
Corso di Sistemi Distribuiti e Cloud Computing
A.A. 2025/26

Valeria Cardellini

Laurea Magistrale in Ingegneria Informatica

System-Level Virtualization

Macroarea di Ingegneria
Dipartimento di Ingegneria Civile e Ingegneria Informatica

Valeria Cardellini - SDCC 2025/26

Virtualization
• Provides a high-level abstraction that hided the details

of the underlying implementation
– Hardware and software resources

• Offers a logical view of computing resources that
differs from the physical ones

• How? Decouples user-perceived architecture and
behavior of hw and sw resources from their physical
implementation

• Goals:
– Portability, efficiency, reliability, security, …

1

Virtualization of resources
• System virtualization

– Virtualizes hw and sw resources
– Virtual machines, containers, unikernels, …

• Storage virtualization
– Abstracts storage resources
– Storage Area Network (SAN), virtual disks, …

• Network virtualization
– Virtual LAN (VLAN), Virtual Private Network (VPN), …

• Data center virtualization
– Software-Defined Data Center (SDDC)

Valeria Cardellini - SDCC 2025/26
2

Our
focus

Major components of virtualization

• Guest:
– The virtualized

environment
– Interacts with the

virtualization layer, not
directly with host

• Host:
– The physical system
– Provides the original hw

and sw resources

• Virtualization layer

Valeria Cardellini - SDCC 2025/26 3

– Responsible for creating the virtual environment
– Manages resource allocation, isolation, and interaction

between guest and host

Taxonomy of virtualization techniques

• Execution environment virtualization: the oldest,
most popular and most developed area ⇒ our focus

Valeria Cardellini - SDCC 2025/26 4

Virtualization

Execution
Environment

Infrastructure

Storage

Network

Data center

Full Virtualization

Para-Virtualization

Containers

MicroVMs

Unikernels

WebAssembly

Hybrid Virtualization

Nested Virtualization

System-level

OS-level

Lightweight

Valeria Cardellini - SDCC 2025/26

Virtual Machine
• Virtual Machine (VM): a complete compute

environment with its own isolated processing
capabilities, memory, and communication channels

• Represents hw/sw resources of a physical machine
differently from their physical reality
– E.g., VM hw resources (CPU, network card, ...) can differ

from physical machine’s hw resources
– E.g., VM sw resources (OS, applications) can differ from

physical machine’s sw resources

• A single physical machine can host multiple
independent VMs

5

Virtualization layer

VM1 VM2 VM3

Hardware

Valeria Cardellini - SDCC 2025/26

Virtualization: a brief history
• An “old” idea in computer science

– Originates in the 1960s in centralized computing
– Goals: let legacy software run on expensive mainframes

and transparently share scarce physical resources
– Example: IBM System/360-67 mainframe

• Shift in the 1980s with the rise of PCs
– OS multitasking to transparently share computing

resources
– Virtualization became less relevant for a while

6

Valeria Cardellini - SDCC 2025/26

Virtualization: a brief history

• Late 1990s: virtualization interest returns
– Needed to simplify programming on special-purpose

hardware
– VMware founded in 1998

• Why the comeback?
– Hardware evolves faster than software → higher

management costs
– Poor application portability
– Significant under-utilization of hardware resources
– Need to share resources efficiently and reduce infrastructure

costs

• Today, virtualization is a core technology in cloud
computing

7

Virtualization: benefits
• Improves portability, compatibility, interoperability,

and migration
– Hardware independence: create once, run everywhere
– Legacy support: run old OSes/apps on modern hardware
– Support heterogeneous environments (different OSes on

same host)

Valeria Cardellini - SDCC 2025/26 8

Virtualization: benefits
• Enables server consolidation and efficiency

– VMs share one physical machine (multiplexing)
– Reduces number of servers → lower cost, energy, and space

usage
– Better utilization of otherwise idle hardware

• Simplifies management
– Easier maintenance and upgrades
– Rapid provisioning: quickly create, clone, or destroy VMs
– Snapshots and rollback simplify testing and recovery
– Per-VM monitoring and resource accounting (important for

cloud billing)
Valeria Cardellini - SDCC 2025/26 9

Virtualization: benefits
• Improves reliability and security

– Strong isolation: faults or attacks in one VM do not affect
others

– Malware, bugs, and crashes remain contained within the VM
– Micro-segmentation and secure virtual networks
– Disaster recovery: VM images can be replicated and

restored elsewhere

• Provides performance isolation
– Controlled scheduling of shared resources ensures

predictable performance
– Reduces noisy-neighbor effects

Valeria Cardellini - SDCC 2025/26 10

Virtualization: benefits
• Improves load balancing and high availability

– Improves load distribution across physical hosts
– Live migration enables moving VMs seamlessly across

physical hosts and reduces downtime
– Enhances availability in cloud and data-center environments

• Better development and testing
– Safe sandbox environments
– Easy creation of testbeds and multi-VM setups
– Useful for CI/CD pipelines and experimentation

Valeria Cardellini - SDCC 2025/26 11

Valeria Cardellini - SDCC 2025/26

Reasons to use virtualization

• Personal and educational
– Learn and experiment with multiple OSes
– Develop, test, and debug applications in isolated

environments
– Simulate distributed systems on a single machine

• Enterprise and professional
– Support DevOps workflows and continuous integration
– Encapsulate entire systems in VM images for replication,

migration, or redeployment
– Ensure business continuity and disaster recovery

readiness
– Run legacy applications or OSes on modern platforms

12

!"#AB"#&

'(&#")*HI-.L0)&1

O.P

4*5#"#*&0

PSO

P7O

!"#A%&'()**#

P((8*9")*:H0

!"#A%&'+!I -#%.'+!I

!"

!#

!A

Interfaces in computer system

Valeria Cardellini - SDCC 2025/26 13

Applications:
• use library functions (A1)
• make system calls (A2)
• execute machine instructions (A3)

Va
le

ria
 C

ar
de

llin
i -

SD
C

C
 2

02
5/

26
Interfaces in computer system and virtualization
Levels where virtualization can be realized
• Key idea: virtualization is strictly related to computer

system interfaces → mimics their behavior
– Hw/sw interface (system ISA): manages system resources,

privileged instructions executed only by OS [interface 3]
– Hw/sw interface (user-level ISA): focused on computation,

unprivileged instructions executed by any program [interface 4]
– System calls: controlled access to OS

services from user applications
[interface 2]

– ABI (Application Binary Interface):
ensures binary compatibility [interfaces
2 + 4]

– Library calls (API): high-level interface
for application software to use system
services [interface 1]

Smith and Nair, The architecture of virtual machines, IEEE Computers, 2005 14

Valeria Cardellini - SDCC 2025/26

Implementation levels of virtualization

• Virtualization can be implemented at various
operational levels
– Primary involved interface is indicated within []

• ISA level [interface 4]
• Hardware level (aka system VMs) [interface 3]
• Operating system level (aka containers)

[interface 2]
• Library level [interface 1]
• User application level (aka process VMs)

[interfaces 4 + 1]

15

Our main
focus

Valeria Cardellini - SDCC 2025/26

Implementation levels of virtualization

• ISA level
– Goal: emulate a given ISA (unprivileged

instructions) on the host machine for portability
– Methods

• Code interpretation: interpret each source instruction to
host ISA instructions

• Dynamic binary translation: convert code in blocks for
faster execution

– Example: run MIPS binary code on x86 host

16

Va
le

ria
 C

ar
de

llin
i -

SD
C

C
 2

02
5/

26

Implementation levels of virtualization
• Hardware level (aka system VMs)

– Goal: virtualize host resources (CPUs, memory,
I/O) via Virtual Machine Monitor (VMM), aka
hypervisor

• VMM manages hw resources and shares them among
multiple VMs

• VMM intercepts privileged instructions and enforces
isolation

– Provides complete environment where multiple
VMs coexist

17

Multiple instances of combinations
<applications, OS>

– Examples: VMware, KVM,
Xen, Parallels, VirtualBox

– Examples: microVMs
• Lightweight VMs with minimal

OS (e.g., Firecracker, Kata
Containers)

Valeria Cardellini - SDCC 2025/26

Implementation levels of virtualization
• Operating system level (aka containers)

– Goal: create multiple isolated containers sharing the
OS kernel

– Containers rely on OS kernel to provide system calls
– Examples: Docker, LXC, Podman

• Library level
– Goal: run apps on host OS that does not natively

support them
• Translate high-level API calls from the application and

translate them to host OS API rather than emulating full OS

– Examples:
• Wine: Windows apps on top of Linux https://www.winehq.org
• Cygwin: “Get that Linux feeling – on Windows”

https://cygwin.com

18

Valeria Cardellini - SDCC 2025/26

Implementation levels of virtualization
• User application level (aka process VMs)

– Virtual platform for a single process
– Provides virtual ABI/API to user app
– Executes portable intermediate code (e.g., Java

bytecode)
– Examples: JVM, .NET CLR, WebAssembly

runtimes Multiple instances of combinations
<application, runtime system>

19

System-level virtualization: terminology

• Let’s focus on system-level virtualization via
VMM/hypervisor

• Host: base platform on top of which VMs run;
consisting of:
– Physical machine
– Optional host OS
– VMM/hypervisor

• Guest: everything inside the VM
– Guest OS
– Applications executed inside the VM

Valeria Cardellini - SDCC 2025/26 20

System-level virtualization: taxonomy

• System-level virtualization classification
1. Where VMM is deployed

• System VMM
• Hosted VMM

2. How to virtualize instruction execution
• Full virtualization

– Software-assisted
– Hardware-assisted

• Paravirtualization

Valeria Cardellini - SDCC 2025/26 21

System-level virtualization: taxonomy

Valeria Cardellini - SDCC 2025/26 22

Virtualization

OS level Hardware level

Type-2 Full virtualizationPara-virtualizationType-1

Micro-kernelMonolithic Sw-assistedHw-assisted

HowWhere

Comparison of platform virtualization software
https://en.wikipedia.org/wiki/Comparison_of_platform_virtualization_software

Valeria Cardellini - SDCC 2025/26

System vs hosted VMM

System VMM Hosted VMM

ho
st

guest host

VMM deployment level in system architecture
– Directly on hardware: system VMM (type-1 / native /

bare-metal)
– On top of host OS: hosted VMM (type-2)

gu
es

t

23

System vs hosted VMM
• System VMM (type-1): runs directly on hw and provides

virtualization features integrated into a minimal OS
– Can use either microkernel (only basic functions, no device

drivers) or monolithic (integrated drivers) architecture design
– Examples: Xen, VMware ESXi, Xen, Microsoft Hyper-V, KVM,

Nutanix AHV

• Hosted VMM (type-2): runs on top of host OS and uses
host OS drivers and system calls
– Interacts with the host OS via the ABI and presents virtualized

hw (emulated or hardware-assisted) to the guest OSes
✓ Leverages host OS for device management and low-level

services (e.g., resource scheduling)
✓ No guest OS modifications required
✗ Lower performance with respect to system VMM due to extra

sw layer
– Examples: VirtualBox, Parallels Desktop

Valeria Cardellini - SDCC 2025/26 24

Privileged instructions
• Instructions that can only be executed by OS kernel

(or hypervisor)
• They access or control critical system resources such

as:
– CPU modes (switching between user and kernel)
– Memory management (page tables, MMU)
– I/O devices (disk, network, peripherals)
– Interrupt handling

• Purpose: prevent user programs from directly
manipulating hw or compromise system stability

• Examples:
– Changing the CPU mode (user → kernel)
– Modifying control registers (x86 CR3 for page tables)
– Direct access to I/O ports

Valeria Cardellini - SDCC 2025/26 25

Valeria Cardellini - SDCC 2025/26

Full virtualization vs paravirtualization
How to manage execution of privileged instructions in VMs

– Full virtualization
– Paravirtualization

• Full virtualization
– VMM exposes to each VM simulated hw interfaces identical to

the underlying physical machine
– VMM intercepts attempts to perform privileged instructions

(e.g., I/O, TLB update) and emulates their behavior
– Examples: KVM, VMware ESXi, Microsoft Hyper-V

• Paravirtualization
– VMM exposes to each VM simulated hw interfaces that are

similar but not identical to the underlying physical machine
– Hardware is not fully emulated; a minimal software layer (Virtual

Hardware API) manages VMs and ensures isolation
– Examples: Xen, Oracle VM, PikeOS

26

Full virtualization vs paravirtualization

• Full virtualization: pros
✓Runs unmodified guest OSs
✓Strong isolation between VMs: improves security

and allows emulating different architectures
independently

• Full virtualization: cons
✗VMM is more complex

• It must intercept and emulates all privileged instructions

✗Requires processor support to make virtualization
more efficient: why?

Valeria Cardellini - SDCC 2025/26 27

x86 architecture w/o virtualization

Issues to address for system-level virtualization
• Non-virtualized processor

architectures use at least 2
protection rings: supervisor and user
– Ring 0: most privileged (unrestricted

access to system resources)
– Ring 3: least privileged

Valeria Cardellini - SDCC 2025/26 28

• With virtualization
– VMM operates in supervisor mode (ring 0)
– Guest OS and applications run in less privileged rings (guest

OS in ring 1 or 3)
– Ring deprivileging problem: guest OS executes in a ring that

is not its own → cannot execute privileged instructions directly
– Ring compression problem: since both guest OS and

applications run at the same level, guest OS must enforce
protection

Addressing ring deprivileging
• Trap-and-emulate

– When the guest OS executes a privileged instruction (e.g.,
LIDT), an exception (trap) is raised and control is transferred
to the VMM; the VMM performs a safety check on the
requested operation, executes (“emulates”) its behavior, and
returns the result to guest OS

– Non-privileged instructions, instead, run by guest OS do not
trap and are executed directly

• Issue: on some architectures, certain instructions do
not trap, requiring more complex solutions

Valeria Cardellini - SDCC 2025/26 29

Popek and Goldberg virtualization requirements

• Popek and Goldberg requirements (1974) define when an
architecture can support efficient virtualization

• Conditions:

Valeria Cardellini - SDCC 2025/26 30

Equivalence

Resource
control

Efficiency

Formal requirements for virtualizable third generation architectures, 1974
https://dl.acm.org/doi/pdf/10.1145/361011.361073

Instruction types and virtualization theorem
• ISA instruction classification

– Privileged instructions: execute only in supervisor mode; trap in
user mode

– Sensitive instructions: affect or reveal CPU/system state
• Control-sensitive: modify CPU configuration/state (e.g.,

interrupt/paging tables)
• Behavior-sensitive: reveal CPU state

– Innocuous instructions: neither sensitive nor privileged

• Popek and Goldberg theorem: a VMM can be
constructed if all sensitive instructions are privileged

Valeria Cardellini - SDCC 2025/26 31

https://blog.acolyer.org/2016/02/19/formal-requirements-for-virtualizable-third-generation-architectures

Problem and implications

• Problem: some architectures have sensitive non-
privileged instructions, e.g.:
– x86: many sensitive non-privileged, such as:

• PUSHF, which modified the flags register
• access or modification of CR3 register, used for memory paging

and virtual memory management
– MIPS: mostly virtualizable, but $k0, $k1 registers are

accessible in user mode
– ARM: mostly virtualizable, but some instructions undefined in

user mode

• Must virtualize:
– Privileged instructions → trap to VMM and emulate
– Sensitive non-privileged instructions → must also be be

virtualized

Valeria Cardellini - SDCC 2025/26 32

Solutions for virtualizing sensitive instructions
• Trap-and-emulate

– Privileged instructions trap → VMM emulates instruction
behavior

– Non-privileged instructions run directly on CPU
– Limitation: some sensitive non-privileged instructions do not trap

on certain CPUs → which solutions?

1. Hardware-assisted virtualization (hw level)
– VMM relies on hardware to intercept privileged and sensitive

instructions automatically
– All sensitive instructions trap automatically to VMM

2. Fast binary translation (sw level)
– VMM rewrites sensitive instructions on the fly

3. Paravirtualization
– Modify guest OS to avoid or neutralize sensitive non-privileged

instructions
Valeria Cardellini - SDCC 2025/26 33

Hardware-assisted CPU virtualization

• Idea: introduce a new privilege level for the hypervisor
– Hypervisor privilege > OS/kernel privilege
– All sensitive instruction trap to hypervisor level

• Provides two new CPU operating modes
– Root mode for the VMM
– Non-root mode for guest OSs

• Each mode supports all 4 x86 protection rings

Valeria Cardellini - SDCC 2025/26 34

Hardware-assisted CPU virtualization
• VMM runs in Root-Ring 0, while guest OSs run in guest

mode in Non-Root Ring 0 at their original privilege
levels
– Eliminates ring deprivileging and ring compression issues

• When a guest OS executes a privileged or sensitive
instruction in Non-Root mode, the CPU automatically

Va
le

ria
 C

ar
de

llin
i -

SD
C

C
 2

02
5/

26

35

x86 architecture with with full
virtualization and hardware-assisted
CPU virtualization

stops guest execution and
switches control to the
VMM, which runs in Root
mode (VM-exit)

– VMM can control guest
execution through VM control
data structures in memory

• Implemented in modern
CPUs (e.g., Intel VT-x and
AMD-V, since 2005)

Fast binary translation

• Software-based and the oldest solution
• VMM scans code before execution
• Replaces blocks containing privileged instructions with

functionally equivalent blocks that notify the VMM
when executed

Valeria Cardellini - SDCC 2025/26

x86 architecture with full virtualization
and fast binary translation

- Translated blocks run
directly on hw and are
cached for future reuse

36

✗ Higher complexity and lower
performance compared to
hw-assisted virtualization

Paravirtualization

Va
le

ria
 C

ar
de

llin
i -

SD
C

C
 2

02
5/

26

• Non-transparent virtualization
- Guest OS kernel must be modified to use the virtual API

exposed by the VMM

• Non-virtualizable instructions are replaced with
hypercalls that communicate directly with the hypervisor

• Hypercall: software trap from the guest OS to the
hypervisor x86 architecture with paravirtualization

37

hypercall : hypervisor = syscall : kernel

• Hypercall execution
− Control jumps from guest OS

to hypervisor

− Hypervisor performs the
requested operation

− After handling, control returns
to guest OS kernel, which then resumes the application

Paravirtualization

Valeria Cardellini - SDCC 2025/26

• Pros:
✓ Easier and more practical to implement than full

virtualization on non-virtualizable hardware
✓ Lower runtime overhead compared to fast binary translation
✓ Does not require virtualization extensions (unlike hw-

assisted virtualization)

• Cons:
✗ Requires source code access to modify the guest OS and

make it paravirtualized
✗ Maintenance overhead: each paravirtualized OS version

must be maintained separately
• Paravirtualized OS cannot run directly on hardware

38

Summing up different approaches

Valeria Cardellini - SDCC 2025/26 39

Fast Binary Translation

VMM reference architecture
• Main modules

– Dispatcher: VMM entry point that reroutes privileged
instructions issued by VMs to the appropriate module

– Scheduler: invoked by the dispatcher when a VM requests
system resources; decides resource allocation among multiple
VMs

– Interpreter: executes the appropriate routine for each privileged
instruction

40Valeria Cardellini - SDCC 2025/26

Virtual Machine Monitor

Scheduler

VMM CPU scheduler

Valeria Cardellini - SDCC 2025/26 41

• Guest OS sees virtual CPUs
• Physical CPUs on host machine are multiplexed

among VMs
• How to schedule virtual CPUs on physical CPUs?

Case study: Xen
• What Xen is https://www.xenproject.org

– Open-source type-1 (system VMM) hypervisor with microkernel
design

– Originated at Cambridge University in the late 1990s
– Foundation for XenServer, Oracle VM, and used in cloud and

embedded systems (e.g., AWS, Alibaba, ARM)
– Supports paravirtualization (PV), hardware-assisted

virtualization (HVM) and PV-HVM hybrids

• Key ideas for paravirtualization (no hw support yet)
– Guest OS interacts with the hypervisor via a hypercall API
– Paravirtualization replaces:

• Privileged instructions → hypercalls
• Page table updates
• I/O device access
• Interrupt & timer operations

– Requires PV-enabled OSs and drivers (e.g., Linux)
42Valeria Cardellini - SDCC 2025/26

Xen: architecture

https://wiki.xenproject.org/wiki/Xen_Project_Software_Overview

Valeria Cardellini - SDCC 2025/26 43

Valeria Cardellini - SDCC 2025/26

Xen: architecture
• Thin micro-hypervisor

– 300K LoC on x86, 65K on ARM

• Dom0 (privileged control domain)
– Owns device drivers and multiplexes I/O
– Runs management services

• XenStore (XS): shared key–value config store
• Toolstack (TS): VM lifecycle management (create, shutdown,

pause, migrate) and configuration
• Device Emulation (DE)

– Mandatory, started on boot

• DomU (unprivileged guest domains / VMs)
– Run PV or HVM guest OSs

• Hypervisor manages: vCPU scheduling, memory,
interrupts

44

Valeria Cardellini - SDCC 2025/26

Xen and paravirtualization
• In many modern deployments, Xen no longer uses

paravirtualization to virtualize the CPU
– HVM guests rely on HVM
– PV guests are still used when hardware lacks virtualization

extensions

• However, paravirtualization remains important for I/O
– Rather than inefficiently emulate hardware I/O devices, Xen

defines virtual-only devices and provides drives for them
https://wiki.xenproject.org/wiki/Understanding_the_Virtualization_Spectrum

• Summarizing Xen impact
– First to popularize paravirtualization
– Influenced modern cloud hypervisors (AWS, Google)
– Clear example of a micro-hypervisor

• Reduces attack surface, increases stability and security, and
keeps the hypervisor small and lightweight

– Still used in security-sensitive and embedded environments
45

Xen: Credit scheduler
• VMM scheduler selects which virtual CPUs (vCPUs) of

all VMs run on the physical CPUs (pCPUs)
- Adds a scheduling layer below the guest OS scheduler

• Default Xen scheduler: Credit scheduler
https://wiki.xenproject.org/wiki/Credit_Scheduler

• Goals:
– Proportional fair share: each domain receives a fair share of

pCPU proportional to its weight
– Work-conserving: no pCPU stays idle if runnable vCPUs exist
– Low latency: fast switching among runnable vCPUs

• Key parameters:
– Weight: relative share of CPU time (default = 256)
– Cap: optional limit on maximum CPU share

• cap = 0 → vCPU can use extra CPU time (work-conserving)
• cap > 0 → upper bound (% of one pCPU)

46Valeria Cardellini - SDCC 2025/26

Xen: Credit scheduler
• Each vCPU receives credits proportional to its weight
• Running consumes credits → vCPU becomes:

– UNDER (credits ≥ 0)
– OVER (credits < 0)

• Each pCPU keeps a runqueue of vCPUs
– UNDER vCPUs first, then OVER
– OVER vCPUs run only if no UNDER exist
– Round-robin within each group
– Time slice: 30 ms

• Placement
– vCPU is inserted into its home pCPU runqueue when runnable
– May be migrated to another pCPU by load balancing

• Load balancing
– Before going idle, a pCPU checks others for runnable UNDER

vCPUs; ensures no pCPU is idle while work exists
47Valeria Cardellini - SDCC 2025/26

Memory virtualization
• Non-virtualized environment

– Single-level memory mapping: virtual address (VA) → physical
address (PA) via page tables

– MMU and TLB accelerate translations

• Virtualized environment
– Multiple VMs share machine memory → VMM must partition it
– Requires two-level mapping: guest virtual address (GVA) →

guest physical address (GPA) → host physical address (HPA)

• Terminology
– Guest virtual memory: visible to apps
– Guest physical memory: visible to guest OS
– Host physical memory: actual machine memory visible to VMM

Valeria Cardellini - SDCC 2025/26 48

Two-level memory mapping

Valeria Cardellini - SDCC 2025/26

• GVA → GPA → HPA
• GPA ≠ HPA: why?

− Because each guest OS assumes it owns contiguous, zero-
based physical memory

− VMM must preserve this illusion

49

Shadow page tables (SPT)
• Goal: avoid performing two translations on every access

by giving hardware a direct GVA → HPA mapping

Valeria Cardellini - SDCC 2025/26 50

• Key mechanisms:
– VMM maintains shadow page tables (SPTs)

which directly maps GVA to HPA and uses them
to accelerate

– Guest OS builds its own page tables normally, but
MMU uses SPTs created by the VMM

– VMM keeps SPTs consistent with guest page
tables

– Guest page tables are mapped read-only
– Any guest update → trap to VMM, which updates both guest

PT and SPT (“memory tracing”)

SPT drawbacks

Valeria Cardellini - SDCC 2025/26 51

• High overhead: frequent
traps and VM exits
– Every guest PT write → VM

exit → high overhead
– A VM exit is similar to a very

expensive context switch

• Large memory footprint for
maintaining SPTs

• Complex software logic
– VMM intercepts paging

operations and constructs copy
of PTs

Hw support for memory virtualization

Valeria Cardellini - SDCC 2025/26 52

• More efficient hardware solution: Second Level
Address Translation (SLAT)

• Hardware performs the second translation (GPA →
HPA)

• Removes need for SPT maintenance
• Dramatically reduces traps and VM exits
• Provides significant speedup (~50%) for memory-

intensive workloads
• Examples: Intel EPT, AMD RV

