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Abstract

A distributed multi-server Web site can provide the scalability necessary to keep up with
growing client demand at popular sites. Load balancing of these distributed Web-server systems,
consisting of multiple Web servers for document retrieval and a Domain name server (DNS) for
address resolution, opens interesting new problems. In this paper, we investigate the effects of
using a more active DNS which, as an atypical centralized scheduler, applies some scheduling
strategy in routing the requests to the most suitable Web server.

Unlike traditional parallel /distributed systems in which a centralized scheduler has full con-
trol of the system, the DNS controls only a very small fraction of the requests reaching the
multi-server Web site. This peculiarity, especially in the presence of highly skewed load, makes
it very difficult to achieve acceptable load balancing and avoid overloading some Web server.

This paper adapts traditional scheduling algorithms to the DNS, proposes new policies, and
examines their impact under different scenarios. Extensive simulation results show the advantage
of strategies that make scheduling decisions on the basis of the domain that originates the client
requests, and limited server state information (e.g. whether a server is overloaded or not). An
initially unexpected result is that using detailed server information, especially based on history,
does not seem useful in predicting the future load, and can often lead to degraded performance.

Index Terms: Distributed systems, Load balancing, Performance analysis, Scheduling algo-
rithms, Web servers.
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1 Introduction

The rapid expansion of World Wide Web has led to exponential growth in the request rate to some
popular sites. The combination of increased usage of network bandwidth and overloaded servers
may cause users to spend much of their session time waiting for access to documents. For these
reasons, the replication of information across independent or coordinated mirrored servers is becom-
ing a common choice for most popular sites [3, 21]. Various reasons indicate that a coordinated
architecture, namely a distributed Web-server system, is the most promising solution. A distributed
multi-server system is more scalable and fault-tolerant than any centralized counterpart. Further-
more, it maintains a single user-view interface that is, a single URL, and its load can be balanced.
In contrast, the independent mirrored-server architecture provides a list of independent URL sites
that are manually selected by the users. This solution does not provide the transparency for users
and precludes any control of the request (re)distribution by the Web-server system. However, if
the components of the distributed Web-server system are not well designed and the results are
not evaluated carefully, the complexity and irregularities of World Wide Web could degrade the
performance of a coordinated architecture.

Existing installations of distributed multi-server Web sites are the NCSA HTTP Server [16]
and the IBM Web server built on an SP-2 machine [13, 17]. A commonly used approach for load
balancing is the Round-Robin Domain Name Server (RR-DNS) technique described in [16, 1]. In
[13] an alternative, referred to as the TCP router approach, is considered which uses a TCP front-
end to distribute incoming requests among a set of clustered servers. Since the DNS technique can
be applied to both locally and geographically distributed Web-server systems, in this paper, we
propose and evaluate policies that can improve the load balance through an extension of the DNS
technique.

The distributed Web-server system, illustrated in Figure 1, consists of multiple, replicated Web
servers (WS) that furnish the html documents, and a cluster DNS that translates the logical http
address (name) into the IP-address of one of the Web servers of the logical cluster. The DNS
can use various scheduling policies to map different clients to the different servers in the cluster.
However, the Web browsers at the clients and several name servers on the path from clients to
the DNS typically cache the name-to-address mapping returned by the DNS. When an address
resolution is found in one cache of the path, the page request is directly sent to the address of the
indicated WS, bypassing the address resolution in the DNS. Otherwise, the name request has to be
resolved by the cluster DNS. As a result of address caching, a large number of clients in the domain
behind the same name server are mapped to the same WS, leading to a load imbalance among the
servers, as quantified in [13]. To reduce load imbalance, while returning the physical address of a
WS, the DNS could apply some scheduling policy that routes the page requests to the “best” WS.

Unlike traditional parallel/distributed systems in which a centralized scheduler has full control
on the incoming requests [14, 7, 20, 15], due to caching in the name servers and at the Web browsers,
the DNS typically controls a small fraction, often on the order of a few percent, of the requests
reaching the Web site. The non-uniformity of the load introduces additional degrees of complexity
to the request scheduling issue. These peculiarities create an interesting challenge to any scheduling
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Figure 1: System model and network flow.

algorithm that the DNS may employ. This paper analyzes traditional algorithms, proposes new
ones, and compares their performance under different scenarios. The basic premise of our work is
the compatibility with existing Web standards so that the proposed DNS scheduling policies could
be easily adopted.

The rest of the paper is organized as follows. In Section 2, we present a model for distributed
Web-server systems that is suitable to the performance analysis of DNS scheduling policies. In
Section 3, we describe algorithms that can be used by the DNS to assign the requests to the
servers. In Section 4, we examine the metrics and the model parameters that we used in the
experiments. In Section 5, we discuss the experimental results which are achieved for different
systems and scenarios. In Section 6, we outline our conclusions.

2 Model Description

The model reflects the focus of the paper on a multi-server Web site and the DNS scheduling
algorithm. Since the analysis is carried out from the point of view of a particular Web-server, we
detail the aspects that affect that multi-node Web-server system without attempting to model the
entire Internet with thousands of other Web-server systems. As illustrated in Figure 1, the system
we are considering is composed of a set of clients that are connected to Internet through local name
server(s) (LNS) and local gateways (LG). From the point of view of the Web-server system, the
client is only identifiable from its domain. The distributed Web-server system consists of several
Web servers (sharing the same URL) and a cluster DNS that receives all initial address resolution
requests coming through LGs. Several intermediate name servers (INS) typically exist between a
LG and a WS. While returning the address of a WS, the DNS specifies a time-to-live (TTL) that
is, the duration of time for which a name-to-address mapping is cached at LNSs and INSs.



In addition to the normal task of resolving the URL address into the IP-address of a WS,
the DNS of a distributed Web-server system can play the role of a centralized scheduler. In the
selection of the address of a WS, the DNS could implement some policy that attempts to balance
the load among multiple servers or avoid some WS from becoming overloaded. However, to achieve
these goals, the DNS-scheduler faces the following obstacles which make it different from a normal
scheduler.

e Address caching limits the control of the DNS on the requests reaching the Web site. There-
fore, most factors that affect the system performance are independent of the DNS decisions.

e During the TTL period, subsequent Web requests from a LG arrive to the same WS. This
can cause high skews especially if the LG serves many clients.

e Using TTL= 0 could cause the DNS to become a bottleneck. In addition, most name servers
use a minimum TTL value if the received TTL is considered too small (“we cannot make
people ask us for the address, and we cannot control what they do with the address” [18]).

This TTL period for caching name-to-address mapping differentiates the DNS scheduling prob-
lem from the conventional scheduling problem in distributed systems which can be viewed as a
special case with TTL equal to zero. (This is approximately but not strictly correct because
browsers cache the mapped address, and subsequent requests from the same browser would be sent
to the same node.) In the conventional distributed system, the queue length at each server can
usually provide a good indication of the server load. In the distributed Web-server system, the
queue length at each server does not reflect how many committed future arrivals will occur due to
the TTL effect on past assignments. Consider a server with low utilization. Suppose that the DNS
made a burst of name-to-address mappings to that server; the server’s utilization may still appears
to be low for a short while, and could then become overloaded after INSs and LNSs continue to
map requests to this server based on their address caching for the TTL period.

Many existing distributed Web sites assign the requests arriving at the DNS in a round-robin
manner among the WSs [16, 1]. In this paper, we demonstrate that the Round-Robin Domain
Name Server policy (RR), referred to as DNS-RR, works well only if the clients behind each LG
are uniformly distributed. However, for the more realistic hypothesis of a non-uniform distribution
(e.g., geometric, Zipf’s), round-robin assignments of the clients to Web servers can perform poorly.

2.1 Distributed Web-server system

The distributed Web-server system under consideration is composed of N Web servers and a cluster
DNS that receives all initial address resolution requests coming through LGs. Since the servers are
assumed to be mirrored, the page requests can be served by any WS.

2.2 Network model

Since the focus of this paper is on the performance of the Web-server system, we do not evaluate
the user latency time over the network. We model only the Internet components that impact the



performance of the distributed Web-server system such as the intermediate name servers. The INSs
could handle some address resolution request such that the DNS is bypassed. The consequence is
that the DNS looses the control on subsequent Web requests coming after an address resolution.
When the DNS returns the IP-address of one of the WS in the system, it also provides a TTL to
the name servers along the path to the client so that intermediate and local name servers can cache
the name-to-address mapping for the TTL period chosen by the DNS (or a minimum TTL they
impose, if the DNS value is too low).

Details of the messaging traffic are not modeled for the following reasons. As we will see,
the scheduling policies that require more messages among Web servers and DNS already show
worse performance, while the better policies incur only a communication load that is negligible if
compared to client requests for Web documents. Therefore, capturing the communication costs
would not affect our conclusions. Furthermore, accurate models of Internet traffic are still under
study [8, 5, 10]. Consequently, in this paper we do not consider the class of scheduling algorithms
that take into account geographical locality. Future research aims at relaxing this assumption.

2.3 Web clients

The clients belong to different domains identified in Figure 1 by the LNS/LG. Typically, network
service providers and corporations have a set of LNSs and are connected to the network through LG,
such as firewalls or socks/proxy servers. Under existing Web standards, the address of this domain
is the only client information which is accessible to the DNS when it receives an address resolution
request. Therefore, for the purposes of our analysis, a LG is representative of the client domain,
and throughout the paper we will use both definitions equivalently. We also consider singleton LGs
which represent stand-alone clients. Client performance issues are indirectly addressed, because
minimizing server overloading improves the throughput of the overall system and reduces the client’s
mean latency time and unsuccessful responses.

An important issue is how the clients are distributed among the domains. A detailed analysis
for popular Web sites is not yet available in literature. However, various studies indicate that if
one ranks the popularity of domains by the frequency of their accesses to the Web server, the
client distribution is a function with a small number of large values (corresponding to popular
Internet service providers, large research institutes and corporations behind firewalls), and a long
tail assuming small values. For example, a workload analysis on academic and commercial Web
sites shows that on average 75% of the client requests come from only 10% of the domains [2].
A good distribution that fits the non-uniformity of this function is the Zipf-like distribution that
is, a parametric distribution where the probability of selecting the i-th item is proportional to
1/i(1=%). This distribution for a set of L items is given by ¢; = ¢/i'~®) for each i € {1,...,L},
where ¢ = 1/ [E,L:l 1 /i(l_z)] is a normalization constant [26]. The pure Zipf’s function (that is,

with parameter = 0) is commonly adopted in various social contexts to model the distribution of
people choices, such as the number of requests for a Web page [11]. Figure 2 shows how clients are
partitioned among L = 20 subdomains in case of a geometric distribution with parameter p = 0.3,
a pure Zipf’s distribution, a Zipf with £ = 0.5, and a uniform distribution (that is, a Zipf with
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Figure 2: Various distributions of clients among 20 domains.

parameter z = 1). Note the long tail of the Zipf distributions that led us to prefer this function
for modeling the partition of clients among domains for the base case of the performance study.
In Section 5.4, sensitivity analysis is provided on the number of LGs and various distributions of
clients among the LGs.

2.4 Load model

We model each client session at the same Web site as characterized by one address resolution and
several Web page requests. In the first phase, the client obtains the address of one WS of the cluster
through the DNS address resolution process. Subsequently, the client submits multiple Web page
requests that are separated by a mean inter-request time (think time). No caching of documents
is considered. The client first gets the main html page, then transparently issues one http request
for each object contained in a Web page. We will refer to these separate accesses to the Web server
as hits.

This model is representative of present Web load, where html and image documents are more
than 90% of the total requests to the Web servers [2]. Multimedia objects like sound and video
account for only 1-2% of the requests, even if these files may reach a larger percentage of the bytes
transferred. The growth in the use of multimedia objects and Java applets will surely increase the
relative percentage of these requests. By properly selecting the workload parameters to model the
number of requests per session, the number of hits and the service time, different types of workloads
that a client session may impose on a WS can be represented. A detailed model of the dimension
and nature of Web files is orthogonal and beyond the scope of this paper. A sensitivity analysis on
the number of requests per session, the number of hits per request and its service time confirmed
the main conclusions of this paper.



3 Scheduling algorithms

In this section we present some strategies that aim at improving the performance of distributed
multi-server Web sites that are likely to perform poorly under the naive RR-DNS. All the proposed
scheduling algorithms tend to use additional state information in the mapping of URL names to
IP-addresses of Web servers. The system state information accessible to the DNS is of two kinds.

Information on LG. The existing protocol allows the DNS to identify the origin of each request
asking for an address resolution. Moreover, the DNS can collect information on LGs from
WSs for various statistics.

Information on WS load. A variety of data can be obtained from each WS. This can range from
a simple asynchronous alarm from a WS to signal the DNS that the WS is becoming heavily
loaded, to frequent messages from WS to keep DNS informed on detailed processor loads and
history of server state.

Depending on the type of information used, we can partition the DNS scheduling policies
into three main classes: only LG information, only WS information, combination of LG and WS
information. The amount of information necessary for each algorithm will be used to further
distinguish the policies into sub-classes. Determining the usefulness of different levels of information
is one of the main purposes of this paper. We note that, although the proposed algorithms vary
in terms of implementation complexity and communications load, all of them are applicable to a
real-time environment and do not require changes to existing Web standards. The issue of how to
accurately estimate the necessary state information is analyzed in [6].

3.1 Algorithms using domain information

The first class of algorithms estimates the average number of subsequent client requests from each
LG to a WS resulting from a name-to-address mapping. The DNS tracks the number of name-to-
address mapping requests it received from each LG during each measurement period. Let NJM be
the number of name-to-address mapping requests that the DNS receives from LG;. Each WS tracks
the number of requests it received from each LG during the corresponding period. Let ij be the
number of Web requests that W.S; received from LG,. Periodically (i.e. for each measurement
period), the DNS collects the Ni}fj information from each WS. DNS uses ), NZ-IE- /NJM to estimate
the average number of Web requests (7;) from LG, per mapping. (Not all Web requests will fall
into the measurement period but some of the requests from the previous mappings may continue
to fall into this interval. So statistically it should average out.) We refer to the value 7); as the
hidden load weight of LG since it is transparent to the DNS. A WS is selected on the basis of the
address of the LG that has originated the client request and its hidden load weight. No tracking
of load level of the Web servers is required.

Two-tier-Round-Robin (RR2). This algorithm is motivated from the observation that the hid-
den load weight of each LG can be very different. For this reason, we assume a simple partition



of the domains into two classes: normal LGs, and hot LGs (such as popular providers and
large companies and institutes). Based on the origin domain of the requests, the RR2 strategy
applies a round-robin policy to each class of LG separately. That is to say, under the RR2
strategy, a separate round-robin scheduling list is maintained for the requests from each class.
(The round-robin of each class can start from a different WS.) The objective is to reduce the
probability that the hot domains are assigned too frequently to the same WS.

For example, assume two WSs and four LGs, where LG, and LG5 are hot LG and LG,
and LG4 are normal LGs. We denote the j-th name-to-address mapping request from LG,
to be Rf}j. Assume a sequence of name-to-address mapping requests to the DNS (in or-
der of arrivals) is Ri'|,Rs|, R, Ri', Riy, Ryy, R'5, Ry, and Rg,. Under RR2, there
are two independent round-robin scheduling lists: one (hot) list for requests from LG
and LG3 and another normal list for LG9 and LG4. The requests on the hot list include
Rﬁl,Rél,RﬁQ,Rﬁg,Rﬁ and R{QQ. The requests on the normal list include R‘Q“,l,Rf’l, and
RQQ. Assume under RR2, the round-robin scheduling of the hot list starts at W S; and the
other list starts at W.S,. RR2 assigns to W Si: Rfl,l, RfZ, and Rf‘,4 from the hot list and Rf’l
from the normal list. RR2 assigns to W Ss: R{;‘,l, Rf3, and RQQ from the hot list and Rél and
RQQ from the normal list. The assignment policy divides the request load from the hot LGs
(similarly for the normal LGs) fairly evenly among the two WSs. Under the RR strategy,
the assignment is as follows. Rﬁl, R{il, Rflﬂ, Rﬁg, and R{?’Q from the hot list are assigned to
W S1. There is no request from the other list assigned to W.S;. On the other hand, only one
request (R{‘A) from the hot list and all requests from the normal list (Rﬁl, Rf,l, and RQA,Q)
get assigned to W S5. The load can thus become very unbalanced among the two WSs.

For default, we set the class threshold Te to (1/#LG), where #LG is the average number of
domains connected to the Web-server system. The domain LG} belongs to the hot class, if
the relative hidden load weight 7/ >, nn is larger than T¢. For example, if #LG = 20, all
domains that generate more than 5% of the requests belong to the hot class.

Note that several variants of this algorithm can be derived in practice. As an example, some
LGs can always be considered as hot, while others may join the hot class only occasionally.
Moreover, the threshold T¢ can be set differently, and/or more than one threshold can be
established, that is, multi-tier-round-robin. However, we will focus on the RR2 because we
have observed in a joint study that it is not convenient to partition the domains into more
than two classes.

Dynamically Accumulated Load (DAL). As in RR2, DAL needs to estimate the hidden load
weight of each LG. While the RR2 policy uses the hidden load weight estimation to do a
binary partitioning of the domains, DAL uses the hidden load weight to estimate future loads
(due to previous DNS assignments) in making scheduling decisions. For this reason, the
accuracy of the estimates becomes more critical than for RR2, and additional information
from the WS could be useful as discussed in [6]. The DNS accumulates the hidden load
weights of the previous assignments in a bin for each WS. At each request of new address



resolution, the DNS chooses the WS with the lowest bin value. Furthermore, each time the
DNS makes a WS selection, it increases the bin value of the chosen WS by the hidden load
weight of the requesting LG to reflect the number of subsequent requests that will reach the
chosen WS from the LG due to this assignment. (In actual implementation, the bin values
are periodically reduced by an amount equal to the minimum of all bin values so that the bin
values will not become too large.)

3.2 Algorithms using load information on Web servers

A different approach to the scheduling issue is to allow the DNS to make decisions based on some
information about the load of the Web servers. This is often used in conventional load balancing
approach [25, 23, 24]. Wang and Morris have identified seven levels of information dependency,
where the information of a higher level subsumes that of the lower level [25]. In our system, the
lowest level may be represented by the random algorithm that does not require any information.
For the next levels, we consider the following information ordered by increasing level: overloaded
servers, the current load of WSs, the current and past load of WSs, the sequence of the servers
chosen in the previous assignments.

Any of these kinds of information can be embodied in a scheduling strategy. Some of them could
be maintained at the DNS itself (e.g., sequence of previous assignments). For the remaining ones,
we assume that asynchronously or periodically the DNS receives the requested parameters from
each WS. For algorithms requiring server load information, unless otherwise specified, we adopt as
load information the wutilization that each WS evaluates every 15 seconds for the past 15 second
duration and transmits to the DNS. More extensive information either is not easily accessible in
a Web-server system or is not useful for DNS resolution purposes. In particular, we propose and
compare five algorithms which are representative examples of the performance achievable by the
policies based on server information. Various other algorithms have been tested, but their results
are not reported because their performance is equivalent or poorer than those shown here.

Asynchronous alarms. This is the lowest information dependency level that can come from a WS
to the DNS, i.e. a binary state information indicating whether a WS is overloaded or not.
Each WS periodically evaluates its own utilization and sends asynchronous alarms to the
DNS to signal the beginning and end of a heavily loaded state, respectively. This information
itself is not sufficient to define a scheduling policy, but it can be usefully combined with other
algorithms (see Section 3.3.1).

Present load information. This policy, similarly to the classic Join-the-Shortest-Queue algorithm,
considers only the lastest load information in deciding the assignments. In this paper, we
show the performance of the Least Utilized Node (LUN) policy that assigns the requests
to the WS having the lowest utilization, based on the most recent load information that
the DNS receives from Web servers. Recall that the utilization is measured for a 15 second
interval.

Past and present load information. The classic approach of making scheduling decisions on the



basis of present and past information motivates these algorithms.

Lowest Utilization (LU). The first version is a naive policy that estimates the load of
a server by evaluating its utilization over a long period. To clearly differentiate this
algorithm from LUN and successive policies, we consider the last hour as the interval
for the utilization estimate for LU. As in LUN, the DNS assigns the requests to the WS
that has the lowest utilization.

Lowest among Past and Present Utilizations (LPPU). In this case, the DNS attempts
to estimate the future load by assigning lower weights to less recent measures. In this
paper, we present the LPPU policy that uses the five most recent utilization samples as
the measure of the WS load. Each value is combined with a weight obtained by a decay
distribution. We use pput; = 2?21(1/G’)pi(j)e*j/2, where p;(j) for j € {1,...,5} are
the utilization samples of W S; evaluated in the past five intervals of 15 seconds each, and
G = 2?21 e/2 is the normalizing factor. The DNS selects the WS that has the low-

est weighted utilization (pput) value. Experiments carried out with different parameter
values did not significantly change the LPPU results.

Sequence of previous assignments. The idea for this class of policies comes from the observation
that a DNS address resolution has an impact over a period of time. In particular, we propose
a variation of the naive LUN and LPPU above algorithms (referred as LUN-modified and
LPPU-modified, respectively). In the modified version, these policies look for the first and
second minimum among the WS utilization samples. If the first minimum corresponds to
the same WS of the previous assignment, the other WS is chosen. Note that although these
versions increase the information dependency level, they do not increase the communications
overhead because the sequence of Web servers chosen in the previous assignments are already
available at the DNS. One could propose different implementations in which even the third
or fourth minimum utilization samples are considered (i.e, the third minimum utilized WS
is selected if the first two were selected in the previous two assignments). However, in the
simulations, no significant changes to performance were observed by considering the third or
fourth minimum utilized WS; therefore, these possible extensions are omitted from further
consideration.

3.3 Algorithms combining domain and server information

The last step in the design of the scheduling policies is to allow the DNS to make decisions based
on information on LG as well as WS loads. We differentiate between algorithms using very little
information such as asynchronous alarms from heavily loaded servers, and policies needing accurate
Web server load information.

10



3.3.1 Algorithms using alarm messages from heavily loaded servers

The implementation of both RR2 and DAL algorithms is relatively simple and does not require
tracking or monitoring of the actual load condition on the WSs. On the other hand, the simple
information on which they base their decisions does not always reflect the actual WS loads. The
experimental results in Section 5 will show that this sometimes causes a WS to become overloaded
even if its estimated load (e.g., bin level in DAL) is not high. A potentially better approach is to
combine the previous strategies based on LG information with some additional information about
the actual load. In this section, we focus on algorithms that take into consideration a simple state
information indicating whether a WS is heavily loaded or not. Each WS periodically evaluates its
own utilization and it is allowed to send asynchronous alarms to the DNS, signaling the beginning
and end of risk of an overloading phase, respectively.

Thus the scheduling algorithms can base their decisions on some feedback information about
the actual load. This alarm takes precedence over any load estimation or regular scheduling.
Typically, the overloaded WS is taken off the pool of active servers and is not considered in any
assignment until the end of the overloading situation signaled by another message. If all the WSs are
considered inactive, a random assignment is forced. We analyze three variations of this approach
with an asynchronous alarm that can be combined with any strategy using domain information
such as RR, RR2 and DAL.

Single threshold (Thr1). The DNS can distribute client requests among all WSs using one of
the algorithms previously described, unless it receives an alarm message from some of the
Web servers indicating that its utilization has exceeded a critical load threshold Toyr. In
such a case, the DNS excludes the overloaded WS from further assignment of any requests
until its utilization returns under the Ty threshold.

Double threshold (Thr2). This algorithm is similar to the Thrl strategy. However, Thr2 tends
to delay the re-activation of an overloaded WS by using a load threshold Toyr to determine
the exit from the active pool, and another (lower) threshold T}y to allow for the re-activation.
The rationale for using two load thresholds is as follows. With a single threshold, if we set it
too low, many servers will be considered inactive even when it is not necessary. Conversely,
if we choose a high threshold, the re-activation may be premature, thereby causing new
overloading situations for the just re-activated WS. For this reason, the Thr2 strategy, that
uses a relatively high threshold to trigger an exit from the active pool and a lower threshold
for re-activation, provides an anti-thrashing mechanism that partially resembles the second
algorithm to determine process migration in [24]. Multiple thresholds to define the load status
of a node and job re-direction were also proposed in [23].

Temporal threshold (ThrT). This method introduces another anti-thrashing mechanism to ac-
count for the fact that a delay is present between the exit of a WS from the active pool for
scheduling and its return to the active pool. ThrT uses a single threshold and excludes a
WS when its utilization exceeds that threshold. However, the re-activation is not based on
the utilization level and a new message to the DNS, but on a time estimation (provided by

11



DNS) that is deemed necessary for a WS to complete most of the requests due to the past
WS address assignments. The basic idea behind this algorithm is similar to the threshold
with delay that motivated the third algorithm in [24].

3.3.2 Algorithms using additional information about the server load

A further step in the optimization of the DNS scheduler would seem to allow the DNS to make
decisions based on more precise information about the actual load of the WSs. For this reason,
we propose some variations of the DAL policy that combine the domain information with some
information about the load status of the Web servers.

DAL-set bin to top (DAL-ST). This algorithm is a simple modification of the DAL policy.
However, DAL-ST uses the asynchronous alarm messages from the WSs differently from
DAL-Thrl and DAL-Thr2. The idea is that every time the utilization of a WS exceeds the
given threshold, its bin value must be set at least equal to the current highest bin value.

DAL-set bin to actual number of requests (DAL-AN). This algorithm works similar to DAL
with the exception that the DNS tries to calibrate the bin value of each WS as follows. Every
TTL seconds, each WS sends to the DNS the number of requests that it has received in
that period. Hence, the DNS can modify the bin value by subtracting (from the estimated
load weight) the actual number of requests that have been served in the last TTL interval.
Analogously to DAL, at the arrival of an address request, the DNS chooses the WS with the
lowest bin value.

Minimum Residual Load (MRL). This algorithm is a variation of DAL that combines domain
with server information. Analogous to the previous algorithm, MRL tracks the hidden load
weight of each LG. In addition, the DNS maintains an assignment table containing all the
assignments and their times of occurrence. Let [; is the average session length of a client of
LG;. After a period of TTL+I;, the effect of the assignment is expected to expire, i.e. no
more requests will be sent to LG due to this assignment. The entry for that assignment can
hence be deleted from the assignment table. At the arrival of an address resolution request,
the DNS evaluates the expected number of residual requests that each WS will receive based
on the previous assignments, and chooses the WS with the minimum number of residual
requests. Here we assume the subsequent requests spread evenly across the period of TTL+/;
when the name-to-address mapping is in effect. Hence, at the time t,,,,, the DNS computes:

'_min { > [wj (tj(’i, k) +TTL + lj — tnow)+] /(TTL + l])}

=L je{LG}-WS; &

where w; is the hidden load weight of LG}, and t;(i, k) is the time of the assignment of the
k—th address resolution request coming from LG; to WS; in the mapping table. The (z)4
notation denotes that (z)y = zifz > 0 and (z); = 0ifz <0, i.e. that only the positive terms
are considered in the internal sum. As mentioned above, a request entry is removed from the
assignment table when the corresponding term (t;(%,k) + TTL 4 l; — tp0) is detected to be
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| Used information Algorithm | Definition

Domain RR Round-Robin
RR2 Round-Robin 2-tier
DAL Dynamically Accumulated Load
WS load LUN Least Utilized Node
LU Lowest Utilization
LPPU Lowest among Past and Present Utilizations

-modified | The second minimum is chosen

Domain and WS load | DAL-ST | DAL where bin is set to top
DAL-AN | DAL where bin is set to the actual number of requests

MRL Minimum Residual Load
WS alarm -Thrl Single alarm threshold: Toyr = TrN
-Thr2 Double alarm threshold: Toyr > TN
-ThrT Temporal threshold: Toyr (utilization), Tty (time)

Table 1: DNS scheduling algorithms classified on the basis of the adopted system information (first column).
The WS alarm policies are always combined with one of the previous algorithms.

negative since no more residual load is expected to remain from this assignment. We note
that since the average session lengths [; are not readily available at the DNS but they can
be estimated at the Web servers (e.g. using the cookie mechanism to track user sessions),
the implementation of MRL in a real environment would require periodic messages from the
servers to the DNS. Certainly, we expect /; to be rather stable over time so the frequency of
exchanges should be quite low. This is in contrast to the load information of the WS which
requires frequent updates. MRL can also be combined with asynchronous alarm messages.
We will refer to this last policy as MRL-Thr.

Table 1 contains acronyms and definitions of all presented algorithms.

4 Parameters and methods of evaluation

In this section we present the parameters with their base values and distributions that characterize
the entire system and the DNS scheduling algorithms. The distributed Web-server system is com-
posed of N servers with the same capacity. The average load of the entire system is maintained at
0.667 that is, 2/3 of the system capacity. Since the servers are mirrored, the page requests from the
clients can be serviced at any WS. The number of page requests per session and the inter-request
time are exponentially distributed [2]. Cunha et al. have measured roughly seven different hits per
page [11]. More recent analyses indicate that this mean number is increasing. Therefore, we have
modeled the number of hits per page as obtained from a uniform distribution in the interval [5-15].
The service time for each hit is assumed to be exponentially distributed with a mean of 4.5 msec.

The network consists of a set of intermediate name servers (INS) that cache the name-to-address
mapping for a TTL period. The mean number of INSs that an address resolution request has to
cross from its LG to the DNS is chosen equal to the mean number of hops shown in [4]. This function
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| Category | Parameter | Values (default)
‘Web-server system | Number of servers 4-9 (7)
Average utilization 0.5-0.8 (0.6667)
LG Number 10-100 (20)

Client distribution among LG | Zipf (pure Zipf)
geometric (p = 0.3)

TTL (seconds) 0-360 (240)

Client Number 1500-5000 (1500)
Web page requests per session | exponential (mean 20)
Hits per Web page uniform [5-15]
Hit service time (milliseconds) | exponential (mean 4.5)
Inter-request time (seconds) exponential (mean 15)

Table 2: Parameters of the system.

is similar to a double bell Gaussian distribution with peaks around 2 and 16 corresponding to local
and remote requests, respectively.

The clients are typically partitioned among the domains based on a pure Zipf’s distribution, as
discussed in Section 2.3. However, we also carried out other experiments to evaluate the sensitivity
of the DNS scheduling policies to other distributions, and we also varied the percentage of single
user domains, i.e. singleton domains. Table 2 summarizes the system and workload parameters
that we used in our simulations. The algorithms using WS load information evaluate the utilization
of each server every 15 seconds and transmit this value to the DNS with the same frequency. The
algorithms using WS alarms evaluate the utilization of each server every 8 seconds and send a signal
to the DNS only if the alarm threshold is crossed. In particular, Thrl, ThrT and DAL-ST use as
default Toyr = 0.75, while Thr2 uses Toyr = 0.80 and T7x = 0.70. Unless otherwise specified,
the figures of the experimental results refer to the default values.

The performance stability is the main concern for the distributed Web-server system that is
subject to non-uniform bursts of arrivals of which only a small percentage is directly controllable
by the DNS. Therefore, we are more interested in investigating the impact of the DNS algorithms
on avoiding overload at any of the servers than on equalizing the system workload. The reason for
not adopting traditional metrics, such as the standard deviation of cumulative utilizations which is
typical of load balancing studies, is that we analyze the performance of a transactional distributed
system with independent nodes, and not a computing platform with inter-related distributed tasks.

A good index to measure the load level and overloaded instances is the wutilization of the Web
servers. In particular, looking at the most utilized WS among all WSs, we can deduce whether the
Web-server system is overloaded or not. Hence, the performance of the various scheduling policies
is evaluated by focusing on the maximum WS utilizations observed during the simulation runs.
That is to say, we focus on the utilization level of the server with the maximum utilization among
all servers at each time instant. The server with the maximum utilization changes over time. If
the maximum utilization at an instant is low, it means that no server is overloaded at that time.
By tracking the period of time the maximum utilization is above or below a certain threshold, we
can get an indication of how well the distributed system is running. For example, assume three

14



servers. If their utilizations are 60%, 75% and 63%, respectively, at time #; and 90%, 66% and
42%, respectively, at time t9, the maximum utilization at ¢; is 75% and that at to is 90%. With
a maximum utilization of 90%, the distributed system has a load balancing problem at t3. By
examining the histogram or cumulative frequency of the maximum utilization, we can determine
the percentage of time for which at least one of the servers is critically loaded (say exceeding 90%
utilized).

Hence we use the cumulative frequency of the maximum utilization among all Web servers as
the performance criteria. More specifically, at the occurrence of an observation or sampling instant,
we compute the utilization for each Web server in the previous observation interval. Then we sort
the list of server utilizations into decreasing order and track the cumulative frequencies for the
maximum, the second maximum and the third maximum utilizations. Note that usually all the
servers, even if with different proportions, contribute to this maximum utilization during the entire
simulation, i.e. each server can and indeed has become the maximally utilized server for some
period of time during the simulation. Finally, we plot the cumulative frequency of the maximum
utilizations observed after the transient state of the simulator. As shown in detail in Section 5, with
most promising scheduling policies (RR2, DAL, MRL) usually at most one server is overloaded while
the second highest utilization rarely goes beyond 0.9 (as shown in Figure 11) and the third never
exceeds 0.9 (as shown in Figure 12); thus, the cumulative frequency of the maximum utilization
gives a precise estimate of the ability of a scheduling policy to minimize overload situations. For
example, consider the point (0.78,0.9) on the RR(Uniform) curve in Figure 3. It indicates that
with probability 0.9 the utilization of the busiest Web server is below 0.78.

Since the average system utilization is set to 0.667, the distribution of the maximum utilization
of a perfect policy (always maintaining a utilization of 0.667 at each WS) should be a step function
which goes from 0 to 1 at a utilization of 0.667. Since this result is unrealistic, in Section 5 we
consider as ideal algorithm, the DNS full control policy, i.e. the RR for the case with TTL=0.
Although this algorithm has worse performance than a perfect policy, it can be considered an ideal
target because, under a realistic scenario of non-uniform client distributions and TTL> 0, no
scheduling algorithm can achieve the DNS full control performance.

When we evaluate the sensitivity of the scheduling algorithm performance to other system pa-
rameters such as TTL and percentage of singleton domains, we adopt a different metric. Indeed, it is
preferable to show the 96-th percentile of the maximum utilization that is, the Prob(mazUtilization <
0.96), which we use as probability indicator that no server of the Web-server system is overloaded
(exceeding 96% utilized).

The simulators, based on the Independent Replication Method, were implemented using the
CSIM package [22]. Each value is the result of five simulation runs with different seeds, where each
run is for six hours of the Web-server system activity. For all simulation results shown in the next
section, confidence intervals were estimated, and the 95% confidence interval was estimated to be
within 4% of the mean.
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Figure 3: Distribution of maximum server utilization by RR scheduling policies.

5 Experimental Results

For the performance evaluation of the proposed scheduling algorithms, we carried out a large
number of experiments. Due to space limitations, only a fraction is presented here. The goal is to
measure how effectively the DNS scheduling algorithms, that control only a very small percentage
of the address resolution requests, can minimize overload situations of a distributed Web-server

system.

5.1 Algorithms using domain information

In the first set of experiments we focus on DNS algorithms that use information about the origin

of the client requests as the basis for making scheduling decisions.

Figure 3 shows the performance of the RR algorithm in an environment where the clients are
uniformly distributed among the domains as compared to that of the RR where the number of
clients behind each domain is modeled by a pure Zipf’s distribution. We assume a distributed
system with 20 domains and TTL set to 240 seconds. This figure provides one of the principal
motivating factors for this study. While the RR policy under uniform distribution performs close to
the ideal policy that gives full control to the DNS for requests reaching the Web-server system (DNS
full control is obtained for a TTL=0), under the more realistic case of a Zipf’s distribution, Figure
3 shows that Prob(maxUtilization < 0.96) ~ 0.30. This means that RR applied to a scenario
with a skewed client distribution causes at least one WS to be highly overloaded (0.96 utilized or

above) for almost 70% of the time. The performance is even worse when clients are geometrically
distributed. Also shown in this figure is the random policy, for a Zipf’s distribution of clients behind
a LG, where a Web server is randomly chosen for each assignment. Not surprisingly, this has the

worst performance.
Figure 4 compares the behavior of the three algorithms that only use LG information. Both

DAL and RR2 exhibit much better performance than RR, while the DAL policy performs the best.
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Again a system with 20 domains and TTL set to 240 seconds is assumed.

The performance improvement achieved by DAL and RR2 with respect to RR-DNS is again
shown by Figure 5 for a scenario in which the TTL period chosen by DNS is reduced to 150
seconds. Under this more controlled environment, where a higher number of address resolution
requests reaches the DNS, both DAL and RR2 exhibit performance with a convex shape which is
similar to the ideal curve. The relative order among the strategies changes a little, and RR2 now
performs a bit better than DAL. The main result shown in Figure 5 is that, when the DNS controls
even a slightly higher percentage of requests (6-7% as compared to 2-3% of Figure 4), even the
strategies that use only domain information achieve a significant improvement as compared to the
RR policy. The probability that no WS is overloaded is more than 90% for DAL and RR2, and
less than 60% for RR. However, in the more realistic scenario shown in Figure 4 where TTL is set
to 240 seconds, the probability of having an unbalanced server is still high for any policy that only
uses information on the origin of the client requests, and does not use server load information.
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Figure 4: Performance of scheduling policies with do-  Figure 5: Performance of scheduling policies with do-
main information (TTL=240). main information (TTL=150).

5.2 Algorithms using server load information

We now evaluate the performance of the algorithms that can base their scheduling decisions on the
actual load of the WSs. Figure 6 shows the performance of all the policies discussed in Section 3.2
in order to investigate which information about server load is most useful. The results indicates
that it is preferable to make scheduling decisions based on the most recent load information only.

The LU policy, which uses more past (or historical) information, has very poor performance
(even worse than the random policy), while the LPPU policy, that gives a minor weight to the
less recent information, is much better than LU. However, the best policy is LUN that considers
only the lastest load information. In particular, LUN-naive is better than LPPU-naive, and LUN-
modified is better than LPPU-modified. Not surprisingly, the modified versions of the last two
policies, which use information on the second minimum, have better performance than their naive
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Figure 6: Performance of scheduling policies with ac-  Figure 7: Comparison of scheduling policies with syn-
curate load information from server. chronous and asynchronous server information.

counterparts.

The reason for the ineffectiveness of policies based on more historical load information can be
attributed to the dynamics of the distributed Web-server system. Due to the large variability of
the LGs or clients assigned to a WS, the server load information becomes obsolete quickly and is
poorly correlated with future WS load.

As further confirmation of this result, we observed (not shown here) that the LUN-modified
policy has increasingly better performance with a higher frequency of sending WS load informa-
tion to the DNS. However, this improvement is achieved at the price of extra computation and
communications overheads due to the higher number of messages exchanged between the WSs and
DNS. In traditional parallel/distributed systems, this cost is often worthwhile because a centralized
scheduler that tracks the actual load of all the servers usually leads to the best performance. This
is not the case for the distributed Web-server system under consideration, because other policies,
such as DAL, achieve even better results than LUN-modified with lower communications cost as
shown in Figure 7. The performance is even better, if DAL is combined with an alarm message
(DAL-Thrl) that does not impose a large overhead, as discussed in more detail in the next section.
Therefore, we can conclude that in the distributed Web-server system, as in [14], the threshold
policy using a small amount of state information (inexpensive both from the computational and
the communications point of view) provides the most substantial performance improvement. This
motivates the research for policies that combine client and server information.

5.3 Algorithms combining domain and server information

In this section we evaluate the performance of policies that combine domain with server information,
without requiring the frequent exchange of messages as in the LUN policy. Specifically, we focus
on policies using the overload alarm, and the MRL policy that also requires an estimate of the
mean time of a client session. This information requires low communications overheads, because
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Figure 8: Performance of DAL policy with various Figure 9: Performance of RR2 policy with various
kinds of alarm messages from WS. kinds of alarm messages from WS.

the former is implemented through asynchronous messages, while the latter is synchronous but
the period can be large (i.e. of the order of minutes or tens of minutes), since the information is
typically stable.

We compare the results of the three feedback strategies (Thrl, Thr2 and ThrT) described in
Section 3.3.1 that combine asynchronous WS alarms with the DAL and RR2 algorithms. For each
threshold policy, the results shown in Figures 8 and 9 refer to the best set of parameters found
through a very large set of experiments. Assuming a 0.05 difference in Toyr and 17y, the best
Tour and Ty values for this scenario are between square brackets.

We see that simply tracking the heavily loaded servers improves the performance. In particular,
ThrT does not improve the performance much as compared to the algorithms without feedback,
while more consistent improvements can be achieved by using either Thrl or Thr2. This demon-
strates that a temporal threshold, such as ThrT, is not preferable to a quantitative threshold in
deciding when a WS should re-enter the set of active servers.

The differences between Thrl and Thr2 are not consistent. In particular, DAL and RR2 with two
thresholds do not perform better than the corresponding algorithms with one threshold. Therefore,
our preference is for the strategies with a single threshold Toyr. This is for two main reasons:
the strategies with a single threshold achieve a performance which is comparable to the policies
with two thresholds; they have one less parameter, thereby simplifying the tuning of the scheduling
algorithm in a dynamic scenario.

This section shows that all the algorithms with any alarm feedback from WSs to the DNS have
better performance than their non-feedback counterparts. This result is important because this
performance improvement is achieved at little increase of the communications overhead.

To understand usefulness of different pieces of information, Figure 10 compares various versions
of the DAL policy against the MRL algorithm. First, we can observe that the pure DAL is much
better than DAL-AN. DAL-ST, not shown for the clarity of exposition, has performance similar to
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Figure 10: Performance of DAL and MRL policy combined with various server information.

DAL-AN. DAL is even better than MRL, while DAL-Thrl is the best DAL policy. Hence, we can
conclude that, among various server information, the alarm signal from heavily loaded servers is the
most effective. Furthermore, if we compare MRL-Thrl and DAL-Thrl, it is the MRL-Thr1 policy
that achieves the best performance. This swap in order with the presence of asynchronous alarms,
as compared with MRL and DAL, can also be observed when we compare the results in Figure
8 and 9. Without alarm signals, DAL is better than RR2, while with alarm feedback, RR2-Thrl
performs better than DAL-Thrl.

Another interesting result is the following. Although no policy guarantees that the Web-server
system is never overloaded, Figures 11 and 12 indicate that, for the proposed policies these over-
loading events occur very rarely in more than one server. Specifically, Figure 11 and Figure 12 show
the maximum utilization of the second and third highest utilized Web server, respectively. These
figures provide indication of whether more than one server is overloaded for RR, DAL, RR2-Thrl
and DAL-Thrl. Quite analogous results are obtained for all other proposed policies. Indeed, the
second highest utilizations (Figure 11) of the proposed schemes are always under 0.85 that is, the
second maximum utilizations are less than 0.85 with cumulative frequency or probability one. RR
is the only policy showing frequent overload situations for more than one server: its second highest
utilization is considerably below the other curves. In addition, the third highest utilizations (Figure
12) of the proposed schemes are around or below the average utilization 0.667. This result also
confirms that focusing on the most loaded WS, instead of looking at the entire system unbalance,
is a good metric to evaluate and compare the performance of DNS scheduling algorithms.

Figure 13 summarizes the performance of the policies that achieved best results for various
scenarios of which only a part is shown in this paper. MRL-Thrl and RR2-Thrl can be considered
the best policies with slight differences depending on the scenario. DAL-Thrl is typically the
third. We give the following explanation for this order. Although DAL attempts to make a more
precise estimation of the load than RR2, the estimate is too crude to improve WS assignments.
Recall that its load estimates are derived from average values of the hidden load weight that
may not be valid for specific instances. On the other hand, a policy such as MRL, that also uses
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information about the residual active requests, seems to perform slightly better in terms of reducing
the frequency of overload situations. Nevertheless, all these proposed policies considerably improve
the performance of the existing RR-DNS. The improvements achieved by these algorithms become
even more substantial when the DNS can control more requests through a reduction of the TTL
value. Figure 14 shows that their performance now gets closer to that of the ideal policy.

5.4 Sensitivity of DNS scheduling algorithms

We now evaluate the sensitivity of the best performing policies to various system parameters. The
performance metrics used is the 96th percentile of the cumulative frequency of the highest utilized
WS. In other words, the y-axis reports the probability that no server of the distributed Web-server
system is overloaded (i.e. more than 96% utilized).

In Figure 15 we examine the sensitivity to the TTL that is, the period during which the name
servers cache a name-to-address mapping. The ordering of the policies by performance is essentially
the same, with change in the T'TL value. The strategies with asynchronous alarms show similar
results that are considerably better than the RR-DNS policy across the range of reasonable TTL
values. The percentage of requests controlled by the DNS decreases very rapidly as the TTL
increases. However, as already observed in Section 2, we cannot solve the problem of limited DNS
control by choosing a TTL value close to 0. First of all, this would cause the DNS to become a
bottleneck and increase the number of messages in the network. Moreover, in order to reduce this
traffic, most name servers set their own TTL values if the DNS proposed value is considered too
low.
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Figure 15: Sensitivity to the caching period (TTL) of a name-to-address mapping.

We now examine the sensitivity of the results to the distribution of clients among the domains.
Figure 16 shows the sensitivity of the proposed policies to the mean number of connected domains,
while the number of clients is fixed at 1500. This figure shows that there is a slight improvement
for an increasing number of LGs. For the RR2-Thrl and MRL-Thrl policies, the probability that
no server is overloaded is around 90% for more than 40 domains. The DAL policy has slightly
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worse performance; however, the probability that no server is overloaded remains over 0.8 for more
than 40 domains, which is significantly better than the 0.68 value achieved for the default value
(20) of the number of domains. The RR-DNS policy, by comparison, improves marginally with an
increasing number of LGs, but remains much worse than the proposed policies.

Another interesting aspect is the sensitivity of the scheduling policies to the percentage of
requests coming from singleton domains as shown in Figure 17, where a singleton domain consists
of only one client. We added to the system a sizable number of singletons to model a situation which
is not provided by the long tail of the pure Zipf distribution. Indeed, the clients of the singleton
domains rarely find in the cache of their LNS a valid name-to-address mapping. Therefore, they
are forced to send their address resolution requests to the DNS, unless they find a valid one cached
in some INS. Although each of these clients generates a small fraction of the workload on the
Web-server system, considering more singleton domains increases the control of the DNS on the
requests. This explains the better performance shown by all the proposed scheduling strategies
when the percentage of requests coming from singleton domains increases. Note however, that
the ordering between the policies stays the same as the percentage of singletons is varied. The
RR-DNS policy actually has worse performance, as the percentage of singleton domains increases;
an explanation for this behavior is that, in a round of the RR-DNS policy, requests from singleton
domains can lead to very small loads on the server assigned to them, while a high load can result
from nodes assigned to larger domains, giving rise to a larger variance in the load allocated per
round.
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In the last set of experiments we evaluate the impact of the distribution of client requests on
the performance of the best three scheduling policies. Figures 18, 19 and 20 refer to the RR2-Thrl,
DAL-Thrl and MRL-Thrl policies, respectively. As shown in these figures, the performance under
the geometric distribution (with p = 0.3) is similar to that under the pure-Zipf distribution.

In addition, these figures show how the results improve as the client distribution resembles
the uniform distribution and the skew reduces. In particular, the DAL-Thrl and MRL-Thrl are
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very close to the DNS full control curve even for Zipf with x = 0.5, while the RR2-Thr1 shows a
somewhat smaller improvement when the client skew diminishes.

For a direct comparison of the three best policies under distributions different from the pure
Zipf (already observed in Figure 13), Figure 21 shows the performance under geometric and Zipf
distribution with parameter p = 0.3 and x = 0.5, respectively. For a geometric distribution, the
relative order of these three policies remains unchanged with respect to a pure Zipf that is, MRL-
Thrl and RR2-Thrl perform similarly and both better than DAL-Thrl. The relative order changes
for a distribution with a lower skew, such as the Zipf with £ = 0.5. Although all policies improve
considerably to the extent that the Web-server system can be considered never overloaded, the
RR2-Thrl becomes the worst, which is consistent with the results shown in Figure 18.

Additional experiments (not shown due to space constraints) examined the sensitivity of the
scheduling policies to different load models that could even include applications such as multimedia
or electronic commerce. The common characteristics of these applications of Web servers is a likely
growth in the number requests per user session (e.g. due to intensive Internet shopping at a site)
and/or a longer service time that each hit requires at the server (possibly due to large multimedia
objects or database access). The results indicated that the RR2-Thrl, MRL-Thrl and DAL-Thrl
strategies are quite robust even for workloads that are very different from those considered earlier
in the paper. In particular, RR2-Thrl and MRL-Thrl perform slightly better than DAL-Thrl.
Analogous results are also obtained when increasing the mean inter-request time between hits.

We have shown in various scenarios that the performance of RR2-Thrl and MRL-Thrl is
comparable, while the DAL-Thr1 is slightly worse. However, for a fair comparison, we also have to
consider the implementation issues of these policies in an actual environment. The RR2-Thrl policy
has various merits: good and stable performance, easy implementation, and very low computational
and communications overhead. Conversely, the modeling assumptions and hence results are more
favorable than reality to algorithms such as LPPU, DAL and MRL. For example, the strategies
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Figure 20: Sensitivity to geometric and various Zipf Figure 21: Comparison of Zipf (z = 0.5) with geomet-
distributions of clients (MRL-Thr! policy). ric distribution of clients.

with periodic messages from the servers here do not experience the random delays that would
occur in the real network. Moreover, the algorithms that use the number of subsequent requests
per name-to-address resolution (DAL) or the mean session time (MRL) in their load calculation
could not estimate these parameters as accurately as in the simulation model, where the client
parameters are obtained from theoretical distributions. In an actual environment, the analogous
accuracy could be achieved only through frequent information exchanges from WSs to DNS. And
this will increase the communications overhead of DAL and MRL policies.

6 Conclusions

In this paper, we adapted traditional scheduling algorithms to the Domain Name Server (DNS),
proposed new policies, and examined their impact for various scenarios. The basic problem is
that, typically, only a very small fraction of the client requests are mapped to a specific WS by
the DNS, leading to little control by the DNS and consequent poor load balancing. With the
goal of improving the basic round-robin scheme used by the DNS of some distributed multi-node
Web servers, we considered three classes of algorithms that, through the use of additional state
information, attempt to minimize the overloading situations of the Web servers. The first class
uses the source domain of the clients in selecting the WS. This class of algorithms also estimates
the number of subsequent client requests from each source following a name-to-address mapping,
referred to as the hidden load weight. These algorithms attempt to prevent popular gateways
from overloading specific WS nodes. The second class of algorithms uses load information on Web
servers. We distinguish asynchronous alarms, that simply indicate heavily load conditions at WS,
from detailed information on the WS load that require frequent message exchanges and cause more
communications overhead. Finally, the third class of algorithms combines domain and server load
information.
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Extensive simulation results show the advantage of the strategies that take into account the
domain of the requests and alarms from the servers. In particular, we found that classic algorithms
such as round-robin and least-loaded-server are not adequate because current server load is not the
best indicator of future server load due to the TTL effect. An initially unexpected result is that the
best performance is achieved by algorithms that use only limited state information on whether a
server is overloaded or not. On the other hand, detailed load information, especially the less recent
load information, do not appear useful, and can often lead to false estimation about the future
state. The most promising algorithms use asynchronous alarms (when the load at a WS crosses a
threshold) combined with an estimation of the hidden load weight coming from each domain. This
estimation can be simply used to partition the domains into two or more classes, with round-robin
scheduling in each class (RR2 policy) separately, or can be combined with other information from
Web servers such as the average session length to evaluate the residual load (MRL policy). All
these algorithms can lead to much better load balancing than RR-DNS, while RR2-Thrl is the
simplest to implement. Extension to case of heterogeneous servers is considered in [9].

We note that the DNS policies presented in this paper could be applied to the recent work on
Universal Resource Names URN [12]. This is a topic of further work.

References

[1] D. Andresen, T. Yang, V. Holmedahl, O.H. Ibarra, “SWEB: Toward a scalable World Wide Web server
on multicomputers”, Proc. of 10th Int. Symp. on Parallel Processing (IPPS’96), Honolulu, pp. 850-856,
April 1996.

[2] M.F. Arli, C.L. Williamson, “Web server workload characterization: The search for invariants”, Proc.
of ACM Sigmetrics ’96, Philadelphia, pp. 126-137, May 1996.

[3] M. Baentsch, L. Baum, G. Molter, “Enhancing the Web’s infrastructure: From caching to replication”,
IEEE Internet Computing, vol. 1, no. 2, pp. 18-27, Mar.-Apr. 1997.

[4] A. Bestavros, “WWW traffic reduction and load balancing through server-based caching”, IEEE Con-
currency, vol. 5, no. 1, pp. 56-67, Jan.-Mar. 1997.

[5] H.-W. Braun, K.C. Claffy, “Web traffic characterization: an assessment of the impact of caching doc-
uments from NCSA’s Web server”, Computer Networks and ISDN Systems, vol. 28, pp. 37-51, 1995.

[6] V. Cardellini, M. Colajanni, P.S Yu, “Efficient state estimators for load control policies in scalable Web
server clusters”, Proc. of 22nd IEEE Int. Computer Software and Application Conference (COMP-
SAC’98), Vienna, Austria, Aug. 1998.

[7] T.L. Casavant, J.G. Kuhl, “A taxonomy of scheduling in general-purpose distributed computing sys-
tems”, IEEE Trans. Software Engineering, vol. 14, no. 2, pp. 141-154, Feb. 1988.

[8] K.C. Claffy, H-W. Braun, G.C. Polyzos, “Tracking long-term growth of the NSFNET”, Communica-
tions of the ACM, vol. 37, no. 8, pp. 34-45, Aug. 1994.

[9] M. Colajanni, P.S. Yu, V. Cardelliini, “Dynamic load balancing in geographically distributed het-
erogeneous Web servers”, Proc. of 18th Intl. Conf. on Distributed Computing Systems, Amsterdam,
Netherland, May 1998.

26



[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

M. Crovella, A. Bestavros, “Self-similarity in World Wide Web traffic: Evidence and possible causes”,
IEEE/ACM Trans. on Networking, vol. 5 no. 6, pp. 835-846, Dec. 1997.

C. Cunha, A. Bestavros, M. Crovella, “Characteristics of WWW client-based traces”, Tech. Rep. BU-
(CS-95-010, Boston University, Computer Science Dept., April 1995.

R. Daniel, M. Mealling, “Resolution of Uniform Resource Identifiers using the Domain Name System”,
Internet Draft draft-ietf-urn-naptr-05.txt, May 1997 (see also: http://www.acl.lanl.gov/URN/).

D.M. Dias, W. Kish, R. Mukherjee, R. Tewari, “A scalable and highly available Web server”, Proc. of
41st IEEE Computer Society Int. Conf. (COMPCON’96), Technologies for the Information Superhigh-
way, pp- 8592, Feb. 1996.

D.L. Eager, E.D. Lazowska, J. Zahorjan, “Adaptive load sharing in homogeneous distributed systems”,
IEEE Trans. Software Engineering, vol. SE-12, no. 5, pp. 662—675, May 1986.

P. Krueger, N. G. Shivaratri, “Adaptive location policies for global scheduling”, IEEE Trans. Software
Engineering, vol. 20, no. 6, pp. 432-444, June 1994.

T.T. Kwan, R. McGrath, D.A. Reed, “NCSA’s World Wide Web server: Design and performance”,
IEEE Computer, vol. 28, no. 11, pp. 6874, Nov. 1995.

Y .-H. Liu, P. Dantzig, C.E. Wu, J. Challenger, L.M. Ni, “A distributed Web server and its performance
analysis on multiple platforms”, Proc. of 16th Int. Conf. on Distributed Computing Systems (ICDCS’96),
Hong Kong, pp. 665-672, May 1996.

R. McGrath, “What we do and don’t know about the load on the NCSA WWW server”,
http://www.ncsa.uiuc.edu/InformationServers/Colloquia/28.Sep.94, Sept. 1994.

J. Pitkow, “In search of reliable usage data on the WWW?” | Proc. of 6th Int. World Wide Web Con-
ference, Santa, Clara, CA, Apr. 1997.

K. Ramamritham, J.A. Stankovic, W. Zhao, “Distributed scheduling of tasks with deadlines and re-
source requirements”, IEEE Trans. on Computers, vol. C-38, no. 8, pp. 1110-1123, Aug. 1989.

H. Schulzrinne, “World Wide Web: Whence, Whither, What next?”, IEEE Network, pp. 10-17, Mar.-
Apr. 1996.

H. Schwetman, CSIM17-User’s Guide, Mosquite Software Inc., 1994.

K. G. Shin and Y.-C. Chang, “Load Sharing in distributed real-time systems with state-change broad-
casts”, IEEE Trans. Computers, vol. 38, no. 8, pp. 1124-1142, Aug. 1989.

J.A. Stankovic, “Simulations of three adaptive, decentralized controlled, job scheduling algorithms”,
Computer Networks, vol. 8, no. 3, pp. 199-217, June 1984.

Y.T. Wang, R.J.T. Morris, “Load sharing in distributed systems”, IEEE Trans. on Computers, vol.
C-34, no. 3, pp- 204217, Mar. 1985.

G.K. Zipf, Human Behaviour and the Principles of Least Effort, Addison-Wesley, Cambridge, MA,
1949.

27



