TOR VERGATA Macroarea di Ingegneria

Univexsira prorrsrunror roms Dipartimento di Ingegneria Civile e Ingegneria Informatica

System-Level Virtualization

Corso di Sistemi Distribuiti e Cloud Computing
A.A. 2025/26

Valeria Cardellini

Laurea Magistrale in Ingegneria Informatica

Virtualization

* Provides a high-level abstraction that hided the details
of the underlying implementation
— Hardware and software resources

» Offers a logical view of computing resources that
differs from the physical ones

Logical view (virtual system)

Physical view Virtualization technologies
(real system)

Real system
Hw and sw resources

 How? Decouples user-perceived architecture and
behavior of hw and sw resources from their physical
implementation

+ Goals:
— Portability, efficiency, reliability, security, ...

Valeria Cardellini - SDCC 2025/26 1

Virtualization of resources

System virtualization Our
— Virtualizes hw and sw resources focus
— Virtual machines, containers, unikernels, ...

Storage virtualization
— Abstracts storage resources
— Storage Area Network (SAN), virtual disks, ...

Network virtualization
— Virtual LAN (VLAN), Virtual Private Network (VPN), ...

Data center virtualization
— Software-Defined Data Center (SDDC)

Valeria Cardellini - SDCC 2025/26

Major components of virtualization

» Guest:

— The virtualized
environment

— Interacts with the e L
virtualization layer, not B e

: T ENCZE
™ E —-~— — ~ >

dlreCtly Wlth hOSt | VirtualHardvml Virtual Storagle—l """""""""" r_vmualNetworking
Virtualization Layer
° H ost: Software Emulation

— The physical system
— Provides the original hw {

Guest

and sw resources

« Virtualization layer

— Responsible for creating the virtual environment

— Manages resource allocation, isolation, and interaction
between guest and host

Valeria Cardellini - SDCC 2025/26 3

Taxonomy of virtualization techniques

Execution
Environment

Virtualization —

—| [nfrastructure

Data center

Full Virtualization

System-level |—
Para-Virtualization
Hybrid Virtualization
Nested Virtualization
> OS-level —
—> Containers
» Lightweight
—> MicroVMs
Storage ™ Unikernels
Network — WebAssembly

* Execution environment virtualization: the oldest,
most popular and most developed area = our focus

Valeria Cardellini - SDCC 2025/26

Virtual Machine

 Virtual Machine (VM): a complete compute
environment with its own isolated processing
capabilities, memory, and communication channels

» Represents hw/sw resources of a physical machine
differently from their physical reality

— E.g., VM hw resources (CPU, network card, ...) can differ
from physical machine’s hw resources

— E.g., VM sw resources (OS, applications) can differ from
physical machine’s sw resources

» A single physical machine can host multiple

independent VMs

Valeria Cardellini - SDCC 2025/26

VM1 VM2 VM3

Virtualization layer

Virtualization: a brief history

» An “old” idea in computer science
— Originates in the 1960s in centralized computing

— Goals: let legacy software run on expensive mainframes
and transparently share scarce physical resources

— Example: IBM System/360-67 mainframe

o Shift in the 1980s with the rise of PCs

— OS multitasking to transparently share computing
resources

— Virtualization became less relevant for a while

Valeria Cardellini - SDCC 2025/26

Virtualization: a brief history

 Late 1990s: virtualization interest returns

— Needed to simplify programming on special-purpose
hardware

— VMware founded in 1998
« Why the comeback?

— Hardware evolves faster than software — higher
management costs

— Poor application portability
— Significant under-utilization of hardware resources
— Need to share resources efficiently and reduce infrastructure
costs
« Today, virtualization is a core technology in cloud
computing

Valeria Cardellini - SDCC 2025/26

Virtualization: benefits

» Improves portability, compatibility, interoperability,
and migration
— Hardware independence: create once, run everywhere
— Legacy support: run old OSes/apps on modern hardware

— Support heterogeneous environments (different OSes on
same host)

Program

|

Interface A |

Hardware/software system A

Valeria Cardellini - SDCC 2025/26

r

Program

Interface A

Implementation of
mimicking Aon B

Interface B

Hardware/software system B

Virtualization: benefits

» Enables server consolidation and efficiency
— VNMs share one physical machine (multiplexing)

— Reduces number of servers — lower cost, energy, and space

usage
— Better utilization of otherwise idle hardware

HTTP App. DB
Server Server Server
0os 1 0s2 0s3
Hardware Hardware Hardware

=)

« Simplifies management
— Easier maintenance and upgrades
— Rapid provisioning: quickly create, clone, or destroy VMs

— Snapshots and rollback simplify testing and recovery

Virtual
Machine 1

Virtual
Machine 2

Virtual
Machine 3

HTTP App. DB
Server Server Server
0s 1 0s 2 0Ss 3

Virtual Machine Monitor(VMM)

Hardware

— Per-VM monitoring and resource accounting (important for
cloud billing)

- SDCC 2025/26

Valeria Cardellini

Virtualization: benefits

* Improves reliability and security

Strong isolation: faults or attacks in one VM do not affect
others

Malware, bugs, and crashes remain contained within the VM
Micro-segmentation and secure virtual networks

Disaster recovery: VM images can be replicated and
restored elsewhere

* Provides performance isolation

Controlled scheduling of shared resources ensures
predictable performance

Reduces noisy-neighbor effects

Valeria Cardellini - SDCC 2025/26

Virtualization: benefits

10

* Improves load balancing and high availability

Improves load distribution across physical hosts

Live migration enables moving VMs seamlessly across
physical hosts and reduces downtime

Enhances availability in cloud and data-center environments

» Better development and testing

Safe sandbox environments
Easy creation of testbeds and multi-VM setups
Useful for CI/CD pipelines and experimentation

Valeria Cardellini - SDCC 2025/26

1"

Reasons to use virtualization

» Personal and educational
— Learn and experiment with multiple OSes

— Develop, test, and debug applications in isolated
environments

— Simulate distributed systems on a single machine

» Enterprise and professional
— Support DevOps workflows and continuous integration

— Encapsulate entire systems in VM images for replication,
migration, or redeployment

— Ensure business continuity and disaster recovery
readiness

— Run legacy applications or OSes on modern platforms

Valeria Cardellini - SDCC 2025/26

Interfaces in computer system

12

o
API
Libraries F
ABI '
* System calls
Operating System ‘ A3
ISA |
¢ System ISA User ISA
Hardware
Applications:

 use library functions (A1)
* make system calls (A2)
» execute machine instructions (A3)

Valeria Cardellini - SDCC 2025/26

13

Interfaces in computer system and virtualizat

ion

Levels where virtualization can be realized

« Key idea: virtualization is strictly related to computer
system interfaces — mimics their behavior

— Hw/sw interface (system ISA): manages system resources,
privileged instructions executed only by OS [interface 3]

— Hw/sw interface (user-level ISA): focused on computation,

unprivileged instructions executed by any program [interface 4]

— System calls: controlled access to OS Application
. . . programs
services from user applications O e Software
interface 2 o L
[.] . . Operating system ABI
— ABI (Application Binary Interface): —_— 15
ensures binary compatibility [interfaces E*°°“"°"“““’wl*"°—
2 + 4] System interconnect tr'::aTa(;gn Hanhestg

(bus)

— Library calls (API): high-level interface o :
for application software to use system and memory

.] networking
services [interface 1]

Valeria Cardellini - SDCC 2025/26

Smith and Nair, The architecture of virtual machines, IEEE Computers, 2005

Implementation levels of virtualization

14

 Virtualization can be implemented at various
operational levels
— Primary involved interface is indicated within []

« |ISA level [interface 4]
« Hardware level (aka system VMSs) [interface 3]

. . Our main
« Operating system level (aka containers) focus

[interface 2]
 Library level [interface 1]

« User application level (aka process VMs)
[interfaces 4 + 1]

Valeria Cardellini - SDCC 2025/26

15

Valeria Cardellini - SDCC 2025/26

Implementation levels of virtualization

e |SA level

— Goal: emulate a given ISA (unprivileged
instructions) on the host machine for portability

— Methods

» Code interpretation: interpret each source instruction to
host ISA instructions

* Dynamic binary translation: convert code in blocks for
faster execution

— Example: run MIPS binary code on x86 host

Valeria Cardellini - SDCC 2025/26 16

Implementation levels of virtualization

« Hardware level (aka system VMs)

— Goal: virtualize host resources (CPUs, memory,
I/O) via Virtual Machine Monitor (VMM), aka

hypervisor
« VMM manages hw resources and shares them among
multiple VMs
* VMM intercepts privileged instructions and enforces
isolation
— Provides complete environment where multiple
\/Ms coexist Multiple instances of combinations

<applications, OS>

— Examples: VMware, KVM, [

[
Xen, Parallels, VirtualBox APBRGHIOTE | =
— Examples: microVMs | Operating system |
 Lightweight VMs with minimal Virtual machine monitor
OS (e.g., Firecracker, Kata P
Containers) 17

Implementation levels of virtualization

« Operating system level (aka containers)

— Goal: create multiple isolated containers sharing the
OS kernel
— Containers rely on OS kernel to provide system calls

— Examples: Docker, LXC, Podman
* Library level

— Goal: run apps on host OS that does not natively
support them

» Translate high-level API calls from the application and
translate them to host OS API rather than emulating full OS

— Examples:
* Wine: Windows apps on top of Linux
* Cygwin: “Get that Linux feeling — on Windows”

Valeria Cardellini - SDCC 2025/26 18

Implementation levels of virtualization

« User application level (aka process VMs)
— Virtual platform for a single process
— Provides virtual ABI/API to user app
— Executes portable intermediate code (e.g., Java

bytecode)
— Examples: JVM, .NET CLR, WebAssembly
runtimes Multiple instances of combinations

<application, runtime system>

[
'
Application =
System Calls User ISA |:E
1 Runtime system
(“os Ul
I
SI’Ste’l" IS/E IL ABI Operating system
(Hardware | Hardware

Valeria Cardellini - SDCC 2025/26 19

System-level virtualization: terminology

« Let’s focus on system-level virtualization via
VMM/hypervisor

« Host: base platform on top of which VMSs run;
consisting of:

— Physical machine
— Optional host OS
— VMM/hypervisor

* Guest: everything inside the VM
— Guest OS
— Applications executed inside the VM

Valeria Cardellini - SDCC 2025/26 20

System-level virtualization: taxonomy

« System-level virtualization classification
1. Where VMM is deployed
» System VMM
 Hosted VMM

2. How to virtualize instruction execution
* Full virtualization
— Software-assisted
— Hardware-assisted
* Paravirtualization

Valeria Cardellini - SDCC 2025/26 21

System-level virtualization: taxonomy

Virtualization

|
l l

OS level Hardware level
Where | | How
' | J ' |
Type-1 Type-2 Para-virtualization Full virtualization
Monolithic Micro-kernel Hw-assisted Sw-assisted

Comparison of platform virtualization software
https://en.wikipedia.org/wiki/Comparison of platform virtualization software

Valeria Cardellini - SDCC 2025/26 22

System vs hosted VMM

VMM deployment level in system architecture
— Directly on hardware: system VMM (type-1 / native /

bare-metal)
— On top of host OS: hosted VMM (type-2)
- () 4)
Application Application (Application] (Application]
8 " Guest “Guest Guest OS-1 Guest OS-n
> oS- 0s-n VM-1 VM-n J
VM-1 VM-n Virtual Machine Monitor I
— _ J _ J
— s
8 Virtual Machine MonitorI Host OS I -
< <
Hardware I Hardware I
~ —

System VMM Hosted VMM

Valeria Cardellini - SDCC 2025/26 23

1senb

Jsoy

System vs hosted VMM

« System VMM (type-1): runs directly on hw and provides
virtualization features integrated into a minimal OS

— Can use either microkernel (only basic functions, no device
drivers) or monolithic (integrated drivers) architecture design

— Examples: Xen, VMware ESXi, Xen, Microsoft Hyper-V, KVM,
Nutanix AHV
 Hosted VMM (type-2): runs on top of host OS and uses
host OS drivers and system calls

— Interacts with the host OS via the ABI and presents virtualized
hw (emulated or hardware-assisted) to the guest OSes

v Leverages host OS for device management and low-level
services (e.g., resource scheduling)

v No guest OS modifications required

X Lower performance with respect to system VMM due to extra
sw layer

— Examples: VirtualBox, Parallels Desktop
Valeria Cardellini - SDCC 2025/26 24

Privileged instructions

 Instructions that can only be executed by OS kernel
(or hypervisor)

» They access or control critical system resources such
as.:
— CPU modes (switching between user and kernel)
— Memory management (page tables, MMU)
— 1/O devices (disk, network, peripherals)
— Interrupt handling

» Purpose: prevent user programs from directly
manipulating hw or compromise system stability
« Examples:
— Changing the CPU mode (user — kernel)
— Modifying control registers (x86 CR3 for page tables)
— Direct access to I/O ports

Valeria Cardellini - SDCC 2025/26 25

Full virtualization vs paravirtualization

How to manage execution of privileged instructions in VMs
— Full virtualization
— Paravirtualization

* Full virtualization

— VMM exposes to each VM simulated hw interfaces identical to
the underlying physical machine

— VMM intercepts attempts to perform privileged instructions
(e.g., I/O, TLB update) and emulates their behavior

— Examples: KVM, VMware ESXi, Microsoft Hyper-V
« Paravirtualization

— VMM exposes to each VM simulated hw interfaces that are
similar but not identical to the underlying physical machine

— Hardware is not fully emulated; a minimal software layer (Virtual
Hardware API) manages VMs and ensures isolation

— Examples: Xen, Oracle VM, PikeOS

Valeria Cardellini - SDCC 2025/26

26

Full virtualization vs paravirtualization

 Full virtualization: pros
v/ Runs unmodified guest OSs

v Strong isolation between VMs: improves security
and allows emulating different architectures
independently

 Full virtualization: cons
X VMM is more complex
* It must intercept and emulates all privileged instructions

X Requires processor support to make virtualization
more efficient: why?

Valeria Cardellini - SDCC 2025/26 27

Issues to address for system-level virtualization

* Non-virtualized processor x86 architecture w/o virtualization
architectures use at least 2 Ring 3
protection rings: supervisor and user Ring 2

— Ring 0: most privileged (unrestricted . Efffﬁnon
access to system resources) wing 1 of User
— Ring 3: least privileged Ring 0 [GEI. | Requests

* With virtualization System Hardware

— VMM operates in supervisor mode (ring 0)

— Guest OS and applications run in less privileged rings (guest
OS inring 1 or 3)

— Ring deprivileging problem: guest OS executes in a ring that
is not its own — cannot execute privileged instructions directly

— Ring compression problem: since both guest OS and
applications run at the same level, guest OS must enforce

protection
Valeria Cardellini - SDCC 2025/26 28

Addressing ring deprivileging

 Trap-and-emulate

— When the guest OS executes a privileged instruction (e.g.,
LIDT), an exception (trap) is raised and control is transferred
to the VMM; the VMM performs a safety check on the
requested operation, executes (“emulates”) its behavior, and
returns the result to guest OS

— Non-privileged instructions, instead, run by guest OS do not
trap and are executed directly

user processes

privileged instruction

q user mode
operating
system

o

=]
kernel mode
emulate action — update VCPU

VMM

it desy ——

VMM

* Issue: on some architectures, certain instructions do

not trap, requiring more complex solutions
Valeria Cardellini - SDCC 2025/26 29

Popek and Goldberg virtualization requirements

« Popek and Goldberg requirements (1974) define when an
architecture can support efficient virtualization

 Conditions:

Equivalence 1. A program running under the hypervisor should exhibit
a behavior essentially identical to that demonstrated
when running on an equivalent machine directly.
Resou:cel 2. The hypervisor should be in complete control of the
contro virtualized resources.
o 3. A statistically significant fraction of machine instructions
Efficiency must be executed without the intervention of the hypervisor.

Formal requirements for virtualizable third generation architectures, 1974
https://dl.acm.org/doi/pdf/10.1145/361011.361073

Valeria Cardellini - SDCC 2025/26 30

Instruction types and virtualization theorem

* |SA instruction classification

— Privileged instructions: execute only in supervisor mode; trap in
user mode

— Sensitive instructions: affect or reveal CPU/system state

+ Control-sensitive: modify CPU configuration/state (e.g.,
interrupt/paging tables)
» Behavior-sensitive: reveal CPU state

— Innocuous instructions: neither sensitive nor privileged

* Popek and Goldberg theorem: a VMM can be
constructed if all sensitive instructions are privileged

Tvsiruerioms Twstrnccions

fRwviLGeen

TS iTwviE

VIRTWAUZAGLS NOT VIvEIWALZABLE

https://blog.acolyer.org/2016/02/19/formal-requirements-for-virtualizable-third-generation-architectures
Valeria Cardellini - SDCC 2025/26 31

Problem and implications

* Problem: some architectures have sensitive non-
privileged instructions, e.g.:
— x86: many sensitive non-privileged, such as:
e PUSHF, which modified the flags register

+ access or modification of CR3 register, used for memory paging
and virtual memory management

— MIPS: mostly virtualizable, but $ke, $k1 registers are
accessible in user mode

— ARM: mostly virtualizable, but some instructions undefined in
user mode

* Must virtualize:
— Privileged instructions — trap to VMM and emulate

— Sensitive non-privileged instructions — must also be be
virtualized

Valeria Cardellini - SDCC 2025/26

Solutions for virtualizing sensitive instructions

32

» Trap-and-emulate

— Privileged instructions trap — VMM emulates instruction
behavior

— Non-privileged instructions run directly on CPU

— Limitation: some sensitive non-privileged instructions do not trap
on certain CPUs — which solutions?

1. Hardware-assisted virtualization (hw level)

— VMM relies on hardware to intercept privileged and sensitive
instructions automatically

— All sensitive instructions trap automatically to VMM
2. Fast binary translation (sw level)

— VMM rewrites sensitive instructions on the fly
3. Paravirtualization

— Modify guest OS to avoid or neutralize sensitive non-privileged
instructions

Valeria Cardellini - SDCC 2025/26

33

Valeria Cardellini - SDCC 2025/26

Hardware-assisted CPU virtualization

 |dea: introduce a new privilege level for the hypervisor
— Hypervisor privilege > OS/kernel privilege
— All sensitive instruction trap to hypervisor level

* Provides two new CPU operating modes
- Root mode for the VMM
- Non-root mode for guest OSs

« Each mode supports all 4 x86 protection rings

Valeria Cardellini - SDCC 2025/26 34

Hardware-assisted CPU virtualization

* VMM runs in Root-Ring 0, while guest OSs run in guest
mode in Non-Root Ring 0 at their original privilege
levels

- Eliminates ring deprivileging and ring compression issues

* When a guest OS executes a privileged or sensitive
instruction in Non-Root mode, the CPU automatically
stops guest execution and 86 architecture with with full

switches control to the \ggl&aul_zljjfl?zgggnhardware-assisted

VMM, which runs in Root , — ,

mode (VM-exit) e B Exciton
— VMM can control guest Mode 0 Requests

. Privilege Ring 1
execution through VM control Leveis

i i OSR t
data structures in memory Ring 0 [[CIRERERR, [S Reauests
H Root Mode without Binary
° Implemented N mOdem Privilege VMM Translation or
Levels Paravirtualization

CPUs (e.g., Intel VT-x and

. Host Computer
AMD-V, since 2005) 35

Valeria Cardellini - SDCC 2025/26

Fast binary translation

» Software-based and the oldest solution
* VMM scans code before execution

* Replaces blocks containing privileged instructions with
functionally equivalent blocks that notify the VMM
when executed

- Translated blocks run
directly on hw and are

x86 architecture with full virtualization
and fast binary translation

Rine 3 [Direct
cached for future reuse e execution
. . : of user
X Higher complexity and lower Ring2 [) requests
performance compared to Ring 1
hw-assisted virtualization . Binary
ing 0 translation
of OS
Host computer Tequests
system hardware
Valeria Cardellini - SDCC 2025/26 36

Paravirtualization

* Non-transparent virtualization

- Guest OS kernel must be modified to use the virtual API
exposed by the VMM

» Non-virtualizable instructions are replaced with
hypercalls that communicate directly with the hypervisor
» Hypercall: software trap from the guest OS to the

hyperwsor x86 architecture with paravirtualization
hypercall : hypervisor = syscall : kernel gjyg3 Direct

execution
* Hypercall execution Rng2 (]

of user
requests
Para-virtualized
guest OS

- Control jumps from guest OS Ring1

. ‘Hypercalls’ to the
to hypervisor

virtualization
layer replace
‘nonvirtualizable
OS instructions

Ring 0

Host computer
system hardware

- Hypervisor performs the
requested operation (

- After handling, control returns
to guest OS kernel, which then resumes the application 27

Paravirtualization

* Pros:

v/ Easier and more practical to implement than full
virtualization on non-virtualizable hardware

v/ Lower runtime overhead compared to fast binary translation

v Does not require virtualization extensions (unlike hw-
assisted virtualization)

« Cons:

X Requires source code access to modify the guest OS and
make it paravirtualized

X Maintenance overhead: each paravirtualized OS version
must be maintained separately

» Paravirtualized OS cannot run directly on hardware

Valeria Cardellini - SDCC 2025/26

Summing up different approaches

Paravirtualization Fast Binary Translation HW-Assisted
Ring3 | UserApps _J ~ User Apps J \\ User Apps
i | | | @ |
Ring2 | J _ | g.
Paravirtualized —
Ring 1 [Guest OS I §, ‘ Guest 05] | < |
@ —
i
= >
Ring 0 - & VMM 2 [Guest OS }l
.
S }
S VMM
. HostHW | . HostHW | | HostHW |

Valeria Cardellini - SDCC 2025/26

INWWA 01 deu] 1sanbay SO

VMM reference architecture

 Main modules

— Dispatcher. VMM entry point that reroutes privileged
instructions issued by VMs to the appropriate module

— Scheduler: invoked by the dispatcher when a VM requests

system resources; decides resource allocation among multiple
VMs

— Interpreter. executes the appropriate routine for each privileged
instruction

Virtual Machine Instance

A F——
- \“
1 R
Dispatcher Interpreter
Routines

Scheduler

Virtual Machine Monitor

Valeria Cardellini - SDCC 2025/26

VMM CPU scheduler

40

» Guest OS sees virtual CPUs
» Physical CPUs on host machine are multiplexed

among VMs
* How to schedule virtual CPUs on physical CPUs?
VMM
Guest 0S Guest 0S Guest 0S
[Process] [Process] [Process]
process process process
scheduler scheduler scheduler

§NE & O

vt | VMM Scheduler
cPU

Virtual Machine Monitor

Valeria Cardellini - SDCC 2025/26

41

Case study: Xen 8e%ea

 What Xen is htips://www.xenproject.org
— Open-source type-1 (system VMM) hypervisor with microkernel
design
— Originated at Cambridge University in the late 1990s
— Foundation for XenServer, Oracle VM, and used in cloud and
embedded systems (e.g., AWS, Alibaba, ARM)

— Supports paravirtualization (PV), hardware-assisted
virtualization (HVM) and PV-HVM hybrids

» Key ideas for paravirtualization (no hw support yet)
— Guest OS interacts with the hypervisor via a hypercall API
— Paravirtualization replaces:
 Privileged instructions — hypercalls
+ Page table updates
* 1/O device access
* Interrupt & timer operations

— Requires PV-enabled OSs and drivers (e.g., Linux)
Valeria Cardellini - SDCC 2025/26

Xen: architecture

VM, (DomU,) VM, (DomU,) VM, (DomU,)

Applications Applications Applications

Guest OS Guest OS Guest OS

7 Dom0 Kernel

Native Driver

N Cole K Host

0] Memory

https://wiki.xenproject.org/wiki/Xen Project Software Overview

Valeria Cardellini - SDCC 2025/26

Xen: architecture

* Thin micro-hypervisor
— 300K LoC on x86, 65K on ARM

* DomO (privileged control domain)
— Owns device drivers and multiplexes 1/O
— Runs management services

» XenStore (XS): shared key—value config store

» Toolstack (TS): VM lifecycle management (create, shutdown,
pause, migrate) and configuration

» Device Emulation (DE)
— Mandatory, started on boot

* DomU (unprivileged guest domains / VMs)
— Run PV or HVM guest OSs

» Hypervisor manages: vCPU scheduling, memory,
interrupts

Valeria Cardellini - SDCC 2025/26

Xen and paravirtualization

44

* In many modern deployments, Xen no longer uses
paravirtualization to virtualize the CPU
— HVM guests rely on HVM
— PV guests are still used when hardware lacks virtualization
extensions
* However, paravirtualization remains important for /O

— Rather than inefficiently emulate hardware |/O devices, Xen
defines virtual-only devices and provides drives for them

« Summarizing Xen impact
— First to popularize paravirtualization
— Influenced modern cloud hypervisors (AWS, Google)

— Clear example of a micro-hypervisor

* Reduces attack surface, increases stability and security, and
keeps the hypervisor small and lightweight

— Still used in security-sensitive and embedded environments
Valeria Cardellini - SDCC 2025/26

45

Xen: Credit scheduler

* VMM scheduler selects which virtual CPUs (vCPUs) of
all VMs run on the physical CPUs (pCPUs)

- Adds a scheduling layer below the guest OS scheduler
» Default Xen scheduler: Credit scheduler

 Goals:

— Proportional fair share: each domain receives a fair share of
pCPU proportional to its weight

— Work-conserving: no pCPU stays idle if runnable vCPUs exist
— Low latency: fast switching among runnable vCPUs

* Key parameters:
— Weight: relative share of CPU time (default = 256)

— Cap: optional limit on maximum CPU share
* cap = 0 — vCPU can use extra CPU time (work-conserving)
* cap > 0 — upper bound (% of one pCPU)

Valeria Cardellini - SDCC 2025/26 46

Xen: Credit scheduler

« Each vCPU receives credits proportional to its weight

* Running consumes credits — vCPU becomes:
— UNDER (credits = 0)
— OVER (credits < 0)
« Each pCPU keeps a runqueue of vCPUs
— UNDER vCPUs first, then OVER
— OVER vCPUs run only if no UNDER exist
— Round-robin within each group
— Time slice: 30 ms

* Placement
— VCPU is inserted into its home pCPU runqueue when runnable
— May be migrated to another pCPU by load balancing

» Load balancing

— Before going idle, a pCPU checks others for runnable UNDER

vCPUs; ensures no pCPU is idle while work exists
Valeria Cardellini - SDCC 2025/26 47

Memory virtualization

* Non-virtualized environment
— Single-level memory mapping: virtual address (VA) — physical
address (PA) via page tables

— MMU and TLB accelerate translations

* Virtualized environment

— Multiple VMs share machine memory — VMM must partition it

— Requires two-level mapping: guest virtual address (GVA) —
guest physical address (GPA) — host physical address (HPA)

* Terminology

— Guest virtual memory: visible to apps
— Guest physical memory: visible to guest OS
— Host physical memory: actual machine memory visible to VMM

Valeria Cardellini - SDCC 2025/26

Two-level memory mapping

VM1 VM2
Processl Process2 Processl Process2
Virtual VA
memory
Physical PA
/r memory
X‘ Machine MA

« GVA —» GPA — HPA
 GPA# HPA: why?

memory

- Because each guest OS assumes it owns contiguous, zero-
based physical memory

- VMM must preserve this illusion

Valeria Cardellini - SDCC 2025/26

48

J

49

Shadow page tables (SPT)

» Goal: avoid performing two translations on every access
by giving hardware a direct GVA — HPA mapping

* Key mechanisms: Virtual VA

— VMM maintains shadow page tables (SPTs) S
which directly maps GVA to HPA and uses them

to accelerate P‘gzﬁrl;f\

— Guest OS builds its own page tables normally, but /
MMU uses SPTs created by the VMM Mﬁgﬁng

— VMM keeps SPTs consistent with guest page
tables

— Guest page tables are mapped read-only

— Any guest update — trap to VMM, which updates both guest
PT and SPT (“memory tracing”)

Valeria Cardellini - SDCC 2025/26 50

SPT drawbacks

» High overhead: frequent
traps and VM exits

— Every guest PT write — VM Page Tables
exit — high overhead Induced

— A VM exit is similar to a very i
expensive context switch
» Large memory footprint for
maintaining SPTs
« Complex software logic
— VMM intercepts paging

operations and constructs copy
of PTs

VMM

Valeria Cardellini - SDCC 2025/26 51

Hw support for memory virtualization

* More efficient hardware solution: Second Level
Address Translation (SLAT)

« Hardware performs the second translation (GPA —
HPA)

* Removes need for SPT maintenance
« Dramatically reduces traps and VM exits

* Provides significant speedup (~50%) for memory-
intensive workloads

 Examples: Intel EPT, AMD RV

Valeria Cardellini - SDCC 2025/26

52

