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Motivations

Complexity of modelling actual computer infrastructures
large installations comprising thousand of servers

strongly multiclass workload

detailed informations can be collected using automated 
performance monitors (e.g. BMC Patrol, ...)

Performance evaluation using queueing networks models 
requires to deal with  “Very Large” Models (VLM)

handling the curse of dimensionality

complex behavior of multiclass models
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Complex behavior of multiclass models
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VLM Examples
Network infrastructures

Intel (2001)
100000 clients 

3000 servers

Vodaphone Italy (2004)
500 server Sun, 400 server HP, 2000 server NT

40 Millions/day of SMS, 20 Millions customers

500 update/sec on the customer care DB 

Unicredit bank (2004)
10 large mainframes

1000-1500 servers

Transactions: 36 Millions/day
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VLM Examples
Emerging Distributed Technologies: Grid computing

DatabaseDatabase

RR33 RR44

RR66

RR55

Information Information 
ServiceService

Resource BrokerResource Broker

Info query
Info update

Resource mgmt

RR77

RR22

RR11

SupercomputerSupercomputer

ClusterCluster

ScientificScientific
instrumentinstrument

PCPC

Users

Applications

Several issues: optimal scheduling, load balancing, ...
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Modelling Techniques for VLMs

How to analyze a VLM with product-form queueing networks? 
excessive computational requirements for an exact solution

approximate techniques? 
suffer decrease in accuracy as the number of classes grows 
[Zahorjan, Eager, Sweillam. Accuracy, Speed, and Convergence of Approximate Mean 

Value Analysis. Perf. Eval. 8(4), 255–270 (1988)] 

little is known for a large number of classes (say >> 4)
empirically Linerizer converges slowly

execution times: only B-S looks suitable for an online solution

However, product-form requirements may not be satisfied
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Notation and Assumption

Both open and closed general multiclass queue nets

M stations

R customer classes

Loading matrix 
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Taxonomy of stations

60 5
15 70
40 50
20 10
20 55

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

L

Natural bottlenecks
bottlenecks when a single class is present 
in the network

Network bottlenecks
can saturate only under a multiclass 
population mix

Potential bottlenecks set
(network + natural) bottlenecks

= {1 , 2 , 3}

Dominated stations
4 has all components less than those of 3

Masked-off stations
5 not dominated, but never saturates
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Computational Geometry 

Convex set: every line segment joining any pair of points 
lies entirely in the set

Convex hull problem: find the smallest convex set 
containing a given set of M points

several applications: computer vision, information theory, ...

fast algorithms in 2D [O(M logM)] and in 3D [O(M2)] exist 

efficient algorithms up to 7-8 dimensions (QHULL, CDD)

both offline and online algorithms are available

Non-convex setConvex set
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Loadings space
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Apply projection to all points

Class 1
Loadings
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Convex hull in 2 dimensions
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Potential Bottlenecks Identification
Convex hull of the loading matrix
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Potential Bottlenecks Identification
Modification Analysis
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Potential Bottleneck Identification
Convex hull of a 3-class model
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Redundancy elimination

The time complexity of the convex hull of M points in higher 
dimensions  is O(MR/2)→ exponential in the num of classes R

LP techniques instead of convex hulls

Polynomial time complexities in the number of classes R (and in 
the number of stations M)

CONVEX HULL
CPU TIME

R=3
classes

R=6

M=1000
stations

<0.1 s 1 s 32 s 161 s

M=10000 <0.1 s 21 s 200 s

100 s

463 s

0.12 s

72 s

R=7 R=8 R=9

M=100000

M=1000000

Tested on a AMD Athlon 2800XP+ - 256KB CACHE – 768Mb RAM

Excessive
Requirements!
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Potential bottenecks Identification
Experimental results

LP
Techniques
CPU TIME

WORST CASE

R=5
classes

R=10

4 secs 6 secs

4 minutes

7 hours

2 minutes

5 hours

R=25 R=50

M=1000
stations

15 secs 48 secs

M=10000 10 minutes 31 minutes

M=100000 9 hours 16 hours

LP techniques are formulated as a set of independent 
problems

easy to parallelize

Heuristic strategies for quick identification of dominated 
and masked-off stations are available

Tested on a Intel Xeon Dual Processor 2.80 Ghz – 512KB CACHE – 1Gb RAM
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Conclusions and Future work

Multiclass generalization of single class modification analysis

Further studies required to relate convex hulls with 
asymptotic performance indices

Time requirements comparison with approximate techniques

Applications to real-time performance management


