Macroarea di Ingegneria
TOR VERGATA Dipartimento di Ingegneria Civile e Ingegneria Informatica

UNIVERSITA DEGLI STUDI DI ROMA

OS-Level and Lightweight Virtualization

Corso di Sistemi Distribuiti e Cloud Computing
A.A. 2025/26

Valeria Cardellini

Laurea Magistrale in Ingegneria Informatica

OS-level virtualization

» Let's consider operating system (OS) level
virtualization (or container-based virtualization)
« |t allows running multiple isolated (sandboxed) user-
space instances on top of a single OS
— Such instances are called:
« containers
* jails
* Zonhes

Valeria Cardellini - SDCC 2025/26

OS-level virtualization

« OS kernel allows the existence of multiple isolated
user-space instances, called containers

« Each container has:
- Its own set of processes, file systems, users, network

interfaces with IP addresses, routing tables, firewall rules, ...

» Containers share the same OS kernel (e.g., Linux)

(eme |(Em | (e |

4.1250016] | ! | 10160014 | ! | j0.17.0014 | ! : :

E l’roots/vml | E E |/roots/vm2 | E e E E
\ ‘ Kernel Code /

Valeria Cardellini - SDCC 2025/26

OS-level virtualization: mechanisms

» Which OS kernel mechanisms are used to manage
containers?
— Containers need to isolate processes from each other in
terms of sw and hw (CPU, memory, ...) resources
» Main mechanisms offered by Unix-like OS kernels

— chroot (change root directory)

* Allows changing the apparent root folder for the current
running process and its children

— cgroups (Linux-specific)

* Manage resources for groups of processes, such as CPU and
memory allocation

— namespaces (Linux-specific)

* Per-process resource isolation, ensuring that each container
has its own isolated environment

Valeria Cardellini - SDCC 2025/26

Mechanisms: namespaces

» Feature of Linux kernel that allows to isolate what a
set of processes can see in the operating
environment

— Includes resources such as processes, ports, files, ...

» Kernel partitions resources so that one set of
processes can see a specific set of resources, while
another set of processes sees a different set of
resources

» 6 different types of namespaces

MNT—Filesystem access and structure

NET—Network access and structure

chroot ()—Controls location UTS—Host and domain name

of filesystem root

A process in
isolation

Cgroups—Resource protection USR—Usernames and identifiers

PID—Process identifiers and IPC—Communication by

Valeria Cardellini - SDCC 2025/26 process capabilities shared memory

Mechanisms: namespaces

« mnt: isolates mount points seen by a container

— Virtually partitions the file system, so processes running in
separate mount namespaces cannot access files outside of

their mount point
« pid: isolates PID space, ensuring that each process
only sees itself and its children (PID 1, 2, 3, ...)

* network: allows each container to have its dedicated
network stack
— Its own private routing table, set of IP addresses, socket
listings, firewall rules, and other network-related resources
» user: isolates user and group IDs

— E.g., allows a non-root user on host to be mapped to root user
within the container, without granting actual root access to
host

Valeria Cardellini - SDCC 2025/26

Mechanisms: namespaces

 uts (Unix timesharing): provides dedicated host and
domain names

— Allows processes to think they are running on servers with
different names, even though they share the same host

* ipc: provides dedicated shared memory for IPC

— E.g., separate Posix message queues for different
containers

Valeria Cardellini - SDCC 2025/26

Mechanisms: cgroups

» cgroups = control groups

» Limit, measure and isolate the use of hw resources
(CPU, memory, I/O, network) for a group of processes

« Exposed via a filesystem interface (similar to sysfs
and procTs)
— Default mount point: /sys/fs/cgroup/

* |n a nutshell:

— namespaces implement information isolation: what a
container can see

— cgroups implement resource isolation: how many resources a
container can use

Valeria Cardellini - SDCC 2025/26

OS-level virtualization: pros

« VMM-based vs container-based virtualization

'd N\ [

N

o |]
i i (

- N ~ [Dependencnes] [Dependenoes] - ~
[Appl’Appy [App]lApp]
Guest OS Guest OS
[Dependencies] [Dependencies] [Dependencies] [Dependencies]

VM VM Container Container
L y @ J
Guest OS Guest OS
l Hypervisor] ’ Container engine
VM VM
- J J
Host OS Host OS
[Hypervisor]
[Hardware] [Hardware] [Hardware]
J

A

Type 1 Hypervisor

Type 2 Hypervisor

Container

In a nutshell: lightweight vs. heavyweight

Valeria Cardellini - SDCC 2025/26

OS-level virtualization: pros

vs. VMM-based virtualization (type-1)

v/ Near-native performance
— No VMM indirection for system calls
V' Fast startup and shutdown

— Seconds (even msec) per container vs. minutes per VM
v/ High density
— Hundreds of containers per physical machine (PM)
v/ Small footprint

— Container images are smaller since they exclude the OS

kernel

v Memory efficiency

— Containers can share memory pages on the same PM

v/ Portability and interoperability

— Apps run across environments

Valeria Cardellini - SDCC 2025/26

OS-level virtualization: cons

vs. VMM-based virtualization (type-1)
X Less flexible

— Only supports native apps for the OS kernel (e.g., no Windows

container on Linux host)

— Cannot run different OS kernels on same PM; however, can
run multiple Linux distributions (e.g., Ubuntu, CentOS)

X Weaker isolation

— Process-level isolation leads to higher performance
interference on shared resources

X Higher security risks

— A kernel vulnerability affects the entire system

— Since containers share the kernel, one compromised container

can impact other containers and the host

X Reduced hardware/device isolation

— Device passthrough is more difficult and less secure
Valeria Cardellini - SDCC 2025/26

OS-level virtualization: products

10

» Docker
— Most popular container engine
— Provides application containers
« Package and run a single application with its dependencies

— Supports Open Container Initiative (OCI) standards
https://opencontainers.org

« LXC (LinuX Containers) https:/linuxcontainers.org/ixc/
— Supported by mainline Linux kernel

— Provides system containers
* Run a whole OS user space with multiple processes, but share

the host kernel

Host OS kernel Host OS kernel

Application containers System containers

Valeria Cardellini - SDCC 2025/26

1

OS-level virtualization: products

« Podman
— Supports OCI; Docker compatible CLI
— Daemonless, rootless operation for improved security

* FreeBSD Jalil

— Strong process and filesystem isolation

* OpenVZ/ Virtuozzo

— For Linux; primarily for system containers

* Non-Linux platforms
— Windows and macOS support containers (e.g., Docker
Desktop)
« Alternative approach
— Install a Linux VM as a guest OS
— Run container engines (e.g., Docker) inside the VM

— Performance Impact: nested virtualization leads to reduced

performance
Valeria Cardellini - SDCC 2025/26 12

Containers, DevOps and CI/CD

* DevOps: development methodology that bridges the
gap between Development and Operations, focusing
on collaboration, continuous integration, and
automated delivery

« CI/CD:

— Continuous Integration (Cl): merges developers' work into a
shared codebase

— Continuous Delivery (CD): ensures frequent and reliable
releases resr HONITOR

BUILD OPERATE
B _ g

-/

= f=/
DEV OPS
wo ol
MO0 O

PLAN RELEASE

Valeria Cardellini - SDCC 2025/26 13

Containers, DevOps and CI/CD

« Containers: simplify building, packaging, sharing, and
deploying apps with all dependencies

« Enable collaboration by sharing images, and
streamline deployment across environments without
extra configuration

Developers ITOps

BUILD SHIP RUN

Development Environments Secure Content & Collaboration Deploy, Manage, Scale

2 e

b B S R

—E

Valeria Cardellini - SDCC 2025/26 14

Containers, microservices, and serverless

« Using containers

- Package apps and all dependencies into a single unit that
runs almost anywhere

- Use fewer resources than traditional VMs

* Containers enable

- Microservices: break down apps into small, independent
services

- Serverless: package functions into containers for efficient
execution

Valeria Cardellini - SDCC 2025/26 15

Case study: Docker ‘*

docker
 Lightweight and secure container-based virtualization

— Application containers: contain the application and its
dependencies, but share OS kernel with other containers

— Isolation: containers run as isolated processes in user space
on host OS

— Portability: containers are infrastructure-agnostic and can
run anywhere

App 1 App 3
Bins/Libs Bins/Libs
Docker Engine

Operating System

Infrastructure

OB S

Valeria Cardellini - SDCC 2025/26 16

Docker: features

« Portable deployment
— Easily deploy across different machines and environments
« Versioning
— Git-like version control for container images
« Component reuse
— Reuse components (e.g., libraries, services) via Docker
images
« Shared libraries

— Access to pre-built images on Docker Hub
https://hub.docker.com

» OCI support
» Scalability

— Works seamlessly with Kubernetes for scaling applications

Valeria Cardellini - SDCC 2025/26 17

Docker: internals

* Written in Go

» Exploits Linux kernel mechanisms for resource
management and isolation (cgroups and
namespaces)

— Early versions were based on Linux Containers
— Then transitioned to libcontainer, a Go-based container
runtime: provides tools for managing containers with

namespaces, cgroups, capabilities, and filesystem access

controls
https://pkg.go.dev/qgithub.com/opencontainers/runc/libcontainer

— runc: libcontainer is now part of runc, the CLI tool for
spawning and running containers based on OCI specification
https://github.com/opencontainers/runc

Valeria Cardellini - SDCC 2025/26 18

Docker Engine: architecture

* Docker Engine: core

component of Docker that

enables containerization

» Client-server application

composed by network
— Docker daemon (dockerd): Lanages
server component that docker daemon
listens for API requests and t
manages Docker objects w"

like images, containers,
networks, and volumes

— REST API: specifies the interfaces that programs can use to
interact with Docker daemon for operations like creating,
managing, and querying Docker objects

— CLI client: allows users to send commands to Docker daemon

via REST API

https://docs.docker.com/get-started/docker-overview/#docker-architecture
Valeria Cardellini - SDCC 2025/26 19

Docker: client-server architecture

Docker client
— Interface through which users interact with Docker

— Sends commands to Docker Daemon to build, run, and
distribute Docker containers

— Client and daemon communicate through sockets or the
REST API

[client]

lDocker Host J [Registry

Valeria Cardellini - SDCC 2025/26

(7 70 [im ges C | ‘Lmages B
i docker run ‘_ ! e } _..7 7 gy 1 =
L | [» ‘ A ! NGIX
o - |
1 | — O ®
docker buildr W ! 1 ol l’f
Gk | PR W
iy Docker O, w
| daemon
{dockexcpubll- -~ ~~T """~ ‘f ---------------------------------------
iiif 23 | |Extensions
e o |
ing
& B S

20

Docker: images

Read-only template

— Used to create Docker containers, containing everything
needed to run app (code, dependencies, configurations)

Build component

— Docker images enable distribution of apps with their runtime
environments, removing the need to manually install packages

— Target machine must be Docker-enabled

Dockerfile

— Text file with simple instructions that Docker uses to build
images automatically

Image registry

— Images can be pulled and pushed to/from public or private
registries

Image naming

— Format: [registry/][user/]name[:tag]

— Default tag is latest

Valeria Cardellini - SDCC 2025/26 21

Docker image: Dockerfile

» Docker images are created from a Dockerfile and a
context

— Dockerfile: text file containing instructions to assemble the
image

— Context: set of files (e.g., app code, libraries) used during
the image build process

— Images often build on parent images (e.g., Alpine, Ubuntu)

» Dockerfile syntax
Comment (for comments)
INSTRUCTION arguments (commands like RUN, COPY, etc.)

* Instructions in the Dockerfile run sequentially

Valeria Cardellini - SDCC 2025/26 22

Docker image: Dockerfile

« Common Dockerfile instructions

- FROM <image>: specifies the parent image (mandatory unless
you want to start from scratch)

- WORKDIR <path>: sets the working directory inside the
container

- COPY <host-path> <image-path>: copies files from host to
container image

- RUN <command>: executes the specified command during
image build

- ENV <name> <value>: sets an environment variable

- EXPOSE <port>: exposes a network port for the container

- CMD ["<command>", "<argl>"]: defines the default
command to run when the container starts

Valeria Cardellini - SDCC 2025/26 23

Docker image: Dockerfile

« Example: Dockerfile to build the image of a container
that will run as application a simple todo list manager
written in Node.js

syntax=docker/dockerfile:1 Directory with app code

|— getting-started-app/

node:lts-alpine | |— package.json

| — README.md
/app | — spec/
| — src/
L
. . yarn.lock
yarn install --production |
["node", "src/index.js"]
3000
Valeria Cardellini - SDCC 2025/26 24

Docker image: build

» Building Docker image from Dockerfile and context
— Context: set of files located in the specified PATH or URL

* Build command
$ docker build [OPTIONS] PATH | URL | -

« Example: to build an image for Node.js app (slide 24)
$ docker build -t getting-started .

— The -t flag is used to tag the image with a name (and
optionally a version)

— If Dockerfile is named something different from Dockerfile,
use the -f flag:

$ docker build -t getting-started -f myDockerfile .

Valeria Cardellini - SDCC 2025/26 25

Docker image: layers

« Each Docker image consists of a series of layers

» Docker uses union file systems to combine these
layers into a single unified view
— These layers are stacked to form a base the base of a
container’s root file system

— Docker leverages copy-on-write (CoW) strategy to
optimize performance

................................

Mhin R layor 1+ Container layer
91e54dfb1179 0B
d74508fb6632 1.895 KB
@ Image
L T Layers
€22013c84729 194.5 KB (RIO)
d3a1f33e8a5a 188.1 MB
ubuntu:15.04

Container
(based on ubuntu:15.04 image)
Valeria Cardellini - SDCC 2025/26

Docker image: layers

26

« Layering pros
v Efficient layer sharing and reuse: common layers are

installed only once, saving bandwidth and storage space

v Separation of concerns: allows better management of
dependencies
v Facilitates software specialization

;: Thin R/W layer i Thin RIW layer i Thin R/W layer i Thin R/W layer
91e54dfb1179 0B
d74508fb6632 1.895 KB
@
€22013c84729 1945KB |-
d3a1f33e8a5a 188.1 MB
ubuntu:15.04

Valeria Cardellini - SDCC 2025/26

27

Docker image: layers

» Dockerfile instructions that modify the filesystem
create new layers
— Examples: FROM, RUN, COPY, ADD

* Instructions that only modify the image’s metadata
do not create new layers
— Examples: CMD, LABEL

» All image layers (except the top one) are read-only
— To enable efficient layer sharing across images

* When a container is started, a writable layer (aka
container layer) is added on top

— Changes made by a running container (e.g., creating or
modifying a file) are written to the writable layer

— Unique to each container
— Ephemeral: deleted when the container is removed

— Use it only for temporary/runtime data, not persistent data
Valeria Cardellini - SDCC 2025/26 28

Docker container storage

Containers are usually stateless
Why? Easier to:

— Scale: start quickly new replicas

— Restart: from failure

— Migrate: move between hosts

Very little data is written to container’s writable layer
Data is typically stored in Docker volumes

However, some workloads require writing data to
container’s writable layer

Valeria Cardellini - SDCC 2025/26 29

Docker: storage backends

« How Docker daemon stores image layers and
container writable layers on disk
— Storage drivers
— containerd image store

» Storage drivers (legacy): common options
- Overlay2: file-level, preferred for all Linux distros
- Btrfs: supports snapshotting
- Zfs: block-level

» Storage driver considerations
— Driver choice affects container performance
— Drivers are optimized for space efficiency

— Write performance speeds may be lower than native file
system performance due to CoW

Valeria Cardellini - SDCC 2025/26 30

Docker: storage backends

* New default backend: containerd image store
(Docker Engine 29.0+)

 Uses content-addressable blob store
* Pros and cons:
v Cleaner architecture

v Unifies Docker and containerd ecosystem

X Uses more disk space than storage drivers (no deduplication
at driver level)

Valeria Cardellini - SDCC 2025/26 31

Docker: containers and registry

» Docker container: runnable instance of a Docker image
— Containers are the run component of Docker

— Run, start, stop, move, or delete a container using Docker API
or CLI commands

. Docker Image
- Stateless nature of containers:

when a container is deleted,

any data written outside of data | pocker Docker Docker
volumes is lost Container Container Container

« Docker registry: stateless server-side application that
stores and distributes Docker images

- Registry is the distribute component of Docker
- Public and private registries

* Docker-hosted registries: Docker Hub (official one), Docker Store
(for open-source and enterprise-verified images)

- Open library of images

Valeria Cardellini - SDCC 2025/26 32

Docker: run container

* When you run a container from an image that is not
yet installed locally but is available on Docker Hub,

Docker will pull the image from the registry before
starting the container

Container Engine

@, =2 S, in

Registry / Hub Images Container
A Registry Stores many static images Static; Persistad

Container Image

Image-instance running
an app process

Container Engine

- <=, <. |

Dockerfile Images
all commands to Static, Persisted
assemble an image Container Image

Container
Image-instance running
an app process in same system

Valeria Cardellini - SDCC 2025/26 33

Docker container: states and transitions

 Different states a container can go through during its

lifecycle and actions that trigger transitions

(

no process(es) filesystem
and no filesystem exists
e
container
image. Removing
without
starting

|
; [Eimiuz Labs

docker create

docker start

+

L

Crm) B Cnpause
(pause L
stop
L stact O (i1
q—

running
—>

- t I i
Lreate— created
= Cron 33— s

docker run

process(es) and
namespaces exist

filesystem
exists

\

Container lifecycle] =

no process(es)
and no filesystem

restarting | ..outomatically de

Only if the
restart policy
is not 'no’

..Via cgroup freezer

st?
paused -{ kmjj

A start
restart

...or Finished
on its own

v

()

N

1
|
[
1
1
[
[
[
1
[
|
|
1
I
I
|
|
[
Cleanup |
can take !
[

some time |
[

[

[

1

1

[

|

|

1

|

|

|

[

1

[

[

[

1

1

[

|

\4
m > removing

A special "defunct”
state for r,\typical

failure modes
ad

Valeria Cardellini - SDCC 2025/26

Docker commands: info

34

» Get system-wide info on Docker installation
$ docker info
including:

Number of images and containers, along with their status

Storage driver

Operating system, architecture, total memory
Docker registry information

Valeria Cardellini - SDCC 2025/26

35

Docker commands: image handling

« List all images on host

$ docker images or $ docker image 1s
« List all images, including intermediate image layers
$ docker images -a or $ docker image 1ls -a

* You can filter and format the output to list images by
name, tag, image digests (sha256) or image that meet
specific conditions

— E.g., list unused images (<none>) that are no longer associated
with any tagged images but consume disk space
$ docker images --filter "dangling=true"
 Remove an image
$ docker rmi imageid

alternatively, $ docker image rm imageid |2 US€ tmagename
instead of imageid

Valeria Cardellini - SDCC 2025/26 36

Docker commands: image handling

* Remove dangling images
$ docker image prune

 Inspect an image, including layers and image
metadata

$ docker inspect imageid

Valeria Cardellini - SDCC 2025/26 37

Docker commands: run

$ docker run [OPTIONS] IMAGE [COMMAND] [ARGS]

« Common options

--name set container name

-d detached mode (background)

-1 interactive (keeps STDIN open)

-t allocate a pseudo-tty, usually with -1

--expose declare port(s) inside container
-p or -publish map container port(s) to host

-V mount volume
-e set environment variables inside container
--rm automatically remove container when it exits

--restart set restart policy (e.g., always, on-failure)

Valeria Cardellini - SDCC 2025/26 38

Docker commands: containers management

 List containers
— Only running containers: $ docker ps
alternatively, $ docker container 1s
— All containers (including stopped or killed containers):
$ docker ps -a
« Manage container lifecycle
— Stop a running container

$ docker stop containerid » Stop and remove a container
— Start a stopped container $ docker ps
$ docker start containerid $ docker stop containerid
$ docker ps -a
— KIl a running container $ docker rm containerid

$ docker kill containerid

— Remove a container (after stopping it)

$ docker rm containerid or use containername
instead of containerid

Valeria Cardellini - SDCC 2025/26 39

Docker commands: containers management

Stop all containers
$ for i in $(docker ps -q); do docker stop $i; done

Run a command inside a running container
$ docker exec [OPTIONS] CONTAINER [COMMAND] [ARGS]
Example: $ docker exec -it mycontainer /bin/bash

Inspect a container

— To get the most detailed view of a container environment
$ docker inspect containerid

Copy files between host and container
$ docker cp containerid:path Localpath
$ docker cp Llocalpath containerid:path

Valeria Cardellini - SDCC 2025/26 40

Docker: networking

Containers communicate with each other or with
external systems

» Published ports

— Use -p hostPort:containerPort (e.g., -p 8080:890)in
docker run to expose a container port externally

— Security issue: exposing container ports can be insecure
» Restrict access to host only by binding to localhost
(e.g., -p 127.0.0.1:8080:80)

— Work only on host network: containers can communicate
with each other via internal Docker network

IP address and hostname

— Containers get an |IP address from Docker’s dynamic subnet

— Docker daemon manages subnetting and IP allocation

— Default container hostname = container ID (can override with
--hostname)

Valeria Cardellini - SDCC 2025/26 41

Docker: network drivers

» Docker networking is pluggable

— Docker supports multiple network drivers that provide
different networking behaviors, including:

* bridge (default)
— Default network driver when no network is specified

— Use when containers need to communicate on the same
host

— Implements a software bridge

+ Containers on the same bridge network can communicate
with each other

» Containers on different bridge networks are isolated

* host

— Removes network isolation between container and host

— Container uses host’s network stack directly (no private IP
assigned)

Valeria Cardellini - SDCC 2025/26 42

Docker: volumes

» Preferred mechanism for persisting data generated or
used by containers

— Volume content persists outside the container lifecycle: use
volumes over container writable layer for persistent data

— Does not increase container image size

* How volumes work

— Docker creates a directory inside its storage directory to
manage volume content

— Default location on Linux: /var/1ib/docker/volumes/
— Volumes are created automatically if they do not already exist

Valeria Cardellini - SDCC 2025/26 43

Docker: volumes

Mounting a volume: use -v or --volume in docker run
$ docker run -v source:destination:[options] imageid
— If the volume does not exist, Docker automatically creates it

— [options]: optional flags, e.g., ro for read-only volume
Managing volumes

— Create a volume: $ docker volume create volumename
— List all volumes: $ docker volume 1ls

— Inspect a volume: $ docker volume inspect volumename

— Remove a volume: $ docker volume rm volumename
« Can also be declared in a Dockerfile using
VOLUME ["/localpath"]

« Working with volume data: pre-populate or load data
using docker cp
docker cp /localpath containerid:/path

Valeria Cardellini - SDCC 2025/26

Docker volume: pros

v Fully managed by Docker

v Easy to back up or migrate

v Accessible through Docker CLI or API

v/ Work on both Linux and Windows containers
v/ Shareable across multiple containers

v/ Can store encrypted content

v Suitable for pre-populated or write-heavy workloads
(e.g., database, logging service)

Valeria Cardellini - SDCC 2025/26

Docker hands-on

* Download and install Docker
— Available on multiple platforms

» Test Docker installation
$ docker --version
* Run the default hello-world container
$ docker run hello-world
* Run a “Hello World” message using Alpine Linux
$ docker run alpine /bin/echo 'Hello world'
— alpine: lightweight Linux distro with very small image size
« Use commands to:

— List containers and container images
— Stop and remove containers, remove container images

Valeria Cardellini - SDCC 2025/26

Docker hands-on: networking

46

* Run nginx Web server inside a container
- Bind container port 80 to host port 80
$ docker run -dp 80:80 --name web nginx
Flag -p: publish container port (80) to host port (80)
Flag -d: run in detached mode

1. Send HTTP request through Web browser

- First retrieve hostname of host machine (e.g., localhost)

2. Send HTTP requests to nginx from another interactive

container using a custom bridge network
$ docker network create -d bridge my net
$ docker run -dp 80:80 --name web --network=my net nginx
$ docker run -it --network=my net --name web_test busybox
/ # wget -0 - http://web:80/
/ # exit

Valeria Cardellini - SDCC 2025/26

47

Docker hands-on: from Dockerfile

* Running Apache web server with minimal index page

1. Define the container image using Dockerfile
« Start from Ubuntu, install and configure Apache
* Declare incoming port 80 using EXPOSE
FROM ubuntu:22.04

Install dependencies

RUN apt-get update -y && \
apt-get install -y apache2 && \
apt-get clean

Add simple web page
RUN echo "Hello World!"™ > /var/www/html/index.html

Expose port and run Apache in the foreground
EXPOSE 80
CMD ["apache2ctl", "-D", "FOREGROUND"]
Valeria Cardellini - SDCC 2025/26 48

Docker hands-on: from Dockerfile

2. Build the image
$ docker build -t hello-apache .

3. Run the container and bind ports
$ docker run -dp 127.0.0.1:8080:80 hello-apache

4. Execute an interactive shell in the running container
$ docker exec -it hello-apache /bin/bash

* To reduce container image size, avoid unnecessary
layers

— E.g., in Dockerfile combine apt-get update and package
installation into a single RUN instruction (see slide 48)

Valeria Cardellini - SDCC 2025/26 49

Docker hands-on: volumes

* Run nginx container with a volume

$ docker
$ docker
$ docker
$ docker

volume
volume
volume
run -d

create my-vol
1s
inspect my-vol

\

--name devtest \
-v my-vol:/app \

nginx:latest

- my-vol is the source volume, /app is the target path inside
container

$ docker inspect devtest

— Check that Docker has created and mounted the volume

correctly

Valeria Cardellini - SDCC 2025/26

Docker: optimize Docker images

50

» Fewer layers — smaller images — faster builds and
deployments

» Why optimize Docker images?
— Essential for DevOps engineers at every stage of CI/CD

process

— Reduces image size and disk usage
— Speeds up image transfer, deployment, and startup times
— Improves security by reducing the attack surface

— Best practice used by Google and other major tech
companies

— Best practice employed by Google and other tech giants

Valeria Cardellini - SDCC 2025/26

51

Docker: optimize Docker images

* Techniques
1. Use minimal base images (e.g., alpine, minideb) or

distroless base images

» Distroless images:
— contain only application and its runtime dependencies
— include package managers, shells, or other common

utilities

— More secure, smaller, harder to tamper with

2. Minimize the number of image layers
+ Combine related commands in a single RUN instruction
* Avoid unnecessary COPY, ADD, or repeated RUN steps

Valeria Cardellini - SDCC 2025/26 52

Docker: optimize Docker images

* Techniques

3. Multistage builds
* Use intermediate images (build stages) to
— compile code
— install dependencies, and package files
* Final image contains only the files and libraries needed to run app
Build stage
FROM golang:1.21 AS builder
WORKDIR /app
COPY . .

RUN go mod init myapp
RUN go mod tidy
RUN go build -o myapp

Final stage
FROM alpine:3.20
COPY --from=builder /app/myapp /usr/local/bin/myapp

CMD ["myapp"]
Valeria Cardellini - SDCC 2025/26 53

Docker: optimize Docker images

* Techniques

4. Exploit layer caching

» Place instructions that change infrequently (like installing
dependencies) before COPY commands

* Docker reuses cached layers for faster builds when source
code changes.

5. Use a .dockerignore file
+ Specify files and directories to exclude from the build context

* Common exclusions: node_modules, .git, *.log,
__pycache__/

6. Keep application data in a volume
* Avoid storing persistent data inside the container.
» Use Docker volumes to store databases, logs, uploaded files

Valeria Cardellini - SDCC 2025/26 54

Docker: sizing containers

« By default, containers have no resource constraints

— Can use as much CPU, memory, and I/O as the host's
kernel scheduler allows

» Control resources by setting runtime configuration
flags of docker run

— Docker uses cgroups to manage resource limits

Valeria Cardellini - SDCC 2025/26
55

Docker: sizing containers - memory

* Avoid running out of memory (OOM)
— Containers may be killed

— Docker daemon has lower OOM score, so less risk than
containers

» Enforce hard or soft memory limits

— Hard limit: container cannot use more than the specified
limit; use --memory flag

— Soft limit: container can use more memory if needed, unless
certain conditions are met (e.g., kernel detects contention or
low memory on host machine)

— Example: hard limit (500 MB) and soft limit (300 MB)

$ docker run -it --memory-reservation="300m" \
--memory="500m" ubuntu /bin/bash

Valeria Cardellini - SDCC 2025/26
56

Docker: sizing containers - CPU

» Options to limit CPU usage
- -cpus=<value>: limit container to a specific number of CPUs
(hard limit)
--cpu-quota=<value>: set Completely Fair Scheduler (CFS)
CPU quota on container

- -cpuset-cpus: restrict container to specific CPUs/cores,
example --cpuset-cpus="0,1" (use only CPU 0 and 1)

--cpu-shares: set relative CPU weight (soft limit)

« Example: limit container to use at most 50% of CPU
every second
$ docker run -it --cpus=".5" ubuntu /bin/bash
Alternatively, $ docker run -it --cpu-period=100000 \
--Ccpu-quota=50000 ubuntu /bin/bash

Valeria Cardellini - SDCC 2025/26
57

Resizing containers

« Containers can be resized and migrated, just like VMs

» Resizing allows changing CPU, memory, and /O limits
dynamically

— Note: on Docker, dynamic resizing is not supported on
Windows

$ docker update [OPTIONS] CONTAINER [CONTAINER...]

— Examples
$ docker update --cpu-shares 512 containerlID
$ docker update --cpu-shares 512 -m 300M containerID

Valeria Cardellini - SDCC 2025/26

Container live migration

58

» As for VM migration, we need to:
— Save state
— Transfer state
— Restore state

» State saving, transferring and restoring happen with
frozen app: migration downtime
— Use memaory pre-copy or memory post-copy

* No native support in container engines, additional
tools required

» \We also need to migrate container image, volumes,
and network connections

Valeria Cardellini - SDCC 2025/26

59

Container live migration

* CRIU (Checkpoint/Restore in Userspace) tool for live
migration through checkpointing and restoration
(Docker and other engines)

— Checkpoint: freeze running container on source host and
collects information about its CPU state, memory content, and
process tree

— Transfer and restore: transfer collected information to
destination host, restore container’s state and resume

execution
Before | : s | After
D M
Migration | bing gration IMigration
Nodg B " B] 3 H ! ! . Node B
cg:‘::‘:::r Pr:e-dump ! ‘ ngp ! 3 Running in Node B |
¢ i | ! Transfef th | Freeze the | | Transfirthe! Restore th |=
Memory copy | Memory copy | b ‘ ontainer in Current State; Sate ! :,51 :ir:er:-,
LT e T maion “hes” |
l i % N S | |
Node A Container running in Node A] :_))\ A Node A
I ! ' Downtime ' I Cleared
Container
! J
| Migration time L
]
Valeria Cardellini - SDCC 2025/26 60
* Where attacks come from in containerized
environment?
> —p Application attacks container
[App A j [App B] y = = Container attacks other containers
L oo (o)
Host attacks container
ml m
A 1o m) : >
H H

 Attack origins
— Vulnerabilities in containerized apps
— Container runtime/kernel flaws

Valeria Cardellini - SDCC 2025/26 61

Container security

* Types of attacks

— Container escape

» Exploitation of container vulnerabilities to break isolation and
access the host system

— Privilege escalation

* Once on the host, attackers can escalate privileges to:
— Access other containers
— Run malicious code on host system

« Consequences
— Compromised host system
— Cross-container attacks

Valeria Cardellini - SDCC 2025/26 62

Docker: useful tools

To manage images

— Reduce image size: Slim

— Explore image layers: Dive

— Automate image builds: Packer
To monitor containers

— cAdvisor
To check fo vulnerabilities

— Docker Scout
— Trivy
— Static analysis: Clair

Many other tools:

Valeria Cardellini - SDCC 2025/26 63

Container orchestration

» Sw platforms for managing multi-container apps

» Functionalities: configure, provision, deploy,
monitor, and dynamically control containerized apps

— Designed to integrate and manage containers in large-
scale environments across multiple hosts

— Can include autoscaling, load balancing, networking,
monitoring and logging, fault tolerance and self-healing
mechanisms

 Examples
— Docker Swarm
— Kubernetes
— Nomad

» Also available as fully managed Cloud services

» For single-host deployment of small-scale apps

— Docker Compose
Valeria Cardellini - SDCC 2025/26 64

Docker Compose %5

Sf

» Tool for defining and running multi-container Docker
applications
— Included with Docker Desktop

* How it works
— Configuration-as-code

— Define services: users specify the containers (services) to be
instantiated, their configuration and relationships in a YAML
file

» Single host, multiple containers

— Orchestrates multiple containers on a single host (single
Docker engine)

* Network setup

— Compose automatically creates a network and attaches all

containers to it, enabling easy communication between them
Valeria Cardellini - SDCC 2025/26 65

Docker Compose: how to use

» Define containers in a YAML file named
compose.yaml (or compose.yml)
— Specifies the containerized services
— Defines how containers interact and their configurations
 Start Docker composition (background -d):
$ docker compose up -d

— By default, Docker Compose looks for compose.yaml in
working directory

» Use -f flag to specify a different YAML file
$ docker compose -f composefile up -d
Stop running containers:
$ docker compose stop

Bring composition down, removing everything
$ docker compose down

Valeria Cardellini - SDCC 2025/26

Docker Compose: Compose file

66

» To configure Docker application’s services, networks,
volumes, and more

— Different versions of Compose file format

— Compose V2: implements format defined by Compose
Specification and includes support for
legacy formats (2.x and 3.x)

* What is inside compose.yaml

— version, services, networks, volumes, configs, secrets

— Only services is required, others are optional

Valeria Cardellini - SDCC 2025/26

67

Docker Compose: Compose file

» Service: abstract representation of computing
resources within app, that can be scaled, updated or
replaced independently from other components

— Defines a set of containers

— Compose file must include the services top-level element

* Within each service

— build: defines how to create service image (e.g., from
Dockerfile)

— container_name, startup and shutdown dependencies
between services (depends_on), exposed containers ports,
CPU and memory limits, volumes that are accessible to
service containers

— and other settings, see

Valeria Cardellini - SDCC 2025/26
68

Docker Compose: example

» Simple Python web app running on Docker Compose
— 2 containers: Python web app and Redis
— Use Flask framework and maintain a hit counter in Redis
— Redis: in-memory, key-value data store

See
° Steps # syntax=docker/dockerfile:1
1. Write Python app python:3.16-alpine
2. Define Python container /app

FLASK_APP=app.py
FLASK_RUN_HOST=0.0.0.0

apk add --no-cache gcc musl-dev linux-headers

q

requirements.txt requirements.txt
pip install -r requirements.txt
5000

["flask", "run", "--debug"]

Valeria Cardellini - SDCC 2025/26 69

Docker Compose: example

compose.yaml

» Steps (cont'd):

3. Define services in Compose file services:
. . . web:
» 2 services: web (image built .
from Dockerfile) and redis =~ == build: .
(official image pulled from ports:
Docker Hub - "8000:5000"
https://hub.docker.com/_/redis) i
redis:
4. Build and run app with Compose image: "redis:alpine"

$ docker compose up -d

5. Send HTTP requests using curl or browser (counter is
increased)

6. Stop Compose and bring everything down
$ docker compose down

Valeria Cardellini - SDCC 2025/26

Docker Compose: example

70

- Specify restart policy for containers
— Options: on-failure[:max-retries], always,
unless-stopped
« Start multiple replicas of same service using deploy
specification
— Scale out or in manually the number of replicas
$ docker compose -f compose v2.yaml up --scale web=4 -d

$ docker ps
$ docker compose -f compose v2.yaml up --scale web=1 -d

$ docker ps
X Docker Compose only supports manual scaling
- To experience autoscaling, learn Kubernetes

Valeria Cardellini - SDCC 2025/26

71

Docker Compose: full example

compose_v2.yaml

services: redis:
web: image: "redis:latest”
build: . container_name: redis
ports: restart: always
- "5000" volumes:
restart: always - redis-data:/data
deploy:
replicas: 3 volumes:
environment: redis-data:

- FLASK_APP=app.py
depends_on:

- redis

Valeria Cardellini - SDCC 2025/26

Docker Compose: example

72

« Drawback of v2:
— The replicas of web service are visible: how can we add
distribution transparency?
« Solution (see compose v3.yaml):
— Add a load balancer in front of the web replicas

— Use Nginx a layer-7 proxy by adding a nginx service to the
composition

— In the nginx service, use a bind mount to mount the Nginx
configuration file on the host inside the container

— Use an internal network for all the containers

Valeria Cardellini - SDCC 2025/26

73

Example of Dockerized distributed system

» Multiple pre-configured options are available, e.g.,

- includes both single
container and Docker Compose setup with Zookeeper or
Kraft mode

cluster of 3 brokers (Kraft mode) and Ul, Docker network for
inter-broker communication, and persistent volume storage
» Added also a Kafka client

Valeria Cardellini - SDCC 2025/26

Docker Compose: pros and cons

74

v/ Simplified control

v Efficient collaboration

v/ Rapid application development
v/ Reproducible environments

v/ Portability across environments (development,
staging, production)

X Single host limitation

X Lack of elasticity

X Not production-grade orchestration
X Only basic security features

Valeria Cardellini - SDCC 2025/26

75

Docker Swarm

« Swarm mode: advanced feature of Docker to
natively manage a cluster of Docker engines called
a sSwarm https://docs.docker.com/engine/swarm/

« Swarm: multiple Docker engines running in swarm

mode

— Swarm mode helps you orchestrate containers across

multiple machines

« Composed of Manager nodes and Worker nodes
— Manager nodes: control the swarm and handle the

manager nodes

Valeria Cardellini - SDCC 2025/26

orchestration of services

— Tasks: containers running in a service
» Task: smallest unit of work, typically one container

— Worker nodes: run containers (tasks) as assigned by

— Services: how tasks (containers) should run on the swarm;
provide an abstraction for deploying and managing tasks

Docker Swarm: architecture

76

* Node: single instance of Docker engine in a swarm
— Manager nodes: handles cluster management, including

task scheduling

» Multiple managers to improve fault tolerance

» Raft as consensus algorithm to ensure consistency

— Worker nodes execute tasks
* Workers use a gossip protocol to exchange information about

their state

Raft consensus group

Internal distributed state store . |

[

Manager

/
/

e

=3

r’ Manager b

/
\ 4

ar
s e

Manager
—s

-

=

N

\

N\
4

/ d / / . v pe S
// //),)‘\\
' >/ K i ~a \A
| Workerél Worker$| Worker$| Worker$| Workeré | Workeré

Worker

Valeria Cardellini - SDCC 2025/26

Gossip network

77

Docker Swarm: features

» Cluster management integrated with Docker
» Decentralized: distributed decision-making
« Declarative service model

» State reconciliation

— Swarm monitors cluster state and reconciles any differences
wrt desired state (e.g., a node crashes)

« Scaling
— Easily scale services but lacks auto-scaling
« Multi-host networking

— Use overlay networks to enable communication between
services across nodes

« Load balancing
— Can expose service ports to an external load balancer
« Secure: TLS authentication, encryption, role-based AC

~+ Easy to use and lightweight
Valeria Cardellini - SDCC 2025/26 78

Container-as-a-Service (Caa$S)

* Cloud-based platform for managing and deploying
containerized applications
— Combines containerization with cloud benefits
* Features

— Container orchestration and management: container lifecycle,
scheduling, load balancing, and fault tolerance

— Configuration for resource optimization (e.g., auto-scaling)

— Security and access control

— Integration with other cloud services (e.g., monitoring)
 Examples

— Amazon Elastic Container Service

— Azure Container Instances

— Google Cloud Run

Valeria Cardellini - SDCC 2025/26 79

Virtualization and laaS providers

» Which virtualization technology for laaS providers?

v/ Hypervisor-based virtualization: greater security and
isolation, flexibility (different OSs on same PM)

v/ Container-based virtualization: smaller deployment size and
higher density, faster startup/shutdown

« Questions

— Containers on top of bare metal or inside VMs?
» Performance and density vs. isolation and security

— Are containers replacing VMs?
* Not entirely: lightweight vs. isolation and security

Valeria Cardellini - SDCC 2025/26 80

New lightweight virtualization approaches

* Deployment approaches examined
— Plus nested virtualization: hypervisor inside VM on top of an

hypervisor, or Docker in VM r 3)
Application
4 3\]
Application RT & Libs
RT & Libraries [. [] | Container
Application 0S [RT & Libraries] o
0S | Hypervisor (OF] Hypervisor ?
> N ., < i
Hardware Hardware Hardware Hardware
Operatin_g System Virtual Machine Container on Container on
on Native HW on Hypervisor Native HW VM & Hypervisor

Valeria Cardellini - SDCC 2025/26 81

New lightweight approaches to virtualization

» Microservices, serverless computing, cloud-edge
continuum demand for

— Low-overhead (or lightweight) virtualization techniques,
even lighter than containers

— Better security
— Portability across OSs and architectures (e.g., Arm, Intel)
« Technologies enabling lightweight virtualization:
MicroVM, lightweight OSs, unikernels and
WebAssembly
« MicroVMs, lightweight OSs, and unikernels: reduce
OS overhead and attack surface

— OS overhead: many common OS services (shells, editors,
core utils, package managers) are unnecessary

— Attack surface: images contain only the essential code
needed to run the app, reducing potential attack vectors

Valeria Cardellini - SDCC 2025/26 82

MicroVM runtimes

» Tiny, specialized VMM that run lightweight VMs (called
microVMs)

» Goal: reduce memory footprint and improve security of
virtualization layer

» Firecracker: minimalist VMM purpose-built by Amazon
for secure, efficient and multi-tenant microVMs

A
— Why? To enable AWS Lambda and AWS Fargate Firecracker

for serverless and containerized workloads gllg| g
— Based on KVM but with minimalist design (no

unnecessary devices and guest functionality) 1 1
— Open source, written in Rust ukernel| [ukemel| [ukerel
— microVM: <125 ms startup time and <5 MB memory il

footprint Hardware
— Scales to thousands of multi-tenant microVMs Firecracker

Veloria Carder %gg&(ggéggj OS guests inside microVM: Linux and OSv o

Lightweight operating systems

» Minimal, special-purpose OSs to run containerized

apps
* Fedora CoreOS
— Minimal, monolithic, and compact Linux distribution designed

for running containers

» Only components for container deployment, together with built-
in tools for service discovery, container management, and

configuration sharing
— Designed for scale and security
— Fast bootstrap and small memory footprint
— Can be installed directly on hardware or on hypervisor

— Includes Docker and podman

» Other products: Ubuntu Core, balenaOS

— Designed for edge and loT devices

Valeria Cardellini - SDCC 2025/26 84

Unikernels

« Specialized, single-purpose OS designed to run a
single application with minimal overhead

— Single application + OS into a single executable (aka library
OS): monolithic process that runs entirely in kernel mode

— Single address space: app and OS share the same memory
space

— Built by compiling high-level language directly into
specialized machine image that runs on hypervisor

— Goal: isolation benefits of hypervisor without overhead of

guest OS allelle _
VM <|/<|[< container
2 |falfa] unikernel
o || 2 olla|l o
=1 =l = < < < - - =
(=L, (=1, (=1
alla|la T <
] = =
© K] © [o) o o
E = E |3 ||3
S [ER
Kernel ernell Kerne| Kerne
Hypervisor Hypervisor
Hardware Hardware Hardware
Unikernel 85

Valeria Cardellini - SDCC 2025/26 VM Container

Unikernels: pros and cons

* Pros (specialized — high performance)
V' Lightweight: less resource-intensive (memory and CPU)
v/ Minimal footprint
v/ Reduced attack surface
V' Fast execution (no context switching)
V' Fast boot (measured in ms)
v Strong isolation

« Cons
X Less flexible than VMs and containers

X Limited ecosystem support, including debugging and
monitoring tools

X Scalability is more challenging (e.g., multi-instance
deployments or load balancing)

X Unikernel orchestration is not as easy as container
orchestration

Valeria Cardellini - SDCC 2025/26 86

Unikernels: frameworks

* Frameworks
— MirageOS (Ocaml language)
— OSv
— Nanos
— Unikraft

e OSv

— Cloud-native unikernel optimized for high performance and
low overhead in virtualized environments

— Linux ABI compatibility allows running Linux applications with
minimal changes

— Open-source and fast
* Can boot in ~5 ms on Firecracker using 11 MB of memory

Valeria Cardellini - SDCC 2025/26 87

Unikernels: Unikraft

« Fast, secure, and open-source Unikernel Development
Kit

Valeria Cardellini

Designed to simplify unikernel creation without requiring deep
expertise

Build, run and package: similar to Docker
Modular: supports a wide range of components (e.g.,
networking, storage), allowing to create custom unikernels
Multi-language support (e.g., C, C++, Rust, Go)
Application compatibility

« Can run complex apps (e.g., Redis, Nginx, Memcached)

+ POSIX compliant: compatibility with a broad range of Unix-like
applications

Architecture compatibility

» Works with multiple hypervisors (e.g., Xen, KVM) and supports
various CPU architectures, allowing deployment on both
virtualized and bare-metal environments

Active development
- SDCC 2025/26

Unikernels: Unikraft

88

Valeria Cardellini

Runtime Configuration
App —(4+)— Build Cfg.

1ibOS Fl% @

Application

3rd Party Libraries

Operating System

Application

Monolithic Kernel App-specific Libraries

=
=]
=
g
2
=l
o
<
-~
9
g
S
%0}
=
s 3}
g
=]
=
=
e
&=

Kernel-specific Libraries

Unikernel Binary Image

Hardware-specific Code

Hardware Hardware

- SDCC 2025/26

89

Performance of virtualization approaches

* VM boot times grow linearly with VM size

__ 1000
g 800
© 600 |
£ 400
S 200
@ 0

0 200 400 600 800 1000
VM image size (MB)

+ Difficulties in securing containers due to growth of Linux syscall API

400
350
300
250

200
2002 2004 2006 2008 2010 2012 2014 2016 2018

Linux Release Year

No. of syscalls

My VM is lighter (and safer) than your container, SOSP 2017
https://dl.acm.org/doi/pdf/10.1145/3132747.3132763

Valeria Cardellini - SDCC 2025/26 90

Performance of virtualization approaches

» Performance comparisons of hypervisor vs. lightweight
virtualization
» Key findings:
— Overhead introduced by containers is almost negligible
— Fast instantiation time of containers
— Small per-instance memory footprint
— High density
— But security tradeoffs: containers offer less isolation

Virtualization | Boot time Image size Memory Programming | Live
footprint language migration
dependance

~5/10 sec ~1 GB ~100 MB
Container ~0.8/1 sec ~50 MB ~5 MB No Non-native
Unikernel <10 msec <20 MB ~10 MB Partially No

Valeria Cardellini - SDCC 2025/26
91

Performance of virtualization approaches

« Comparing lightweight virtualization approaches

* Overall result: no clearly superior solution, each one
has its own strengths and weaknesses

s/s

e 25,000
1,000 80 -
. p — 20,000
800 60

600

leted request:
[l
k=
(=3
o

40
10,000

Boot/start time (ms)
Memory consumption (MiB)

Compl

400
20 5,000

W T 0 n

Docker OSv Firecracker gVisor

Docker OSv Firecracker gVisor

[l0Getl B Create

Y
&
)
Q

Nty
Os,,
.
lrecrac e
T
&Visor

o ARM [1x86-64

A functional and performance benchmark of lightweight virtualization platforms for
edge computing, EDGE 2022 https://ieeexplore.ieee.org/document/9860335
Valeria Cardellini - SDCC 2025/26

92

WebAssembly (Wasm) M

« Safe, portable, binary code format designed for efficient
execution and compact representation hitps://webassembly.org

— Safe: runs in a sandboxed environment, preventing untrusted
code from harming the host system

— Portable: the same Wasm binary can run on any platform that
supports the Wasm runtime (browsers, servers, embedded)

— Binary format: designed to be compact and fast to load and
execute

» Other features
— Open standard https://www.w3.org/TR/wasm-core-2

— Portable compilation target for many programming languages
 Originally built to safely execute JavaScript code in browsers

— Memory-safe, sandboxed execution

— Computational model based on stack VM

Valeria Cardellini - SDCC 2025/26
93

WebAssembly: features

« Wasm code is validated and executed in a memory-
safe, sandboxed environment — strong isolation and
protection from unsafe operations

— Wasm interacts with the host system through WebAssembly
System Interface (WASI), which provides a standardized set
of capability-based APIs

— A Wasm module cannot directly perform OS systems calls,
instead imports host-provided WASI functions
* Development workflow: write code in one of many
supported languages, compile it to Wasm, and run it
inside a Wasm runtime

Valeria Cardellini - SDCC 2025/26 m

WebAssembly: features

94

 Wasm uses stack-based VM to execute
instructions
— Code is composed of sequences of instructions executed
in order
— The operand stack is used to store values for computation
— Instructions:
» Pop argument values from the stack and push back onto it
+ Each operation manipulates values on the stack

+ Example: i64.add
— Takes two i64 values from the stack
— Add them
— Pushes the result back onto the stack

» Control instructions alter control flow

+ JVM is a famous example of stack-based VM

Valeria Cardellini - SDCC 2025/26

95

WebAssembly: example

» Factorial function written in C and its corresponding
Wasm code after compilation
— In .wat text format (human-readable textual representation of

Wasm)
int factorial(int n) { (func (param i64) (result i64)
if (n == 0) local.get @ # put arg[@] on stack
return 1; i64.eqz # compare top of stack to zero
else if (result i64) # if it is zero
return n * factorial(n-1); i64.const 1 # put 1 on stack
} else
local.get 0 # put arg[@] on stack
local.get 0 # put arg[@] on stack
i64.const 1 # put 1 on stack
i64.sub # subtract the top 2 values in stack
call o # Call function #0 (return value is on the stack)
i64.mul # Multiply
end) '
Valeria Cardellini - SDCC 2025/26 96

WebAssembly: example

» Factorial function written in C and its corresponding
Wasm code after compilation
— In .wasm binary format

int factorial(int n) { o0 G A ey BE D Bl

if (n = o) 01 06 01 60 01 7E 01 7E
03 02 01 00

return 1; 0A 17 01

else 15 00
return n x factorial(n-1); 20 00

50

04 7E

42 01

05

20 00

20 00

42 01

7D

10 00

7E

0B

0B

Valeria Cardellini - SDCC 2025/26 97

WebAssembly: pros and cons

v" Efficient: near-native execution speed

v Secure: memory-safe, sandboxed execution, which
prevents data corruption and security breaches

v Language-, platform-, and hardware-independent
— Does not favour any particular language
— Can run as a standalone VM

— Can be compiled for all modern architectures, including
desktop, mobile devices, and embedded systems

X In development
X Support varies by language

X Multiple runtimes (e.g., Wasmtime, Wasmer,
WasmEdge) with different features: choice is
complex

Valeria Cardellini - SDCC 2025/26

WebAssembly

98

* How to try: Wasm applications with Linux containers
in Docker (beta)

— Enable it on Docker Desktop by checking Enable Wasm on
the Features in development tab under Settings (requires
containerd image store)

$ docker run \

--runtime=io.containerd.wasmedge.vl \
--platform linux/armé4 \
secondstate/rust-example-hello

Valeria Cardellini - SDCC 2025/26

99

The full scenario

Tightly Coupled

FORMAT
EXECUTION

Dev Responsibility
Abstraction
Compatibility

Size

Portability

Security

Location

PC

WebAssembly Host Wasm (wasmCloud)

Libraries

Kernel (Docker) K8s + Containers

5 3 = Compatible with:
Single 0S Hypervisor OS Hypervisor 0S Hypervisor OS K8s, Containers.
m , | St

Browser,\0S, Even your own
Computer App, Edge, etc y

PC CLOUD CONTAINER K8S WASM COSMONIC
Image VM Container Containers WASM Distributed WASM
(Datacenter) (Public Cloud) (Docker) (K8s / Cloud) (Everywhere) (Everywhere)
Full 0S, App, Lib App, Lib App, Lib Wasm Business Logic
cPU Linux Kernel K8s Secure + i
Al Most Most Most Most Most
Large Med Small Small Tiny Minuscule
Low Med (CPU, Linux) Med (CPU, Linux) High Highest
System os Process Boundary Process Boundary Capability Component
On Prem & Proprietary Cloud Dev, App, Edge, Cloud, Dev, App, Edge, Cloud,
Co-location & Edge DevEdie.ICloudlKas RevEdye:cloudlias K8s, Browser, Devices K8s, Browser, Devices

Declarative

XYLl Developer Provided Service Provided W

Valeria Cardellini - SDCC 2025/26

References

100

Sections 4.13 of Marinescu book

Docker workshop https://docs.docker.com/get-started/workshop
Docker Docs https://docs.docker.com

Kane and Matthias, Docker up and running 3" edition, O’Reilly,
2023

Agache et al., Firecracker: Lightweight virtualization for
serverless applications, NDSI 2020
https://www.usenix.org/conference/nsdi20/presentation/agache
Kuenzer et al., Unikraft: fast, specialized unikernels the easy
way, EuroSys 2021
https://dl.acm.org/doi/pdf/10.1145/3447786.3456248

Menétrey et al., WebAssembly as a common layer for the cloud-

edge continuum, FRAME 2022
https://dl.acm.orqg/doi/10.1145/3526059.3533618

Valeria Cardellini - SDCC 2025/26

101

