Jan 2004

Efficient DDM for HLA Federations on Myrinet Clusters

Unità di Roma 1

Andrea Santoro

Dipartimento di Informatica e Sistemistica Università di Roma "La Sapienza"

Roadmap

- Context
 - Simulator integration: High Level Architecture (HLA)
 HLA middleware: Run-Time Infrastructure (RTI)
 RTI subsystem: Data Distribution Management (DDM)
- Our research
 - DDM Issues
 - Efficient low level implementations

Birth of a Simulator

In ancient times Someone writes it. From scratch.

Today Simulation models growing in complexity and details

Old good way: Someone writes it. From scratch. Drawback: Long and expensive

• Cheat: use code written for other simulations.

High Level Architecture

What is it?

An Architecture Specification to "federate" Heterogeneous Simulators

Definitions

- Heterogeneous simulators: <u>Federates</u>
- Simulation obtained by combination of heterogeneous simulators: <u>*Federation*</u>

Federation Structure

- Federates
- Static Description of Federation
- Middleware between Federates

Run-Time Infrastructure

Characteristics

- Middleware to interconnect individual federates
- Interface specification in IEEE publications.
- Interface specifically designed to interconnect simulation code.
- Object oriented Paradigm:
 - Each federate seen as an object.
 - Federates treated as if they are managing simulation objects
- Only the interface defined. No implementation described

Research target: Design to implement efficient network communication

Communication between federates

• Communication Interface based on publish/subscribe paradigm

- Publishes the object *instances* it wants other federates to know.
- Subscribes to *types* of published objects

Potential Communication Overhead

• A federate can subscribe only to an object type

Data Distribution Management

Extension of the communication interface to tackle communication overhead Same interface with **advanced filtering mechanisms** of messages

Simulation takes place into a simulated spatial environment

- Published object associated with "update" regions
- Federates subscribes to "subscription" regions for each object type

Each object sends updates to a federate iff

• Federate subscribed to the object's type (*same as classic RTI*)

• the object's "update" region overlaps the federates "subscription" region

Region-based DDM Implementation

Straightforward implementation of the DDM specification

Anytime a region is modified DDM subsystem must compare it with all the opposite kind of regions to check wether any overlap takes place or is removed.

Computation Overhead

Gridding DDM Implementation

Each square is associated with a multicast group

Problems

- Useless messages
- Duplicated Messages

Network traffic Discrimination logic Difficult to model

Our Research

Increase Region-Based performance

How?

- Execute DDM computation on the myrinet processor.
- Multicast Mechanism that avoids duplicated messages
- Move multicast to levels 2/1 in the ISO/OSI stack to avoid multiple message copies across the system bus.

DDM Subsystem on myrinet processor

DDM Computation is executed together with simulation and RTI executions

Overall Software Structure

RTI Interface

Where are we?

Basic Implementation completed

Where do we go from here?
Experiments between the two execution flows.
Content-aware firmware to avoid control message internal routing