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Abstract

Replication of information across multiple servers is becoming a common approach
to support popular Web sites. A distributed architecture with some mechanisms to
assign client requests to Web servers is more scalable than any centralized or mirrored
architecture. In this paper, we consider distributed systems in which the Authoritative
Domain Name Server (ADNS) of the Web site takes the request dispatcher role by
mapping the URL hostname into the IP address of a visible node that is, a Web
server or a Web cluster interface. This architecture can support local and geographical
distribution of the Web servers. However, the ADNS controls only a very small fraction
of the requests reaching the Web site because the address mapping is not requested for
each client access. Indeed, to reduce Internet traffic, address resolution is cached at
various name servers for a time-to-live (TTL) period. This opens an entirely new set of
problems that traditional centralized schedulers of parallel/distributed systems do not
have to face. The heterogeneity assumption on Web node capacity, which is much more
likely in practice, increases the order of complexity of the request assignment problem,
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and severely affects the applicability and performance of the existing load sharing
algorithms. We propose new assignment strategies, namely adaptive TTL schemes,
which tailor the TTL value for each address mapping, instead of using a fixed value
for all mapping requests. The adaptive TTL schemes are able to address both the
non-uniformity of client requests and the heterogeneous capacity of Web server nodes.
Extensive simulations show that the proposed algorithms are very effective in avoiding
node overload even for high levels of heterogeneity and limited ADNS control.
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1 Introduction

With ever increasing traffic demand on popular Web sites, a parallel or distributed archi-
tecture can provide transparent access to the users to preserve one logical interface, such
as www.site.org. System scalability and transparency require some internal mechanism
that automatically assigns client requests to the Web node that can offer the best service
[25, 17, 13, 6]. Besides performance improvement, dynamic request assignment allows the
Web server system to continue to provide information even after temporary or permanent

failures of some of the servers.

In this paper, we consider the Web server system as a collection of heterogeneous nodes,
each of them with a visible IP address. One node may consist of a single Web server or
multiple server machines behind the same network interface as in Web cluster systems. The
client request assignment decision is typically taken at the network Web switch level when the
client request reaches the Web site or at the Domain Name Server system (DNS) level during
the address lookup phase that is, when the URL hostname of the Web site is translated into
the IP address of one of the nodes of the Web server system [8]. Address mapping request
is handled by the Authoritative Domain Name Server (ADNS) of the Web site that can
therefore serve as request dispatcher. Original installations of locally distributed Web server
systems with DNS-based request assignment include NCSA HTTP-server [25], SWEB server
[4], Ibnamed [34], SunSCALR [36]. On a geographical scale, the Web site is typically built
upon a set of distributed Web clusters, where each cluster provides one IP visible address
to client applications. DNS-based dispatching mechanisms for geographically distributed
systems are implemented by several commercial products such as Cisco DistributedDirector
[11], Alteon WebSystems GSLB [3], Resonate’s Global Dispatcher [33], F5 Networks 3DNS
[19], HydraWeb Techs [23], Radware WSD [31], IBM Network Dispatcher [26], Foundry
Networks [21].

For the case of multiple Web servers at the same location (Web clusters), various Web
switch solutions are described in [12, 17, 22, 35, 29]. The Web switch has a full control on
the incoming requests. However, this approach is best suitable to a locally distributed Web
server system. Moreover, the Web switch can become the system bottleneck if the Web site
is subject to high request rates and there is one dispatching mechanism.

In this paper, we focus on DNS-based architectures that can scale from locally to geo-
graphically distributed Web server systems. The dispatching algorithms implemented at the
ADNS level have to address new challenging issues. The main problems for load sharing
come from the highly uneven distribution of the load among the client domains [5, 16] and
from Internet mechanisms for address caching that let the ADNS control only a very small



fraction, often on the order of a few percentage, of the requests reaching the Web site. The
ADNS specifies the period of validity of cached addresses. This value is referred to as the
time-to-live (TTL) interval and typically fixed to the same time for all address mapping
requests reaching the ADNS. Unlike the Web switch that has to manage all client requests
reaching the site, the limited control of ADNS prevents risks of bottleneck in DNS-based
distributed Web server systems. On the other hand, this feature creates a challenge to
ADNS-based global scheduling' algorithms and makes this subject quite different from exist-
ing literature on centralized schedulers of traditional parallel/distributed systems that have
almost full control on the job requests [18, 10, 32, 24]. The general view of this problem is
to find a mechanisms and algorithms that are able to stabilize the load in a system when
the control on arrivals is limited to a few percentage of the total load reaching the system.

Under realistic scenarios, in [13] it is shown that the application of classical dispatch-
ing algorithms, such as round-robin and least-loaded-server, to the ADNS often results in
overloaded Web nodes well before the saturation of the overall system capacity. Other dis-
patching policies that integrate some client information with feedback alarms from highly
loaded Web nodes achieve much better performance in a homogeneous Web server system.

The complexity of the ADNS assignment problem increases in the presence of Web nodes
with different capacities. Web systems with so called heterogeneous nodes are much more
likely to be found in practice. As a result of non-uniform distribution of the client requests
rates, limited control of the dispatcher and node heterogeneity, the ADNS has to take global
scheduling decisions under great uncertainties. This paper finds that a simple extension of
the algorithms for homogeneous Web server systems proposed in [13] does not perform well.
These policies show poor performance even at low levels of node heterogeneity. Other static
and dynamic global scheduling policies for heterogeneous parallel systems which are proposed
in [2, 27] cannot be used because of the peculiarities of the ADNS scheduling problem.

These qualitative observations and preliminary performance results convinced us that an
entirely new approach was necessary. In this paper, we propose and evaluate new ADNS
dispatching policies, called adaptive TTL algorithms. Unlike conventional ADNS algorithms
where a fixed TTL value is used for all address mapping requests, tailoring the TTL value
adaptively for each address request opens up a new dimension to perform load sharing.
Extensive simulation results show that these strategies are able to avoid overloading nodes
very effectively even for high levels of node heterogeneity. Adaptive TTL dispatching is a
simple mechanism that can be immediately used in an actual environment because it requires
no changes to existing Web protocols and applications, or other parts that are not under the
direct control of the Web site technical management. Because the installed base of hosts,

!Tn this paper we use the definition of global scheduling given in [10], and dispatching as its synonymous.



name servers, and user software is huge, we think that a realistic dispatching mechanism must
work without requiring modifications to existing protocols, address mechanisms, and widely
used network applications. Moreover, adaptive TTL algorithms have low computational
complexity, require a small amount of system information, and show robust performance
even in the presence of non-cooperative name servers and when information about the system
state is partial or inaccurate.

The outline of the paper is as follows. In Section 2, we provide a general description of
the environment. In Section 3, we focus on the new issues that a distributed Web server
system introduces on the ADNS global scheduling problem. We further examine the relevant
state information required to facilitate ADNS scheduling. In Section 4, we consider various
ADNS scheduling algorithms with constant TTL, while we propose the new class of adaptive
TTL algorithms in Section 5. In Section 6, we describe the model and parameters of the
heterogeneous distributed Web server systems for the performance study. Moreover, we
discuss the appropriate metrics to compare the performance of the algorithms. In Section
7, we present the performance results of the various algorithms for a wide set of scenarios.
In Section 8, we analyze the implications of the performance study and summarize the
characteristics of all proposed algorithms. Section 9 contains our concluding remarks.

2 Environment

In this paper, we consider the Web server system as a collection of {Si,..., Sy} heteroge-
neous nodes that are numbered in non-increasing order of processing capacity. Each node
may consist of a single server or a Web cluster, it may be based on single- or multi-processors
machines, have different disk speeds and various internal architectures. However, from our
point of view, we only address heterogeneity through the notion that each node may have
a different capacity to satisfy client requests. In particular, each node S; is characterized
by an absolute capacity C; that is expressed as hits per second it can satisfy, and a relative
capacity & which is the ratio between its capacity and the capacity of the most powerful
node in the Web server system that is, & = C;/C;. Moreover, we measure the heterogeneity
level of the distributed architecture by the maximum difference between the relative node
capacities that is, @« = & — &y. For example, if the absolute capacities of the nodes are
C1=150 hits/sec, Co=120 hits/sec, C3=100 hits/sec, C,=T75 hits/sec, the vector of relative
capacities is £ = {1,0.8,0.66,0.5}, and o = 0.5.

The Web site built upon this distributed Web server system is visible to users through
one logical hostname, such as www.site.org. However, IP addresses of the Web nodes (that
is, servers or clusters) are visible to client applications.



In operation, the WWW works as a client/server system where clients submit requests
for objects identified through the Uniform Resource Locator (URL) specified by the user.
Each URL consists of a hostname part and a document specification. The hostname is a
logical address that may refer to one or multiple IP addresses. In this paper, we consider
this latter instance, where each IP address is that of a node of the Web server system. The
hostname has to be resolved through an address mapping request that is managed by the
Domain Name Server System. The so called lookup phase may involve several name servers
and, in some instances, also the ADNS. Once the client has received the IP address of a
Web node, it can direct the document request to the selected node. The problem is that
only a small percentage of client requests actually needs the ADNS to handle the address
request. Indeed, on the path from clients to the ADNS, there are typically several name
servers, which can have a valid copy of the address mapping returned by the ADNS. When
this mapping is found in one of the name servers on this path and the TTL is not expired, the
address request is resolved bypassing the name resolution provided by the ADNS. Further,
Web browsers at the user side also cache some of the address mapping for a period of usually
15 minutes that is out the ADNS control.

The clients have a (set of) local name server(s) and are connected to the network through
local gateways such as firewalls or SOCKS servers. We will refer to the sub-network behind
these local gateways as domain.

3 DNS-based Web server system

In this section we first consider the various issues on DNS-based dispatching. We then
examine the state and configuration information that can be useful to ADNS and discuss
ways to obtain this information.

3.1 DNS global scheduling issues

The distributed Web server system uses one URL hostname to provide a single interface
for users. For each address request reaching the system, the ADNS returns a tuple (IP
address, TTL), where the first tuple entry is the IP address of one of the nodes in the Web
server system, and the second entry is the TTL period during which the name servers along
the path from the ADNS to the client cache the mapping. In addition to the role of TP
address resolver, the ADNS of a distributed Web server system can perform as a global
scheduler that distributes the requests based on some optimization criterion, such as load
balancing, minimization of the system response time, minimization of overloaded nodes,



client proximity.

We will first consider the scheduling issue on address mapping and delay the discussion
on TTL value selection until Section 5 which is the new approach introduced in this paper.

Existing ADNSes typically use DNS rotation or Round-Robin (RR) [1], least-loaded-
server [34] or proximity [11] algorithms to map requests to the nodes. We observed that
these policies show fine performance under (unrealistic) hypotheses that is, the ADNS has
almost full control on client requests and the clients are uniformly distributed among the
domains. Unfortunately, in the Web environment, the distribution of clients among the
domains is highly non-uniform [5] and the issue of the limited ADNS control cannot be
easily removed. Indeed, IP address caching at name servers for the TTL period limits the
control of the ADNS to a small fraction of the requests reaching the Web server system.
Although TTL values close to 0 would give more control to the ADNS, various reasons
prevent this solution. Besides the risks of causing bottleneck at the ADNS, very small TTL
values are typically ignored by the name servers in order to avoid overloading the network
with name resolution traffic. The ADNS assignment is a very coarse grain distribution of
the load among the Web nodes, because proximity does not take into account heavy load
fluctuations of Web workload that are amplified by the geographical context. Besides burst
arrivals and not uniform distribution among Internet domains of clients connected to the
Web site, world time zones are another cause of heterogeneous source arrivals. As we are
considering highly popular Web sites, if the ADNS selects the Web node only on the basis
of the best network proximity, it is highly probable that address resolution is found in the
caches of the intermediate name servers of the Internet Region, so that even less address
requests will reach the ADNS.

From the Web server system point of view, the combination of non-uniform load and
limited control can result in bursts of requests arriving from a domain to the same node
during the TTL period, thereby causing high load imbalance. The main challenge is to find
a realistic ADNS algorithm, with low computational complexity and fully compatible with
Web standards, that is able to address these issues and the heterogeneity of the Web nodes.

3.2 Relevant state and configuration information for DNS schedul-
ing

One important consideration in dealing with the ADNS scheduling problem is the kind of
state and configuration information that can be used in mapping URL host names to IP
addresses. An in-depth analysis carried out in [13] on the effectiveness of the different types
of state information on ADNS scheduling for homogeneous Web server systems is summarized



below:

No state information. Scheduling policies, such as round-robin and random used in [25,
4, 28], that do not require any state information show very bad performance under
realistic scenarios [13]. (See further discussions in Section 7.1.)

Detailed server state information. Algorithms using detailed information about the state
of each Web node (for example, queue lengths, present and past utilization) perform
better than the previous ones, but are still unable to avoid overloading some Web node
while under-utilizing other nodes. The present load information does not capture the
TTL effect that is, the future arrivals due to past address resolutions. This makes the
server load information obsolete quickly and poorly correlated with future load condi-
tions. This excludes policies of the least-loaded-server class from further consideration
in a heterogeneous Web server system.

Information on client domain load. An effective scheduling policy has to take into ac-
count some client domain information, because any ADNS decision on an IP address
resolution affects the selected node for the entire TTL interval during which the host-
name to IP address mapping is cached in the name servers. Therefore, the ADNS needs
to make an adequate prediction about the impact on the future load of the nodes fol-
lowing each address mapping. The key goal is to obtain an estimation of the domain
hit rate, \;, which is the number of hits per second reaching the Web server system
from the i-th domain. Multiplying A\; by TTL, we obtain the hidden load weight
which is the average number of hits that each domain sends to a Web node during a
TTL interval after a new address resolution request has reached the ADNS.

Information on overloaded nodes. Information on overload nodes is useful so that ADNS
can avoid assigning address requests to already over-utilized nodes. For the purpose
of excluding them from any assignment until their load returns in normal conditions,
scheduling algorithms can combine the domain hit rate information with some feedback
information from the overloaded nodes to make address mapping decision.

In addition,

Node processing capacities. As we shall see later, in a heterogeneous Web server system,
the node processing capacity needs to be taken into account by ADNS in either making
node assignment or fixing the TTL value.



3.3 Information gathering mechanisms

Based on the observation from the previous section, all ADNS scheduling algorithms con-
sidered in this paper will apply the feedback alarm mechanism and evaluate the hit rate of
each client domain connected to the Web site. The main question is whether these kinds
of information are actually accessible to the ADNS of a distributed Web server system. We
recall that the first requirement for an ADNS algorithm is that it must be fully compatible
with existing Web standards and protocols. In particular, all state information needed by a
policy has to be received by the ADNS from the nodes and the ADNS itself, because they
are the only entities that the Web site management can use to collect and exchange load
information. Algorithms and mechanisms that need some active cooperation from any other
Web components, such as browsers, name servers, users, will not be pursued because they
require modifications of some out-of-control Web components. We next examine how the
ADNS can have access to the feedback alarm and the domain hit rate information.

The implementation of the feedback alarm information requires two simple mechanisms: a
monitor of the load of each Web node, and an asynchronous communication protocol between
the nodes and the ADNS. Each node periodically calculates its utilization and checks whether
it has exceeded a given 9 threshold. In that case, the node sends an alarm signal to the ADNS
that excludes it from any further assignment until its load falls below the threshold. This
last event is communicated to the ADNS through a normal signal. We assume that all of the
global scheduling algorithms to be discussed next consider a node as a candidate for receiving
requests only if that node is not overloaded. Although fault-tolerance is not the focus of this
paper, it is worth noting that a very simple modification of this feedback mechanism could
also avoid routing requests to failed or unreachable nodes. Either node-initiated (through
synchronous messages) or scheduler-initiated (through a polling mechanism) strategies could
be combined with the same scheduling algorithms above to also provide fault-tolerance.

The estimation of the domain hit rate cannot be done by the ADNS alone because the
information coming from the clients to the ADNS is very limited. For each new session
requiring an address resolution, the ADNS sees only the IP address of a client’s domain.
Due to the address caching mechanisms, the ADNS will see another address request coming
from the same domain only after TTL seconds, independent of the domain hit rate. Hence,
the only viable approach to estimate this information requires cooperation of the Web nodes.
They can track and collect the workload to the distributed Web server system through the
logfile maintained by each node to trace the client accesses in terms of hits. According to
the Common Logfile Format [14], the information for each hit includes the remote (domain)
hostname (or IP address), the requested URL, the date and time of the request and the
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request type. Furthermore, there are also extended logs to provide referred information for
linking each request to a previous Web page request from the same client (additional details
can be found in [9]). Each node periodically sends its estimate of the domain hit rates to the
ADNS, where a collector process gets all estimates and computes the actual hit rate from
each domain by adding up its hit rate on each node.

Finally, the node processing capacity information ({&;}) required is a static configuration
information. It is an estimate on the number of hits or HT'TP requests per second each node
can support.

Figure 1 summarizes the various components needed for ADNS assuming that a node
consists of a single Web server machine. In addition to the DNS base function, these include
an ADNS scheduler, alarm monitor, domain load collector and TTL selector. The ADNS
scheduler assigns each address request to one of the node based on some scheduling algorithm.
The alarm monitor tracks the feedback alarm from servers to avoid assigning requests to an
overloaded node until the load level is returned to normal, while the domain load collector
collects the domain hit information from each node and estimates the hit rate and hidden
load weight of each domain. The TTL selector fixes the appropriate TTL value for the
address mapping. Also shown is the corresponding components in the Web node. Besides
the HT'TP daemon server, these include the load monitor and request counter. The load
monitor tracks the node load and issues alarm and normal signal accordingly as explained
above. The request counter estimates the number of hits received from each domain in a
given period and provides the information to the domain load collector in ADNS. When the
node is a Web cluster with multiple server machines, the request counter and load monitor
processes run on the Web switch. This component would have the twofold role of intra-cluster
information collector and interface with the ADNS.

4 DNS algorithms with constant TTL

Strategies that do not work well in the homogeneous case cannot be expected to achieve
acceptable results in a heterogeneous node system. Hence, we consider only the better
performing homogeneous node algorithms that seem to be extensible to an heterogeneous
environment. Among the several alternatives proposed in [13], the following policies gave
the most promising results. We present them in the forms extended to a heterogeneous node
system to take into account both the non-uniform hit rates and different node capacities.

Two-tier Round-Robin (RR2). This algorithm is a generalization of the Round-Robin
(RR) algorithm. It is based on two considerations. First of all, since the clients are
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unevenly distributed, the domain hit rates are very different. Secondly, the risk of
overloading some of the nodes is typically due to the requests coming from a small
set of very popular domains. Therefore, RR2 uses the domain hit rate information
to partition the domains connected to the Web site into two classes: normal and hot
domains. In particular, RR2 sets a class threshold and evaluates the relative domain
hit rate, which is with respect to the total number of hits in an interval from all con-
nected domains. The domains characterized by a relative hit rate larger than the class
threshold belong to the hot class. By default, we fix the class threshold to 1/|D|, where
|D| is the average number of domains connected to the nodes. That is to say, each
domain with a relative hit rate larger than the class threshold belongs to the hot class.
The RR2 strategy applies a round-robin policy to each class of domains separately.
The objective is to reduce the probability that the hot domains are assigned too fre-
quently to the same nodes. Partitions of domains in more than two classes have been
investigated with little performance improvement [13].

RR2 (and also RR) is easily extendible to a heterogeneous Web server system through
the addition of some probabilistic routing features. The basic idea is to make the round
robin assignment probabilistic based upon the node capacity. To this purpose, we gen-
erate a random number p (0 < p < 1) and, assuming that S;_; was the last chosen
node, we assign the new requests to S; only if p < §;. Otherwise, S; 1 becomes the next
candidate and we repeat the process that is, we generate another random number and
compare it with the relative capacity of S;;;. This straightforward modification al-
lows RR2 and RR to schedule the requests by taking into account of the various node
capacities. These probabilistic versions of the RR and RR2 algorithms are denoted
by Probabilistic-RR (PRR) and Probabilistic-RR2 (PRR2), respectively. Hereafter, we
will refer to the conventional RR as Deterministic-RR (DRR) to distinguish it from
PRR and analogously, DRR2 from PRR2.

Dynamically Accumulated Load (DAL). This algorithm uses the domain hit rate to
estimate the hidden load weight of each domain. Each time the ADNS makes a node
selection following an IP address resolution request, it accumulates the hidden load
weight of the requesting domain in a bin for each node to predict how many requests
will arrive to the chosen node due to this mapping. At each new IP address request,
the ADNS selects the node that has the lowest accumulated bin level.

DAL makes the node selection only based on the hidden load weight from the clients.
A generalization of this algorithm to a heterogeneous Web server system should take
into account the node capacity. The solution is to normalize the hidden load weight
accumulated at each bin by the capacity of the corresponding node. On IP address
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assignment, DAL now selects the node that would result in the lowest bin level after
the assignment.

Minimum Residual Load (MRL). This algorithm is a modification of the basic DAL.
Analogous to the previous algorithm, MRL tracks the hidden load weight of each
domain. In addition, the ADNS maintains an assignment table containing all domain
to node assignments and their times of occurrences. Let [; be the average session
length of a client of the j-th domain. After a period of TTL+I;, the effect of the
assignment is expected to expire that is, no more requests will be sent from the j-th
domain due to this assignment. Hence, the entry for that assignment can be deleted
from the assignment table. At the arrival of an address resolution request at the time
thow, the ADNS evaluates the expected number of residual requests that each node
should have, on the basis of the previous assignments, and chooses the node with the

minimum number of residual requests that is,

min { > Y [(wi/&) (i k) + TTL + 1 — tooy)., | /(TTL+lj)} (1)

1=1,....,N .
P=5s domain; —node; k

where w; is the hidden load weight of the j-th domain, ; is the relative capacity of
the i-th node, and ¢,(i, k) is the time of the assignment of the k—th address resolution
request coming from the j-th domain to the i-th node in the mapping table. The (z)
notation denotes that only the positive terms are considered in the internal sum because
no more residual load is expected to remain from an assignment when the corresponding
term is detected to be negative. The term (¢;(i,k) +TTL + 1) represents the time
instant that the address mapping expires, and the term (;(i,k) + TTL + l; — tnow) ,
represents the remaining time that the mapping is still valid. By normalizing w; by
&, the effect of the node heterogeneity is captured. The average session lengths [; are
not readily available at the ADNS but they can be estimated at the Web nodes. A
session can be identified via a cookie generation mechanism or inferred through some
heuristics using the site’s topology or referred information [30]. Since [/; is expected to
be rather stable over time, the frequency of exchanges between nodes and ADNS for
this information should be relatively low.

In addition to the extensions of the ADNS algorithms taken from homogeneous envi-
ronments, we now consider some scheduling disciplines that are specifically tailored to a
heterogeneous environment. The basic idea is to reduce the probability of assigning requests
from hot domains to less powerful nodes. Two representative examples of this approach are:
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Two-alarm algorithms. This strategy modifies the asynchronous feedback mechanism by
introducing two-levels of threshold (¢;,1,) with a different relative capacity correspond-
ing to each level. The goal is to reduce the probability that a node with high load gets
selected to serve requests. Since the strategies PRR and PRR2 base their decision on
the relative node capacities, we force a reduction of the perceived relative capacity, as
node utilization becomes high. In fact, when the utilization of a node S; exceeds the
first threshold ¥;, the ADNS reduces its relative capacity, for example by dividing &;
by two. When the utilization exceeds the second threshold 5, the ADNS fixes &; to 0.
If all capacities were 0, we would use a random choice weighted on the node capacities.

Restricted-RR2. This algorithm is a simple modification of RR2. The requests coming
from the normal domains are divided among all the nodes in the same probabilistic
manner as previously described, while the requests coming from the hot domains are
assigned only to the top (that is, more powerful) nodes of the distributed Web server
system. To avoid having too restricted a subset to serve the heavy requests, we consider
as a top node any node with a relative capacity (&;) of 0.8 or more.

5 DNS algorithms with dynamic choice of TTL

As we shall see in Section 7.1, the algorithms derived as generalizations of those scheduling
policies used in a homogeneous Web server system are inadequate to address node hetero-
geneity, unevenly domain hit rates, and limited ADNS control. Their poor performance
motivated the search for new strategies that intervene on the TTL value, which is the other
parameter controlled by the ADNS. In this section, we propose two classes of algorithms that
use some policy of Section 4 for the selection of the node and dynamically adjust the TTL
value based on different criteria. The first class of algorithms mainly addresses the problem
of the limited control of the ADNS. To this purpose, it increases the ADNS control when
there are many overloaded nodes through a dynamic reduction of the T'TL. The second class
of algorithms is more oriented to address node heterogeneity and unevenly distributed clients
through the use of TTL values that reduce the load skew. A summary of main characteristics
of all discussed dispatching algorithms is in Table 2, Section 8.

As we shall see, to set the T'TL value for each address request, the variable T'TL algorithm
requires information on the number of overloaded nodes, while adaptive TTL algorithms
need information on the processing capacity of each node and the hit rate of each connected
domain. Since these are the same type of information used by the ADNS scheduler discussed
in the previous section, no new information is required to dynamically fix the TTL value.
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5.1 Variable TTL algorithms

Firstly, we consider the variable TTL (varTTL) algorithms. They tune TTL values based
on the load conditions of the overall Web server system. When the number of overloaded
nodes increases, these algorithms reduce the TTL value. Otherwise, they use the default
or higher TTL values. The rationale for these strategies comes from the principle that the
ADNS should have more control on the incoming requests when many of the nodes in the
distributed system are overloaded.

In this paper, we implement the following simple formula for determining the TTL value
at time ¢,
TTL(t) = TT Lygse — ¥ * (Joverload(t)|) (2)

where T'T Ly, is the TTL value when no node is overloaded and |overload(t)| is the minimum
between some upper bound value (w) and the number of overloaded nodes at time ¢. For
example, if TT Lyqse is 300 seconds and 1) is 60 seconds, the T'TL value drops to 240 seconds
after one node gets overloaded. By fixing w to 4, it means that the TTL value can only
drops to 60 seconds, even if there are more than 4 nodes overloaded.

For the node selection, the varTTL policies can be combined with any algorithm of
Section 4. In this paper, we consider the probabilistic versions of RR and RR2 that is,
PRR-~varTTL and PRR2-varTTL.

5.2 Adaptive TTL algorithms

Instead of just reducing the TTL value to give more control to the ADNS, an alternative is
to address the unevenly distributed hit rates or heterogeneous node capacities by assigning
a different TTL value to each address request. The rationale for this approach comes from
the observation that the hidden load weight increases with the TTL value, independently
of the domain. Therefore, by properly selecting the TTL value for each address resolution
request, we can control the subsequent request load to reduce the load skews that are the
main cause of overloading, especially in a heterogeneous system. More specifically, we can
make the subsequent requests from each domain to consume similar percentages of node
capacity. This can address both node heterogeneity and non-uniform hit rates.

First consider node heterogeneity. We assign a higher TTL value when the ADNS chooses
a more powerful node, and a lower TTL value when the requests are routed to a less capable
node. This is due to the fact that for the same fraction of node capacity, the more powerful
node can handle a larger number of requests, or take requests for a longer TTL interval.
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An analogous approach can be adopted to handle the uneven hit rate distribution. The
address requests coming from hot domains will receive a lower TTL value than the requests
originated by normal domains. As the hot domains have higher hit rates, a shorter TTL
interval will even out the total number of subsequent requests generated.

The new class of scheduling disciplines that use this approach is called adaptive TTL. It
consists of a two-step decision process. In the first step, the ADNS selects the Web node. In
the second step, it chooses the appropriate value for the TTL interval. These strategies can
be combined with any scheduling algorithm described in Section 4. Due to space limitations,
we only consider the basic RR algorithm and its RR2 variant. Furthermore, we combine the
adaptive TTL policies with the deterministic and probabilistic versions of these algorithms.
Both of them handle non-uniform requests by using TTL values inversely proportional to
the domain hit rate, while address system heterogeneity either during the node selection
(probabilistic policies) or through the use of TTL values proportional to the node capacities
(deterministic policies).

5.2.1 Probabilistic algorithms

The probabilistic policies use PRR or PRR2 algorithms to select the node. After that, the
TTL value is assigned based on the hit rate of the domain that has originated the address
request. In its most generic form, we denote by TTL/i the policy that partitions the domains
into ¢ classes based on the relative domain hit rate and assigns a different TTL value to
address requests originating from a different domain class. TTL/i is a meta-algorithm that
includes various strategies. For i = 1, we obtain a degenerate policy (TTL/1) that uses the
same TTL for any domain, hence not a truly adaptive TTL algorithm. For ¢ = 2, we have
the policy (TTL/2) that partitions the domains into normal and hot domains, and chooses a
high TTL value for requests coming from normal domains, and a low TTL value for requests
coming from hot domains. Analogously, for 7 = 3, we have a strategy that uses a three-tier
partition of the domains, and so on, until i = K that denotes the algorithm (TTL/K) that
uses a different TTL value for each connected domain. (In actual implementation, to reduce
the amount of bookkeeping, domains with lower hit rates may be lumped into one class.)
For TTL/K policies, let TTL;(t) denote the TTL value chosen for the requests coming from
the j-th domain at time ¢,

TTL,(t) = 3)

where 7, is the parameter which scales the average TTL (and the minimum TTL) value
and hence overall rate of the address mapping requests, A;(t) and Apq.(t) are the hit rates
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(available as an estimation at time ¢) of the j-th domain and the most popular domain,
respectively.

5.2.2 Deterministic algorithms

Under the deterministic algorithms, the node selection is done by the ADNS through the
deterministic RR or RR2 policy. The approach for handling non-uniform hit rates is via
adjusting T'TL value similar to that described for the probabilistic disciplines. However, the
TTL value is now chosen by considering the node capacity as well. For the generic TTL/S_i
policy, we partition the client domains into ¢ classes based on the domain hit rates. The TTL
for each class and node is set inversely proportional to the class hit rate while proportional to
the node capacity. The deterministic TTL/S_1 algorithm is a degenerate case that considers
node heterogeneity only and ignores the skew on domain hit rates.

The TTL/S_2 policy uses two TTL values for each node depending on the domain class
of the requests that is, normal or hot domain.

The TTL/S_K algorithm selects a TTL value for each node and domain combination.
Specifically, let TTL;;(t) be the TTL chosen for the requests from the j-th domain to the
i-th node at time t,

Amaz ()Naéi

TTLi(t) = 0

(4)

where 74 is the parameter which scales the average TTL (and the minimum TTL) value.

6 Performance model

In this section we provide details on the simulation model and describe the various parameters
of the model. We then discuss the performance metrics to compare the different ADNS
schemes.

6.1 Model assumptions and parameters

We first consider the workload. We assume that clients are partitioned among the domains
based on a Zipf’s distribution that is, a distribution where the probability of selecting the
i-th domain is proportional to 1/i('=®) [38]. This choice is motivated by several studies
demonstrating that if one ranks the popularity of client domains by the frequency of their
accesses to the Web site, the distribution of the number of clients in each domain is a function
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with a short head (corresponding to big providers, organizations and companies, possibly
behind firewalls), and a very long tail. For example, a workload analysis on academic and
commercial Web sites shows that in average 75% of the client requests come from only 10%
of the domains [5]. In the experiments, the clients are partitioned among the domains based
on a pure Zipf’s distribution that is, using z = 0, in the default case. This represents the
most uneven client distribution. Additional sensitivity analysis on the skew parameter ()
and other distributions is included in Section 7.4.

We did not model the details of Internet traffic [15] because the focus of this paper is on
Web server system. However, we consider major components that impact the performance
of the system. This includes an accurate representation of the number and distribution of
the intermediate name servers as in [7], because they affect operations and performance of
the ADNS scheduling algorithms through their address caching mechanisms.

Moreover, we consider all the details concerning a client session that is the entire period
of access to the Web site from a single user. In the first step, the client obtains (through
the ADNS or the cache of a name server or gateway) an address mapping to one of the
Web nodes through the address resolution process. As the Web server system consists of
heterogeneous nodes with identical content, the requests from the clients can be assigned to
any one of the nodes. Once the node selection has been completed, the client is modeled to
submit multiple Web page requests that are separated with a given mean think time. The
number of page requests per session and the time between two page requests from the same
client are assumed to be exponentially distributed as in [5].

Each page request consists of a burst of small requests sent to the node. These bursts
represent the objects that are contained within a Web page. These are referred to as hits.
Under the HTTP /1.0 protocol, each hit request establishes a new connection between the
client and the Web node. However, address caching at the browser level guarantees that
a client session is served by the same Web node independently of its duration. Moreover,
the new version HTTP/1.1 provides persistent connections during the same session [20]. As
a consequence, the difference between HTTP protocols does not affect the results of this
paper.

The number of hits per page request are obtained from a uniform distribution in the
discrete interval [5-15]. Previous measures reported roughly seven different hits per page,
however more recent analyses indicate that the mean number of embedded hits is increasing
[16]. The hit service time and the inter-arrival time of hit requests to the node are assumed
to be exponentially distributed. (We will also consider the case of hits with very long mean
service time like the CGI type in Section 7.4.) Other parameters used in the experiments
are reported in Table 1 with their default values between brackets. When not otherwise
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specified, all performance results refer to the default values. A thorough sensitivity analysis,
not shown because of space limits, reveals that main conclusions of the experiments are not
affected by the choice of workload parameters such as the number of hits per page request,
the mean service time and inter-arrival time of hits.

‘ Category ‘ Parameter ‘ Setting (default values) ‘
Web system | Number of nodes 7
System capacity 1500 hits/sec
Average system load 1000 hits/sec
Average utilization 0.6667
Homogeneous aq =0 €4=[1,1,1,1,1,1,1]
Heterogeneity ag = 0.2 ¢=[1,1,1,0.8,0.8,0.8,0.8]
Heterogeneity ac = 0.35 ¢c=[1,1,0.8,0.8,0.65,0.65,0.65]
Heterogeneity ap = 0.5 ¢p=[1,1,0.8,0.8,0.5,0.5,0.5]
Heterogeneity ag = 0.65 ¢p=[1,1,0.8,0.8,0.35,0.35,0.35]
Domain Connected 10-100 (20)
TTL (constant) 0-700 (240)
TTL (adaptive) [0-2400]
Client Number 1000-3000 (1500)
Distribution among domains | Zipf (z = 0,0.5,1)
Geometric (p = 0.3)
Request Web page requests per session | exponential (mean 20)
Hits per Web page request uniform in [5-15]
Inter-arrival of page requests | exponential (mean 15)
Inter-arrival of hits exponential (mean 0.25)
Hit service time exponential (mean 1/C})

Table 1: Parameters of the system (all time values are in seconds).

In our experiments, we considered five levels of node heterogeneity. Table 1 reports
details about the relative capacities and the heterogeneity level of each Web server system.
By carefully choosing the workload and system parameters, the average utilization of the
system is kept to 2/3 of the whole capacity. This value is obtained as a ratio between the
offered load that is, the total number of hits per second arriving to the Web site, and the
system capacity which is the sum of the capacity of each node denoted in hits per second.
Although we considered different levels of node heterogeneity, we keep the system capacity
constant to allow for a fair comparison among the performance of the proposed algorithms.

Furthermore, to implement the feedback alarm, each node periodically calculates its
utilization (the period is of 16 seconds) and checks whether it has exceeded a given ¥=0.75
threshold as in [13]. (Additional simulation results, not shown, indicate that our results are
not sensitive to these parameters.) For two-alarm algorithms, the two threshold are fixed at
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0.6 and 0.75, respectively.

For the constant TTL schemes, a default TTL value of 240 seconds is used as in [17]. For
the variable TTL algorithm, T7T L. is fixed to 300 seconds with w = 4. We note that the
base TTL value (TT Lygse ) is higher than the TTL value in the constant TTL case. In fact,
if one of the nodes becomes overloaded, the TTL value drops to 240 seconds which becomes
the same as the constant T'TL case. For the adaptive T'TL algorithms, the average TTL
value is fixed to 400 seconds so as to keep the minimum TTL value (denoted as TTL ) above
60 seconds, while the maximum TTL value can go up to 1200 seconds. This average TTL
value is considerable higher than the 240 seconds in the constant T'TL case. Nonetheless, as
we shall see later, the adaptive TTL algorithms still perform far better than the constant
TTL algorithms. Sensitivity analysis to TTL values is provided in Section 7.4.

The simulators were implemented using the CSIM package [37]. Each simulation run is
made up of five hours of the Web site activities. Confidence intervals were estimated, and
the 95% confidence interval was observed to be within 4% of the mean.

6.2 Performance metrics

We next examine the metrics of interest for evaluating the performance of an ADNS algorithm
in a heterogeneous Web server system. The main goal is to avoid any of the Web nodes
becoming overloaded. That is to say, our objective is to minimize the highest load among
all nodes at any instant. Commonly adopted metrics such as the standard deviation of node
utilization are not useful for this purpose because minimizing the load differences among the
Web nodes is only a secondary goal.

These considerations lead us to evaluate the performance of the various policies focusing
on the system mazimum utilization at a given instant that is, the highest node utilization
observed at that instant among all nodes in the system. For example, assume three nodes
in a Web server system. If their utilizations are 0.6, 0.75, and 0.63, respectively, at time 1,
and 0.93, 0.66 and 0.42, respectively, at time t5, the system maximum utilization at ¢; is
0.75 and that at t5 is 0.93. With a system maximum utilization of 0.93, the Web site has
serious load problems at 5.

Specifically, the major performance criterion is the cumulative frequency of the system
maximum utilization that is, the probability (or fraction of time) that the system maximum
utilization is below a certain value. By focusing on the highest utilization among all Web
nodes, we can deduce whether the Web server system is overloaded or not. Moreover, its
cumulative frequency can provide an indication on the relative frequency of overloading. For
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example, if the probability of all nodes less than 0.80 utilized is 0.75, it implies that the
probability of at least one node exceeding 0.80 utilized is 0.25.

In practice, the performance of the various scheduling policies is evaluated by tracking
at periodic intervals the system maximum utilizations observed during the simulation runs.
The node with the maximum utilization changes over time. However, if the system maximum
utilization at an instant is low, it means that no node is overloaded at that time. By tracking
the period of time the system maximum utilization is above or below a certain threshold,
we can get an indication of how well the Web server system is working. We recall that in all
experiments the Web server system is subject to an offered load equal to 2/3 of the overall
system capacity. We note that typically all the nodes, even if with different proportions,
contribute to this maximum during an entire simulation run. Since the average utilization
is fixed at 0.6667, the distribution of the system maximum utilization of a perfect policy
(always maintaining a utilization of 0.6667 at each node) should be a step function which
goes from 0 to 1 at a utilization of 0.6667.

When we evaluate the sensitivity of the algorithms as a function of system parameters,
such as node heterogeneity, we find it useful to adopt a different metric that is related to the
cumulative frequency of the system maximum utilization. For this set of results, we consider
the 96-th percentile of the system maximum utilization that is, Prob(SystemM axUtilization
0.96). In other words, the probability that no node of the Web server system is overloaded,
namely Prob(Not Overloaded System), becomes the performance metric of interest.

7 Performance results

For the performance evaluation of the proposed dispatching algorithms, we carried out a
large number of experiments. Only a subset is presented here due to space limitation. The
first set of experiments (in Section 7.1) shows the problem with constant TTL algorithms. It
illustrates the point that just considering the scheduling component is not sufficient to achieve
good performance. We then evaluate algorithms that also explore the TTL component. The
remaining sections focus on measuring how effectively the adaptive TTL algorithms applied
to a ADNS scheduler, that controls only a small percentage of the requests, can avoid
overloading nodes in a heterogeneous distributed Web server system.
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7.1 Constant TTL schemes

In this section we evaluate the performance of the constant TTL algorithms based on the
parameters shown in Table 1. We obtained simulation results for four heterogeneity levels
of the Web server system from 20% to 65%. In Figures 2, we present the performance for
the lowest heterogeneity level in Table 1. In this figure, we also report as “ideal” policy
the PRR algorithm under uniform distribution of the client request rates, and the random
algorithm that has the worst performance. The y-axis is the cumulative probability (or
relative frequency) of the system maximum utilization reported on the z-axis. The higher
the probability the less likely that some of the nodes will be overloaded, and hence better
load sharing is achieved. For example, under the PRR2 policy, the probability of having
maximum utilization less than 0.95 is about 0.5, while under DRR, the probability is only
0.2. This figure confirms that the various probabilistic versions of the round-robin policy
perform better than the deterministic versions, and this improvement is even more consistent
if we look at the RR2 algorithm. The results of the MRL policy are close to PRR2 and much
better than the DRR algorithm which is often proposed for DNS-based distributed systems.
Indeed, for this latter policy, the probability that no node is overloaded is below 0.2. That
is to say, for more than 80% of the observed time, there is at least one overloaded node.

However, even considering this slightly heterogeneous system, no strategy achieves ac-
ceptable performance. In the best instance, the Web server system has at least one node
overloaded (Prob(SystemMaxUtilization > 0.96)) for about 30% of the time, and the
shapes of all cumulative frequencies are very far from the “ideal” policy’s behavior. This
motivated the search for alternative policies such as Restricted-RR2 and Round-Robin with
two alarms (Restricted-RR2 and PRR2-Alarm2, respectively).

Figures 3 analyzes the sensitivity of the proposed algorithms with constant TTL to the
system heterogeneity. Now the y-axis is the probability that no Web node is overloaded,
while the z-axis is the heterogeneity level of the Web server system. This figure shows that
both DAL and MRL-based policies are unable to control node load when the distributed
Web server system is heterogeneous. The performance of the other variants of constant T'TL
algorithms (that is, PRR-Alarm2, PRR2-Alarm2 and Restricted-RR2) is similar to that of
the basic PRR2. Although the PRR2-Alarm2 algorithm often performs better than other
policies, no strategy clearly outperforms all the other policies over all system heterogeneity
levels. Moreover, the difficulty in determining the best strategy is also confirmed by other
(not reported) experiments in which we vary the number of domains, clients and average
load. None of these policies can actually be considered adequate because the probability of
having at least one overloaded node is still high that is, always more than 0.30.
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7.2 Comparison of constant and dynamic TTL schemes

The next set of results evaluates how system heterogeneity affects the performance of the
adaptive TTL schemes. Figure 4 compares various deterministic TTL/S_i algorithms for a
low heterogeneity level of 20%. Each set consists of both the deterministic RR2 and RR
scheduling schemes for 7 = 1,2 and K. Also shown in this figure is the DRR scheme with
a constant TTL. First of all, for each set of TTL strategies, the RR2 scheduling scheme is
always slightly better than the RR scheme. All adaptive TTL schemes that address both
node and client heterogeneity perform significantly better than constant TTL policies, while
policies taking into account only the node heterogeneity (as done by TTL/S_1 schemes) do
not improve performance much. Moreover, the results of the strategies that use a different
TTL for each node and domain, namely DRR-TTL/S_K and DRR2-TTL/S_K, are very close
to the envelope curve of the “ideal” PRR(uniform) policy.

Similar results are achieved by the probabilistic schemes that combine adaptive TTL to
handle non-uniform domain hit rates and probabilistic routing features to address system
heterogeneity. Figure 5 shows the cumulative probability of the system maximum utilization
for a heterogeneity level of 20%. The relative order among the strategies remains analogous
to the previous order. Specifically, the RR2 scheduling policies are slightly better than RR
strategies and TTL/K strategies outperform TTL/2 strategies. Also we consider here the
variable TTL (varTTL) schemes. The performance of varTTL schemes are close to that of the
TTL/2 strategies. Furthermore, all probabilistic adaptive TTL approaches are consistently
better than the PRR scheme with a constant TTL, even for a heterogeneity level low as 20%.

Since the RR2-based algorithms perform better than RR-based counterpart, in the re-
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mainder of this section we mainly focus on the former class of policies. Figures 6 and 7 refer
to a distributed Web server system with a 35% and 65% heterogeneity level, respectively.
Figure 6 shows that when we adopt a T'TL proportional to each domain hit rate, the deter-
ministic strategy TTL/S_K prevails over the probabilistic TTL/K. On the other hand, when
we consider only two classes of domains, the probabilistic approach TTL/2 is slightly better
than the deterministic TTL/S_2. Analogous results are observed for a system heterogeneity
equal to 50% and for other system parameters.

The probabilistic approaches tend to perform better than deterministic strategies when
the system heterogeneity is very high that is, more than 60%. Figure 7 shows that DRR2-
TTL/S_K performs the best if we look at the 98th percentile, while the shape of the curve
is in favor of PRR2-TTL/K if we consider lower percentiles. Moreover, the DRR2-TTL/S 2
and PRR2-TTL/2 algorithms, which performed more or less the same in the previous cases,
differentiate themselves here in favor of the probabilistic algorithms. PRR2-varTTL performs
close to the PRR2-TTL/2 strategy, while DRR2-TTL/S_2 and DRR2-TTL/S_1 seem rather

inadequate to address high heterogeneity levels.

We next consider the average number of messages to ADNS under the constant TTL,
variable TTL and adaptive TTL schemes. Specifically, in Figure 8, PRR2, PRR2-varTTL
and PRR2-TTL/K are chosen to represent the constant TTL, variable TTL and adaptive
TTL schemes, respectively. (The difference among the schemes in each class, such as PRR2-
TTL/K and DRR2-TTL/S K, is small.) Figure 8 shows both the number of address requests
and alarm requests with a 35% heterogeneity level. The variable TTL schemes have a higher
request load to ADNS, while the adaptive TTL and constant TTL schemes are comparable.

However, it is important that no policy risks to stress ADNS.
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7.3 Sensitivity to system heterogeneity

In this set of experiments we evaluate the sensitivity of the proposed strategies to the degree
of system heterogeneity from 20% to 65%. We first focus on deterministic and probabilistic
policies (Figure 9 and Figure 10, respectively), and then compare the two classes of policies
under RR2 in Figure 11. Now, the y-axis is the probability that the no node of the Web
server system is overloaded, while the z-axis denotes the heterogeneity level.

Figures 9-11 show that most adaptive T'TL algorithms are relatively stable that is, their
performance does not vary widely when the heterogeneity level increases to 50%. After this
level, a more sensible performance degradation can be observed for all policies. However,
for any heterogeneity level, a large gap exists among the schemes that use a different TTL
value for each connected domain and the other policies. Moreover, while achieving the best
performance, the TTL/S K and TTL/K algorithms display the best stability, too. TTL/2
algorithms are still acceptable when combined with RR2-based scheduling schemes, while
they tend to degrade more for higher heterogeneity level when they are combined with the
RR-based scheduling schemes. The varT'TL algorithm, which uses a variable TTL depending
upon the number of overloaded nodes, is very unstable as shown in Figure 11, while the DRR-
TTL/S_1 strategy (as shown in Figure 9) performs much worse than any other adaptive TTL
policies and more similar to a constant TTL strategy (comparing Figure 9 with Figure 3).
Hereafter, we do not consider these two types of strategies, because of their instability and
poor performance, respectively. Figure 11 shows that when we assign a different TTL to
each connected domain, DRR2-TTL/S K performs the best, while with only two classes
of domains, PRR2-TTL/2 performs better than DRR2-TTL/S_2 for higher heterogeneity
levels. From all the shown results, the following are observed.

e Adaptive TTL schemes, especially DRR2-TTL/S K, and PRR2-TTL/K, are very ef-
fective in avoiding overloading the nodes even when the system is highly heterogeneous
and domain hit rates are unevenly distributed as the pure Zipf’s function.

e (Constant TTL strategies cannot handle the non-uniformity of client distribution as well
as node heterogeneity. Various enhancements, such as those provided by restricted-RR
and two-alarm-RR schemes, are not really effective.

e Differentiating requests coming from more popular and normal domains improves the
performance, regardless of whether TTL is dynamically chosen or fixed. Indeed, RR2-
based strategies are always slightly better than their RR-based counterparts.

e Deterministic strategies typically perform better than probabilistic schemes. However
the difference is not large and tends to diminish for high heterogeneity levels.
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7.4 Sensitivity to TTL values and workload parameters

We now consider sensitivity to the average TTL values. In Figure 12, both the PRR2-TTL/K
and PRR2 are shown with a 20% heterogeneity level for different mean TTL values from 300
to 500 seconds. (DRR2-TTL/S_K schemes which show similar behavior as the PRR2-TTL/K
schemes are not shown for readability of the figure.) The adaptive TTL schemes outperform
the constant TTL scheme (PRR2) with a wide margin regardless of the TLL values. In
Figure 13, the DRR2-TTL/S K and PRR2 are shown with a 50% heterogeneity level for
various mean TTL values. (The PRR2-TTL/K schemes are not shown for readability of the
figure.) The superiority of the adaptive TTL schemes is again observed.

Figure 14 shows the sensitivity of the overload probability of the various TTL policies
to the mean TTL value, when the heterogeneity level is at 20%. The various dynamic
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TTL schemes perform far superior to the constant TTL schemes, PRR and PRR2, and
show much less sensitivity to the TTL values. Among the dynamic TTL schemes, DRR2-
TTL/S_K provides the best performance. Also all the RR2 policies perform better than the
corresponding RR policies.

We next study the sensitivity to the client request distributions. In addition to the pure
Zipf distribution (with the skew parameter x = 0), a geometric distribution (with p = 0.3),
a Zipf distribution with z = 0.5, and a uniform distribution (corresponding to z = 1) are
considered. Figure 15 shows the performance of PRR2-TTL/K under these different client
distributions with a heterogeneity level of 35%. The performance improves as the skew in
the client distribution decreases. The geometric distribution has performance close to the
pure Zipf distribution. We note that the mean TTL value is kept the same at 400 seconds
for all cases. Because the client distributions have different skew, the minimum TTL values
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Figure 15: Sensitivity to client distribution (same Figure 16: Sensitivity to client distribution (same
mean TTL=400 seconds) TTL = 60 seconds)

under PRR2-TTL/K will be different for the different client distributions (See Equation 3).
If we hold the minimum TTL value (TTL) at 60 seconds for all cases as in Figure 16, the
performance gap will be much larger as the skew in the client distribution increases. The
spread of the TTL values among the client domains (hence also the mean TTL value) also
increases with the skew as indicated in Figure 16.

Next, the sensitivity to the hit service time is examined. We consider the case where
some of the hit requests such as CGI dynamic request has particularly long service time. We
introduce a new type of Web page requests which consist of one hit of the CGI-type, and five
other ordinary hits as considered before, where a CGI-type hit is assumed to have an average
service time that is about 10 times the ordinary hits. Figure 17 shows the performance of
PRR2-TTL/K under different percentages of this new type of Web page requests containing
a CGI-type hit. The dynamic TTL scheme handles workload with long hit service time very
well. As the percentage of these long Web page requests increases, the performance actually
improves. This is due to the fact that for a given amount of total load to the system, if
the per request load increases, the number of subsequent requests arriving during the TTL
period will decrease so that the ADNS control improves.

7.5 Robustness of adaptive TTL schemes

The previous results point out a clear preference for adaptive TTL schemes. We now examine
their robustness by considering two specific aspects. One is the impact of name servers and
gateways not following the T'TL value recommended by the ADNS. The other is how sensitive
the performance is to the accuracy of the estimated domain hit rate. The latter is less of an
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Figure 17: Sensitivity to long requests of PRR2-TTL/K algorithms

issue if the load from each domain remains relatively stable or changes slowly. However, in
a more dynamic environment where hit rates from the domains may change continuously, it

can be difficult to obtain an accurate estimate.

7.5.1 Effects of non-cooperative name servers

Each name server caches the address mapping for a TTL period. In order to avoid network
saturation due to address resolution traffic, very small TTL values are typically ignored by
name servers. Since there is not a common TTL lower threshold which is adopted by all
name servers, in our study we consider the worst case scenarios, where all name servers
and gateways are considered non-cooperative if the proposed TTL is lower than a given
minimum, and perform sensitivity analysis against this threshold.

Figure 18 shows the sensitivity of the adaptive TTL policies to the minimum accepted
TTL value by the name servers, when the heterogeneity level is at 35%. The performance
of DRR2-TTL/S_K and PPR2-TTL/K gradually deteriorates as the minimum TTL value
allowed by the name servers increases. However, PRR2-TTL/2 is almost insensitive to the
minimum accepted TTL. The advantage from DRR2-TTL/S K or PPR2-TTL/K diminishes
as the minimum TTL value accepted by the name servers increases because the TTL/S_K
schemes may sometimes need to select quite a low TTL value when a client request coming
from a hot domain is assigned to a node with limited capacity. On the other hand, a
probabilistic TTL/2 strategy is almost not affected by the problem of non-cooperative name
servers because it uses a rough partitioning (that is, two classes) of the domains and is able
to always assign T'TL values higher than 180 seconds in all experiments.
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7.5.2 Effects of the estimation error

Next we will examine how the maximum error in estimating the hit rate of each domain may

affect the system performance. Figures 19 and 20 compare various adaptive TTL schemes

as a function of the estimation error for heterogeneity levels of 20% and 50%, respectively.

In the experiment, we introduce a perturbation to the hit rate of each domain, while the

ADNS estimates of the domain hit rates remain the same as before. Hence the percentage

error in the load estimate is the same as the amount of perturbation on the actual load. For

the case of a x% error, the hit rate of the busiest domain is increased by x% and the hit

rates of the other domains are proportionally decreased to maintain the same total load on

the system. This effectively increases the skew of the hit rate distribution, hence represents

a worst case.
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When the estimation error or load perturbation increases, the system performance de-
creases in all eight algorithms. However, all the TTL/S_K and TTL/K schemes clustered on
the top show much less sensitivity than the TTL/S_2 and TTL/2 schemes on the bottom.
In particular, when the node heterogeneity is high (> 50%) and the error is large (> 30%),
the performance of TTL/S 2 strategies can degrade substantially. This is in contrast to the
TTL/S_K and TTL/K schemes which are only slightly affected by the error in estimating the
domain hit rate. When the heterogeneity level is less than 50%, their performance degrades

at most a few percentage points as compared to the case with no estimation error. This
shows the robustness of the TTL/S_K and TTL/K algorithms.

Although the TTL/S_2 and TTL/2 algorithms are very sensitive to the estimation error
(even when this is limited to 10%), it is important to note that the shown results refer to a
positive perturbation on the client domain with the heaviest hit rate. This is actually a worst
(unrealistic) case because we indirectly increase the skews of the client request distributions
to more than a pure Zipf’s distribution. Other results not reported, which consider negative
perturbation on the heaviest domain hit rate, show analogous performance for the TTL/K
policies and much better performance for the TTL/S_2 and TTL/2 strategies. This was
expected because a reduction of the hit rate of the busiest domain makes client requests
more evenly distributed than a pure Zipf’s distribution.

8 Summary of the performance study

Table 2 outlines the specific methods that each ADNS algorithm uses to address heteroge-
neous nodes and uneven distribution of client requests.

In summary,

e To balance the load across multiple Web nodes, ADNS has two control knobs: the
scheduling policy (that is, the node selection) and the TTL value for the period of
validity of the selection.

Just exploring the scheduling component alone (constant TTL algorithms) is inade-
quate to address both node heterogeneity and uneven distributions of clients among

domains.

e Variable TTL policies that dynamically reduce the TTL when the number of overloaded
nodes increases so that more control can be given to the ADNS perform better than
constant TTL algorithms. However, this approach is not sufficient to cope with high
heterogeneity levels.
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| Category | ADNS Algorithm | Non-uniform Client Distribution | Heterogeneous Nodes

Constant TTL | DRR

DRR2 two-tier domain partition —
PRR probabilistic routing
PRR2 two-tier domain partition probabilistic routing
DAL accumulated hidden load weight | normalized bin
MRL residual hidden load weight normalized (residual) bin
PRR-Alarm2 — two alarms, probabilistic routing
PRR2-Alarm2 two-tier domain partition two alarms, probabilistic routing
Restr.-RR2 two-tier domain partition limited probabilistic routing
Variable TTL | PRR-varTTL probabilistic routing
PRR2-varTTL two-tier domain partition probabilistic routing
Adaptive TTL | DRR-TTL/S_1 TTLox(node capacities)
(Deterministic) | DRR-TTL/S TTLox(i-classes hit rate) TTLox(node capacities)
DRR2-TTL/S_.1 | two-tier domain partition TTLox(node capacities)
DRR2-TTL/S¢ | two-tier domain partition TTLox(node capacities)
TTLox(i-classes hit rate)
Adaptive TTL | PRR-TTL/1 (same policy as PRR)
(Probabilistic) PRR-TTL/q TTLo(i-classes hit rate) | probabilistic routing
PRR2-TTL/1 (same policy as PRR2)
PRR2-TTL/i two-tier domain partition probabilistic routing

TTLox(i-classes hit rate)

Table 2: Summary of ADNS scheduling algorithms.

Adaptive TTL schemes can be easily integrated with even simple scheduling policies
such as RR or RR2. This approach shows good performance for various node hetero-
geneity levels and system parameters, even in the presence of non-cooperative Internet
name servers.

When there is full control on the choice of the TTL values that is, all (or most) name
servers are cooperative, DRR2-TTL/S K is the strategy of choice.

When there is limited control on the chosen TTL values, both DRR2-TTL/S_K and
PRR2-TTL/K show reasonable resilient to the effect of non-cooperative name servers.

Both DRR2-TTL/S_K and PRR2-TTL/K perform well, even if the domain hit rate
cannot be accurately estimated because of high variability of the load sources.

The heterogeneity level of the Web server system affects the achievable level of perfor-
mance. Specifically, our results indicate that if the degree of heterogeneity is within
50%, the probability of node overloading guaranteed by best adaptive TTL policies is
always less than 0.05-0.10. Therefore, to achieve satisfactory performance, it would
be desirable not to exceed this heterogeneity level in the design of a distributed Web
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server system.

Moreover, the adaptive TTL algorithms give the best results even for homogeneous
Web server systems. In these instances, they are almost always able to avoid overload-
ing nodes even if the ADNS control on the client requests remains below 3-4% of the
total load reaching the Web site.

9 Conclusions

Although distributed Web server systems may greatly improve performance and enhance
fault-tolerance of popular Web sites, their success depends on load sharing algorithms that
are able to automatically assign client requests to the most appropriate node. Many in-
teresting scheduling algorithms for parallel and distributed systems have previously been
proposed. However, none of them can be directly adopted for dynamically sharing the load
in a distributed Web server system when request dispatching is carried out by the Authori-
tative DNS of the Web site. The main problems are that the ADNS dispatcher controls only
a small fraction of the client requests which actually reach the Web server system. Besides
that, these requests are unevenly distributed among the Internet domains. The problems
are further complicated when we consider the more likely scenario of a Web server system
consisting of heterogeneous nodes.

We first showed that extending known scheduling strategies or those adopted for the
homogeneous node case [13] does not lead to satisfactory results. Therefore, we propose a
different class of strategies, namely adaptive TTL schemes. They assign a different expiration
time (TTL value) to each address mapping taking into account the capacity of the chosen
node and/or the relative load weight of the domain which has originated the client request.

A key result of this paper is that, in most situations, the simple combination of an alarm
signal from overloaded nodes and adaptive TTL dramatically reduces load imbalance even
when the Web server system is highly heterogeneous and the ADNS scheduler controls a very
limited portion of the incoming requests. Moreover, the proposed strategies demonstrate high
robustness. Their performance is almost not affected even when the error in estimating the
domain load is sizable (say 30%), and it is only slightly affected in the presence of some
non-cooperative name servers that is, name servers and gateways not accepting low T'TL
values that could be sometimes proposed by the ADNS.
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Table Titles

e Table 1. Parameters of the system (all time values are in seconds).

e Table 2. Summary of ADNS scheduling algorithms.

Footnote

e In this paper we use the definition of global scheduling given in [10], and dispatching as
its synonymous.
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