
Dip. Informatica, Sistemi e Produzione
Università di Roma “Tor Vergata”

QoS Workshop, Roma, 9-10/6/2004 1

Architecture-based QoS Prediction for
Service-oriented Computing

 Vincenzo Grassi, Raffaela Mirandola

Università di Roma “Tor Vergata”, Italy

QoS Workshop, Roma, 9-10/6/2004 2

Service-oriented Computing

q emerging paradigm for designing, architecting and delivering
distributed applications
l applications built as a composition of Internet accessible, independently

developed and delivered “services”

l “service”: unit of composition, spans high level functionalities (some
complex business logic) and basic functionalities (processing, storage, …)

q strong overlapping with component-based approaches
l distinguishing feature: automatic service advertisement, discovery and

composition
– need of agreed on and machine-processable service description languages

– need of automatic discovery, selection and composition tools

Dip. Informatica, Sistemi e Produzione
Università di Roma “Tor Vergata”

QoS Workshop, Roma, 9-10/6/2004 3

QoS-driven service selection and composition

q Non obvious correlation between service assembly QoS
and individual services QoS

l assembly QoS monitoring to assess the fulfillment of some
QoS goal, after the service selection and composition

l assembly QoS prediction to drive the selection of services

need of QoS prediction methodologies
– compositional (to exploit the SOC application structure)

– automatic (to be compliant with the SOC requirements)

QoS Workshop, Roma, 9-10/6/2004 4

Compositional and automatic QoS prediction

q Contributions from different areas and communities

Software
Architecture and
Component
based
approaches

QoS modeling
and analysis

description
and composition
languages for
SOC

SOC
applications
QoS
prediction

Dip. Informatica, Sistemi e Produzione
Università di Roma “Tor Vergata”

QoS Workshop, Roma, 9-10/6/2004 5
cpu

search service
provider

search sort

sort service
provider

sort

cpunet 1-2

Example

q “search an item in a list" service
l can require a "sort" service if the list is not ordered

required
service

offered
service

q symbols :

QoS Workshop, Roma, 9-10/6/2004 6

Contributions from each area (1)

q description and composition languages for SOC
l built on top of basic XML-based languages and protocols (WSDL, SOAP, UDDI)
l examples

– OWL-S (formerly DAML-S): promoted by BBN Technologies, Nokia, and several
academic institutions (CMU, Stanford, USC, MIT, Vrije Univ., …)

– BPEL4WS (formerly WSFL and XLANG): promoted by BEA, IBM, Microsoft, SAP AG,
Siebel Systems

q main features
l machine-processable and interoperable
l support the definition of non functional properties (QoS)

but …

l no explicit description of the "interaction infrastructure"
l QoS values mainly expressed as absolute values (no platform dependent

parameterization)
l lack of support for compositional analysis

Dip. Informatica, Sistemi e Produzione
Università di Roma “Tor Vergata”

QoS Workshop, Roma, 9-10/6/2004 7

Example

cpu

search service
provider

search sort

sort service
provider

sort

cpunet 1-2

QoS Workshop, Roma, 9-10/6/2004 8

Contributions from each area (2)

q Software Architecture and Component based approaches

q main features
l the "interaction infrastructure" is a first class concept

– connector concept

l explicit consideration of dependencies between offered and required services

l attention given to non functional properties (QoS)

but …

l several (too many?) "experimental" architecture description languages (ADLs)
– some unification/interoperation effort

l need of a better integration of QoS analysis techniques
– non well defined “QoS semantics” for existing ADLs

Dip. Informatica, Sistemi e Produzione
Università di Roma “Tor Vergata”

QoS Workshop, Roma, 9-10/6/2004 9

cpu cpu

search service
provider

search sort

sort service
provider

sort

net 1-2

Example

local call connector

cpu cpu

search service
provider

search sort

sort service
provider

sort

net 1-2

rpc connector

QoS Workshop, Roma, 9-10/6/2004 10

SOC & Architecture-based QoS prediction (1)

q need of a QoS language for SOC
l machine-processable

l integrated with existing SOC languages

q proposed approach: unifying “service+connector” model
l for both “high level” and “low level” services

– more flexibility

– simpler description language definition

cpu cpu

search service
provider

search sort

sort service
provider

sort

net 1-2

rpc connector

process process

process process

transmit

process transmit
process

Dip. Informatica, Sistemi e Produzione
Università di Roma “Tor Vergata”

QoS Workshop, Roma, 9-10/6/2004 11

SOC & Architecture based QoS prediction (2)

q “analytic interface” associated with each offered service
l general concept proposed by CMU-SEI (PECT: Prediction Enabled

Component Technology)

l suitable abstraction of the “constructive (functional) interface”

l allows a structured approach to compositional analysis

q in our approach:
l consider services offered by both resources (components) and

connectors

l “abstract” service representation
– abstract service description

» abstract parameter domains

– (for non basic services) abstract service request flow addressed to other
resources/connectors: stochastic model

» abstract flow: probabilistic graph

» abstract service request: actual parameters as (parametric) random
variables

QoS Workshop, Roma, 9-10/6/2004 12

cpu(log(list))

Sort(list)

Start

End

a

b

1

1

q

1-q

 Search
 (in:elem, in:list, out:result) :

 cpu(ip*) // marshal ip*

Start

End

1

1

RPC(in:ip*, out:op*) :

1

 net(ip*) // transmit ip*

 cpu(m(ip*)) // unmarshal ip*

 cpu(op*) // marshal op*

 net(op*) // transmit op*

 cpu(m(op*)) // unmarshal op*

cpu(list·log(list))

Start

End

1

1

 Sort
 (in-out:list) :

Example

q abstract request flows of the Search, Sort, and RPC services

abstract flow

abstract service requests

Dip. Informatica, Sistemi e Produzione
Università di Roma “Tor Vergata”

QoS Workshop, Roma, 9-10/6/2004 13

cpu(log(list))

Sort(list)

Start

End

a

b

1

1

q

1-q

 Search (in:elem, in:list, out:result) :

QoS (reliability) prediction

q the presented concepts provides the (mainly “linguistic”) support for
QoS compositional prediction

q addition of QoS related information (possibly specialized for some
QoS dimension, e.g. dependability) with well defined semantics
l example: composite service reliability analysis

cpu(log(list))

Sort(list)

Start

End

a

b
1-p(a,Fail)

1-p(b,Fail)

q

1-q

Search(in:elem, in:list, out:result) :

Fail

p(a,Fail)

p(b,Fail)

addition of a “failure structure”

l reliability = probability of reaching the End state

l crucial issue: evaluation of p(node, Fail)

QoS Workshop, Roma, 9-10/6/2004 14

“Reliability semantics” issues (1)

q node of a service request flow graph: collection of service requests

node = {R1, R2, …, Rn}, where:

Rj = request(Sj, apj*) Sj = required service specification

 apj* = list of actual (abstract) parameters

node failure probability: depends on :
l failure probability of each Rj

l completion model for R1, R2, …, Rn
– AND, OR, ...

l dependencies among R1, R2, …, Rn
– no dependence (e.g. no service sharing), dependence (e.g. service sharing)

failure probability of Rj depends on :
l internal failure prob for Rj (Pfail_int(Rj)) (definition?)

l connector failure prob for Rj (Pfail_connect(Rj))

l service failure prob for Rj (Pfail_service(Rj))

Pfail_int(Rj) × Pfail_connect(Rj) × Pfail_service(Rj) ?

Dip. Informatica, Sistemi e Produzione
Università di Roma “Tor Vergata”

QoS Workshop, Roma, 9-10/6/2004 15

“Reliability semantics” issues (2)

q Ri = request(Si, api*)

Rj = request(Sj, apj*)
l what if Si = Sj ? (I.e., the two requests are connected to the same service S)

q failure prob {Ri} = Pfail_int(Ri) × Pfail_connect(Ri) × Pfail_service(Ri) ?

failure prob {Rj} = Pfail_int(Rj) × Pfail_connect(Rj) × Pfail_service(Rj) ?

Rj = request(S, apj*)Ri = request(S, api*)

flow graph node: AND completion model

OK

Rj = request(S, apj*)Ri = request(S, api*)

flow graph node: OR completion model

NO

QoS Workshop, Roma, 9-10/6/2004 16

Conclusions

issues for QoS prediction in a SOC framework

q inclusion of a well structured "analytic interface" into existing XML-
based service description and composition languages
l based on concepts from Software Architecture approaches

(connectors!)

q QoS semantics deserves special care
l example: dependability analysis methodologies should not be based on

a priori (prior to service composition) independence assumptions
– service composition or F-T features can introduce dependencies among

services

q reuse existing work on algorithmic methods for the automatic
generation of QoS analysis models
l mostly from UML models

l idea: express the QoS semantics of XML-based SOC languages in
terms of appropriate UML models

– UML Profile for Modeling QoS and F-T

