Dynamic Load Balancing in Geographically Distributed

Heterogeneous Web Servers®

Michele Colajannif

Dip. di Informatica, Sistemi e Produzione

Universita di Roma — Tor Vergata

Roma, Italy 00133

colajanni@uniroma?2.it

Philip S. Yu
IBM Research Division
T.J. Watson Research Center
Yorktown Heights, NY 10598

psyu@us.ibm.com

Valeria Cardellini

Dip. di Informatica, Sistemi e Produzione

Universita di Roma — Tor Vergata
Roma, Italy 00133

Abstract

With ever increasing Web traffic, a distributed
multi-server Web site can provide scalability and flex-
ibility to cope with growing client demands. Load bal-
ancing algorithms to spread the requests across multi-
ple Web servers are crucial to achieve the scalability.
Various domain name server (DNS) based schedulers
have been proposed in the literature, mainly for mul-
tiple homogeneous servers. The presence of heteroge-
neous Web servers not only increases the complexity
of the DNS scheduling problem, but also makes previ-
ously proposed algorithms for homogeneous distributed
systems not directly applicable. This leads us to pro-
pose mew policies, called adaptive TTL algorithms,
that take into account of both the uneven distribution
of client request rates and heterogeneity of Web servers
to adaptively set the time-to-live (TTL) value for each
address mapping request. Extensive simulation results
show that these strategies are robust and effective in
balancing load among geographically distributed het-
erogeneous Web servers.

*©1998 IEEE. Published in the Proceedings of IEEE 18th
Int. Conf. on Distributed Computing Systems (ICDCS’98),at
Amsterdam, The Netherlands, pp. 295-302, May 1998. Per-
sonal use of this material is permitted. However, permission to
reprint/republish this material for advertising or promotional
purposes or for creating new collective works for resale or redis-
tribution to servers or lists, or to reuse any copyrighted com-
ponent of this work in other works, must be obtained from the
IEEE. Contact: Manager, Copyrights and Permissions / IEEE
Service Center / 445 Hoes Lane / P.O. Box 1331 / Piscataway,
NJ 08855-1331, USA. Telephone: + Intl. 732-562-3966.

fSupported by the Ttalian Ministry of University and Scien-
tific Research in the framework of the project High Performance
Systems for Distributed Applications.

1 Introduction

With the explosive growth of the World-Wide Web
(WWW), the traffic on the popular Web sites is in-
creasing rapidly. The Web servers often need to be
based on a distributed or parallel architecture while
preserving a virtual single interface. Some load bal-
ancing mechanisms are required to spread the request
load among the multiple server nodes. The effec-
tiveness of the load balancing mechanism is critical
in determining the scalability of a Web site. In the
WWW environment, each client request includes a
Uniform Resource Locator (URL) name to identify the
requested resource. The mapping of a URL name into
the IP address of a Web server can be done through
a separate address mapping request to the Domain
Name Server (DNS). This makes DNS an ideal place
to explore load balancing mechanism via address map-
ping to return the best candidate server location for
retrieving a document [6, 4]. Examples of multiple
Web servers using DNS routing are the NCSA HTTP-
server [6] and the SWEB server [1].

To reduce the address request traffic, caching of the
address mapping is typically done at Name Servers
(NS) and also at the clients. A time-to-live (TTL)
is decided by the DNS for each mapping such that
address requests made within the specified TTL are
resolved by the NS. However, this address caching
mechanism only allows the DNS to directly route a
very few percentage of the requests to the Web servers.
This makes the DNS an atypical centralized scheduler,
and opens entirely new problems because a central-
ized scheduler of traditional parallel/distributed sys-

tems has generally full control on the job requests.

In [4], the load balancing issue is examined for a
distributed Web site consisting of multiple homoge-
neous servers. Here we examine dynamic load bal-
ancing among heterogeneous Web servers. The het-
erogeneity assumption, which is much more likely in a
geographically distributed environment, introduces an
additional degree of complexity to the request schedul-
ing problem in distributed Web sites and strongly af-
fects the applicability of the previously proposed load
balancing algorithms for homogeneous systems. Other
static and dynamic scheduling policies for heteroge-
neous parallel systems which are proposed in [7] can-
not be used because of the peculiarities of the DNS
scheduler. In this paper, a new class of algorithms
is devised and evaluated to provide better load bal-
ancing among distributed heterogeneous Web servers.
Our performance results show that the approach of
adaptively setting the TTL value based on the client
request rate and/or the server capacity can dramat-
ically reduce system imbalance even in a highly het-
erogeneous Web site. The adaptive TTL schemes show
high robustness on performance even in the presence
of non-cooperative NS in setting the TTL value and
inaccurate estimate of system state information which
any DNS scheduler may inevitably encounter.

The paper is organized as follows. Section 2
presents a general model for heterogeneous distributed
Web sites and focuses on the issues that this system
introduces on the DNS scheduling problem. Section 3
presents the new class of adaptive TTL algorithms in
deterministic and probabilistic form. Section 4 de-
scribes the model parameters and the performance
metrics that are of interest for this paper. Section 5
presents the simulation results for a wide set of system
configurations and scenarios.

2 System Model and DNS Scheduling
Problem

We assume the model of a Web site consisting of N
servers and a primary DNS that can translate a URL
name into the IP-address of one of the Web servers.
The set of {51, ..., SNy} heterogeneous servers is num-
bered in decreasing processing capacity. Each server
may consist of single or multiple processors, have a dif-
ferent architecture and disk speed. However, we only
address heterogeneity through the notion that each
server may have a different capacity to satisfy client
requests. In particular, each server S; is characterized
by an absolute capacity C; that is expressed as the
number of requests per second it can handle, and a rel-
ative capacity & = C;/C} that is, the ratio between its
capacity and the capacity of the most powerful server

among them. The requests come from client domains
that have a (set of) local name server(s) and are con-
nected to the network through local gateways such as
firewalls or SOCKS servers.

Web sites that use a DNS scheduler for load balanc-
ing generally take the round-robin (RR) algorithm to
map different client requests to the servers [6]. How-
ever, as a result of address caching, a large number
of the subsequent client requests from a particular do-
main are mapped to the same server during the TTL
period. This can lead to load imbalance among the
servers, as quantified in [5]. In [4], it was found that
RR works well only under the unrealistic hypothesis
that all domains have the same client request rate.
Conversely, if one ranks the popularity of domains by
the frequency of their accesses to the Web site, the
client request rate has a long-tail distribution. An
analysis on academic and commercial Web sites shows
that in average 756% of the client requests come from
only 10% of the domains [2]. For this reason, we as-
sume that clients are partitioned among the domains
based on a Zipf’s distribution that is, a distribution
where the probability of selecting the i-th domain is
proportional to 1/i(!~®) [g].

One important consideration in dealing with the
problem of nonuniform distribution of requests and
limited control of the DNS is the kind of informa-
tion that is needed by the scheduler. For homoge-
neous servers in [4], it was found that the following
actions improved performance: estimating the aver-
age request rate of each connected domain; identify-
ing the source domain of the client requests in mak-
ing scheduling decision; identifying critically loaded
servers and temporarily excluding them from schedul-
ing consideration. In this paper, we explore strategies
that exploit these kinds of information.

The first goal is to estimate the average number
of client requests from each domain during a TTL
interval. This value, referred to as the hidden load
weight since it is invisible to the DNS, denotes the
average number of requests issued from each domain
to a server after an address mapping decided by the
DNS. Various scheduling algorithms that take into ac-
count of hidden load weight and source domain ad-
dress of requests have been proposed and evaluated in
[4] for a homogeneous distributed server environment,
e.g. minimum dynamically accumulated load (DAL),
minimum residual load (MRL), two-tier Round-Robin
(RR2). In this paper, we focus on applying the adap-
tive TTL concept to the two-tier Round-Robin (RR2)
policy that generally gives satisfactory result in ho-
mogeneous systems, and is most adaptable to hetero-

geneous distributed systems. The RR2 is based on
the following simple concept. Since the clients are
unevenly distributed among the domains, the hidden
load weight of each domain is typically very differ-
ent. Therefore, this policy assumes a partition of the
domains into two classes: normal domains, and hot
domains. A class threshold x is introduced such that
each domain with a relative hidden load weight greater
than yx is included in the hot class. For each address
request, RR2 first determines the class of the source
domain and then selects the next server in round-robin
order following the server scheduled for the last re-
quest in that class. The objective is to reduce the
probability that requests from the hot domains are
assigned too frequently to the same server.

Even in a homogeneous server environment, it is
hard for the DNS to estimate the relative load condi-
tion at each of the Web servers based on its previous
scheduling history. The hidden load weight is only
an estimate of the potential impact of each scheduling
decision, while the number of requests implied by the
hidden load spread over a period of time. Therefore,
to be sure that the server chosen by the DNS is not too
busy, it is useful to use a simple asynchronous feedback
mechanism that monitors the actual load condition on
the servers. Each server periodically calculates its uti-
lization and checks whether it has exceeded a given
alarm threshold 9. When this occurs, the server sends
an alarm signal to the DNS, while a normal signal is
sent when its utilization level returns below the thresh-
old. We assume that all of scheduling algorithms to be
discussed next use this type of asynchronous feedback
mechanism and consider a server as a candidate for
receiving requests only if that server has not declared
critically loaded.

3 DNS Scheduling Algorithms

Straightforward modification of the policies for a
homogeneous multi-server Web site [4] is inadequate
to handle both system heterogeneity and nonuniform
client distribution as will be in part shown later in Fig-
ure 3. Various experiments (not reported due to space
limits) showed that other proposed policies are not
adaptable to a heterogeneous environment and hence
not pursued further in this study. These results moti-
vated the search for an alternative approach. Looking
at DNS activities, we observe that when an address re-
quest reaches the DNS, the scheduler returns not only
the IP address of the chosen Web server but also the
period (TTL interval) during which this address map-
ping is valid. Hence, the proposed class of scheduling
algorithms explores the idea of adaptively adjusting
the TTL value to facilitate load balancing. The goal

is not to simply reduce the TTL value in order to give
more control to the DNS. Using a TTL value close to
0 would give full control to the DNS. However, very
small TTL values are typically ignored at NS to avoid
overloading the network with name resolution traffic.
Another important reason is that a naive reduction
of TTL value does not reduce the load skew due to
unevenly distributed client request rates.

The basic idea here is to assign to each address re-
quest a different TTL value by taking into account
not only the data request rate of the source domain
originating the request, but also the capacity of the
server chosen by the DNS. By properly selecting the
TTL value for each address request, we can reduce
the load skews that are the main cause of overloading,
especially in a heterogeneous system. The objective
of the proposed approach is to even out the impact
of the subsequent requests during the TTL interval
on each server. More specifically, we want the subse-
quent requests from each domain to consume similar
amount of server utilization or percentage of server
capacity. This can address both server heterogeneity
and nonuniform client rates. The new class of schedul-
ing disciplines that use this approach is called adaptive
TTL. We combine the adaptive TTL concept with the
basic RR algorithm and its RR2 variant. Furthermore,
we consider the deterministic and probabilistic versions
of these algorithms for the selection of the Web server.

3.1 Probabilistic Algorithms

RR and RR2 policies can be straightforwardly ex-
tended to a heterogeneous Web site through the ad-
dition of some probabilistic routing features. The ba-
sic idea is to make the round-robin type assignment
probabilistic based upon the server capacity. For this
purpose, we generate a random number v (0 <y < 1)
and, under the assumption that S;_; was the last cho-
sen server, we assign the new requests to S; only if
v < &;. Otherwise, we skip the server S; and consider
Si+1 repeating the same process. This straightforward
modification allows RR and RR2 to schedule the re-
quests taking into account of the various server capac-
ities. The probabilistic versions of these algorithms
are denoted by PRR and PRR2, respectively.

Once the server has been selected, the TTL value
is assigned based on the domain of the request. This
method assumes that the hidden load weight of each
domain can be dynamically estimated. This can be
done by having the servers keep track of the num-
ber of incoming requests from each domain and the
DNS periodically collect the information and calcu-
late the client request rate from each domain. In its
most generic form, we denote by TTL/i the policy

that partitions the domains into i classes based on the
hidden load weight and assigns a different TTL value
to address requests arriving from a different domain
class. TTL/i is a meta-algorithm that includes var-
ious strategies. For ¢ = 1, we obtain a degenerate
policy (TTL/1) that uses the same TTL for any do-
main, hence not an adaptive TTL algorithm; for ¢ = 2,
we have the policy (TTL/2) that partitions the source
domains into normal and hot domains, and chooses a
high TTL for requests coming from normal domains,
and a low TTL for requests coming from hot domains.
Analogously, for i = 3, we have a strategy that uses
a three-tier partition of the domains, and so on, until
i = K that denotes the algorithm (TTL/K) that uses
a different TTL for each domain. For TTL/K poli-
cies, let TTL; denote the TTL value chosen for the
requests from the j-th domain,

. _ AmaeITL
TTL; = AmeeTTL

where TTL is the minimum TTL value used by the
DNS, A; and Ayq, are the relative hidden load weights
of the j-th domain and the most popular domain, re-
spectively.

3.2 Deterministic Algorithms

The server selection is done through the traditional
RR or RR2 policy. Unlike probabilistic disciplines,
deterministic algorithms take into account of both
nonuniform request rates and server heterogeneity on
setting the TTL. The approach is similar to that de-
scribed for the probabilistic disciplines. However, the
TTL value is now chosen by considering the server
capacity as well. For the generic TTL/S.i policy, we
partition the domains into ¢ classes, and estimate the
average hidden load weight for each class. The TTL
for each class and server is set inversely proportional to
the class weight while proportional to the server capac-
ity. The deterministic TTL/S_1 algorithm is a degen-
erate case that considers server heterogeneity only and
ignores the domain of client requests. The TTL/S_2
policy uses two TTL values for each server depending
on the source domain of the requests, i.e. normal or
hot domain. The TTL/S K algorithm selects a TTL
value for each server and domain combination. Specif-
ically, let TTL;; be the TTL chosen for the requests
from the j-th domain to the i-th server,

TTL;; = W&n
where n = C;/Cy is the processor power ratio that
measures the degree of heterogeneity of the distributed
Web architecture [7].

Similarly to probabilistic disciplines, we denote by
DRR and DRR2 the traditional RR and RR2 policies
when applied in combination with adaptive TTL val-

ues. Note that DRR-TTL/S_1 (respectively, DRR2-
TTL/S-1) uses a different TTL value for each server
capacity, whereas PRR-TTL/1 (respectively, PRR2-
TTL/1) uses a single constant TTL.

4 Performance Analysis
4.1 System parameters

The focus of our study on the Web site throughput
allows us to avoid the details of the network architec-
ture and the Internet traffic. On the other hand, we
model various details of a client session characterized
by one address resolution, and several data retrievals.
The client obtains through the DNS scheduler or some
(client’s or NS’s) cache a mapping to one of the servers.
Since the Web site consists of servers with identical in-
formation, the requests can be assigned to any of the
servers. Once the client has been connected to the
server, the client is modeled to submit multiple page
requests. Each of them actually consists of a burst of
requests (hits) representing the HTML page and the
objects contained in it. The number of hits per page
are obtained from a uniform distribution in the dis-
crete interval (5—15). The number of page requests
per session and the time between two page requests
from the same client (mean think time) are assumed
to be exponentially distributed [2].

The parameters to be considered in our simulations
fall under five categories. They are presented in Table
1 with their default values shown between parenthe-
ses. We assume that clients are partitioned among
the K domains on a pure Zipf’s distribution basis [8].
We use the maximum difference between the relative
server capacities to denote the four levels of server het-
erogeneity considered in the study. Assuming N =7,
the relative server capacities {£}s} are given in Table 2
for the four cases. To allow a fair comparison among
the performance of these systems, we keep constant
the total system capacity (1500 hits per second) and
the average system utilization (2/3 of the total capac-
ity).

The parameters for the scheduling algorithms are
chosen as follows. Each server calculates its utiliza-
tion every 8 seconds, and sends an alarm signal to
the DNS if this value has exceeded the alarm thresh-
old 9. Moreover, the constant TTL and probabilistic
TTL/1 algorithms use a single TTL value of 240 sec-
onds. Since an arbitrary choice of TTL would lead
to unfair performance comparisons, for each adaptive
TTL policy we have chosen the TTL values in such
a way that their average address request rates remain
the same.

The simulators were implemented using the CSIM
package. Each simulation run is made up of five hours

| Category | Parameter | Setting (default) |
Domain Connected K=10-100 (20)
Clients per domain pure Zipf’s
Client Total number 1500
Mean think time 10-30 sec (15)
Request Requests per session | 20 pages
Hits per request (5-15)
Web site Servers N=5-7 (7)
Total capacity 1500 hits/sec
Heterogeneity 0-65%
Average utilization 0.6667
Algorithm | Utilization interval 8 sec
Alarm threshold 9 =0.75
Class threshold x =1/K
Constant TTL 240 sec

Table 1: Parameters of the system model

Heterogeneity Level | Relative Server Capacities (&;) |

20% {1,1,1,0.8,0.8,0.8,0.8}
35% {1,1,0.8,0.8, 0.65, 0.65, 0.65}
50% {1,1,0.8,0.8,0.5,0.5,0.5}
65% {1,1,0.8,0.8,0.35, 0.35, 0.35}

Table 2: Parameters of the heterogeneity levels

of the Web site activities. Confidence intervals were
estimated, and the 95% confidence interval was ob-
served to be within 4% of the mean.

4.2 Performance metrics

The main goal of this study is to investigate the
impact of the DNS scheduling algorithms on avoiding
that any server becomes overloaded. For this reason,
we do not adopt traditional metrics such as the stan-
dard deviation of server utilizations. Here, the perfor-
mance of the various policies is evaluated through the
maximum server utilization observed during the sim-
ulation run. The main performance metric reported is
the cumulative frequency of the maximum utilization
among the servers (Maxz Utilization), i.e. we present
for each level of utilization the probability (or frac-
tion of time) that all server utilizations stay within
that level. This metric provides an indication on the
relative frequency of overloading. For example, if the
probability of all servers less than 80% utilized is 0.75,
it implies that the probability of at least one server ex-
ceeding 80% utilized is 0.25.

We report a different metric when we evaluate the
performance of the algorithms as a function of system
parameters, such as server heterogeneity and number
of domains. In these graphs, we show the 98 per-
centile of the maximum server utilization that is, the
Prob(MazUtilization < 0.98).

5 Performance Results
5.1 Adaptive TTL schemes

The first set of simulation results evaluate how sys-
tem heterogeneity affects the performance of the al-
gorithms that use adaptive TTL policies. Figure 1
compares various deterministic algorithms for a low
level of system heterogeneity (20%). In this figure,
we also report the ideal case that is, the PRR pol-
icy applied under uniform distribution of client re-
quests. The conventional RR policy used in [1, 6]
represents the lower-bound case. The y-axis is the
cumulative probability of the maximum server utiliza-
tion reported on the z-axis. The higher the proba-
bility the less likely that some of the servers will be
overloaded, hence better load sharing is achieved. For
example, under the DRR2-TTL/S_K policy, the prob-
ability of having maximum utilizations less than 0.9
is 0.94. For RR, this probability is only around 0.1.
That is to say for RR, 90% of the time at least one
of the servers is above 90% utilization, while under
DRR2-TTL/S_K, this reduces to only 6% of the time.
However, taking only into account of server hetero-
geneity in setting the TTL value, as done by deter-
ministic TTL/S_1 schemes, does not improve perfor-
mance much with respect to RR. The probability of
having maximum utilization less than 0.9 is still less
than 0.35. Conversely, all schemes that address both
client skew and server heterogeneity perform signifi-
cantly better than TTL/S_1 policies. In particular,
the strategies that use a different TTL for each server
and domain combination, namely DRR-TTL/S K and
DRR2-TTL/S_K, have results close to the envelope
curve of the ideal case. RR and RR2-based strategies
have similar performance, even if the latter are always
better than the former policies. (Note that the differ-
ence is more significant for homogeneous servers with
constant TTL as reported in [4].)

Analogous results are achieved by the probabilistic
schemes that combine adaptive TTL to handle nonuni-
form client distribution and probabilistic routing to
address system heterogeneity. Figure 2 shows the cu-
mulative probability of their maximum server utiliza-
tion for a heterogeneity level of 35%. The relative
order among the strategies remains the same as in
Figure 1. Generally speaking, the RR2-based poli-
cies are slightly better than the RR-based strategies.
Moreover, even the PRR-TTL/2 strategy performs
consistently better than the PRR-TTL/1 algorithm
that simply generalizes the conventional RR scheme to
heterogeneous servers. This demonstrates that prob-
abilistic routing alone cannot handle the nonuniform
client distribution.

DRR2-TTL/S K ©—
DRR-TTL/S K >— Al
0.8 DRR2-TTL/S 2 £3- Yyl
DRR-TTL/S 2 - S
DRR2-TTL/S 1 A~ S
5 DRR-TTL/S_1 3~ /i
g RR—=- a@
§— 0.6 A
g v
© "y I
2 e / !
= e |
E] 0.4
§ ,";‘/ ,/'/ ,/‘
* /
/
0.2 v J/
/ Ve
05 06 0o

Figure 1: Deterministic algorithms (Het. 20%)

Figure 3 analyzes the sensitivity of the determinis-
tic and probabilistic RR2-based policies to the system
heterogeneity that varies from 20% to 65%. Moreover,
to demonstrate that other schemes proposed for homo-
geneous Web servers [4] are not applicable to a hetero-
geneous system, this figure shows also the performance
of the DAL policy (in a version that takes into account
the different capacity of the servers). Now, the y-axis
is the probability that the maximum server utilization
is less than 0.98, while the z-axis denotes the level of
system heterogeneity. This figure shows that adaptive
TTL algorithms are relatively stable, i.e. their per-
formance does not vary much until the system hetero-
geneity exceeds 50%. After this level, especially the
TTL/2 and TTL/S_2 schemes do not perform very
well. Moreover, TTL/K and TTL/S_K are very ef-
fective in almost always avoiding overloading any of
the servers as the probability shown is so close to 1.
While achieving better performance, these algorithms
also display better stability compared to other adap-
tive schemes. Hereafter, we do not consider the disci-
plines with single TTL for each server (that is, proba-
bilistic TTL/1 and deterministic TTL/S_1 strategies),
because of their instability and poor performance.

The shown results and other experiments not re-
ported here due to space limitations lead to the fol-
lowing conclusions.

e Varying TTL as a function of server capacity and
domain request rate substantially improves the
performance of the DNS scheduling algorithms.
Adaptive TTL schemes achieve much better load
balancing than any constant TTL strategy. Es-
pecially TTL/K and TTL/S_K algorithms per-
form fine even when the system is highly heteroge-
neous and client requests are unevenly distributed
among domains. This result is somewhat surpris-

|dedl — &
PRR2-TTL/K -A-- % 1
PRR-TTL/K - s
0.8 PRR2-TTL/2 K- ol
PRR-TTL/2 5~ Ko
PRR2-TTL/1 - So
& PRR-TTL/1 £3- o 70 R
2 - F s I
S o] i X /o
g i Iy /7
s S X/ i
= ; g , m, i
: /
2 0.4 7 Pl
g é v |
K / 7 !
o / X/ /
7 Y /
E // /
0.2 S, /
X, J
e e
B — U T
05 06 0. 09

0.7 .
Max Utilization

Figure 2: Probabilistic algorithms (Het. 35%)

ing, as the DNS scheduler has direct control over
a very limited fraction of requests (the percentage
is often below 4%).

e Deterministic policies work typically better than
probabilistic schemes. However the difference is
not large and tend to diminish when the system
heterogeneity increases.

e Maintaining two-tier scheduling for differentiat-
ing requests from popular and normal domains
still yields positive effect on the performance. In-
deed, RR2-based strategies always perform better
than their RR-based counterpart.

0.6 T

DRR2-TTL/S K %—
PRR2-TTLIK &
05 . DRR2TTIL/S 2 3-
o PRR2-TTLI2 ¥—
T~ - DRR2-TTL/S 1 A-
-~ “ PRR2-TTLIL -
DAL -0~

Prob(maxUtilization<0.98)

0.+ e
T RR —--
0.3 T o
0.2 T BN
b i) EY P EY)

Heterogeneity (max difference among server capacities %)
Figure 3: Sensitivity to system heterogeneity

5.2 Robustness of adaptive TTL schemes

We now examine the robustness of the adaptive
TTL schemes. Two specific aspects are considered.
One is on the impact of NS not following the recom-
mended TTL value. The other is on how sensitive
the performance is to the accuracy of the estimated

0.95

0.9
1

&g
&
o
T o8
S
g
g
S o8
=
£
5 O] DRR2TTLSK o
£ PRR2-TTLIK -4
07 DRR-TTL/S K <—
- PRR-TTLIK -+--
PRR2-TTL/2 ¥—

0.65

0.6

b P) & % 1bo 120
Minimum TTL (sec)

Figure 4: Sensitivity to minimum TTL (Het. 20%)

hidden load weight. The latter is less of an issue if
the load from each domain remains relatively stable
or changes slowly. However, in a more dynamic envi-
ronment where client request rates from the domains
may change constantly, it can be difficult to obtain an
accurate estimate.

Each NS caches the name-to-address mapping for
the TTL period or for a default value if the decided
TTL is considered too small. Since there does not exist
a common TTL lower bound which is accepted by all
NSs, in our study we consider the worst case scenarios,
where all NSs become non-cooperative if the proposed
TTL is lower than a given minimum threshold, and
perform sensitivity analysis against this threshold.

Figure 4 shows the sensitivity to the minimum TTL
threshold of the four TTL/K and TTL/S_K variants
and PRR2-TTL/2 algorithm for a system heterogene-
ity level of 20%. DRR2-TTL/S_K always performs
the best. Furthermore, PRR2-TTL/2 is very much in-
sensitive to the minimum accepted TTL. The advan-
tage from DRR2-TTL/S K reduces as the minimum
TTL value increases because this scheme may some-
times need to select a low TTL value when a client
request coming from a hot domain is assigned to a
server with limited capacity. Conversely, the PRR2-
TTL/2 strategy is almost not affected by the problem
of non-cooperative NS because it uses a rough parti-
tioning (i.e. two classes) of the domains and is able
to always assign TTL higher than 180 seconds in all
experiments.

Figure 5 considers the same set of policies in Fig-
ure 4 under a system heterogeneity level of 50%. Now,
DRR2-TTL/S K still provides the best performance,
if the minimum TTL threshold is less than 100 sec-
onds. Otherwise, PRR2-TTL/2 becomes the algo-
rithm that performs the best, while the PRR2-TTL/K

&g
>
o
Vv
=4
S
g
s
£
£

5 O] DRR2TTLSK o

£ PRR2-TTLIK -4

07 DRR-TTL/S K %—

- PRR-TTLIK -+--

PRR2-TTL/2 ¥—

0.65

b P) & % 1bo 20
Minimum TTL (sec)

Figure 5: Sensitivity to minimum TTL (Het. 50%)

strategy also performs better than DRR2-TTL/S_K
for rather high TTL threshold values.

Next we consider the issue of the accuracy of the
parameter estimation on domain loads. (Further work
on efficient parameter estimation can be found in [3].)
We examine how the maximum error in estimating
the domain load may affect the performance. Figures
6 and 7 compare some representative adaptive TTL
schemes as a function of the estimation error, when
the system heterogeneity is 20% and 50%, respectively.
In the experiment, we introduce a perturbation to the
request rate of each domain, while the DNS estimates
of the hidden load weight remain the same as before.
For the case of a 1% error, the request rate of the bus-
iest domain is increased by 9% and the request rates
of the other domains are proportionally decreased to
maintain the same total request rate. This effectively
increases the skew of the client rate distribution, hence
represents a worst case.

When the estimation error or load perturbation in-
creases, the system performance decreases in all eight
algorithms. However, all the TTL/K and TTL/S_K
schemes clustered on the top of the figure show much
less sensitivity than the TTL/2 and TTL/S_2 schemes
on the bottom. In particular, when the server hetero-
geneity is high (> 50%) and the error is large (> 30%),
the performance of TTL/2 and TTL/S_2 strategies
can degrade substantially. This is in contrast to the
TTL/K and TTL/S_K schemes which are only slightly
affected by the error in estimating the domain load.
When the system heterogeneity is less than 50%, per-
formance of these schemes degrades at most a few
percentage point, compared to the case with no es-
timation error. This shows the high robustness of the
TTL/K and TTL/S_K algorithms.

In summary, we found that when there is full con-

o8] - NS

Prob(maxUtilization<0.98)
/

DRR2-TTL/S K ©—
PRR2-TTL/K -A--
DRR-TTL/S K <—
PRR-TTL/K -+
DRR2-TTL/S 2 £3-
PRR2-TTL/2 X—
DRR-TTL/S 2 +-
PRR-TTL/2 ©—

05
b 5 h

0.6+

1
Estimation Error %

Figure 6: Sensitivity to error in estimating the domain
hidden load weight (Het. 20%)

064 DRR2TTL/S K %— *\\ T~ \&’\—\, >

g PRR2-TTL/K -&--- ~ ~~_ <

DRR-TTL/S K >%— ~ g Sl
PRR-TTL/K -+ ~ el ¥

05| DRR2TILIS 2 43- ~ ~~2

- PRR2-TTLT2 K— AN ~~o

DRR-TTL/S 2 ~+- Sl
PRR-TTL/2 ©— ~~o

) 5 h 5 £ % E)

Estimation Error %

Prob(maxUtilization<0.98)

Figure 7: Sensitivity to error in estimating the domain
hidden load weight (Het. 50%)

trol on the choice of the TTL values, DRR2-TTL/S_K
is the strategy of choice. Conversely, when there are
many non-cooperative name servers imposing their
own minimum TTL thresholds, DRR2-TTL/S K still
provides the best performance, if the system hetero-
geneity is low (less than 30%) and the accepted min-
imum TTL values are moderate (below 120 seconds).
Otherwise, if both the TTL threshold and system het-
erogeneity are high, a TTL/2 scheme typically per-
forms better. When the accepted TTL threshold is
high (more than 120 seconds) PRR2-TTL/K can pro-
vide better results than DRR2-TTL/S_K under high
system heterogeneity.

Finally, the adaptive schemes that assign a differ-
ent TTL value to each connected domain perform well
even in the case when the domain load cannot be
estimated accurately or the client request rates are
highly variable. This is especially the case for DRR2-
TTL/S K and PRR2-TTL/K.

6 Conclusions

Although geographically distributed multi-server
Web sites have the potential to greatly improve
throughput performance, their success critically de-
pends on load sharing algorithms to support scala-
bility. Many scheduling algorithms for conventional
parallel and distributed systems have previously been
proposed and analyzed. However, none of them can
be directly applied for dynamic load scheduling in dis-
tributed Web sites. The main problems are that the
DNS scheduler can only explicitly route a small frac-
tion of the requests, and these requests are unevenly
distributed among the domains. The problems are fur-
ther complicated when we consider a distributed Web
site consisting of heterogeneous servers with different
capacities.

We found that straightforward modification of
known scheduling strategies or those developed for the
homogeneous systems [4] gave unsatisfactory results.
In this paper, the new class of adaptive TTL strate-
gies is proposed. These schemes assign a different TTL
value to each address request by taking into account
the capacity of the selected server and/or the request
rate of the source domain of the request. Adaptive
TTL strategies show low computational complexity
and high robustness, and do not require many sys-
tem state information. Such characteristics make this
class of policies an ideal candidate for the Internet en-
vironment, which is subject to heterogeneous servers
with intrinsic high load skews and dynamic variations.

References

[1]

[2]

[4]

D. Andresen, T. Yang, V. Holmedahl, O.H.
Ibarra, “SWEB: Toward a scalable World Wide
Web server on multicomputers”, Proc. IPPS’96,
Honolulu, pp. 850-856, April 1996.

M.F. Arli, C.L. Williamson, “Web server work-
load characterization: The search for invariants”,
Proc. Sigmetrics ’96, Philadelphia, pp. 126-137,
May 1996.

V. Cardellini, M. Colajanni, P.S. Yu, “Efficient
state estimator for load control in scalable Web
server clusters”, IBM Research Report RC 21085,
Yorktown Heights, NY, 1998.

M. Colajanni, P.S. Yu, D.M. Dias, “Scheduling
algorithms for distributed Web servers”, Proc.
ICDCS’97, Baltimore, MD, May 1997, pp. 169-
176.

D.M. Dias, W. Kish, R. Mukherjee, R. Tewari, “A
scalable and highly available Web server”, Proc.
41st IEEE Computer Society Intl. Conf. (COM-
PCON 1996), Feb. 1996, pp. 85-92.

E.D. Katz, M. Butler, R. McGrath, “A scalable
HTTP server: the NCSA prototype”, Computer
Networks and ISDN Systems, v. 27,1994, pp. 155-
164.

D.A. Menascé, D. Saha, S.C. da Silva Porto,
V.AF. Almeida, S.K. Tripathi, “Static and dy-
namic processor scheduling disciplines in hetero-
geneous parallel architecture”, J. of Parallel and
Distributed Computing, v. 28, 1995, pp. 1-18.

G.K. Zipf, Human Behavior and the Principles
of Least Effort, Addison-Wesley, Reading, MA,
1949.

