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OS-level virtualization

» Let's consider operating system (OS) level
virtualization (or container-based virtualization)
« |t allows running multiple isolated (sandboxed) user-
space instances on top of a single OS
— Such instances are called:
« containers
* jails
* Zonhes
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OS-level virtualization

« OS kernel allows the existence of multiple isolated
user-space instances, called containers

« Each container has:
- Its own set of processes, file systems, users, network

interfaces with IP addresses, routing tables, firewall rules, ...

» Containers share the same OS kernel (e.g., Linux)
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OS-level virtualization: mechanisms

» Which OS kernel mechanisms are used to manage
containers?
— Containers need to isolate processes from each other in
terms of sw and hw (CPU, memory, ...) resources
» Main mechanisms offered by Unix-like OS kernels

— chroot (change root directory)

* Allows changing the apparent root folder for the current
running process and its children

— cgroups (Linux-specific)

* Manage resources for groups of processes, such as CPU and
memory allocation

— namespaces (Linux-specific)

* Per-process resource isolation, ensuring that each container
has its own isolated environment
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Mechanisms: namespaces

» Feature of Linux kernel that allows to isolate what a
set of processes can see in the operating
environment

— Includes resources such as processes, ports, files, ...

» Kernel partitions resources so that one set of
processes can see a specific set of resources, while
another set of processes sees a different set of
resources

» 6 different types of namespaces

MNT—Filesystem access and structure

NET—Network access and structure

chroot ()—Controls location UTS—Host and domain name

of filesystem root

A process in
isolation

Cgroups—Resource protection USR—Usernames and identifiers

PID—Process identifiers and IPC—Communication by
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Mechanisms: namespaces

« mnt: isolates mount points seen by a container

— Virtually partitions the file system, so processes running in
separate mount namespaces cannot access files outside of

their mount point
« pid: isolates PID space, ensuring that each process
only sees itself and its children (PID 1, 2, 3, ...)

* network: allows each container to have its dedicated
network stack
— Its own private routing table, set of IP addresses, socket
listings, firewall rules, and other network-related resources
» user: isolates user and group IDs

— E.g., allows a non-root user on host to be mapped to root user
within the container, without granting actual root access to
host
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Mechanisms: namespaces

 uts (Unix timesharing): provides dedicated host and
domain names

— Allows processes to think they are running on servers with
different names, even though they share the same host

* ipc: provides dedicated shared memory for IPC

— E.g., separate Posix message queues for different
containers
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Mechanisms: cgroups

» cgroups = control groups

» Limit, measure and isolate the use of hw resources
(CPU, memory, I/O, network) for a group of processes

« Exposed via a filesystem interface (similar to sysfs
and procTs)
— Default mount point: /sys/fs/cgroup/

* |n a nutshell:

— namespaces implement information isolation: what a
container can see

— cgroups implement resource isolation: how many resources a
container can use
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OS-level virtualization: pros

« VMM-based vs container-based virtualization
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OS-level virtualization: pros

vs. VMM-based virtualization (type-1)

v/ Near-native performance
— No VMM indirection for system calls
V' Fast startup and shutdown

— Seconds (even msec) per container vs. minutes per VM
v/ High density
— Hundreds of containers per physical machine (PM)
v/ Small footprint

— Container images are smaller since they exclude the OS

kernel

v Memory efficiency

— Containers can share memory pages on the same PM

v/ Portability and interoperability

— Apps run across environments
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OS-level virtualization: cons

vs. VMM-based virtualization (type-1)
X Less flexible

— Only supports native apps for the OS kernel (e.g., no Windows

container on Linux host)

— Cannot run different OS kernels on same PM; however, can
run multiple Linux distributions (e.g., Ubuntu, CentOS)

X Weaker isolation

— Process-level isolation leads to higher performance
interference on shared resources

X Higher security risks

— A kernel vulnerability affects the entire system

— Since containers share the kernel, one compromised container

can impact other containers and the host

X Reduced hardware/device isolation

— Device passthrough is more difficult and less secure
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OS-level virtualization: products

10

» Docker
— Most popular container engine
— Provides application containers
« Package and run a single application with its dependencies

— Supports Open Container Initiative (OCI) standards
https://opencontainers.org

« LXC (LinuX Containers) https:/linuxcontainers.org/ixc/
— Supported by mainline Linux kernel

— Provides system containers
* Run a whole OS user space with multiple processes, but share

the host kernel

Host OS kernel Host OS kernel

Application containers System containers
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OS-level virtualization: products

« Podman
— Supports OCI; Docker compatible CLI
— Daemonless, rootless operation for improved security

* FreeBSD Jalil

— Strong process and filesystem isolation

* OpenVZ/ Virtuozzo

— For Linux; primarily for system containers

* Non-Linux platforms
— Windows and macOS support containers (e.g., Docker
Desktop)
« Alternative approach
— Install a Linux VM as a guest OS
— Run container engines (e.g., Docker) inside the VM

— Performance Impact: nested virtualization leads to reduced

performance
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Containers, DevOps and CI/CD

* DevOps: development methodology that bridges the
gap between Development and Operations, focusing
on collaboration, continuous integration, and
automated delivery

« CI/CD:

— Continuous Integration (Cl): merges developers' work into a
shared codebase

— Continuous Delivery (CD): ensures frequent and reliable
releases resr HONITOR
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Containers, DevOps and CI/CD

« Containers: simplify building, packaging, sharing, and
deploying apps with all dependencies

« Enable collaboration by sharing images, and
streamline deployment across environments without
extra configuration

Developers ITOps

BUILD SHIP RUN

Development Environments Secure Content & Collaboration Deploy, Manage, Scale
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Containers, microservices, and serverless

« Using containers

- Package apps and all dependencies into a single unit that
runs almost anywhere

- Use fewer resources than traditional VMs

* Containers enable

- Microservices: break down apps into small, independent
services

- Serverless: package functions into containers for efficient
execution
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Case study: Docker ‘*

docker
 Lightweight and secure container-based virtualization

— Application containers: contain the application and its
dependencies, but share OS kernel with other containers

— Isolation: containers run as isolated processes in user space
on host OS

— Portability: containers are infrastructure-agnostic and can
run anywhere

App 1 App 3
Bins/Libs Bins/Libs
Docker Engine

Operating System

Infrastructure

OB S
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Docker: features

« Portable deployment
— Easily deploy across different machines and environments
« Versioning
— Git-like version control for container images
« Component reuse
— Reuse components (e.g., libraries, services) via Docker
images
« Shared libraries

— Access to pre-built images on Docker Hub
https://hub.docker.com

» OCI support
» Scalability

— Works seamlessly with Kubernetes for scaling applications
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Docker: internals

* Written in Go

» Exploits Linux kernel mechanisms for resource
management and isolation (cgroups and
namespaces)

— Early versions were based on Linux Containers
— Then transitioned to libcontainer, a Go-based container
runtime: provides tools for managing containers with

namespaces, cgroups, capabilities, and filesystem access

controls
https://pkg.go.dev/qgithub.com/opencontainers/runc/libcontainer

— runc: libcontainer is now part of runc, the CLI tool for
spawning and running containers based on OCI specification
https://github.com/opencontainers/runc
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Docker Engine: architecture

* Docker Engine: core

component of Docker that

enables containerization

» Client-server application

composed by network
— Docker daemon (dockerd): Lanages
server component that docker daemon
listens for API requests and t
manages Docker objects w"

like images, containers,
networks, and volumes

— REST API: specifies the interfaces that programs can use to
interact with Docker daemon for operations like creating,
managing, and querying Docker objects

— CLI client: allows users to send commands to Docker daemon

via REST API

https://docs.docker.com/get-started/docker-overview/#docker-architecture
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Docker: client-server architecture

Docker client
— Interface through which users interact with Docker

— Sends commands to Docker Daemon to build, run, and
distribute Docker containers

— Client and daemon communicate through sockets or the
REST API

[client ]

lDocker Host J [Registry
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Docker: images

Read-only template

— Used to create Docker containers, containing everything
needed to run app (code, dependencies, configurations)

Build component

— Docker images enable distribution of apps with their runtime
environments, removing the need to manually install packages

— Target machine must be Docker-enabled

Dockerfile

— Text file with simple instructions that Docker uses to build
images automatically

Image registry

— Images can be pulled and pushed to/from public or private
registries

Image naming

— Format: [registry/][user/]name[:tag]

— Default tag is latest
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Docker image: Dockerfile

» Docker images are created from a Dockerfile and a
context

— Dockerfile: text file containing instructions to assemble the
image

— Context: set of files (e.g., app code, libraries) used during
the image build process

— Images often build on parent images (e.g., Alpine, Ubuntu)

» Dockerfile syntax
# Comment (for comments)
INSTRUCTION arguments (commands like RUN, COPY, etc.)

* Instructions in the Dockerfile run sequentially
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Docker image: Dockerfile

« Common Dockerfile instructions

- FROM <image>: specifies the parent image (mandatory unless
you want to start from scratch)

- WORKDIR <path>: sets the working directory inside the
container

- COPY <host-path> <image-path>: copies files from host to
container image

- RUN <command>: executes the specified command during
image build

- ENV <name> <value>: sets an environment variable

- EXPOSE <port>: exposes a network port for the container

- CMD ["<command>", "<argl>"]: defines the default
command to run when the container starts
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Docker image: Dockerfile

« Example: Dockerfile to build the image of a container
that will run as application a simple todo list manager
written in Node.js

# syntax=docker/dockerfile:1 Directory with app code

|— getting-started-app/

node:lts-alpine | |— package.json

| — README.md
/app | — spec/
| — src/
L
. . yarn.lock
yarn install --production |
["node", "src/index.js"]
3000
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Docker image: build

» Building Docker image from Dockerfile and context
— Context: set of files located in the specified PATH or URL

* Build command
$ docker build [OPTIONS] PATH | URL | -

« Example: to build an image for Node.js app (slide 24)
$ docker build -t getting-started .

— The -t flag is used to tag the image with a name (and
optionally a version)

— If Dockerfile is named something different from Dockerfile,
use the -f flag:

$ docker build -t getting-started -f myDockerfile .
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Docker image: layers

« Each Docker image consists of a series of layers

» Docker uses union file systems to combine these
layers into a single unified view
— These layers are stacked to form a base the base of a
container’s root file system

— Docker leverages copy-on-write (CoW) strategy to
optimize performance

................................

Mhin R layor 1+ Container layer
91e54dfb1179 0B
d74508fb6632 1.895 KB
@ Image
L T Layers
€22013c84729 194.5 KB (RIO)
d3a1f33e8a5a 188.1 MB
ubuntu:15.04

Container
(based on ubuntu:15.04 image)
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Docker image: layers

26

« Layering pros
v Efficient layer sharing and reuse: common layers are

installed only once, saving bandwidth and storage space

v Separation of concerns: allows better management of
dependencies
v Facilitates software specialization

;: Thin R/W layer i Thin RIW layer i Thin R/W layer i Thin R/W layer
91e54dfb1179 0B
d74508fb6632 1.895 KB
@
€22013c84729 1945KB |-
d3a1f33e8a5a 188.1 MB
ubuntu:15.04
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Docker image: layers

» Dockerfile instructions that modify the filesystem
create new layers
— Examples: FROM, RUN, COPY, ADD

* Instructions that only modify the image’s metadata
do not create new layers
— Examples: CMD, LABEL

» All image layers (except the top one) are read-only
— To enable efficient layer sharing across images

* When a container is started, a writable layer (aka
container layer) is added on top

— Changes made by a running container (e.g., creating or
modifying a file) are written to the writable layer

— Unique to each container
— Ephemeral: deleted when the container is removed

— Use it only for temporary/runtime data, not persistent data
Valeria Cardellini - SDCC 2025/26 28

Docker container storage

Containers are usually stateless
Why? Easier to:

— Scale: start quickly new replicas

— Restart: from failure

— Migrate: move between hosts

Very little data is written to container’s writable layer
Data is typically stored in Docker volumes

However, some workloads require writing data to
container’s writable layer
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Docker: storage backends

« How Docker daemon stores image layers and
container writable layers on disk
— Storage drivers
— containerd image store

» Storage drivers (legacy): common options
- Overlay2: file-level, preferred for all Linux distros
- Btrfs: supports snapshotting
- Zfs: block-level

» Storage driver considerations
— Driver choice affects container performance
— Drivers are optimized for space efficiency

— Write performance speeds may be lower than native file
system performance due to CoW
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Docker: storage backends

* New default backend: containerd image store
(Docker Engine 29.0+)

 Uses content-addressable blob store
* Pros and cons:
v Cleaner architecture

v Unifies Docker and containerd ecosystem

X Uses more disk space than storage drivers (no deduplication
at driver level)
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Docker: containers and registry

» Docker container: runnable instance of a Docker image
— Containers are the run component of Docker

— Run, start, stop, move, or delete a container using Docker API
or CLI commands

. Docker Image
- Stateless nature of containers:

when a container is deleted,

any data written outside of data | pocker Docker Docker
volumes is lost Container Container Container

« Docker registry: stateless server-side application that
stores and distributes Docker images

- Registry is the distribute component of Docker
- Public and private registries

* Docker-hosted registries: Docker Hub (official one), Docker Store
(for open-source and enterprise-verified images)

- Open library of images
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Docker: run container

* When you run a container from an image that is not
yet installed locally but is available on Docker Hub,

Docker will pull the image from the registry before
starting the container

Container Engine

@, =2 S, in

Registry / Hub Images Container
A Registry Stores many static images Static; Persistad

Container Image

Image-instance running
an app process

Container Engine

- <=, <. |

Dockerfile Images
all commands to Static, Persisted
assemble an image Container Image

Container
Image-instance running
an app process in same system
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Docker container: states and transitions

 Different states a container can go through during its

lifecycle and actions that trigger transitions
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Docker commands: info

34

» Get system-wide info on Docker installation
$ docker info
including:

Number of images and containers, along with their status

Storage driver

Operating system, architecture, total memory
Docker registry information

Valeria Cardellini - SDCC 2025/26
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Docker commands: image handling

« List all images on host

$ docker images or $ docker image 1s
« List all images, including intermediate image layers
$ docker images -a or $ docker image 1ls -a

* You can filter and format the output to list images by
name, tag, image digests (sha256) or image that meet
specific conditions

— E.g., list unused images (<none>) that are no longer associated
with any tagged images but consume disk space
$ docker images --filter "dangling=true"
 Remove an image
$ docker rmi imageid

alternatively, $ docker image rm imageid |2 US€ tmagename
instead of imageid
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Docker commands: image handling

* Remove dangling images
$ docker image prune

 Inspect an image, including layers and image
metadata

$ docker inspect imageid
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Docker commands: run

$ docker run [OPTIONS] IMAGE [COMMAND] [ARGS]

« Common options

--name set container name

-d detached mode (background)

-1 interactive (keeps STDIN open)

-t allocate a pseudo-tty, usually with -1

--expose declare port(s) inside container
-p or -publish map container port(s) to host

-V mount volume
-e set environment variables inside container
--rm automatically remove container when it exits

--restart set restart policy (e.g., always, on-failure)

Valeria Cardellini - SDCC 2025/26 38

Docker commands: containers management

 List containers
— Only running containers: $ docker ps
alternatively, $ docker container 1s
— All containers (including stopped or killed containers):
$ docker ps -a
« Manage container lifecycle
— Stop a running container

$ docker stop containerid » Stop and remove a container
— Start a stopped container $ docker ps
$ docker start containerid $ docker stop containerid
$ docker ps -a
— KIl a running container $ docker rm containerid

$ docker kill containerid

— Remove a container (after stopping it)

$ docker rm containerid or use containername
instead of containerid
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Docker commands: containers management

Stop all containers
$ for i in $(docker ps -q); do docker stop $i; done

Run a command inside a running container
$ docker exec [OPTIONS] CONTAINER [COMMAND] [ARGS]
Example: $ docker exec -it mycontainer /bin/bash

Inspect a container

— To get the most detailed view of a container environment
$ docker inspect containerid

Copy files between host and container
$ docker cp containerid:path Localpath
$ docker cp Llocalpath containerid:path
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Docker: networking

Containers communicate with each other or with
external systems

» Published ports

— Use -p hostPort:containerPort (e.g., -p 8080:890)in
docker run to expose a container port externally

— Security issue: exposing container ports can be insecure
» Restrict access to host only by binding to localhost
(e.g., -p 127.0.0.1:8080:80)

— Work only on host network: containers can communicate
with each other via internal Docker network

IP address and hostname

— Containers get an |IP address from Docker’s dynamic subnet

— Docker daemon manages subnetting and IP allocation

— Default container hostname = container ID (can override with
--hostname)
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Docker: network drivers

» Docker networking is pluggable

— Docker supports multiple network drivers that provide
different networking behaviors, including:

* bridge (default)
— Default network driver when no network is specified

— Use when containers need to communicate on the same
host

— Implements a software bridge

+ Containers on the same bridge network can communicate
with each other

» Containers on different bridge networks are isolated

* host

— Removes network isolation between container and host

— Container uses host’s network stack directly (no private IP
assigned)
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Docker: volumes

» Preferred mechanism for persisting data generated or
used by containers

— Volume content persists outside the container lifecycle: use
volumes over container writable layer for persistent data

— Does not increase container image size

* How volumes work

— Docker creates a directory inside its storage directory to
manage volume content

— Default location on Linux: /var/1ib/docker/volumes/
— Volumes are created automatically if they do not already exist
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Docker: volumes

Mounting a volume: use -v or --volume in docker run
$ docker run -v source:destination:[options] imageid
— If the volume does not exist, Docker automatically creates it

— [options]: optional flags, e.g., ro for read-only volume
Managing volumes

— Create a volume: $ docker volume create volumename
— List all volumes: $ docker volume 1ls

— Inspect a volume: $ docker volume inspect volumename

— Remove a volume: $ docker volume rm volumename
« Can also be declared in a Dockerfile using
VOLUME ["/localpath"]

« Working with volume data: pre-populate or load data
using docker cp
docker cp /localpath containerid:/path

Valeria Cardellini - SDCC 2025/26

Docker volume: pros

v Fully managed by Docker

v Easy to back up or migrate

v Accessible through Docker CLI or API

v/ Work on both Linux and Windows containers
v/ Shareable across multiple containers

v/ Can store encrypted content

v Suitable for pre-populated or write-heavy workloads
(e.g., database, logging service)
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Docker hands-on

* Download and install Docker
— Available on multiple platforms

» Test Docker installation
$ docker --version
* Run the default hello-world container
$ docker run hello-world
* Run a “Hello World” message using Alpine Linux
$ docker run alpine /bin/echo 'Hello world'
— alpine: lightweight Linux distro with very small image size
« Use commands to:

— List containers and container images
— Stop and remove containers, remove container images

Valeria Cardellini - SDCC 2025/26

Docker hands-on: networking

46

* Run nginx Web server inside a container
- Bind container port 80 to host port 80
$ docker run -dp 80:80 --name web nginx
Flag -p: publish container port (80) to host port (80)
Flag -d: run in detached mode

1. Send HTTP request through Web browser

- First retrieve hostname of host machine (e.g., localhost)

2. Send HTTP requests to nginx from another interactive

container using a custom bridge network
$ docker network create -d bridge my net
$ docker run -dp 80:80 --name web --network=my net nginx
$ docker run -it --network=my net --name web_test busybox
/ # wget -0 - http://web:80/
/ # exit

Valeria Cardellini - SDCC 2025/26
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Docker hands-on: from Dockerfile

* Running Apache web server with minimal index page

1. Define the container image using Dockerfile
« Start from Ubuntu, install and configure Apache
* Declare incoming port 80 using EXPOSE
FROM ubuntu:22.04

# Install dependencies

RUN apt-get update -y && \
apt-get install -y apache2 && \
apt-get clean

# Add simple web page
RUN echo "Hello World!"™ > /var/www/html/index.html

# Expose port and run Apache in the foreground
EXPOSE 80
CMD ["apache2ctl", "-D", "FOREGROUND"]
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Docker hands-on: from Dockerfile

2. Build the image
$ docker build -t hello-apache .

3. Run the container and bind ports
$ docker run -dp 127.0.0.1:8080:80 hello-apache

4. Execute an interactive shell in the running container
$ docker exec -it hello-apache /bin/bash

* To reduce container image size, avoid unnecessary
layers

— E.g., in Dockerfile combine apt-get update and package
installation into a single RUN instruction (see slide 48)
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Docker hands-on: volumes

* Run nginx container with a volume

$ docker
$ docker
$ docker
$ docker

volume
volume
volume
run -d

create my-vol
1s
inspect my-vol

\

--name devtest \
-v my-vol:/app \

nginx:latest

- my-vol is the source volume, /app is the target path inside
container

$ docker inspect devtest

— Check that Docker has created and mounted the volume

correctly

Valeria Cardellini - SDCC 2025/26

Docker: optimize Docker images

50

» Fewer layers — smaller images — faster builds and
deployments

» Why optimize Docker images?
— Essential for DevOps engineers at every stage of CI/CD

process

— Reduces image size and disk usage
— Speeds up image transfer, deployment, and startup times
— Improves security by reducing the attack surface

— Best practice used by Google and other major tech
companies

— Best practice employed by Google and other tech giants

Valeria Cardellini - SDCC 2025/26
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Docker: optimize Docker images

* Techniques
1. Use minimal base images (e.g., alpine, minideb) or

distroless base images

» Distroless images:
— contain only application and its runtime dependencies
— include package managers, shells, or other common

utilities

— More secure, smaller, harder to tamper with

2. Minimize the number of image layers
+ Combine related commands in a single RUN instruction
* Avoid unnecessary COPY, ADD, or repeated RUN steps
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Docker: optimize Docker images

* Techniques

3. Multistage builds
* Use intermediate images (build stages) to
— compile code
— install dependencies, and package files
* Final image contains only the files and libraries needed to run app
# Build stage
FROM golang:1.21 AS builder
WORKDIR /app
COPY . .

RUN go mod init myapp
RUN go mod tidy
RUN go build -o myapp

# Final stage
FROM alpine:3.20
COPY --from=builder /app/myapp /usr/local/bin/myapp

CMD ["myapp"]
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Docker: optimize Docker images

* Techniques

4. Exploit layer caching

» Place instructions that change infrequently (like installing
dependencies) before COPY commands

* Docker reuses cached layers for faster builds when source
code changes.

5. Use a .dockerignore file
+ Specify files and directories to exclude from the build context

* Common exclusions: node_modules, .git, *.log,
__pycache__/

6. Keep application data in a volume
* Avoid storing persistent data inside the container.
» Use Docker volumes to store databases, logs, uploaded files
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Docker: sizing containers

« By default, containers have no resource constraints

— Can use as much CPU, memory, and I/O as the host's
kernel scheduler allows

» Control resources by setting runtime configuration
flags of docker run

— Docker uses cgroups to manage resource limits

Valeria Cardellini - SDCC 2025/26
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Docker: sizing containers - memory

* Avoid running out of memory (OOM)
— Containers may be killed

— Docker daemon has lower OOM score, so less risk than
containers

» Enforce hard or soft memory limits

— Hard limit: container cannot use more than the specified
limit; use --memory flag

— Soft limit: container can use more memory if needed, unless
certain conditions are met (e.g., kernel detects contention or
low memory on host machine)

— Example: hard limit (500 MB) and soft limit (300 MB)

$ docker run -it --memory-reservation="300m" \
--memory="500m" ubuntu /bin/bash

Valeria Cardellini - SDCC 2025/26
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Docker: sizing containers - CPU

» Options to limit CPU usage
- -cpus=<value>: limit container to a specific number of CPUs
(hard limit)
--cpu-quota=<value>: set Completely Fair Scheduler (CFS)
CPU quota on container

- -cpuset-cpus: restrict container to specific CPUs/cores,
example --cpuset-cpus="0,1" (use only CPU 0 and 1)

--cpu-shares: set relative CPU weight (soft limit)

« Example: limit container to use at most 50% of CPU
every second
$ docker run -it --cpus=".5" ubuntu /bin/bash
Alternatively, $ docker run -it --cpu-period=100000 \
--Ccpu-quota=50000 ubuntu /bin/bash

Valeria Cardellini - SDCC 2025/26
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Resizing containers

« Containers can be resized and migrated, just like VMs

» Resizing allows changing CPU, memory, and /O limits
dynamically

— Note: on Docker, dynamic resizing is not supported on
Windows

$ docker update [OPTIONS] CONTAINER [CONTAINER...]

— Examples
$ docker update --cpu-shares 512 containerlID
$ docker update --cpu-shares 512 -m 300M containerID

Valeria Cardellini - SDCC 2025/26

Container live migration
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» As for VM migration, we need to:
— Save state
— Transfer state
— Restore state

» State saving, transferring and restoring happen with
frozen app: migration downtime
— Use memaory pre-copy or memory post-copy

* No native support in container engines, additional
tools required

» \We also need to migrate container image, volumes,
and network connections

Valeria Cardellini - SDCC 2025/26
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Container live migration

* CRIU (Checkpoint/Restore in Userspace) tool for live
migration through checkpointing and restoration
(Docker and other engines)

— Checkpoint: freeze running container on source host and
collects information about its CPU state, memory content, and
process tree

— Transfer and restore: transfer collected information to
destination host, restore container’s state and resume

execution
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D M
Migration | bing gration IMigration
Nodg B " B ] 3 H ! ! . Node B
cg:‘::‘:::r Pr:e-dump ! ‘ ngp ! 3 Running in Node B |
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Memory copy | Memory copy | b ‘ ontainer in Current State; Sate ! :,51 :ir:er:-,
LT e T maion “hes” |
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Node A Container running in Node A ] :_ ) )\ A Node A
I ! ' Downtime ' I Cleared
Container
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| Migration time L
]
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* Where attacks come from in containerized
environment?
> —p Application attacks container
[ App A j [ App B ] y = = Container attacks other containers
L oo (o)
Host attacks container
ml m
A 1o m) : >
H H

 Attack origins
— Vulnerabilities in containerized apps
— Container runtime/kernel flaws
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Container security

* Types of attacks

— Container escape

» Exploitation of container vulnerabilities to break isolation and
access the host system

— Privilege escalation

* Once on the host, attackers can escalate privileges to:
— Access other containers
— Run malicious code on host system

« Consequences
— Compromised host system
— Cross-container attacks
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Docker: useful tools

To manage images

— Reduce image size: Slim

— Explore image layers: Dive

— Automate image builds: Packer
To monitor containers

— cAdvisor
To check fo vulnerabilities

— Docker Scout
— Trivy
— Static analysis: Clair

Many other tools:
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Container orchestration

» Sw platforms for managing multi-container apps

» Functionalities: configure, provision, deploy,
monitor, and dynamically control containerized apps

— Designed to integrate and manage containers in large-
scale environments across multiple hosts

— Can include autoscaling, load balancing, networking,
monitoring and logging, fault tolerance and self-healing
mechanisms

 Examples
— Docker Swarm
— Kubernetes
— Nomad

» Also available as fully managed Cloud services

» For single-host deployment of small-scale apps

— Docker Compose
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Docker Compose %5

Sf

» Tool for defining and running multi-container Docker
applications
— Included with Docker Desktop

* How it works
— Configuration-as-code

— Define services: users specify the containers (services) to be
instantiated, their configuration and relationships in a YAML
file

» Single host, multiple containers

— Orchestrates multiple containers on a single host (single
Docker engine)

* Network setup

— Compose automatically creates a network and attaches all

containers to it, enabling easy communication between them
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Docker Compose: how to use

» Define containers in a YAML file named
compose.yaml (or compose.yml)
— Specifies the containerized services
— Defines how containers interact and their configurations
 Start Docker composition (background -d):
$ docker compose up -d

— By default, Docker Compose looks for compose.yaml in
working directory

» Use -f flag to specify a different YAML file
$ docker compose -f composefile up -d
Stop running containers:
$ docker compose stop

Bring composition down, removing everything
$ docker compose down

Valeria Cardellini - SDCC 2025/26

Docker Compose: Compose file
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» To configure Docker application’s services, networks,
volumes, and more

— Different versions of Compose file format

— Compose V2: implements format defined by Compose
Specification and includes support for
legacy formats (2.x and 3.x)

* What is inside compose.yaml

— version, services, networks, volumes, configs, secrets

— Only services is required, others are optional

Valeria Cardellini - SDCC 2025/26
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Docker Compose: Compose file

» Service: abstract representation of computing
resources within app, that can be scaled, updated or
replaced independently from other components

— Defines a set of containers

— Compose file must include the services top-level element

* Within each service

— build: defines how to create service image (e.g., from
Dockerfile)

— container_name, startup and shutdown dependencies
between services (depends_on), exposed containers ports,
CPU and memory limits, volumes that are accessible to
service containers

— and other settings, see

Valeria Cardellini - SDCC 2025/26
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Docker Compose: example

» Simple Python web app running on Docker Compose
— 2 containers: Python web app and Redis
— Use Flask framework and maintain a hit counter in Redis
— Redis: in-memory, key-value data store

See
° Steps # syntax=docker/dockerfile:1
1. Write Python app python:3.16-alpine
2. Define Python container /app

FLASK_APP=app.py
FLASK_RUN_HOST=0.0.0.0

apk add --no-cache gcc musl-dev linux-headers

q

requirements.txt requirements.txt
pip install -r requirements.txt
5000

["flask", "run", "--debug"]

Valeria Cardellini - SDCC 2025/26 69



Docker Compose: example

compose.yaml

» Steps (cont'd):

3. Define services in Compose file services:
. . . web:
» 2 services: web (image built .
from Dockerfile) and redis =~ == build: .
(official image pulled from ports:
Docker Hub - "8000:5000"
https://hub.docker.com/_/redis) i
redis:
4. Build and run app with Compose image: "redis:alpine"

$ docker compose up -d

5. Send HTTP requests using curl or browser (counter is
increased)

6. Stop Compose and bring everything down
$ docker compose down

Valeria Cardellini - SDCC 2025/26

Docker Compose: example
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- Specify restart policy for containers
— Options: on-failure[ :max-retries], always,
unless-stopped
« Start multiple replicas of same service using deploy
specification
— Scale out or in manually the number of replicas
$ docker compose -f compose v2.yaml up --scale web=4 -d

$ docker ps
$ docker compose -f compose v2.yaml up --scale web=1 -d

$ docker ps
X Docker Compose only supports manual scaling
- To experience autoscaling, learn Kubernetes

Valeria Cardellini - SDCC 2025/26
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Docker Compose: full example

compose_v2.yaml

services: redis:
web: image: "redis:latest”
build: . container_name: redis
ports: restart: always
- "5000" volumes:
restart: always - redis-data:/data
deploy:
replicas: 3 volumes:
environment: redis-data:

- FLASK_APP=app.py
depends_on:

- redis

Valeria Cardellini - SDCC 2025/26

Docker Compose: example
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« Drawback of v2:
— The replicas of web service are visible: how can we add
distribution transparency?
« Solution (see compose v3.yaml):
— Add a load balancer in front of the web replicas

— Use Nginx a layer-7 proxy by adding a nginx service to the
composition

— In the nginx service, use a bind mount to mount the Nginx
configuration file on the host inside the container

— Use an internal network for all the containers

Valeria Cardellini - SDCC 2025/26
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Example of Dockerized distributed system

» Multiple pre-configured options are available, e.g.,

- includes both single
container and Docker Compose setup with Zookeeper or
Kraft mode

cluster of 3 brokers (Kraft mode) and Ul, Docker network for
inter-broker communication, and persistent volume storage
» Added also a Kafka client

Valeria Cardellini - SDCC 2025/26

Docker Compose: pros and cons
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v/ Simplified control

v Efficient collaboration

v/ Rapid application development
v/ Reproducible environments

v/ Portability across environments (development,
staging, production)

X Single host limitation

X Lack of elasticity

X Not production-grade orchestration
X Only basic security features

Valeria Cardellini - SDCC 2025/26
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Docker Swarm

« Swarm mode: advanced feature of Docker to
natively manage a cluster of Docker engines called
a sSwarm https://docs.docker.com/engine/swarm/

« Swarm: multiple Docker engines running in swarm

mode

— Swarm mode helps you orchestrate containers across

multiple machines

« Composed of Manager nodes and Worker nodes
— Manager nodes: control the swarm and handle the

manager nodes

Valeria Cardellini - SDCC 2025/26

orchestration of services

— Tasks: containers running in a service
» Task: smallest unit of work, typically one container

— Worker nodes: run containers (tasks) as assigned by

— Services: how tasks (containers) should run on the swarm;
provide an abstraction for deploying and managing tasks

Docker Swarm: architecture
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* Node: single instance of Docker engine in a swarm
— Manager nodes: handles cluster management, including

task scheduling

» Multiple managers to improve fault tolerance

» Raft as consensus algorithm to ensure consistency

— Worker nodes execute tasks
* Workers use a gossip protocol to exchange information about

their state

Raft consensus group

Internal distributed state store . |

[

Manager

/
/

e

=3

r’ Manager b

/
\ 4

ar
s e

Manager
—s

-

=

N

\

N\
4

/ d / / . v pe S
// // ),)‘\\
' >/ K i ~a \A
| Workerél Worker$| Worker$| Worker$| Workeré | Workeré

Worker

Valeria Cardellini - SDCC 2025/26

Gossip network

77



Docker Swarm: features

» Cluster management integrated with Docker
» Decentralized: distributed decision-making
« Declarative service model

» State reconciliation

— Swarm monitors cluster state and reconciles any differences
wrt desired state (e.g., a node crashes)

« Scaling
— Easily scale services but lacks auto-scaling
« Multi-host networking

— Use overlay networks to enable communication between
services across nodes

« Load balancing
— Can expose service ports to an external load balancer
« Secure: TLS authentication, encryption, role-based AC

~+ Easy to use and lightweight
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Container-as-a-Service (Caa$S)

* Cloud-based platform for managing and deploying
containerized applications
— Combines containerization with cloud benefits
* Features

— Container orchestration and management: container lifecycle,
scheduling, load balancing, and fault tolerance

— Configuration for resource optimization (e.g., auto-scaling)

— Security and access control

— Integration with other cloud services (e.g., monitoring)
 Examples

— Amazon Elastic Container Service

— Azure Container Instances

— Google Cloud Run
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Virtualization and laaS providers

» Which virtualization technology for laaS providers?

v/ Hypervisor-based virtualization: greater security and
isolation, flexibility (different OSs on same PM)

v/ Container-based virtualization: smaller deployment size and
higher density, faster startup/shutdown

« Questions

— Containers on top of bare metal or inside VMs?
» Performance and density vs. isolation and security

— Are containers replacing VMs?
* Not entirely: lightweight vs. isolation and security
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New lightweight virtualization approaches

* Deployment approaches examined
— Plus nested virtualization: hypervisor inside VM on top of an

hypervisor, or Docker in VM r 3)
Application
4 3\ ]
Application RT & Libs
RT & Libraries [ . [ ] | Container
Application 0S [RT & Libraries] o
0S | Hypervisor (OF] Hypervisor ?
> N ., < i
Hardware Hardware Hardware Hardware
Operatin_g System  Virtual Machine Container on Container on
on Native HW on Hypervisor Native HW VM & Hypervisor
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New lightweight approaches to virtualization

» Microservices, serverless computing, cloud-edge
continuum demand for

— Low-overhead (or lightweight) virtualization techniques,
even lighter than containers

— Better security
— Portability across OSs and architectures (e.g., Arm, Intel)
« Technologies enabling lightweight virtualization:
MicroVM, lightweight OSs, unikernels and
WebAssembly
« MicroVMs, lightweight OSs, and unikernels: reduce
OS overhead and attack surface

— OS overhead: many common OS services (shells, editors,
core utils, package managers) are unnecessary

— Attack surface: images contain only the essential code
needed to run the app, reducing potential attack vectors
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MicroVM runtimes

» Tiny, specialized VMM that run lightweight VMs (called
microVMs)

» Goal: reduce memory footprint and improve security of
virtualization layer

» Firecracker: minimalist VMM purpose-built by Amazon
for secure, efficient and multi-tenant microVMs

A
— Why? To enable AWS Lambda and AWS Fargate Firecracker

for serverless and containerized workloads gllg| g
— Based on KVM but with minimalist design (no

unnecessary devices and guest functionality) 1 1
— Open source, written in Rust ukernel| [ukemel| [ukerel
— microVM: <125 ms startup time and <5 MB memory il

footprint Hardware
— Scales to thousands of multi-tenant microVMs Firecracker

Veloria Carder %gg&(ggéggj OS guests inside microVM: Linux and OSv o



Lightweight operating systems

» Minimal, special-purpose OSs to run containerized

apps
* Fedora CoreOS
— Minimal, monolithic, and compact Linux distribution designed

for running containers

» Only components for container deployment, together with built-
in tools for service discovery, container management, and

configuration sharing
— Designed for scale and security
— Fast bootstrap and small memory footprint
— Can be installed directly on hardware or on hypervisor

— Includes Docker and podman

» Other products: Ubuntu Core, balenaOS

— Designed for edge and loT devices
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Unikernels

« Specialized, single-purpose OS designed to run a
single application with minimal overhead

— Single application + OS into a single executable (aka library
OS): monolithic process that runs entirely in kernel mode

— Single address space: app and OS share the same memory
space

— Built by compiling high-level language directly into
specialized machine image that runs on hypervisor

— Goal: isolation benefits of hypervisor without overhead of

guest OS allelle _
VM <|/<|[< container
2 |falfa] unikernel
o || 2 olla|l o
=1 =l = < < < - - =
(=L, (=1, (=1
alla|la T <
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Hardware Hardware Hardware
Unikernel 85

Valeria Cardellini - SDCC 2025/26 VM Container



Unikernels: pros and cons

* Pros (specialized — high performance)
V' Lightweight: less resource-intensive (memory and CPU)
v/ Minimal footprint
v/ Reduced attack surface
V' Fast execution (no context switching)
V' Fast boot (measured in ms)
v Strong isolation

« Cons
X Less flexible than VMs and containers

X Limited ecosystem support, including debugging and
monitoring tools

X Scalability is more challenging (e.g., multi-instance
deployments or load balancing)

X Unikernel orchestration is not as easy as container
orchestration
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Unikernels: frameworks

* Frameworks
— MirageOS (Ocaml language)
— OSv
— Nanos
— Unikraft

e OSv

— Cloud-native unikernel optimized for high performance and
low overhead in virtualized environments

— Linux ABI compatibility allows running Linux applications with
minimal changes

— Open-source and fast
* Can boot in ~5 ms on Firecracker using 11 MB of memory
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Unikernels: Unikraft

« Fast, secure, and open-source Unikernel Development
Kit

Valeria Cardellini

Designed to simplify unikernel creation without requiring deep
expertise

Build, run and package: similar to Docker
Modular: supports a wide range of components (e.g.,
networking, storage), allowing to create custom unikernels
Multi-language support (e.g., C, C++, Rust, Go)
Application compatibility

« Can run complex apps (e.g., Redis, Nginx, Memcached)

+ POSIX compliant: compatibility with a broad range of Unix-like
applications

Architecture compatibility

» Works with multiple hypervisors (e.g., Xen, KVM) and supports
various CPU architectures, allowing deployment on both
virtualized and bare-metal environments

Active development
- SDCC 2025/26

Unikernels: Unikraft
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Performance of virtualization approaches

* VM boot times grow linearly with VM size
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+ Difficulties in securing containers due to growth of Linux syscall API
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My VM is lighter (and safer) than your container, SOSP 2017
https://dl.acm.org/doi/pdf/10.1145/3132747.3132763
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Performance of virtualization approaches

» Performance comparisons of hypervisor vs. lightweight
virtualization
» Key findings:
— Overhead introduced by containers is almost negligible
— Fast instantiation time of containers
— Small per-instance memory footprint
— High density
— But security tradeoffs: containers offer less isolation

Virtualization | Boot time Image size Memory Programming | Live
footprint language migration
dependance

~5/10 sec ~1 GB ~100 MB
Container ~0.8/1 sec ~50 MB ~5 MB No Non-native
Unikernel <10 msec <20 MB ~10 MB Partially No

Valeria Cardellini - SDCC 2025/26
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Performance of virtualization approaches

« Comparing lightweight virtualization approaches

* Overall result: no clearly superior solution, each one
has its own strengths and weaknesses
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A functional and performance benchmark of lightweight virtualization platforms for
edge computing, EDGE 2022 https://ieeexplore.ieee.org/document/9860335
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WebAssembly (Wasm) M

« Safe, portable, binary code format designed for efficient
execution and compact representation hitps://webassembly.org

— Safe: runs in a sandboxed environment, preventing untrusted
code from harming the host system

— Portable: the same Wasm binary can run on any platform that
supports the Wasm runtime (browsers, servers, embedded)

— Binary format: designed to be compact and fast to load and
execute

» Other features
— Open standard https://www.w3.org/TR/wasm-core-2

— Portable compilation target for many programming languages
 Originally built to safely execute JavaScript code in browsers

— Memory-safe, sandboxed execution

— Computational model based on stack VM

Valeria Cardellini - SDCC 2025/26
93




WebAssembly: features

« Wasm code is validated and executed in a memory-
safe, sandboxed environment — strong isolation and
protection from unsafe operations

— Wasm interacts with the host system through WebAssembly
System Interface (WASI), which provides a standardized set
of capability-based APIs

— A Wasm module cannot directly perform OS systems calls,
instead imports host-provided WASI functions
* Development workflow: write code in one of many
supported languages, compile it to Wasm, and run it
inside a Wasm runtime

Valeria Cardellini - SDCC 2025/26 m
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 Wasm uses stack-based VM to execute
instructions
— Code is composed of sequences of instructions executed
in order
— The operand stack is used to store values for computation
— Instructions:
» Pop argument values from the stack and push back onto it
+ Each operation manipulates values on the stack

+ Example: i64.add
— Takes two i64 values from the stack
— Add them
— Pushes the result back onto the stack

» Control instructions alter control flow

+ JVM is a famous example of stack-based VM

Valeria Cardellini - SDCC 2025/26
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WebAssembly: example

» Factorial function written in C and its corresponding
Wasm code after compilation
— In .wat text format (human-readable textual representation of

Wasm)
int factorial(int n) { (func (param i64) (result i64)
if (n == 0) local.get @ # put arg[@] on stack
return 1; i64.eqz # compare top of stack to zero
else if (result i64) # if it is zero
return n * factorial(n-1); i64.const 1 # put 1 on stack
} else
local.get 0 # put arg[@] on stack
local.get 0 # put arg[@] on stack
i64.const 1 # put 1 on stack
i64.sub # subtract the top 2 values in stack
call o # Call function #0 (return value is on the stack)
i64.mul # Multiply
end) '
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WebAssembly: example

» Factorial function written in C and its corresponding
Wasm code after compilation
— In .wasm binary format

int factorial(int n) { o0 G A ey BE D Bl

if (n = o) 01 06 01 60 01 7E 01 7E
03 02 01 00

return 1; 0A 17 01

else 15 00
return n x factorial(n-1); 20 00

50

04 7E

42 01

05

20 00

20 00

42 01

7D

10 00

7E

0B

0B
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WebAssembly: pros and cons

v" Efficient: near-native execution speed

v Secure: memory-safe, sandboxed execution, which
prevents data corruption and security breaches

v Language-, platform-, and hardware-independent
— Does not favour any particular language
— Can run as a standalone VM

— Can be compiled for all modern architectures, including
desktop, mobile devices, and embedded systems

X In development
X Support varies by language

X Multiple runtimes (e.g., Wasmtime, Wasmer,
WasmEdge) with different features: choice is
complex

Valeria Cardellini - SDCC 2025/26
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* How to try: Wasm applications with Linux containers
in Docker (beta)

— Enable it on Docker Desktop by checking Enable Wasm on
the Features in development tab under Settings (requires
containerd image store)

$ docker run \

--runtime=io.containerd.wasmedge.vl \
--platform linux/armé4 \
secondstate/rust-example-hello

Valeria Cardellini - SDCC 2025/26
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The full scenario

Tightly Coupled

FORMAT
EXECUTION

Dev Responsibility
Abstraction
Compatibility

Size

Portability

Security

Location

PC

WebAssembly Host Wasm (wasmCloud)

Libraries

Kernel (Docker) K8s + Containers

5 3 = Compatible with:
Single 0S Hypervisor OS Hypervisor 0S Hypervisor OS K8s, Containers.
m , | St

Browser,\0S, Even your own
Computer App, Edge, etc y

PC CLOUD CONTAINER K8S WASM COSMONIC
Image VM Container Containers WASM Distributed WASM
(Datacenter) (Public Cloud) (Docker) (K8s / Cloud) (Everywhere) (Everywhere)
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cPU Linux Kernel K8s Secure + i
Al Most Most Most Most Most
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On Prem & Proprietary Cloud Dev, App, Edge, Cloud, Dev, App, Edge, Cloud,
Co-location & Edge DevEdie.ICloudlKas RevEdye:cloudlias K8s, Browser, Devices K8s, Browser, Devices

Declarative

XYLl Developer Provided Service Provided W
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