

Bottlenecks Identification in "Very Large" Multiclass Queueing Models

Giuliano Casale casale@elet.polimi.it
Giuseppe Serazzi serazzi@elet.polimi.it

Outline

1. "Very large" models: motivations and examples

2. Geometric bottlenecks identification

multiclass modification analysis

3. Experimental results

4. Conclusions and future work

Motivations

- Complexity of modelling actual computer infrastructures
 - □ large installations comprising thousand of servers
 - strongly multiclass workload
 - detailed informations can be collected using automated performance monitors (e.g. BMC Patrol, ...)

- □ Performance evaluation using queueing networks models requires to deal with "Very Large" Models (VLM)
 - handling the curse of dimensionality
 - complex behavior of multiclass models

Complex behavior of multiclass models

VLM Examples Network infrastructures

- ☐ Intel (2001)
 - 100000 clients
 - 3000 servers
- Vodaphone Italy (2004)
 - □ 500 server Sun, 400 server HP, 2000 server NT
 - 40 Millions/day of SMS, 20 Millions customers
 - 500 update/sec on the customer care DB
- Unicredit bank (2004)
 - 10 large mainframes
 - 1000-1500 servers
 - Transactions: 36 Millions/day

VLM Examples

MILANO

Emerging Distributed Technologies: Grid computing

■ Several issues: optimal scheduling, load balancing, ...

Modelling Techniques for VLMs

- How to analyze a VLM with product-form queueing networks?
 - excessive computational requirements for an exact solution
 - approximate techniques?
 - suffer decrease in accuracy as the number of classes grows

 [Zahorjan, Eager, Sweillam. Accuracy, Speed, and Convergence of Approximate Mean Value Analysis. Perf. Eval. 8(4), 255–270 (1988)]
 - □ little is known for a large number of classes (say >> 4)
 - empirically Linerizer converges slowly
 - □ execution times: only B-S looks suitable for an online solution

However, product-form requirements may not be satisfied

Notation and Assumption

Both open and closed general multiclass queue nets

- M stations
- R customer classes
- Loading matrix

$$\mathbf{L} = \{L_{ir} = V_{ir} S_{ir}\}$$

Customer Classes

$$\begin{array}{c} \text{Definition of } \\ \text{Definition of }$$

Taxonomy of stations

■ Natural bottlenecks

bottlenecks when a single class is present in the network

Classes

Network bottlenecks

can saturate only under a multiclass population mix

Potential bottlenecks set

(network + natural) bottlenecks

$$\Pi = \{1, 2, 3\}$$

Dominated stations

4 has all components less than those of 3

■ Masked-off stations

5 not dominated, but never saturates

Computational Geometry

□ Convex set: every line segment joining any pair of points lies entirely in the set

Non-convex set

- ☐ Convex hull problem: find the smallest convex set containing a given set of M points
 - several applications: computer vision, information theory, ...
 - ☐ fast algorithms in 2D [O(M logM)] and in 3D [O(M²)] exist
 - efficient algorithms up to 7-8 dimensions (QHULL, CDD)
 - □ both offline and online algorithms are available

Loadings space

Apply projection to all points

Class 2 Loadings

Convex hull in 2 dimensions

13

Potential Bottlenecks Identification

Convex hull of the loading matrix

Potential Bottlenecks Identification

MILARO P

Modification Analysis

Potential Bottleneck Identification

Convex hull of a 3-class model

Redundancy elimination

☐ The time complexity of the convex hull of M points in higher dimensions is $O(M^{R/2}) \rightarrow exponential$ in the num of classes R

CONVEX HULL CPU TIME	R=3 classes	R=6	R=7	R=8	R=9
M=1000 stations	<0.1 s	1 s	32 s	161 s	
M=10000	<0.1 s	21 s	200 s		
M=100000	0.12 s	100 s		Excessive Requirements!	
M=100000	72 s	463 s			

Tested on a AMD Athlon 2800XP+ - 256KB CACHE - 768Mb RAM

- LP techniques instead of convex hulls
 - Polynomial time complexities in the number of classes R (and in the number of stations M)

Potential bottenecks Identification

Experimental results

LP Techniques CPU TIME WORST CASE	R=5 classes	R=10	R=25	R=50
M=1000 stations	4 secs	6 secs	15 secs	48 secs
M=10000	2 minutes	4 minutes	10 minutes	31 minutes
M=100000	5 hours	7 hours	9 hours	16 hours

Tested on a Intel Xeon Dual Processor 2.80 Ghz - 512KB CACHE - 1Gb RAM

- LP techniques are formulated as a set of independent problems
 - easy to parallelize
- ☐ Heuristic strategies for quick identification of dominated and masked-off stations are available

Conclusions and Future work

- Multiclass generalization of single class modification analysis
- □ Further studies required to relate convex hulls with asymptotic performance indices

☐ Time requirements comparison with approximate techniques

■ Applications to real-time performance management