
– Daemonless, rootless operation for improved security

• FreeBSD Jail
– Strong process and filesystem isolation

• OpenVZ / Virtuozzo https://openvz.org
– For Linux; primarily for system containers

• Non-Linux platforms
– Windows and macOS support containers (e.g., Docker

Desktop)

• Alternative approach
– Install a Linux VM as a guest OS
– Run container engines (e.g., Docker) inside the VM
– Performance Impact: nested virtualization leads to reduced

performance

Containers, DevOps and CI/CD
• DevOps: development methodology that bridges the

gap between Development and Operations, focusing
on collaboration, continuous integration, and
automated delivery

• CI/CD:
– Continuous Integration (CI): merges developers' work into a

shared codebase
– Continuous Delivery (CD): ensures frequent and reliable

releases

13Valeria Cardellini - SDCC 2025/26

Containers, DevOps and CI/CD
• Containers: simplify building, packaging, sharing, and

deploying apps with all dependencies
• Enable collaboration by sharing images, and

streamline deployment across environments without
extra configuration

14Valeria Cardellini - SDCC 2025/26

Containers, microservices, and serverless

• Using containers
- Package apps and all dependencies into a single unit that

runs almost anywhere
- Use fewer resources than traditional VMs

• Containers enable
- Microservices: break down apps into small, independent

services
- Serverless: package functions into containers for efficient

execution

Valeria Cardellini - SDCC 2025/26 15

Case study: Docker

• Lightweight and secure container-based virtualization
– Application containers: contain the application and its

dependencies, but share OS kernel with other containers
– Isolation: containers run as isolated processes in user space

on host OS
– Portability: containers are infrastructure-agnostic and can

run anywhere

Valeria Cardellini - SDCC 2025/26 16

Docker: features
• Portable deployment

– Easily deploy across different machines and environments

• Versioning
– Git-like version control for container images

• Component reuse
– Reuse components (e.g., libraries, services) via Docker

images

• Shared libraries
– Access to pre-built images on Docker Hub

https://hub.docker.com

• OCI support
• Scalability

– Works seamlessly with Kubernetes for scaling applications

Valeria Cardellini - SDCC 2025/26 17

Docker: internals
• Written in Go
• Exploits Linux kernel mechanisms for resource

management and isolation (cgroups and
namespaces)
– Early versions were based on Linux Containers
– Then transitioned to libcontainer, a Go-based container

runtime: provides tools for managing containers with
namespaces, cgroups, capabilities, and filesystem access
controls
https://pkg.go.dev/github.com/opencontainers/runc/libcontainer

– runc: libcontainer is now part of runc, the CLI tool for
spawning and running containers based on OCI specification
https://github.com/opencontainers/runc

Valeria Cardellini - SDCC 2025/26 18

Docker Engine: architecture
• Docker Engine: core

component of Docker that
enables containerization

• Client-server application
composed by
– Docker daemon (dockerd):

server component that
listens for API requests and
manages Docker objects
like images, containers,
networks, and volumes

Valeria Cardellini - SDCC 2025/26 19
https://docs.docker.com/get-started/docker-overview/#docker-architecture

– REST API: specifies the interfaces that programs can use to
interact with Docker daemon for operations like creating,
managing, and querying Docker objects

– CLI client: allows users to send commands to Docker daemon
via REST API

Docker: client-server architecture
• Docker client

– Interface through which users interact with Docker
– Sends commands to Docker Daemon to build, run, and

distribute Docker containers
– Client and daemon communicate through sockets or the

REST API

Valeria Cardellini - SDCC 2025/26 20

Docker: images
• Read-only template

– Used to create Docker containers, containing everything
needed to run app (code, dependencies, configurations)

• Build component
– Docker images enable distribution of apps with their runtime

environments, removing the need to manually install packages
– Target machine must be Docker-enabled

• Dockerfile
– Text file with simple instructions that Docker uses to build

images automatically

• Image registry
– Images can be pulled and pushed to/from public or private

registries

• Image naming
– Format: [registry/][user/]name[:tag]
– Default tag is latest Valeria Cardellini - SDCC 2025/26 21

Docker image: Dockerfile
• Docker images are created from a Dockerfile and a

context
– Dockerfile: text file containing instructions to assemble the

image
– Context: set of files (e.g., app code, libraries) used during

the image build process
– Images often build on parent images (e.g., Alpine, Ubuntu)

• Dockerfile syntax
Comment (for comments)
INSTRUCTION arguments (commands like RUN, COPY, etc.)

• Instructions in the Dockerfile run sequentially

22Valeria Cardellini - SDCC 2025/26

Docker image: Dockerfile
• Common Dockerfile instructions

– FROM <image>: specifies the parent image (mandatory unless
you want to start from scratch)

– WORKDIR <path>: sets the working directory inside the
container

– COPY <host-path> <image-path>: copies files from host to
container image

– RUN <command>: executes the specified command during
image build

– ENV <name> <value>: sets an environment variable
– EXPOSE <port>: exposes a network port for the container
– CMD ["<command>", "<arg1>"]: defines the default

command to run when the container starts

https://docs.docker.com/get-started/docker-concepts/building-
images/writing-a-dockerfile/

23Valeria Cardellini - SDCC 2025/26

Docker image: Dockerfile
• Example: Dockerfile to build the image of a container

that will run as application a simple todo list manager
written in Node.js

24Valeria Cardellini - SDCC 2025/26

https://docs.docker.com/get-started/workshop/02_our_app/

Directory with app code# syntax=docker/dockerfile:1

FROM node:lts-alpine

WORKDIR /app

COPY . .

RUN yarn install --production

CMD ["node", "src/index.js"]

EXPOSE 3000

Docker image: build

• Building Docker image from Dockerfile and context
– Context: set of files located in the specified PATH or URL

• Build command
$ docker build [OPTIONS] PATH | URL | -

• Example: to build an image for Node.js app (slide 24)
$ docker build -t getting-started .
⎼ The -t flag is used to tag the image with a name (and

optionally a version)
⎼ If Dockerfile is named something different from Dockerfile,

use the –f flag:
$ docker build -t getting-started –f myDockerfile .

Valeria Cardellini - SDCC 2025/26 25

https://docs.docker.com/reference/cli/docker/build-legacy/

Docker image: layers
• Each Docker image consists of a series of layers
• Docker uses union file systems to combine these

layers into a single unified view
– These layers are stacked to form a base the base of a

container’s root file system
– Docker leverages copy-on-write (CoW) strategy to

optimize performance

Valeria Cardellini - SDCC 2025/26 26

Docker image: layers
• Layering pros

✓ Efficient layer sharing and reuse: common layers are
installed only once, saving bandwidth and storage space

✓ Separation of concerns: allows better management of
dependencies

✓ Facilitates software specialization
https://docs.docker.com/storage/storagedriver

27Valeria Cardellini - SDCC 2025/26

Docker image: layers
• Dockerfile instructions that modify the filesystem

create new layers
– Examples: FROM, RUN, COPY, ADD

• Instructions that only modify the image’s metadata
do not create new layers
– Examples: CMD, LABEL

• All image layers (except the top one) are read-only
– To enable efficient layer sharing across images

• When a container is started, a writable layer (aka
container layer) is added on top
– Changes made by a running container (e.g., creating or

modifying a file) are written to the writable layer
– Unique to each container
– Ephemeral: deleted when the container is removed
– Use it only for temporary/runtime data, not persistent data

Valeria Cardellini - SDCC 2025/26 28

Docker container storage
• Containers are usually stateless
• Why? Easier to:

– Scale: start quickly new replicas
– Restart: from failure
– Migrate: move between hosts

• Very little data is written to container’s writable layer
• Data is typically stored in Docker volumes
• However, some workloads require writing data to

container’s writable layer

Valeria Cardellini - SDCC 2025/26 29

Docker: storage backends
• How Docker daemon stores image layers and

container writable layers on disk
– Storage drivers
– containerd image store

• Storage drivers (legacy): common options
- Overlay2: file-level, preferred for all Linux distros
- Btrfs: supports snapshotting
- Zfs: block-level

• Storage driver considerations
– Driver choice affects container performance
– Drivers are optimized for space efficiency
– Write performance speeds may be lower than native file

system performance due to CoW

https://docs.docker.com/storage/storagedriver/select-storage-driver
Valeria Cardellini - SDCC 2025/26 30

Docker: storage backends
• New default backend: containerd image store

(Docker Engine 29.0+)
• Uses content-addressable blob store
• Pros and cons:

✓ Cleaner architecture
✓ Unifies Docker and containerd ecosystem
✗ Uses more disk space than storage drivers (no deduplication

at driver level)

Valeria Cardellini - SDCC 2025/26 31

Docker: containers and registry
• Docker container: runnable instance of a Docker image

– Containers are the run component of Docker
– Run, start, stop, move, or delete a container using Docker API

or CLI commands

• Docker registry: stateless server-side application that
stores and distributes Docker images
- Registry is the distribute component of Docker
- Public and private registries

• Docker-hosted registries: Docker Hub (official one), Docker Store
(for open-source and enterprise-verified images)

- Open library of images
Valeria Cardellini - SDCC 2025/26 32

- Stateless nature of containers:
when a container is deleted,
any data written outside of data
volumes is lost

Docker: run container
• When you run a container from an image that is not

yet installed locally but is available on Docker Hub,
Docker will pull the image from the registry before
starting the container

Valeria Cardellini - SDCC 2025/26 33

Docker container: states and transitions

Valeria Cardellini - SDCC 2025/26 34

• Different states a container can go through during its
lifecycle and actions that trigger transitions

Docker commands: info

• Get system-wide info on Docker installation
$ docker info

including:
– Number of images and containers, along with their status
– Storage driver
– Operating system, architecture, total memory
– Docker registry information

35Valeria Cardellini - SDCC 2025/26

Docker commands: image handling
• List all images on host

$ docker images or $ docker image ls

• List all images, including intermediate image layers
$ docker images –a or $ docker image ls –a

• You can filter and format the output to list images by
name, tag, image digests (sha256) or image that meet
specific conditions
– E.g., list unused images (<none>) that are no longer associated

with any tagged images but consume disk space
$ docker images --filter "dangling=true"

• Remove an image
$ docker rmi imageid
alternatively, $ docker image rm imageid

36Valeria Cardellini - SDCC 2025/26

or use imagename
instead of imageid

Docker commands: image handling

• Remove dangling images
$ docker image prune

• Inspect an image, including layers and image
metadata
$ docker inspect imageid

Valeria Cardellini - SDCC 2025/26 37

Docker commands: run

• Common options
--name set container name
-d detached mode (background)
-i interactive (keeps STDIN open)
-t allocate a pseudo-tty, usually with -i
--expose declare port(s) inside container
-p or –publish map container port(s) to host
-v mount volume
-e set environment variables inside container
--rm automatically remove container when it exits
--restart set restart policy (e.g., always, on-failure)

38

$ docker run [OPTIONS] IMAGE [COMMAND] [ARGS]

Valeria Cardellini - SDCC 2025/26

https://docs.docker.com/reference/cli/docker/container/run/

Docker commands: containers management
• List containers

– Only running containers: $ docker ps
alternatively, $ docker container ls

– All containers (including stopped or killed containers):
$ docker ps -a

• Manage container lifecycle
– Stop a running container

$ docker stop containerid
– Start a stopped container

$ docker start containerid
– Kill a running container

$ docker kill containerid
– Remove a container (after stopping it)

$ docker rm containerid

39

or use containername
instead of containerid

Valeria Cardellini - SDCC 2025/26

• Stop and remove a container
$ docker ps
$ docker stop containerid
$ docker ps -a
$ docker rm containerid

Docker commands: containers management
• Stop all containers

$ for i in $(docker ps -q); do docker stop $i; done

• Run a command inside a running container
$ docker exec [OPTIONS] CONTAINER [COMMAND] [ARGS]
Example: $ docker exec -it mycontainer /bin/bash

• Inspect a container
– To get the most detailed view of a container environment
$ docker inspect containerid

• Copy files between host and container
$ docker cp containerid:path localpath
$ docker cp localpath containerid:path

40Valeria Cardellini - SDCC 2025/26

Docker: networking
• Containers communicate with each other or with

external systems
• Published ports

– Use -p hostPort:containerPort (e.g., -p 8080:80) in
docker run to expose a container port externally

– Security issue: exposing container ports can be insecure
• Restrict access to host only by binding to localhost

(e.g., -p 127.0.0.1:8080:80)
– Work only on host network: containers can communicate

with each other via internal Docker network

• IP address and hostname
– Containers get an IP address from Docker’s dynamic subnet
– Docker daemon manages subnetting and IP allocation
– Default container hostname = container ID (can override with

--hostname)

Valeria Cardellini - SDCC 2025/26 41

Docker: network drivers
• Docker networking is pluggable

– Docker supports multiple network drivers that provide
different networking behaviors, including:

• bridge (default)
– Default network driver when no network is specified
– Use when containers need to communicate on the same

host
– Implements a software bridge

• Containers on the same bridge network can communicate
with each other

• Containers on different bridge networks are isolated

• host
– Removes network isolation between container and host
– Container uses host’s network stack directly (no private IP

assigned)

Valeria Cardellini - SDCC 2025/26 42

Docker: volumes
• Preferred mechanism for persisting data generated or

used by containers
– Volume content persists outside the container lifecycle: use

volumes over container writable layer for persistent data
– Does not increase container image size

• How volumes work
– Docker creates a directory inside its storage directory to

manage volume content
– Default location on Linux: /var/lib/docker/volumes/
– Volumes are created automatically if they do not already exist

Valeria Cardellini - SDCC 2025/26 43

Docker: volumes
• Mounting a volume: use -v or --volume in docker run

$ docker run -v source:destination:[options] imageid
– If the volume does not exist, Docker automatically creates it
– [options]: optional flags, e.g., ro for read-only volume

• Managing volumes
– Create a volume: $ docker volume create volumename
– List all volumes: $ docker volume ls
– Inspect a volume: $ docker volume inspect volumename
– Remove a volume: $ docker volume rm volumename

• Can also be declared in a Dockerfile using
VOLUME ["/localpath"]

• Working with volume data: pre-populate or load data
using docker cp
docker cp /localpath containerid:/path

Valeria Cardellini - SDCC 2025/26 44https://docs.docker.com/engine/reference/commandline/

Docker volume: pros

✓ Fully managed by Docker
✓ Easy to back up or migrate
✓ Accessible through Docker CLI or API
✓ Work on both Linux and Windows containers
✓ Shareable across multiple containers
✓ Can store encrypted content
✓ Suitable for pre-populated or write-heavy workloads

(e.g., database, logging service)

Valeria Cardellini - SDCC 2025/26 45

Docker hands-on
• Download and install Docker

– Available on multiple platforms
https://docs.docker.com/get-started

• Test Docker installation
$ docker --version

• Run the default hello-world container
$ docker run hello-world

• Run a “Hello World” message using Alpine Linux
$ docker run alpine /bin/echo 'Hello world'
– alpine: lightweight Linux distro with very small image size

• Use commands to:
– List containers and container images
– Stop and remove containers, remove container images

Valeria Cardellini - SDCC 2025/26 46

Docker hands-on: networking
• Run nginx Web server inside a container

- Bind container port 80 to host port 80
$ docker run -dp 80:80 --name web nginx
Flag -p: publish container port (80) to host port (80)
Flag -d: run in detached mode

1. Send HTTP request through Web browser
- First retrieve hostname of host machine (e.g., localhost)

2. Send HTTP requests to nginx from another interactive
container using a custom bridge network

$ docker network create -d bridge my_net
$ docker run -dp 80:80 --name web --network=my_net nginx
$ docker run -it --network=my_net --name web_test busybox
/ # wget -O - http://web:80/
/ # exit

47Valeria Cardellini - SDCC 2025/26

Docker hands-on: from Dockerfile
• Running Apache web server with minimal index page

1. Define the container image using Dockerfile
• Start from Ubuntu, install and configure Apache
• Declare incoming port 80 using EXPOSE

48

FROM ubuntu:22.04

Install dependencies

RUN apt-get update -y && \

apt-get install -y apache2 && \

apt-get clean

Add simple web page

RUN echo "Hello World!" > /var/www/html/index.html

Expose port and run Apache in the foreground

EXPOSE 80

CMD ["apache2ctl", "-D", "FOREGROUND"]

Valeria Cardellini - SDCC 2025/26

Docker hands-on: from Dockerfile

2. Build the image
$ docker build -t hello-apache .

3. Run the container and bind ports
$ docker run -dp 127.0.0.1:8080:80 hello-apache

4. Execute an interactive shell in the running container
$ docker exec -it hello-apache /bin/bash

• To reduce container image size, avoid unnecessary
layers
– E.g., in Dockerfile combine apt-get update and package

installation into a single RUN instruction (see slide 48)

Valeria Cardellini - SDCC 2025/26 49

Docker hands-on: volumes
• Run nginx container with a volume

$ docker volume create my-vol
$ docker volume ls
$ docker volume inspect my-vol
$ docker run -d \

--name devtest \
-v my-vol:/app \
nginx:latest

– my-vol is the source volume, /app is the target path inside
container

$ docker inspect devtest
– Check that Docker has created and mounted the volume

correctly

Valeria Cardellini - SDCC 2025/26 50

Docker: optimize Docker images
• Fewer layers → smaller images → faster builds and

deployments
• Why optimize Docker images?

– Essential for DevOps engineers at every stage of CI/CD
process

– Reduces image size and disk usage
– Speeds up image transfer, deployment, and startup times
– Improves security by reducing the attack surface
– Best practice used by Google and other major tech

companies
– Best practice employed by Google and other tech giants

https://devopscube.com/reduce-docker-image-size

Valeria Cardellini - SDCC 2025/26 51

Docker: optimize Docker images
• Techniques

1. Use minimal base images (e.g., alpine, minideb) or
distroless base images
• Distroless images:

– contain only application and its runtime dependencies
– include package managers, shells, or other common

utilities
– More secure, smaller, harder to tamper with
https://github.com/GoogleContainerTools/distroless

2. Minimize the number of image layers
• Combine related commands in a single RUN instruction
• Avoid unnecessary COPY, ADD, or repeated RUN steps

Valeria Cardellini - SDCC 2025/26 52

Docker: optimize Docker images
• Techniques

3. Multistage builds
• Use intermediate images (build stages) to

– compile code
– install dependencies, and package files

• Final image contains only the files and libraries needed to run app

53

Build stage

FROM golang:1.21 AS builder

WORKDIR /app

COPY . .

RUN go mod init myapp

RUN go mod tidy

RUN go build -o myapp

Final stage

FROM alpine:3.20

COPY --from=builder /app/myapp /usr/local/bin/myapp

CMD ["myapp"]
Valeria Cardellini - SDCC 2025/26

Docker: optimize Docker images
• Techniques

4. Exploit layer caching
• Place instructions that change infrequently (like installing

dependencies) before COPY commands
• Docker reuses cached layers for faster builds when source

code changes.
5. Use a .dockerignore file

• Specify files and directories to exclude from the build context
• Common exclusions: node_modules, .git, *.log,
__pycache__/

6. Keep application data in a volume
• Avoid storing persistent data inside the container.
• Use Docker volumes to store databases, logs, uploaded files

Valeria Cardellini - SDCC 2025/26 54

Docker: sizing containers
• By default, containers have no resource constraints

– Can use as much CPU, memory, and I/O as the host's
kernel scheduler allows

• Control resources by setting runtime configuration
flags of docker run
– Docker uses cgroups to manage resource limits
https://docs.docker.com/engine/containers/resource_constraints

Valeria Cardellini - SDCC 2025/26
55

Docker: sizing containers - memory

• Avoid running out of memory (OOM)
– Containers may be killed
– Docker daemon has lower OOM score, so less risk than

containers

• Enforce hard or soft memory limits
– Hard limit: container cannot use more than the specified

limit; use --memory flag
– Soft limit: container can use more memory if needed, unless

certain conditions are met (e.g., kernel detects contention or
low memory on host machine)

– Example: hard limit (500 MB) and soft limit (300 MB)
$ docker run –it --memory-reservation="300m" \

--memory="500m" ubuntu /bin/bash

Valeria Cardellini - SDCC 2025/26
56

Docker: sizing containers - CPU
• Options to limit CPU usage

--cpus=<value>: limit container to a specific number of CPUs
(hard limit)
--cpu-quota=<value>: set Completely Fair Scheduler (CFS)
CPU quota on container
--cpuset-cpus: restrict container to specific CPUs/cores,
example --cpuset-cpus="0,1" (use only CPU 0 and 1)
--cpu-shares: set relative CPU weight (soft limit)

• Example: limit container to use at most 50% of CPU
every second

$ docker run -it --cpus=".5" ubuntu /bin/bash
Alternatively, $ docker run -it --cpu-period=100000 \

--cpu-quota=50000 ubuntu /bin/bash

57
Valeria Cardellini - SDCC 2025/26

Resizing containers

• Containers can be resized and migrated, just like VMs

• Resizing allows changing CPU, memory, and I/O limits
dynamically
– Note: on Docker, dynamic resizing is not supported on

Windows
$ docker update [OPTIONS] CONTAINER [CONTAINER...]
– Examples
$ docker update --cpu-shares 512 containerID
$ docker update --cpu-shares 512 -m 300M containerID

Valeria Cardellini - SDCC 2025/26 58

Container live migration

• As for VM migration, we need to:
– Save state
– Transfer state
– Restore state

• State saving, transferring and restoring happen with
frozen app: migration downtime
– Use memory pre-copy or memory post-copy

• No native support in container engines, additional
tools required

• We also need to migrate container image, volumes,
and network connections

Valeria Cardellini - SDCC 2025/26 59

Container live migration

Valeria Cardellini - SDCC 2025/26 60

• CRIU (Checkpoint/Restore in Userspace) tool for live
migration through checkpointing and restoration
(Docker and other engines) https://criu.org
– Checkpoint: freeze running container on source host and

collects information about its CPU state, memory content, and
process tree

– Transfer and restore: transfer collected information to
destination host, restore container’s state and resume
execution https://docs.docker.com/reference/cli/docker/checkpoint

Container security

• Where attacks come from in containerized
environment?

• Attack origins
– Vulnerabilities in containerized apps
– Container runtime/kernel flaws

Valeria Cardellini - SDCC 2025/26 61

Container security

• Types of attacks
– Container escape

• Exploitation of container vulnerabilities to break isolation and
access the host system

– Privilege escalation
• Once on the host, attackers can escalate privileges to:

– Access other containers
– Run malicious code on host system

• Consequences
– Compromised host system
– Cross-container attacks

Valeria Cardellini - SDCC 2025/26 62

Docker: useful tools
• To manage images

– Reduce image size: Slim https://slimtoolkit.org
– Explore image layers: Dive https://github.com/wagoodman/dive
– Automate image builds: Packer https://www.packer.io

• To monitor containers
– cAdvisor https://github.com/google/cadvisor

• To check fo vulnerabilities
– Docker Scout https://docs.docker.com/scout
– Trivy https://trivy.dev
– Static analysis: Clair https://github.com/quay/clair

• Many other tools: https://github.com/veggiemonk/awesome-docker

Valeria Cardellini - SDCC 2025/26 63

Container orchestration
• Sw platforms for managing multi-container apps
• Functionalities: configure, provision, deploy,

monitor, and dynamically control containerized apps
– Designed to integrate and manage containers in large-

scale environments across multiple hosts
– Can include autoscaling, load balancing, networking,

monitoring and logging, fault tolerance and self-healing
mechanisms

• Examples
– Docker Swarm
– Kubernetes
– Nomad https://developer.hashicorp.com/nomad

• Also available as fully managed Cloud services
• For single-host deployment of small-scale apps

– Docker Compose
64Valeria Cardellini - SDCC 2025/26

Docker Compose

• Tool for defining and running multi-container Docker
applications https://docs.docker.com/compose

– Included with Docker Desktop
https://docs.docker.com/compose/install

• How it works
– Configuration-as-code
– Define services: users specify the containers (services) to be

instantiated, their configuration and relationships in a YAML
file

• Single host, multiple containers
– Orchestrates multiple containers on a single host (single

Docker engine)

• Network setup
– Compose automatically creates a network and attaches all

containers to it, enabling easy communication between them
65Valeria Cardellini - SDCC 2025/26

Docker Compose: how to use
• Define containers in a YAML file named

compose.yaml (or compose.yml)
– Specifies the containerized services
– Defines how containers interact and their configurations

• Start Docker composition (background -d):
$ docker compose up -d
– By default, Docker Compose looks for compose.yaml in

working directory
• Use -f flag to specify a different YAML file

$ docker compose –f composefile up –d

• Stop running containers:
$ docker compose stop

• Bring composition down, removing everything
$ docker compose down

Valeria Cardellini - SDCC 2025/26 66

Docker Compose: Compose file
• To configure Docker application’s services, networks,

volumes, and more
– Different versions of Compose file format

– Compose V2: implements format defined by Compose
Specification https://compose-spec.io/ and includes support for
legacy formats (2.x and 3.x)

• What is inside compose.yaml
– version, services, networks, volumes, configs, secrets
– Only services is required, others are optional

https://docs.docker.com/reference/compose-file
https://github.com/docker/awesome-compose

67
Valeria Cardellini - SDCC 2025/26

Docker Compose: Compose file
• Service: abstract representation of computing

resources within app, that can be scaled, updated or
replaced independently from other components
– Defines a set of containers

– Compose file must include the services top-level element

• Within each service
– build: defines how to create service image (e.g., from

Dockerfile)

– container_name, startup and shutdown dependencies
between services (depends_on), exposed containers ports,
CPU and memory limits, volumes that are accessible to
service containers

– and other settings, see
https://docs.docker.com/reference/compose-file/services/

68
Valeria Cardellini - SDCC 2025/26

Docker Compose: example
• Simple Python web app running on Docker Compose

– 2 containers: Python web app and Redis
– Use Flask framework and maintain a hit counter in Redis
– Redis: in-memory, key-value data store
See https://docs.docker.com/compose/gettingstarted

69Valeria Cardellini - SDCC 2025/26

• Steps:
1. Write Python app
2. Define Python container

syntax=docker/dockerfile:1

FROM python:3.10-alpine

WORKDIR /app

ENV FLASK_APP=app.py

ENV FLASK_RUN_HOST=0.0.0.0

RUN apk add --no-cache gcc musl-dev linux-headers

COPY requirements.txt requirements.txt

RUN pip install -r requirements.txt

EXPOSE 5000

COPY . .

CMD ["flask", "run", "--debug"]

Docker Compose: example
• Steps (cont’d):

4. Build and run app with Compose
$ docker compose up –d

5. Send HTTP requests using curl or browser (counter is
increased)

6. Stop Compose and bring everything down
$ docker compose down

70Valeria Cardellini - SDCC 2025/26

3. Define services in Compose file
• 2 services: web (image built

from Dockerfile) and redis
(official image pulled from
Docker Hub
https://hub.docker.com/_/redis)

compose.yaml
services:

web:

build: .

ports:

- "8000:5000"

redis:

image: "redis:alpine"

Docker Compose: example
• Specify restart policy for containers

– Options: on-failure[:max-retries], always,
unless-stopped

• Start multiple replicas of same service using deploy
specification
– Scale out or in manually the number of replicas
$ docker compose -f compose_v2.yaml up --scale web=4 –d
$ docker ps
$ docker compose -f compose_v2.yaml up --scale web=1 –d
$ docker ps
✗ Docker Compose only supports manual scaling
− To experience autoscaling, learn Kubernetes

71Valeria Cardellini - SDCC 2025/26

Docker Compose: full example

72Valeria Cardellini - SDCC 2025/26

services:

web:

build: .
ports:

- "5000"

restart: always

deploy:
replicas: 3

environment:

- FLASK_APP=app.py

depends_on:

- redis

redis:

image: "redis:latest"

container_name: redis

restart: always

volumes:

- redis-data:/data

volumes:

redis-data:

compose_v2.yaml

Docker Compose: example
• Drawback of v2:

– The replicas of web service are visible: how can we add
distribution transparency?

• Solution (see compose_v3.yaml):
– Add a load balancer in front of the web replicas
– Use Nginx a layer-7 proxy by adding a nginx service to the

composition
– In the nginx service, use a bind mount to mount the Nginx

configuration file on the host inside the container
– Use an internal network for all the containers

73Valeria Cardellini - SDCC 2025/26

Example of Dockerized distributed system
• Kafka cluster using Docker Compose

• Multiple pre-configured options are available, e.g.,
– https://bitnami.com/stack/kafka/containers includes both single

container and Docker Compose setup with Zookeeper or
Kraft mode

– https://medium.com/@darshak.kachchhi/setting-up-a-kafka-cluster-
using-docker-compose-a-step-by-step-guide-a1ee5972b122
cluster of 3 brokers (Kraft mode) and UI, Docker network for
inter-broker communication, and persistent volume storage

• Added also a Kafka client

Valeria Cardellini - SDCC 2025/26 74

Docker Compose: pros and cons

✓ Simplified control
✓ Efficient collaboration
✓ Rapid application development
✓ Reproducible environments
✓ Portability across environments (development,

staging, production)

✗ Single host limitation
✗ Lack of elasticity
✗ Not production-grade orchestration
✗ Only basic security features

Valeria Cardellini - SDCC 2025/26 75

Docker Swarm
• Swarm mode: advanced feature of Docker to

natively manage a cluster of Docker engines called
a swarm https://docs.docker.com/engine/swarm/

• Swarm: multiple Docker engines running in swarm
mode
– Swarm mode helps you orchestrate containers across

multiple machines

• Composed of Manager nodes and Worker nodes
– Manager nodes: control the swarm and handle the

orchestration of services
– Worker nodes: run containers (tasks) as assigned by

manager nodes
– Tasks: containers running in a service

• Task: smallest unit of work, typically one container
– Services: how tasks (containers) should run on the swarm;

provide an abstraction for deploying and managing tasks 76Va
le

ria
 C

ar
de

llin
i -

SD
C

C
 2

02
5/

26

Docker Swarm: architecture
• Node: single instance of Docker engine in a swarm

– Manager nodes: handles cluster management, including
task scheduling

• Multiple managers to improve fault tolerance
• Raft as consensus algorithm to ensure consistency

– Worker nodes execute tasks
• Workers use a gossip protocol to exchange information about

their state

77Valeria Cardellini - SDCC 2025/26

Docker Swarm: features
• Cluster management integrated with Docker
• Decentralized: distributed decision-making
• Declarative service model
• State reconciliation

– Swarm monitors cluster state and reconciles any differences
wrt desired state (e.g., a node crashes)

• Scaling
– Easily scale services but lacks auto-scaling

• Multi-host networking
– Use overlay networks to enable communication between

services across nodes
• Load balancing

– Can expose service ports to an external load balancer
• Secure: TLS authentication, encryption, role-based AC
• Easy to use and lightweight

78Valeria Cardellini - SDCC 2025/26

Container-as-a-Service (CaaS)
• Cloud-based platform for managing and deploying

containerized applications
– Combines containerization with cloud benefits

• Features
– Container orchestration and management: container lifecycle,

scheduling, load balancing, and fault tolerance
– Configuration for resource optimization (e.g., auto-scaling)
– Security and access control
– Integration with other cloud services (e.g., monitoring)

• Examples
– Amazon Elastic Container Service https://aws.amazon.com/ecs
– Azure Container Instances

https://azure.microsoft.com/products/container-instances
– Google Cloud Run https://cloud.google.com/run

79Valeria Cardellini - SDCC 2025/26

Virtualization and IaaS providers

• Which virtualization technology for IaaS providers?
✓ Hypervisor-based virtualization: greater security and

isolation, flexibility (different OSs on same PM)
✓ Container-based virtualization: smaller deployment size and

higher density, faster startup/shutdown

• Questions
– Containers on top of bare metal or inside VMs?

• Performance and density vs. isolation and security

– Are containers replacing VMs?
• Not entirely: lightweight vs. isolation and security

Valeria Cardellini - SDCC 2025/26 80

New lightweight virtualization approaches
• Deployment approaches examined

– Plus nested virtualization: hypervisor inside VM on top of an
hypervisor, or Docker in VM

Valeria Cardellini - SDCC 2025/26 81

?

New lightweight approaches to virtualization
• Microservices, serverless computing, cloud-edge

continuum demand for
– Low-overhead (or lightweight) virtualization techniques,

even lighter than containers
– Better security
– Portability across OSs and architectures (e.g., Arm, Intel)

• Technologies enabling lightweight virtualization:
MicroVM, lightweight OSs, unikernels and
WebAssembly

• MicroVMs, lightweight OSs, and unikernels: reduce
OS overhead and attack surface
– OS overhead: many common OS services (shells, editors,

core utils, package managers) are unnecessary
– Attack surface: images contain only the essential code

needed to run the app, reducing potential attack vectors
Valeria Cardellini - SDCC 2025/26 82

MicroVM runtimes
• Tiny, specialized VMM that run lightweight VMs (called

microVMs)
• Goal: reduce memory footprint and improve security of

virtualization layer
• Firecracker: minimalist VMM purpose-built by Amazon

for secure, efficient and multi-tenant microVMs
https://firecracker-microvm.github.io

83

– Why? To enable AWS Lambda and AWS Fargate
for serverless and containerized workloads

– Based on KVM but with minimalist design (no
unnecessary devices and guest functionality)

– Open source, written in Rust
– microVM: <125 ms startup time and <5 MB memory

footprint
– Scales to thousands of multi-tenant microVMs
– Supported OS guests inside microVM: Linux and OSv

Valeria Cardellini - SDCC 2025/26

Lightweight operating systems
• Minimal, special-purpose OSs to run containerized

apps
• Fedora CoreOS https://fedoraproject.org/it/coreos/

– Minimal, monolithic, and compact Linux distribution designed
for running containers

• Only components for container deployment, together with built-
in tools for service discovery, container management, and
configuration sharing

– Designed for scale and security
– Fast bootstrap and small memory footprint
– Can be installed directly on hardware or on hypervisor
– Includes Docker and podman

• Other products: Ubuntu Core, balenaOS
– Designed for edge and IoT devices

Valeria Cardellini - SDCC 2025/26 84

Unikernels

Valeria Cardellini - SDCC 2025/26 85

VM container
unikernel

• Specialized, single-purpose OS designed to run a
single application with minimal overhead
– Single application + OS into a single executable (aka library

OS): monolithic process that runs entirely in kernel mode
– Single address space: app and OS share the same memory

space
– Built by compiling high-level language directly into

specialized machine image that runs on hypervisor
– Goal: isolation benefits of hypervisor without overhead of

guest OS

Unikernels: pros and cons
• Pros (specialized → high performance)

✓ Lightweight: less resource-intensive (memory and CPU)
✓ Minimal footprint
✓ Reduced attack surface
✓ Fast execution (no context switching)
✓ Fast boot (measured in ms)
✓ Strong isolation

• Cons
✗ Less flexible than VMs and containers
✗ Limited ecosystem support, including debugging and

monitoring tools
✗ Scalability is more challenging (e.g., multi-instance

deployments or load balancing)
✗ Unikernel orchestration is not as easy as container

orchestration

Valeria Cardellini - SDCC 2025/26 86

Unikernels: frameworks
• Frameworks

– MirageOS (Ocaml language) https://mirage.io
– OSv https://github.com/cloudius-systems/osv
– Nanos https://nanos.org/
– Unikraft

• OSv
– Cloud-native unikernel optimized for high performance and

low overhead in virtualized environments
– Linux ABI compatibility allows running Linux applications with

minimal changes
– Open-source and fast

• Can boot in ~5 ms on Firecracker using 11 MB of memory

Valeria Cardellini - SDCC 2025/26 87

Unikernels: Unikraft
• Fast, secure, and open-source Unikernel Development

Kit https://unikraft.org
– Designed to simplify unikernel creation without requiring deep

expertise
– Build, run and package: similar to Docker
– Modular: supports a wide range of components (e.g.,

networking, storage), allowing to create custom unikernels
– Multi-language support (e.g., C, C++, Rust, Go)
– Application compatibility

• Can run complex apps (e.g., Redis, Nginx, Memcached)
• POSIX compliant: compatibility with a broad range of Unix-like

applications
– Architecture compatibility

• Works with multiple hypervisors (e.g., Xen, KVM) and supports
various CPU architectures, allowing deployment on both
virtualized and bare-metal environments

– Active development
Valeria Cardellini - SDCC 2025/26 88

Unikernels: Unikraft

Valeria Cardellini - SDCC 2025/26
89

Performance of virtualization approaches

90

My VM is lighter (and safer) than your container, SOSP 2017
https://dl.acm.org/doi/pdf/10.1145/3132747.3132763

Valeria Cardellini - SDCC 2025/26

• VM boot times grow linearly with VM size

• Difficulties in securing containers due to growth of Linux syscall API

Performance of virtualization approaches
• Performance comparisons of hypervisor vs. lightweight

virtualization
• Key findings:

– Overhead introduced by containers is almost negligible
– Fast instantiation time of containers
– Small per-instance memory footprint
– High density
– But security tradeoffs: containers offer less isolation

Valeria Cardellini - SDCC 2025/26
91

Virtualization Boot time Image size Memory
footprint

Programming
language
dependance

Live
migration

VM ~5/10 sec ~1 GB ~100 MB No Yes

Container ~0.8/1 sec ~50 MB ~5 MB No Non-native

Unikernel <10 msec <20 MB ~10 MB Partially No

Performance of virtualization approaches
• Comparing lightweight virtualization approaches
• Overall result: no clearly superior solution, each one

has its own strengths and weaknesses

Valeria Cardellini - SDCC 2025/26
92

A functional and performance benchmark of lightweight virtualization platforms for
edge computing, EDGE 2022 https://ieeexplore.ieee.org/document/9860335

WebAssembly (Wasm)

• Safe, portable, binary code format designed for efficient
execution and compact representation https://webassembly.org
– Safe: runs in a sandboxed environment, preventing untrusted

code from harming the host system
– Portable: the same Wasm binary can run on any platform that

supports the Wasm runtime (browsers, servers, embedded)
– Binary format: designed to be compact and fast to load and

execute

• Other features
– Open standard https://www.w3.org/TR/wasm-core-2
– Portable compilation target for many programming languages

• Originally built to safely execute JavaScript code in browsers
– Memory-safe, sandboxed execution
– Computational model based on stack VM

Valeria Cardellini - SDCC 2025/26
93

WebAssembly: features
• Wasm code is validated and executed in a memory-

safe, sandboxed environment → strong isolation and
protection from unsafe operations
– Wasm interacts with the host system through WebAssembly

System Interface (WASI), which provides a standardized set
of capability-based APIs

– A Wasm module cannot directly perform OS systems calls,
instead imports host-provided WASI functions

• Development workflow: write code in one of many
supported languages, compile it to Wasm, and run it
inside a Wasm runtime

Valeria Cardellini - SDCC 2025/26
94

WebAssembly: features
• Wasm uses stack-based VM to execute

instructions https://en.wikipedia.org/wiki/Stack_machine
– Code is composed of sequences of instructions executed

in order
– The operand stack is used to store values for computation
– Instructions:

• Pop argument values from the stack and push back onto it
• Each operation manipulates values on the stack
• Example: i64.add

– Takes two i64 values from the stack
– Add them
– Pushes the result back onto the stack

• Control instructions alter control flow

• JVM is a famous example of stack-based VM

Valeria Cardellini - SDCC 2025/26
95

WebAssembly: example
• Factorial function written in C and its corresponding

Wasm code after compilation
– In .wat text format (human-readable textual representation of

Wasm)

Valeria Cardellini - SDCC 2025/26 96

WebAssembly: example
• Factorial function written in C and its corresponding

Wasm code after compilation
– In .wasm binary format

Valeria Cardellini - SDCC 2025/26 97

WebAssembly: pros and cons
ü Efficient: near-native execution speed
ü Secure: memory-safe, sandboxed execution, which

prevents data corruption and security breaches
ü Language-, platform-, and hardware-independent

– Does not favour any particular language
– Can run as a standalone VM
– Can be compiled for all modern architectures, including

desktop, mobile devices, and embedded systems

✗ In development
✗ Support varies by language
✗ Multiple runtimes (e.g., Wasmtime, Wasmer,

WasmEdge) with different features: choice is
complex

Valeria Cardellini - SDCC 2025/26
98

WebAssembly
• How to try: Wasm applications with Linux containers

in Docker (beta)
https://docs.docker.com/desktop/features/wasm/
– Enable it on Docker Desktop by checking Enable Wasm on

the Features in development tab under Settings (requires
containerd image store)

$ docker run \
--runtime=io.containerd.wasmedge.v1 \
--platform linux/arm64 \
secondstate/rust-example-hello

Valeria Cardellini - SDCC 2025/26
99

The full scenario

Valeria Cardellini - SDCC 2025/26
100

References
• Sections 4.13 of Marinescu book

• Docker workshop https://docs.docker.com/get-started/workshop
• Docker Docs https://docs.docker.com
• Kane and Matthias, Docker up and running 3rd edition, O’Reilly,

2023

• Agache et al., Firecracker: Lightweight virtualization for
serverless applications, NDSI 2020
https://www.usenix.org/conference/nsdi20/presentation/agache

• Kuenzer et al., Unikraft: fast, specialized unikernels the easy
way, EuroSys 2021
https://dl.acm.org/doi/pdf/10.1145/3447786.3456248

• Menétrey et al., WebAssembly as a common layer for the cloud-
edge continuum, FRAME 2022
https://dl.acm.org/doi/10.1145/3526059.3533618

Valeria Cardellini - SDCC 2025/26 101

