
Towards a Security-aware Deployment of Data
Streaming Applications in Fog Computing

Gabriele Russo Russo, Valeria Cardellini, Francesco Lo Presti, and Matteo Nardelli

AbstractEmerging fog and edge computing environments provide newopportunities
for Big Data applications, enabling the collection and the analysis of data emitted by
heterogeneous devices (e.g., smartphones, IoT sensors) with reduced latency com-
pared to traditional cloud data centers. In particular, many analytics applications
deal with real-time continuous data flows (e.g., traffic monitoring information), and
distributed Data Stream Processing (DSP) systems represent a popular solution in
this context. However, the highly distributed and heterogeneous nature of fog/edge
platforms poses several challenges for the deployment of DSP applications, includ-
ing security and privacy issues. As data streams flow through the public network and
are possibly processed within multi-tenant and heterogeneous computing platforms,
new criteria related to security and privacy must be considered when deploying an
application, along with commonly accounted performance and cost aspects. In this
chapter, we present the most relevant existing solutions for deploying DSP applica-
tions in a fog/edge computing environment. We consider approaches for computing
the initial deployment of DSP applications as well as adapting their deployment at
run-time, e.g., so to address changing execution conditions. While presenting the
state of the art, we identify the most relevant open challenges, investigating - in par-
ticular - how the existing solutions address security and privacy-related concerns.
Then, taking into account security, we present Security-awareDSP Placement (SDP),
a formulation of the optimal deployment problem for DSP applications in fog/edge
environments. Specifically, we introduce security-related metrics, and we show how
the resolution of SDP allows to trade-off cost and performance with privacy and data
integrity objectives.

Gabriele Russo Russo, Valeria Cardellini, Francesco Lo Presti, Matteo Nardelli
Department of Civil Engineering and Computer Science Engineering, University of Rome Tor
Vergata, Rome 00133, Italy
e-mail: russo.russo@ing.uniroma2.it, cardellini@ing.uniroma2.it, lopresti@info.uniroma2.it,
nardelli@ing.uniroma2.it

1

banto
This is an Author Accepted Manuscript version of the following chapter: G. Russo Russo, V. Cardellini, F. Lo Presti, M. Nardelli, "Towards a security-aware deployment of data streaming applications in fog computing", published in Fog/Edge Computing for Security, Privacy, and Applications, edited by W. Chang and J. Wu (eds.), 2021, Springer reproduced with permission of Springer. The final authenticated version is available at http://dx.doi.org/10.1007/978-3-030-57328-7_14



2 Gabriele Russo Russo, Valeria Cardellini, Francesco Lo Presti, and Matteo Nardelli

1 Introduction

In the recent few years we have witnessed a worldwide explosion of the volume
of daily produced data, fostered by the spread of sensors, wearable devices, and
smartphones capable of collecting data about their surrounding environment and
our everyday life. Today, all this information plays a key role data in our society,
and has become a strategical assets for institutions, companies, and scientists. The
analysis of collected data allows to extract information useful for supporting decision-
making, e.g., gathering new insights by identifying patterns or making predictions
based on past observations.

In this context, the ability of efficiently collecting, storing, and analyzing data has
become a strategic advantage. Nevertheless, the aforementioned growth has made
data processing challenging from a computational point of view, and led to the
development of efficient algorithms, tools, and frameworks for dealing with data
(e.g., the Map-Reduce paradigm, and associated frameworks like Apache Hadoop).

Special interest has been devoted to real-time data analytics, which requires
systems able to process data as soon as they are collected. This is critical in many
application domains, e.g., in network attack detection, wheremonitoring information
about the incoming traffic should be processed with very low latency. In this context,
a primary role is played by distributed Data Stream Processing (DSP) systems,
which allow to process unbounded sequences of data (i.e., streams), flowing at very
high rates, exploiting a multitude of computing nodes to spread the computation.

In the effort to further reduce processing latencywith respect to data producers and
consumers, which are often located at the edge of the network, recently DSP systems
have been shifted from traditional cloud data centers to fog computing environments.
By deploying applications in such geographically distributed infrastructures, latency
reduction is achieved at the cost of handling increased heterogeneity, constrained
computational and network resources, and a larger number of security concerns.
These challenges especially impact the application placement problem, that is the
problem of determining the set of computing nodes where application components
are deployed and executed. This choice is indeed critical for achieving the expected
Quality-of-Service (QoS), while minimizing application operating costs.

The placement problem for DSP applications has been widely investigated in
literature, in the context of both traditional cloud scenarios, and geographically dis-
tributed environments (e.g., fog computing), exploiting a variety of methodologies.
Existing solutions take into account performance-oriented characterizations of both
the application and the computing infrastructure, in order to determine a placement
scheme that optimizes one or more QoS metrics (e.g., system response time, or
deployment monetary cost). Unfortunately, most the existing approaches neglect the
security- and privacy-related concerns that inevitably arise when DSP applications
are deployed in fog-like environments, where they may rely on a mixture of wired
and wireless network links, and computing resources characterized by different soft-
ware/hardware configurations, possibly acquired from multiple providers.

In this chapter, to overcome the limitations of existing placement optimization so-
lutions, we present a simple yet quite general approach to account security related as-



Towards Security-aware Deployment of Data Streaming Applications 3

pects. To this end, we introduce a formalism to specify application requirements and
describe infrastructure features and capabilities. We also define associated metrics
that capture how well different placement solutions match the specified application
requirements, and allow us then to seamlessly integrate security related requirement
in the overall optimization scheme. Our contributions are as follows.

• We present a formalism for specifying security-related application requirements.
The idea is to represent an application requirements as a forest of AND-OR
requirements trees, each capturing a specific security requirement, e.g., privacy,
isolation. At the same time we show how this formalism can be used to derive
several requirement satisfaction metrics.

• We introduce the notion of operator and data stream configurations which define
the set of security related configurations which satisfy the application require-
ments. This is paralleled by the notion of configurations that the infrastructure
computing nodes and data links can support. The concept of configurations is
the basis around which stakeholders can reason about application requirements
and infrastructure characteristics and lay out the foundation of our deployment
problem formulation.

• Finally, we integrate the aforementioned requirements, configurations and met-
rics in the placement optimization problem, which is formulated as Integer Linear
Programming (ILP), and also accounts for other application non-functional re-
quirements, e.g., response time and cost, and present the Security-Aware DSP
Placement (SDP) problem. Focusing on a realistic case study, we show how SDP
allows us to compute trade-offs between performance-based metrics, deployment
cost, and security-related requirements satisfaction.

Organization of the Chapter

In the next section, we will provide an overview of the basic concepts of DSP, and
the challenges faced when deploying this kind of applications in fog environments,
especially as regards security concerns. In Sec. 3, we present a formalism for spec-
ifying the application security-related requirements for deployment. In Sec. 4, we
explain how we model the application placement problem, including the application
and infrastructure model, and the associated QoS and cost metrics. The resulting
problem formulation is presented in Sec. 5, along with an illustrative example of how
it can be applied. We discuss the benefits and limitations of the presented approach
in Sec. 6, and conclude in Sec. 7.

2 Background

In this section, we provide an overview of the main concepts, challenges, and re-
search directions related to DSP, and the deployment of DSP applications in the fog



4 Gabriele Russo Russo, Valeria Cardellini, Francesco Lo Presti, and Matteo Nardelli

enviroment. First, we describe in Sec. 2.1 the basic concepts and main challenges
related to the deployment of DSP applications. Then, in Sec. 2.2, we focus on re-
search works that address the placement of DSP applications. Finally, in Sec. 2.3,
we describe works that deal with security and privacy issues in the DSP domain.

2.1 Data Stream Processing: Basic Concepts and Challenges

A DSP application consists of a network of processing elements, called operators,
connected by data streams. A DSP application can be represented as a directed
acyclic graph (DAG), with data sources, operators, and final consumers as vertices,
and streams as edges. A stream is an unbounded sequence of data items (e.g.,
event, tuple). Each operator is a self-contained processing element, that continuously
receives incoming streams, applies a transformation on them, ranging from a simple
operation (e.g., filtering, aggregation) to something more complex (e.g., applying a
machine learning algorithm to detect some patterns), and generates new outgoing
streams. Each data source (e.g., an IoT sensor or a message queue) generates one or
more streams that feed the DSP application; differently from operators, data sources
have no incoming streams. A final consumer (or sink) is a final receiver of the
application streams; it can push data on a message queue, forward information to
a persistent storage, or trigger the execution of some external services. Differently
from operators, sinks have no outgoing streams.

Fig. 1: Example of a smart health application.

An example of a DSP application related to the smart health domain, e.g., [2], is
shown in Fig. 1. Data are collected by sensors on users’ devices (e.g., smartphones,
wrist-worn wearable devices), and sent for analysis to a DSP application. The appli-
cation may carry out several kinds of processing on the data at the same time. In the
example we consider, the application is used both for (i) detecting anomalies in the
vital parameters monitored (e.g., skin temperature, heartbeat, and oxygen saturation
in the blood) and send notifications to medical staff, and (ii) creating aggregated
statistics. Users’ devices push data into a message queue system, which in turn sends



Towards Security-aware Deployment of Data Streaming Applications 5

data as streams to the DSP system for processing. Before entering the DSP sys-
tem, data can also be integrated (e.g., to merge the incoming streams into a single
flow) and pre-processed (e.g., to detect duplicates). In the application DAG we can
identify one source of the DSP application, four operators, and two sinks, the latter
corresponding to the data consumers (medical staff and storage system). The DSP
operators perform different tasks that range from aggregating data using summary
statistics (the upper path in the DAG) to detecting any anomaly in the data streams
(the lower path in the DAG). Although simple, this DSP application is an example
of edge-native applications [56], which can take advantage of one or more of the
benefits that arise from the fog/edge deployment: bandwidth scalability, low latency,
enhanced privacy, and improved resiliency to WAN network failures.

DSP applications are typically deployed on either locally distributed clusters or
centralized cloud data centers, which are often distant from data sources. However,
pushing fast-rate data streams from sources to distant computing resources can
exacerbate the load on the Internet infrastructure and introduce excessive delays
experienced by DSP application users. Moreover, considering that both data sources
and consumers are usually located at the network edges, a solution that allows to
improve scalability and reduce network delays lies in deploying DSP applications not
only on cloud data centers but also on edge/fog computing resources. Furthermore,
the deployment on edge/fog resources can also enable users to selectively control the
disclosure of sensitive information (e.g., vital parameters monitored by wrist-worn
devices as in the example shown in Fig. 1).

In such a distributed scenario, a relevant problem consists in determining the
computing nodes that should host and execute each operator of a DSP application,
aiming to optimize some QoS attributes. This problem is known in literature as the
operator placement problem (or scheduling problem).

Fig. 2: Illustration of the placement problem for a DSP application.

Figure 2 illustrates a possible placement of the DSP application shown in Fig. 1
on the computing infrastructure. Multiple operators can also be co-located on the
same computing node (e.g., op2 and op4).



6 Gabriele Russo Russo, Valeria Cardellini, Francesco Lo Presti, and Matteo Nardelli

Besides the initial placement of the DSP operators, the deployment of DSP
applications can also be changed at run-time, that is during the application execution,
so to self-adapt it with respect to workload changes and dynamism of the edge/fog
computing environment (e.g., resource constraints, network constraints in term of
latency and bandwidth, resources that join or leave the system). To this end, different
approaches can be applied, ranging from the exploitation of performance-enhancing
techniques (e.g., operator replication by means of elastic scale-out and scale-in
operations, other types of dynamic transformation of the DAG) to the run-time
adaptation of the application placement. The latter can be achieved at different grains,
by placing either all the DSP operators from scratch (in this case, the placement
problem is solved at regular intervals, so to update the operator location) or only a
subset of operators by relying on operator migration between computing resources.
Determining the operator replication degree is often addressed in literature as an
independent and orthogonal decision with respect to the operator placement, but
in [13] we present a problem formulation that jointly optimizes the replication
and placement of DSP applications. In this chapter, we assume that the operator
replication degree has been set at application design time; so, we address the initial
operator placement that is, how to place to DSP operators on the computing resources
at the application start. To this end, in Sec. 2.2 we focus our literature analysis on
those works that address the placement of DSP applications in the fog/edge scenario,
or more generally in a geo-distributed computing environment. As regards research
works dealing with the run-time self-adaptive control of DSP applications, we refer
the interested reader to some surveys [6, 51] that classify and review them.

2.2 Placement of DSP Applications in the Fog

TheDSP placement problemhas beenwidely investigated in literature under different
modeling assumptions and optimization goals (e.g., [21, 62, 63]). We review the
related works organizing them along three main dimensions, that capture one or
more related facets of the problem: (1) placement goals; (2) methodologies used to
define the application placement; and (3) characteristics of the distributed computing
infrastructure managed by the placement solution. For a deeper analysis of the state
of the art, we refer the interested reader to extensive surveys, that analyze in details
the research works addressing the placement problem not only in the context of
DSP applications but also for other kinds of applications deployed in the fog/edge
environment [8, 9, 12, 62].

Placement Goals. Existing works consider two main classes of problems: con-
straint satisfaction and objective function optimization. In a constraint satisfaction
problem, we are interested in identifying a deployment solution among all the fea-
sible ones that satisfy some given requirements (e.g., application performance). For
example, Thoma et al. [63] propose an approach to restrict the set of feasible deploy-
ment by improving the expressiveness of constraints. In most cases, not all feasible
deployment result in desirable application performance; therefore, most of the ex-



Towards Security-aware Deployment of Data Streaming Applications 7

isting solutions optimize (i.e., minimize or maximize) a single-objective function or
a multiple objective function. A single-objective optimization considers a specific
and well-defined QoS metric (e.g., response time, throughput, network usage, cost).
A multi-objective optimization (or Pareto optimization) aims to combine different,
possibly conflicting QoS attributes and to find the set of optimal solutions (i.e.,
those lying on the so-called Pareto frontier). The existing solutions aim at opti-
mizing a diversity of objectives, such as to minimize the application response time
(e.g., [7, 20, 34, 52]), the inter-node traffic (e.g., [4, 22, 27, 66, 67]), the network
usage (e.g., [48, 50]), or a generic cost function that can comprise different QoS
metrics (e.g., [5, 14, 21, 38, 53, 65]).

Methodologies. The most popular methodologies used to address the operator
placement problem include mathematical programming (e.g. [5, 14, 21]), graph-
theoretic approaches (e.g., [23, 35]), greedy approaches (e.g., [4, 26, 33, 36, 52, 66]),
meta-heuristics (e.g., genetic algorithms [60], local search [18, 61], tabu search and
simulated annealing [61], steepest descent method and tabu search [31]), as well as
custom heuristics (e.g., [20, 22, 40, 46, 48, 53]).

The operator placement problem, formulated as optimization problem that takes
into account the heterogeneity of application requirements and infrastructural re-
sources, turns out to be an NP-hard problem [14]. Therefore, many research efforts
focus on applying different methodologies that can solve efficiently the DSP place-
ment problem within a feasible amount of time, even for large problem instances.

Computing Infrastructure. Most of the existing solutions have been designed
for a clustered environment, where network latencies are almost zero (e.g. [26,
34, 52]). Although interesting, these approaches might not be suitable for geo-
distributed environments. Several works indirectly consider the network contribution
by minimizing the amount of data exchanged between computing nodes (e.g., [4,
21, 22, 23, 32, 66]). For example, Eidenbenz et al. [21] propose a heuristic that
minimizes processing and transfer cost, but it works only on resources with uniform
capacity. Relying on a greedy best-fit heuristic, Aniello et al. [4] and Xu et al. [66]
propose algorithms that minimize the inter-node traffic. Other works explicitly take
into account network latencies, thus representing more suitable solutions to operate
in a geo-distributed DSP system (e.g., [7, 14, 20, 29, 40, 48, 50]). Pietzuch et al. [48]
and Rizou et al. [50] minimize the network usage, that is the amount of data that
traverses the network at a given instant.

So far, only a limited number of works are specifically designed for placing DSP
applications in fog/edge computing environments. SpanEdge [53] allows to specify
which operators should be placed as close as possible to the data sources, while
Arkian et al. [5] propose an integer non-linear formulation; to reduce resolution
time, they linearize the problem; nevertheless, also linear formulations may suffer
from scalability issues [40]. The work in [38] presents a Pareto-efficient algorithm
to tackle the operator placement problem considering both the latency and energy
consumption. Khare et al. [33] present an approach that first transforms any arbitrary
DAG into an approximate set of linear chains, then uses a data-driven latency predic-
tion model for co-located linear chains to drive a greedy heuristic, which determines
the operator placement with the goal to minimize the maximum latency of all paths



8 Gabriele Russo Russo, Valeria Cardellini, Francesco Lo Presti, and Matteo Nardelli

in the DAG. Peng at al. [47] jointly target the problems of DSP operator placement
and replication in an edge scenario by proposing a two-stage approach that first em-
ploys a genetic algorithm for finding a solution and then uses a bottleneck-analysis
based on the system queuing model to refine it.

The combination of cloud and edge resources have been also explored. For ex-
ample, Ghosh et al. [28] propose a genetic algorithm meta-heuristic and show that
their approach allows to achieve lower latency and more frequent feasible solutions
than placing only on Cloud resources. Da Silva Vieth et al. [59] propose strategies
that first decompose the application DAG, which is a series-parallel one, and then
place its operators in a latency-aware manner. However, all these proposals focus on
reducing the application latency, without taking into account any concern related to
privacy and security.

A few edge-based stream processing systems support processing on fog/edge re-
sources with the goal of reducing the need for costly data transfers. These systems
include Cloud services such as AWS IoT Greengrass, Google Cloud IoT Edge, Mi-
crosoft Azure IoT, and research prototypes (e.g., Frontier [44]); however, they do not
appear to place the DSP application over fog/edge resources by taking into account
their peculiarities. On the other hand, this goal is pursed by some research efforts that
extend existing open-source data stream processing systems such as Apache Storm
(e.g., [4, 40, 53, 66]), mainly to show the feasibility of their approaches.

2.3 Security and Privacy in DSP

In many DSP applications, data streams carry privacy-sensitive information about
users, whose confidentiality must be obviously protected throughout processing.
Other applications, while not dealing with privacy-sensitive data, may carry out
safety-critical tasks based on sensor-provided information (e.g., anomaly detection
in a manufacturing system), where the integrity of the involved data streams must be
guaranteed to avoid unintended (and possibly dangerous) application behaviors.

Guaranteeing confidentiality and integrity of data streams has become a serious
challenge, especially since the availability of computing resources at the edge of the
network fostered the interest for deploying DSP applications in geographically dis-
tributed infrastructures, in the aim of reducing latency. The enforcement of security
and privacy policies is difficult in these environments, where the intrinsic hetero-
geneity, and thus the involvement of different standards and communication stacks,
does not allow the application of traditional security countermeasures. This problem
is particularly evident nowadays as data analytics often meet IoT scenarios, where
streams originate from a multitude of potentially untrusted, distributed devices, and
the need for security policy enforcement becomes critical [58].

Security and privacy issues have received limited attention in the field of
distributed DSP systems so far, with research efforts being mainly devoted to
application-level issues, performance, and fault-tolerance. Nonetheless, some ef-
fort has been spent investigating how to integrate privacy-preservation and access



Towards Security-aware Deployment of Data Streaming Applications 9

control [55] techniques in DSP systems, in order to guarantee that only authorized
access to privacy-sensitive data is allowed.

Linder and Meier [37] extend the Borealis [1] streaming engine with OxR-
BAC (Owner-extended Role Based Access Control), which aims at protecting the
system against improper release of information, improper modification of informa-
tion, and denial of service attacks. Ng et al. [43] propose a framework for privacy-
preservation in data stream processing, built around the two principles of limited
disclosure and limited collection of information. They design a hierarchy-based pol-
icy model and a framework to enforce privacy protection policies, and hence limit
access and operation on data streams. Carminati et al. [11, 16, 17] apply Role Based
Access Control [54] to DSP, relying on secure operators in order to replace ap-
plication operators with security-aware versions. After presenting their ACStream
framework in [11], in [16] they propose a query-rewriting middleware that does not
target a specific underlying DSP framework.

Nehme et al. [41, 42] focus on the continuous access control enforcement for
data streams, observing that, given the long-running nature of DSP systems, the
content of the streamed data and its privacy-sensitivity may change, hence access
control policies may need to be adapted dynamically as a consequence. In particular,
in [42] they introduce the concept of a security punctuation for enforcing access
control, that is a special tuple inserted directly into the data stream, allowing the data
provider to attach security “metadata” to the stream. In [41], they describe FENCE, a
framework for enhancing DSP systems with continuous access control enforcement
through security punctuations, with limited runtime overhead.

Anh andDatta [3] focus on the problem of preserving privacy of data while stream
processing is outsourced to the cloud. They present StreamForce, a framework for
enforcing access control policies in presence of an untrusted cloud provider. Thoma
et al. [64] propose PolyStream, a framework that allows users to cryptographically
enforce access controls over streaming data on top of an unmodified DSP system.
PolyStream relies on a novel use of security punctuations that enables flexible,
online policy management and key distribution, with significant overhead reduction.
Schilling et al. [57] focus on large-scale distributed Complex Event Processing
systems, proposing access control consolidation mechanisms in order to ensure the
privacy of information even over multiple processing steps in a multi-domain, large-
scale application.

A different point of view on privacy-preservation is offered by Le Quoc et al. [49].
They aim at preserving users privacy, while still supporting both information high-
utility and low-latency processing. Specifically, they achieve this goal by blending
together two different approaches, namely, sampling (used for approximate compu-
tation) and randomized response (used for privacy-preserving analytics).

Recently, Burkhalter et al. [10] focused on the special class of applications dealing
with time series data. They propose TimeCrypt, which provides scalable, real-time
analytics over large volumes of encrypted time series data, by allowing users to define
expressive data access and privacy policies, and enforcing them cryptographically.

The number of works that deal with system- or network-level security aspects
in the context of DSP is significantly smaller. Fisher and Hancke [24] consider the



10 Gabriele Russo Russo, Valeria Cardellini, Francesco Lo Presti, and Matteo Nardelli

network-level challenges of transmitting privacy-sensitive data streams from sensors
to the processing servers. In particular, they investigate the use of the Datagram
Transport Layer Security protocol, compared with the more popular Transport Layer
Security protocol. Havet et al. [30] propose SecureStreams, a reactive framework
that combines combines a high-level dataflow programming model with low-level
Intel software guard extensions (SGX) in order to guarantee privacy and integrity of
the processed data. Park et al. [45] focus on the scenario of running stream analytics
on untrusted, resource-constrained devices at the edge of the network. They present
StreamBox-TZ, a stream analytics engine that offers strong data security and verifi-
able results, by isolating computation in a Trusted Execution Environment (TEE). In
particular, StreamBox-TZ relies on a data plane designed and optimized for a TEE
based on ARM TrustZone.

A different approach is proposed by Chaturvedi and Simmhan [19], who apply
Moving Target Defense (MTD) [68] techniques to protect a DSP platform; the key
idea is to introduce system configuration variability at run-time so that any prior
information available to an attacker becomes hardily usable. In particular, they
implement several MTD mechanisms (e.g., migrating operators periodically over
available computing nodes, altering the used port numbers,modifying the application
graph by means of “dummy” operators), and show the feasibility of the approach by
integrating them in Apache Storm.

At a higher level of abstraction, independently of the specific DSP framework
in use and the possibly associated privacy-preservation mechanisms, security and
privacy concerns also impact the choices made for initially deploying DSP appli-
cations over distributed infrastructures, i.e., the placement problem. As explained
above, this problem has been extensively studied, but so far only performance and
cost aspects have been considered in the context of DSP. Security-aware deployment
and scheduling strategies have been proposed instead targeting other kinds of fog
applications (e.g., [25] and [58]). In this chapter, we aim to fill the existing gap
regarding the DSP placement problem, and the consideration of privacy and security
for stream analytics applications in the fog. Although we specifically focus on the
initial placement problem, the approach we will present can be applied for updating
the application deployment at run-time as well, e.g., following a MTD strategy as
suggested in [19].

3 Modeling Security-related Requirements

Traditional strategies for deploying DSP application over distributed infrastructures
aim at optimizing one or more performance metrics, e.g., application response time,
or throughput. Some of them also account for the monetary cost of the computing
resources chosen for running the application, assuming, e.g., a typical pay-as-you-go
cost model. The recent trend of shifting the data processing applications towards the
edge of the network, closer to the data producers, often forces DSP applications to
be deployed in a less “trusted” environment, compared, e.g., to cloud data centers.



Towards Security-aware Deployment of Data Streaming Applications 11

In this new scenario, application deployment strategies should therefore account
for security-related aspects in addition to the other well-known functional and non-
functional metrics and stakeholders should be able to specify a set of requirements
and/or objectives that involve these additional non-functional aspects.

Unfortunately, although several solutions have been proposed in literature, how
stakeholders should express these requirements in a standardized way remains an
open question. In the remainder of this section, we describe a simple yet powerful
technique to formalize and organize the requirements of a DSP application with
respect to the underlying computing and network infrastructure by which it is hosted.

3.1 Requirement Categories and Objectives

For a DSP application we might need to specify its security, privacy, or reliability
requirements, in addition to commonly adopted performance and cost objectives.
The application requirements could include a broad range of different aspects, in-
cluding software or network configuration, hardware capabilities, location of the
computing resources. Formally, we assume that application requirements are orga-
nized into different Requirement Categories (RCs), denoting with ΩRC the set of all
the considered categories. An application may hence exhibit requirements related to
one or more RCs. Clearly, the relative relevance of each RC depends on the specific
application. Whilst some RCs may contain critical requirements for application op-
eration, other RCs may simply represent application “preferences” with respect to its
running environment. In the following, we will show how the different importance
of each requirement will impact the optimization problem we present.

With each Requirement Category ω, we associate a set of Requirement Objec-
tives (ROs), denoted as Ωω

RO
. ROs represent specific properties of the computing

infrastructure or the network (e.g., “type of operating system”, “available encryption
libraries”, “wired/wireless network connectivity”).While RCs are mere abstractions,
representing a collection of similar or related requirements, ROs represent concrete
properties which can be evaluated in order to assess whether, e.g., a certain comput-
ing node satisfies the application needs. Specifically, given a RO ρ, we denote the
set of values ρ can be associated with as Vρ. For example, the “type of operating
system” RO might be associated with the values “Linux”, “Android”, “Windows”,
“Other”. Throughout this chapter, without loss of generality, we will assume that Vρ
is a finite set. We also find useful to define the set of the ROs comprised by all the
RCs, that is ΩRO =

⋃
ω Ω

ω
RO

, ∀ω ∈ ΩRC .

Example

Figure 3 depicts a simple hierarchy of Requirement Categories and Objectives as a
tree.We organize requirements into three categories:Runtime Environment,Physical



12 Gabriele Russo Russo, Valeria Cardellini, Francesco Lo Presti, and Matteo Nardelli

Requirement Categories

Isolation

Runtime
Environment

Container

None VM

Multi-tenancy

Yes No

Software config.

Operating
System

Linux

Windows Android

Other

Physical Security

Connectivity

Wired

Wireless

Network

Encrypted traffic

Yes No

IPv6

Yes No

Fig. 3: Example of a hierarchy of Requirement Categories and Requirement Objec-
tives.

Security, and Network. Each RC is associated with one or more ROs. The leaf nodes
of the tree reported in the figure contain all the possible values for each RO.

3.2 Requirements Forest

In our approach, application requirements are expressed bymeans of AND-OR trees,
which are widely adopted to represent security policies or requirements (e.g., in [25],
[39]). AND-OR trees allow to reduce the overall requirements to the conjunctions
and disjunctions of “sub-requirements” (e.g., requirements coming from specific
application components).

In particular, we expect an AND-OR tree Tω to be specified by the application for
each category of interest ω ∈ ΩRC . Henceforth, the overall application requirements
can be formally expressed as a forest F = {Tω : ∀ ω ∈ ΩRC}. The structure of a
generic tree Tω is illustrated in Fig. 4. As shown in the figure, the root node of
each tree corresponds to the RC ω itself. The next level of the tree contains nodes
associated with application components (i.e., operators or streams). Each of these
nodes is the root of a subtree that represents the requirements of that specific operator
(or stream). Clearly, in order to satisfy the application requirements, the requirements
of every component must be satisfied. Therefore, each node at this level of the tree
is in conjunction with the others.

Looking at the next level of the tree, the i-th operator (or stream)may be associated
with one or more child nodes representing ROs for which a requirement is specified.
We denote the set of ROs that characterize the deployment requirements of operator
i as Ωω,i

RO
. Recalling that each RO ρ takes values in a finite set Vρ, specifying a

requirement for ρ means identifying a subset of values Ṽ ⊆ Vρ. Indeed, in our tree-
based representation, RO nodes have one or more child nodes, each corresponding
to a value v ∈ Vρ that allows to satisfy the requirement. These nodes are leaf nodes
of the tree.

We further enrich our formalism by allowing leaf nodes to be associated with an
optional preference value qi

v ∈ (0, 1], which is ameasure of howmuch v ∈ Vρ satisfies



Towards Security-aware Deployment of Data Streaming Applications 13

the requirement of i (i.e., qi
v = 1 means that v completely satisfies the requirement,

whilst 0 < qi
v < 1 means that v is a feasible choice for the application, but with a

smaller degree of satisfaction). The preference specification is optional. Wherever
the preference value is not provided, complete satisfaction of the requirement is
assumed (i.e., qi

v = 1). Analogously, for the values v ∈ Vρ not appearing in the tree,
which thus do not satisfy the application requirement, we will assume the preference
value to be zero.

Requirement Category

Operator / Stream

RO 1

Value A Value B

RO 2

Value C Value D

...

qA qB qC (1)

AND

OR

Fig. 4: Example of the AND-OR tree used to represent application requirements with
respect to a Requirement Category. Requirements associated with different operators
(or streams) and requirements involving different Requirement Objectives for the
same application component are in an AND relationship. Whenever the application
specifies multiple accepted options for the same RO, possibly providing a preference
value for each option, the corresponding nodes are in an OR relationship.

Example

With respect to the reference DSP application depicted in Fig. 1, we show in Fig. 5
an example of the requirements that might be specified for the application. As
explained, within the considered application DAG, some components are critical,
because they (i) deal with privacy-sensitive information about users, and (ii) are
responsible for detecting and reporting potential users’ health diseases. Therefore,
we expect application requirements to focus on these critical operators and streams.

For example, op1 and op2, which analyze users’ data looking for anomalies, may
require software isolation, by running either in a software container or a virtual
machine. Moreover, the application may require to have those operators deployed
in a dedicated node. Specifically, according to the example of Fig. 5a, op1 requires
a dedicated node, but also allows for deployment in a multi-tenant node, with a



14 Gabriele Russo Russo, Valeria Cardellini, Francesco Lo Presti, and Matteo Nardelli

preference value smaller than 1; op2 instead strictly requires to run in a dedicated
node.

Isolation

op1

Runtime Env.

VM Container

Multi-tenancy

No Yes

op2

Runtime Env.

VM Container

Multi-tenancy

No

1 1 1 0.9 1 1 1

(a)

Network

src–op1

Encrypted traffic

Yes

IPv6

Yes

op1–op2

Encrypted traffic

Yes

op2–sink1

Encrypted traffic

Yes

(b)

Fig. 5: Example of requirements for the reference DSP applications.

Requirements can also be specified for data streams (i.e., edges of the application
DAG), imposing restrictions on the network links across which the streams can flow.
Looking at Fig. 5b, we see that in the example the stream from the source to the first
operator requires a network link that supports IPv6. Furthermore, all the streams in
the path from the source to the first sink require data to be encrypted when traversing
the network.

4 DSP Application Placement Modeling

Determining the placement of a DSP application means identifying, within the
available computing infrastructure, the nodes where operators must be deployed
and executed. This choice has clearly a major impact on application performance,
cost, reliability, and security, as the available nodes may (i) be equipped with dif-



Towards Security-aware Deployment of Data Streaming Applications 15

ferent amounts of computing resources, (ii) provide different hardware or software
capabilities, and (iii) be connected to each other through different network links.

Our aim is to present a linear programming formulation for determining the
optimal placement of a DSP application, which takes into account performance,
cost, and security metrics. To this end, in this section we will present our model
of both the application and the computing infrastructure, and we will introduce the
QoS metrics we want to optimize.

4.1 System Model

In this section, we describe the systemmodel we consider. In particular, in Sec. 4.1.1,
we present how DSP applications are modeled within our optimization framework.
In Sec. 4.1.2, a model of the computing infrastructure, which hosts the applications,
is introduced.

4.1.1 Application Model

We represent a DSP application as a labeled directed acyclic graph (DAG) Gdsp =

(Vdsp, Edsp). The nodes inVdsp represent the application operators as well as the data
sources and sinks (i.e., nodes with no incoming and no outgoing link, respectively).
The edges in Edsp represent the data streams that flow between nodes.

We associate each node and edge in the application graph with various non-
functional attributes. Specifically, for each operator i, we specify: µi , the average
number of data units the operator can process per unit of time, on the reference
processor1; σi , the selectivity of the operator (i.e., the average number of data units
emitted by the operator per input data unit); Resi , the amount of resources required
for its execution. For the sake of simplicity, we assume Resi to be a scalar value,
representing, e.g., the number of CPU cores used by the operator. Our formulation
can be easily generalized to cope with a vector of required resources, including, e.g.,
the amount of memory needed for execution. Similarly, we characterize the stream
exchanged from operator i to j, (i, j) ∈ Edsp , with its average data rate λ(i, j), and the
average size (in bytes) of the data units belonging to the stream, b(i, j).

Moreover, we associate the application with its requirements forest F , defined in
the previous section. Each operator F induces a set of feasible configurations, i.e.,
the set of configurations which satisfy the operator security requirements. Formally,
we define a configuration φ as a vector φ =

(
vρ1, vρ2, ..., vρN

)
, where vρi ∈ Vρi is a

value associated with the RO ρi , and {ρ1, ρ2, ..., ρN } ⊆ ΩRO.
For each operator i, i ∈ Vdsp , the set of feasible configuration is defined as:

1 Operator processing speed depends on the actual software/hardware architecture where it is
executed. To this end, we define the operator speed with respect to a reference implementation on
a reference architecture.



16 Gabriele Russo Russo, Valeria Cardellini, Francesco Lo Presti, and Matteo Nardelli

Φi =

{(
vρ1, vρ2, ...

)
: vρk ∈ Vρk , ∀ρk ∈

⋃
ω

Ω
ω,i
RO

: qi
vρk

> 0

}
(1)

where Ωω,i
RO

is the set of ROs in the RC ω that characterizes the deployment of i, and
qi
vρk

> 0 identifies feasible values for ρ with respect to the operator requirements.
An analogous definition can be given for Φ(i, j), the set of feasible configurations for
every data stream (i, j) ∈ Edsp .

4.1.2 Computing Infrastructure Model

The computing infrastructure hostingDSP applications comprises a set of computing
nodes (being them powerful servers in data centers, or resource-constrained devices
at the edge), and the network resources that interconnect them. Computing and
network resources can be represented as a labeled, fully connected, directed graph
Gres = (Vres, Eres). Vertices in Vres represent the distributed computing nodes,
whereas the edges in Eres represent the logical links between nodes, which result
by the underlying physical network paths and routing strategies, not modeled at our
level of abstraction. We also model edges of the type (u, u), which capture local
connectivity between operators placed in the same node u.

We characterize each node u ∈ Vres by means of numerical attributes: Resu , the
amount of computing resources available at u; cu , the monetary cost per unit of time
associated with deploying an operator in the node; Sφu , the processing speedup with
respect to a reference processor, when using configuration φ.

Each node u ∈ Vres is also associated with a set of node configurations, Φu . The
concept of node configuration is analogous to the concept of operator configuration,
introduced above. We recall that a configuration φ is a vector φ =

(
vρ1, vρ2, ..., vρN

)
,

where vρi ∈ Vρi is a value associated with the RO ρi , and {ρ1, ρ2, ..., ρN } ⊆ ΩRO.
The set of configurations available on u depends on the hardware/software capabili-
ties of u; it can be defined as:

Φu ⊆
{(
vρ1, vρ2, ...

)
: ∀vρk ∈ Vu

ρk
, ∀ρk ∈ Ωu

RO

}
(2)

where Vu
ρ ⊆ Vρ is the set of values for the RO ρ supported by u, and Ωu

RO
⊆ ΩRO

is the subset of ROs characterizing the node u. Note that in the definition above the
equality does not necessarily hold, as some combinations of values for different ROs
may be unfeasible in practice.

Similar definitions apply to the communication links (u, v) ∈ Eres , each being
associated with a set of configurations Φ(u,v), defined as:

Φ(u,v) ⊆

{(
vρ1, vρ2, ...

)
: ∀vρk ∈ V (u,v)ρk , ∀ρk ∈ Ω(u,v)RO

}
(3)

where V (u,v)ρ ⊆ Vρ is the set of values for the RO ρ supported by (u, v), and Ω(u,v)
RO
⊆

ΩRO is the subset of ROs characterizing (u, v). Each link (u, v) and its configurations



Towards Security-aware Deployment of Data Streaming Applications 17

are also described by: dφ
(u,v)

, the network delay between node u and v, when using
network configuration φ; B(u,v), the network capacity available between u and v;
c(u,v), the monetary cost per unit of data exchanged on the link; αφ

(u,v)
, a coefficient

that captures any data transmission overhead incurred when using link configuration
φ (e.g., data encryption can lead to sending extra information).

4.2 DSP Placement Model

The DSP placement problem consists in determining a suitable mapping between
the DSP graph Gdsp and the resource graph Gres , as illustrated in Fig. 2. It is often
the case that some operators, especially sources and sinks, are pinned, that is their
placement is fixed.Without loss of generality, we assume that the other operators can
be placed on any node of the computing infrastructure, provided that the application
requirements for that operator can be satisfied when running in that node.

We can conveniently model the DSP placement problem with binary variables
xφi,u , i ∈ Vdsp , u ∈ Vres , φ ∈ Φu . The variable xφi,u has value 1 if operator i is
deployed on node u using configuration φ, and zero otherwise. A correct placement
must deploy an operator on one and only one computing node; this condition can be
guaranteed requiring that

∑
u

∑
φ xφi,u = 1, with u ∈ Vres , i ∈ Vdsp , φ ∈ Φu . For each

pinned operator ip , being ū the node it must be deployed in, clearly we have that
xφip,u = 0 for every node u , ū. Furthermore, under some configurations Φεu ⊆ Φu a
node u becomes available for exclusive use of a single operator. We model the choice
of exclusively acquiring nodes with additional binary variables wu , u ∈ Vres , which
have value 1 if the node u is exclusively used, and zero otherwise.

We also consider binary variables associated with links, namely y
φ

(i, j),(u,v)
, (i, j) ∈

Edsp , (u, v) ∈ Eres , φ ∈ Φ(u,v), which denotes whether the data stream flowing from
operator i to operator j traverses the network path from node u to node v, using
network configuration φ.

For short, in the following we denote by x and y the placement vectors for nodes
and edges, respectively, where x = 〈xφi,u〉, ∀i ∈ Vdsp , ∀u ∈ Vres , ∀φ ∈ Φu and

y =
〈
y
φ

(i, j),(u,v)

〉
, ∀(i, j) ∈ Edsp , ∀(u, v) ∈ Eres , ∀φ ∈ Φ(u,v). Similarly, we define the

exclusive use vector w = 〈wu〉, ∀u ∈ Vres .
Note that our model does not take into account operator replication, that is

allocating multiple parallel replicas of operators to handle larger volumes of input
data. The model we present can be easily extended to consider this scenario, either
by tweaking the decision variables as in [15], or by introducing an intermediate DSP
graph representation, which contains the replicated operators, and then computing
the placement for this new graph. However, both these approaches would make the
formulation less readable, and thus we do not investigate the replication problem in
this chapter.



18 Gabriele Russo Russo, Valeria Cardellini, Francesco Lo Presti, and Matteo Nardelli

4.3 QoS and Cost Metrics

Placement decisions have a significant impact on both the achieved QoS and the
associatedmonetary deployment cost. In this section, we introduce themetrics we are
interested in optimizing, and will be used in our optimization problem formulation.
Specifically, we are interested in optimizing the trade-offs between performance,
security- and privacy-related requirements satisfaction, and deployment cost. To
this end, in Sec. 4.3.1 we will consider application response time as the reference
performance metric; in Sec. 4.3.2 we will show how requirement satisfaction metrics
can be formulated; and in Sec. 4.3.3 we will define the deployment cost metrics
we will use. Note that other metrics can be easily included in our optimization
framework, e.g., availability or network-related metrics [15]. We do not show their
formulation here because of space limitations.

4.3.1 Response Time

DSP applications are often used in latency-sensitive domains, wherewe are interested
in processing newly incoming data as soon as possible. For this reason, a relevant
performance metric for DSP application is response time. Given a source-to-sink
path in the application DAG, we define response time as the time it takes for a
data unit emitted by the source to reach the sink, and thus possibly producing a
result/response.

In order to formalize the above definition, we consider a source-to-sink path
π =

(
π1, π2, ..., πNπ

)
, πi ∈ Vdsp . We define the application response time associated

with the path π as:

Rπ(x, y) =

πNπ∑
i=π1

Ri(x) +
Nπ−1∑
p=1

D(πp,πp+1)(y) (4)

where the first term accounts for the processing time spent at each operator in π,
and the second term accounts for the network delay accumulated along the path. In
presence of multiple source-to-sink paths, we may also be interested in the overall
application response time R(x, y), which we define as the maximum response time
among all the paths, i.e., R(x, y) = maxπ Rπ(x, y).

The single operator response time in turn can be formulated as:

Ri(x) =
∑

u∈Vres

∑
φ∈Φu

Ri(λi, S
φ
u )x

φ
i,u (5)

where Ri(λ, S) is the operator response time, evaluated with respect to the current
operator input rate λi , and processing speedup S. The total network delay along the
path π is equal to:



Towards Security-aware Deployment of Data Streaming Applications 19

D(i, j)(y) =
∑

(u,v)∈Eres

∑
φ∈Φ(u,v)

dφ
(u,v)

y
φ

(i, j),(u,v)
(6)

4.3.2 Security Requirements

Performance-related metrics are not sufficient to characterize the application QoS in
highly distributed fog-like environments. Actually, it is necessary to take into account
additional, non-functional application requirements, especially those related to secu-
rity needs. To this end, in addition to the traditionally used response time metric, we
consider a set of metrics that allow quantitatively reasoning about the satisfaction of
application requirements. In particular, we will define metrics of the type Sβα(x, y),
which measure the satisfaction level of (a subset of) the application requirements,
with respect to a certain deployment configuration. All these metrics take value in
[0, 1], with 1 indicating perfect matching of the application requirements, and 0 no
satisfaction at all.

Given a placement (x, y), we define an application-level satisfaction metric
S(x, y), which considers the requirements from every RC:

S(x, y) =
∏

ω∈ΩRC

Sω(x, y) (7)

Then, we define the satisfaction of application requirements related to RC ω ∈ ΩRC

as:
Sω(x, y) =

∏
i∈Vdsp

Si
ω(x) ·

∏
(i, j)∈Edsp

S(i, j)ω (y) (8)

where Si
ω(x) measures the requirements satisfaction for operator i, and S(i, j)ω (y) for

data stream (i, j), with respect to ω. That is, the satisfaction of the requirements
in ω implies meeting the requirements of all the operators and all the streams. In
turn, evaluating the requirements satisfaction for an operator (or, equivalently, a
stream) with respect to the current placement x, means evaluating how much its
current configuration matches its requirements. Formally, we let φ(x, i) denote the
node configuration in use by operator i under placement x, i.e., φ(x, i) identifies the
unique φ such that, for any node u ∈ Vres , xφi,u = 1. We have:

Si
ω(x) = Si

ω(φ(x, i)) (9)

Henceforth, for each operator i, we need to evaluate Si
ω(φ) in order to assess how

much a configuration φ satisfies its requirements in ω. Recalling that Ωω,i
RO

denotes
the set of ROs in ω that characterize the deployment of i, which are in conjunction
with each other, we get:

Si
ω(φ) =

∏
ρ∈Ωω, i

RO

qi,ρ
φρ

(10)



20 Gabriele Russo Russo, Valeria Cardellini, Francesco Lo Presti, and Matteo Nardelli

where qi,ρ
φρ
∈ [0, 1] is the preference value assigned by operator i to φρ, and φρ is the

value that characterizes ρ in configuration φ.2
Equivalent metrics can be formulated for data streams in a similar way. We have:

S(i, j)ω (y) = S(i, j)ω (φ(y, (i, j))) (11)

where φ(y, (i, j)) is the unique φ such that, for any link (u, v) ∈ Eres , yφ(i, j),(u,v) = 1.
We can thus evaluate the requirement satisfaction for (i, j) under configuration φ:

S(i, j)ω (φ) =
∏

ρ∈Ω
ω,(i, j)
RO

q(i, j),ρφρ
(12)

4.3.3 Deployment Cost

We model the monetary deployment cost associated with the usage of computing
and network resources. We assume a typical pay-as-you-go cost model, where the
monetary cost for each resource is proportional to its usage. In this scenario, we
define the total deployment cost for the application, per unit of time, as C(x, y, w).
It accounts for both the cost of the computing resources and the network usage, as
follows:

C(x, y, w) =
∑

u∈Vres

Cu(x, w) +
∑

(u,v)∈Eres

C(u,v)(y) (13)

The computing nodes cost Cu(x, w) in turn can be formulated as:

Cu(x, w) =
∑

φ∈Φu\Φ
ε
u

∑
i∈Vdsp

Resicu xφi,u + Resucuwu (14)

where the first term accounts for the cost paid when the node is not exclusively
acquired by an operator, which is proportional to Resi , the amount of resources
allocated to each operator i; the second term instead accounts for the cost paid when
the node is exclusively used by an operator, which is equivalent to paying for all the
resources provided by u, Resu .

The network usage cost is defined as:

C(u,v)(y) = c(u,v)N(u,v)(y) (15)

with N(u,v)(y) representing the amount of data exchanged through the link (u, v),
which can be computed as follows:

N(u,v)(y) =
∑

φ∈Φ(u,v)

∑
(i, j)∈Edsp

b(i, j)λ(i, j)α
φ

(u,v)
y
φ

(i, j),(u,v)
(16)

2 We note that the vector φ possibly specifies a value φρ for a subset of ROs Ω̃RO ⊆ ΩRO . Thus,
with a slight abuse of notation, we assume q

i,ρ
φρ
= 0, ∀ρ < Ω̃RO , i.e., a configuration φ cannot

satisfy requirements for any not specified RO.



Towards Security-aware Deployment of Data Streaming Applications 21

where b(i, j)λ(i, j) represents the data rate of the stream (i, j), and αφ
(u,v)

is a coefficient
that captures any data transmission overhead incurred when using link configura-
tion φ.

5 Security-aware DSP Placement Problem Formulation

When determining the placement of a DSP application, we aim at optimizing a
QoS-based function F(x, y) that involves one or more of the metrics presented in
the previous section. Moreover, we are often expected to additionally satisfy one
or more constraints, revolving around the same metrics of interest. For example, a
fixed monetary budget may be allocated for running the applications; performance-
related Service Level Objectives (SLOs) may have to be met; security requirements
of critical operators may have to be necessarily matched in order for the application
to operate.

In this work, relying on the QoS and cost metrics described above, we consider
three types of constraints, respectively related to the deployment cost, application
performance, and requirements satisfaction.

Deployment Cost Given a defined available budget Cmax , the total application
deployment cost must not exceed Cmax .

Performance We assume performance-related SLO to be defined for the appli-
cation, expressed in terms of application response time. In particular, an upper bound
Rπ
max is defined for each source-to-sink path π. Distinct paths indeed possibly carry

out processing tasks that are more or less latency-critical, and thus can be subject to
different SLOs.

Security-related Requirements Given a specification of the application Re-
quirements Forest, and the requirement satisfaction metrics defined in the previous
section, several constraints can be introduced in the deployment optimization prob-
lem, which allow to model both “hard” and “soft” security requirements. The generic
requirement satisfaction constraint has the form:

Sβα(·) ≥ Sβα,min (17)

By replacing Sβα(·)with the appropriate concrete metric, the constraint can be applied
to a specific subset of the requirements forest. For example, by using Sω(x, y), we can
formulate a constraint on the satisfaction of the requirements in the RC ω ∈ ΩRC ;
using Si

ρ(φ(x, i)), we can formulate a constraint associated with a specific operator
i ∈ Vdsp , and a single RO ρ ∈ ΩRO; instead, using S(x, y), the constraint applies to
the whole application requirement forest.

Furthermore, by properly setting the lower bound Sβα,min, we can model different
kinds of requirements. If Sβα,min = 0 and strict inequality is used, the constraint
only prohibits using deployment solutions where configurations not accepted by
the application are used (e.g., an operator requiring a Linux-based OS cannot be
deployed in a Windows-based node); if Sβα,min = 1 we get a hard constraint, where



22 Gabriele Russo Russo, Valeria Cardellini, Francesco Lo Presti, and Matteo Nardelli

every single involved requirement must be completely satisfied; if Sβα,min ∈ (0, 1) we
get a soft constraint, where only a minimum level of satisfaction is needed, based on
the preference values assigned to the various configurations.

5.1 Problem Formulation

We formulate the Security-awareDSP Placement (SDP) problem as an Integer Linear
Programming (ILP) model as follows:

min
x,y

F(x, y)

subject to:
Rπ
max ≥ Rπ(x, y) ∀π ∈ Πdsp (18)

Cmax ≥ C(x, y, w) (19)

S̃βα,min ≤ S̃βα(x, y) (20)

B(u,v) ≥ N(u,v)(y) ∀(u, v) ∈ Eres (21)

Resu ≥
∑

i∈Vdsp

∑
φ∈Φu

Resi x
φ
i,u ∀u ∈ Vres (22)

1 =
∑

u∈Vres

∑
φ∈Φu

xφi,u ∀i ∈ Vdsp (23)∑
φ∈Φu

xφi,u =
∑

v∈Vres

∑
φ∈Φ(u,v)

y
φ

(i, j),(u,v)
∀(i, j)∈Edsp,

u∈Vres
(24)∑

φ∈Φv

xφj,v =
∑

u∈Vres

∑
φ∈Φ(u,v)

y
φ

(i, j),(u,v)
∀(i, j)∈Edsp,

v∈Vres
(25)

wu ≥
∑

i∈Vdsp

∑
φ∈Φεu

xφi,u ∀u ∈ Vres (26)

(1 − wu)M ≥
∑

i∈Vdsp

∑
φ∈Φu\Φ

ε
u

xφi,u ∀u ∈ Vres (27)

wu ∈ {0, 1} ∀u ∈ Vres

xφi,u ∈ {0, 1}
∀i∈Vdsp,
u∈Vres,
φ∈Φu

y
φ

(i, j),(u,v)
∈ {0, 1}

∀(i, j)∈Edsp,
(u,v)∈Eres,
φ∈Φ(u,v)

where M � 1 is a large constant, and S̃(·) = log S(·) is used in order to obtain linear
expressions for the requirements satisfaction metrics. Constraints (18)-(20) model
the QoS- and cost-related bounds described above, where - as explained - (20) may
actually be replaced by several constraints involving different security requirements.
Constraints (21) and (22) are capacity constraints, modeling, respectively, the lim-



Towards Security-aware Deployment of Data Streaming Applications 23

ited capacity of network links, and the limited amount of computational resources
available at nodes. Equation (23) reflects the fact that a single node and a single
configuration must be chosen for each operator. Equations (24) and (25) are flow
conservation constraints, which model the logical AND relationship between place-
ment variables. Constraints (26) and (27) model the relationship between exclusive
use variables and placement configurations.

It is easy to realise that SDP is aNP-hard problem. To this end, it suffices to observe
that SDP is a generalization of the optimal DSP placement problem presented in [14],
which has been shown to be NP-hard.

5.2 Example

We formulate the SDP problem for the smart health application presented in the
previous sections. The requirements for this application, described in Sec. 3, were
reported in Fig. 5. We further assume that a fixed budget Cmax is allocated for
deploying the application, and the application is expected to meet SLOs formulated
in terms of response time. Specifically, denoting as π1 the operators path from
the source to sink1, we assume π1 to have strict latency requirements, and set the
maximum response time along the path, Rπ1

max , to 10 ms. For the other path, π2, we
set Rπ2

max = 100 ms. Moreover, as we want none of the application requirements to
be ignored, we require S(x, y) to be strictly greater than zero.

We consider different scenarios for formulating the SDP problem, as follows:

• Scenario A: we solve SDP maximizing the satisfaction of application require-
ments, i.e., F(x, y) = S̃(x, y);

• Scenario B: we solve SDP minimizing the worst-case application response time,
i.e., F(x, y) = maxπ∈Πdsp

Rπ(x, y). We also consider three cases, considering
an additional constraint on overall requirements satisfaction: (i) S(x, y) > 0;
(ii) S(x, y) ≥ 0.9; (iii) S(x, y) ≥ 0.99.

The computing infrastructure we consider for deployment is depicted in Fig. 6.
The infrastructure is composed of 15 geographically distributed computing nodes:
3 edge nodes, 4 fog nodes distributed across two micro-data centers, and 8 cloud
nodes distributed across two data centers.We assume that the application data source
is pinned on the first edge node. The operators and the sinks can be freely placed in
any node of the infrastructure. Compared to a reference cloud node, processing at the
fog nodes is 10% slower, and 20% slower at the edge. Conversely, cloud nodes are
cheaper than those in the fog, which in turn are cheaper than edge nodes. We assume
network delay to be negligible within the same geographical region (i.e., the same
(micro-)data center). We further assume that fog and cloud nodes support operator
execution either as bare processes, or within containers or within VMs, whereas
operators cannot be deployed in edge nodes using VMs. Moreover, we assume edge
nodes cannot be acquired exclusively by a single operator in this scenario.



24 Gabriele Russo Russo, Valeria Cardellini, Francesco Lo Presti, and Matteo Nardelli

Fig. 6: Illustration of the computing infrastructure used in the example, comprising
edge nodes, fog micro-data centers, and cloud data centers.

Results in Scenario A In this scenario, SDP aims at maximizing the security
requirements satisfaction. To illustrate the results, we solve SDP considering different
choices for the monetary budget Cmax , namely 5, 6, 7, and 10 $/h. The optimization
results in this scenario are reported in Table 1. In Fig. 7, we show the deployment
computed by SDP for Cmax ∈ {5, 10} $/h. In all the considered experiments, traffic
encryption is enforced for all the data streams in the application. Theminimumbudget
Cmax = 5 $/h leads to a requirements satisfaction degree equal to 0.9. As illustrated in
Fig. 7a, in this case fog and cloud nodes are used for deploying application operators
(except for the pinned data source), with op2 running in an exclusively acquired node.
Conversely, op1 is deployed in a multi-tenant node, leading to partial requirements
satisfaction. When the cost budget is raised to 10 $/h, we can note that (i) op1 is
deployed in a dedicated node, completely satisfying its isolation requirement, (ii) the
application path to sink2 is deployed in the fog, without relying on any cloud node,
and (iii) the other application path is deployed across 3 geographical regions instead
of 4 as in the previous case. The total application response time along the two paths
is thus reduced, respectively, from 9 ms to 6 ms and from 6 ms to 4 ms. However,
the deployment cost is doubled, from 4.6 $/h to 9.7 $/h.

In the other configurations, instead, with slightly larger allocations forCmax , SDP
is able to perfectly match application requirements. In all the cases, the response
time along both the paths is within the SLO bound.

Table 1: Optimization results in Scenario A of the example.

Cmax ($/h) C ($/h) Rπ1 (ms) Rπ2 (ms) S

5 4.6 9.1 6.0 0.9
6 5.9 9.1 12.0 1.0
7 6.5 9.1 9.0 1.0
10 9.7 6.1 4.0 1.0



Towards Security-aware Deployment of Data Streaming Applications 25

(a)Cmax = 5 $/h (b)Cmax = 10 $/h

Fig. 7: Deployment computed by SDP in example Scenario A.

Results in Scenario B In this scenario we aim at minimizing the application re-
sponse time, while requiring a minimum level of requirements satisfaction, Smin.
We again consider different values for the maximum cost Cmax ∈ {5, 6, 7, 10}, and
solve SDP varying the requirements satisfaction constraint. In Table 2 we report the
optimization results, while in Fig. 8 we show the deployment computed by SDP for
two illustrative cases.

Requiring S(x, y) > 0 means that only configurations with non-zero require-
ments satisfaction can be adopted. Whatever the monetary budget, in this case SDP
computes placement solutions where requirements satisfaction is rather low. Fig. 8a
shows the solution for Cmax = 5 $/h. In order to minimize latency, differently from
Scenario A, for this scenario SDP does not use cloud nodes. Traffic encryption is only
used on the “critical” path towards sink1, and only op2 is deployed in a dedicated
node, as it does not admit other configurations.

When we require S(x, y) ≥ 0.9, SDP computes solutions characterized by higher
requirements satisfaction (0.9 in all the considered settings), with negligible impact
on application response time and deployment cost. Interestingly, when we require
S(x, y) ≥ 0.99, SDP is not able to find a feasible solution if the monetary budget is
5 $/h. Indeed, it would need to exclusively acquire more than one computing node,
and that is expensive. With a higher budget instead SDP is able to perfectly match
the application requirements. We note that this happens at the cost of slightly higher
response time, especially on the critical path π1. Fig. 8b shows the deployment
determined when Cmax = 10 $/h. Again, “far” cloud nodes are not used in this
scenario. In this setting, traffic encryption is enabled for all the data streams, and an
additional fog node is exclusively acquired for deploying op1 to satisfy the security
requirements.



26 Gabriele Russo Russo, Valeria Cardellini, Francesco Lo Presti, and Matteo Nardelli

Table 2: Optimization results in Scenario B of the example. The case where Smin is
set to 0.99 is not feasible when a budget of 5 $/h is allocated.

Cmax ($/h) Smin C ($/h) Rπ1 (ms) Rπ2 (ms) S

5 > 0 4.6 6.1 6.0 0.11
6 > 0 5.2 1.1 6.0 0.23
7 > 0 5.2 1.1 6.0 0.45
10 > 0 9.4 1.1 1.0 0.23

5 0.90 4.6 6.1 6.0 0.90
6 0.90 5.2 1.1 6.0 0.90
7 0.90 5.2 1.1 6.0 0.90
10 0.90 9.4 1.1 1.0 0.90

5 0.99 - - - -
6 0.99 5.9 6.1 6.0 1.00
7 0.99 6.5 4.1 6.0 1.00
10 0.99 9.1 2.1 4.0 1.00

(a) (b)

Fig. 8: Deployment computed by SDP in example Scenario B.

6 Discussion

State-of-the-art solutions for the DSP placement problem allow to effectively opti-
mize several QoS metrics, taking into account both functional and non-functional
characterizations of the application operators and the underlying computing infras-
tructure. However, when we move applications out of the traditionally used data
centers, we are forced to look at security, privacy, and data integrity concerns as ma-
jor issues. Unfortunately, existing techniques often completely neglect these aspects.

SDP aims at overcoming this limitation by reserving a primary role to applica-
tion deployment requirements. The forest-based approach we presented for specify-
ing application requirements allows to easily integrate satisfaction metrics into the
placement optimization problem; moreover, it provides large flexibility for formal-



Towards Security-aware Deployment of Data Streaming Applications 27

izing application needs. In particular, compared to similar works in the literature,
our approach allows - when needed - to apply different policies to different types of
requirements (e.g., to multiple RCs), and to different operators/data streams, instead
of necessarily collapsing “security” to a single numerical indicator. It is worth ob-
serving that the requirements formalism and the associated metrics presented in this
chapter might not perfectly suit every application domain. Nevertheless, SDP can be
easily adapted to work with a different toolbox for quantitative modeling of security
aspects (e.g., a probabilistic model like that presented in [25]).

The concept of operator (data stream) and node (link) configurations we intro-
duced in SDP provides additional degrees of freedom in the placement optimization.
Compared to previous work on the topic, SDP goes beyond simply determining a
mapping from operators to computing nodes, by also identifying the specific software
configuration to be adopted for each operator. The integration of this configuration
optimization approach with existing software orchestration platforms will be subject
of further investigations, in order to have a system capable of automatically choosing
and applying necessary configuration for the deployed application.

As noted above, some possible extensions of the presented problem formulation
were intentionally not tackled in this work, and deferred to future research. First of all,
the formulation can be easily generalized to take into account the operator replication
problem, e.g., adopting the approach used in [15]. Moreover, we have not specifically
covered here the issues related to run-time deployment adaptation, focusing instead
on the initial application placement. Nonetheless, adaptation overhead metrics can
be readily introduced in SDP, e.g., following our previous work [13].

7 Conclusion

In this chapter, we looked at how security aspects impact the placement problem
for DSP applications. The recent trend of shifting data analytics services from
traditionally used cloud data centers to fog computing environments, in order to
reduce network latency between applications and data sources, forces us to deal with
a broader range of security and privacy issues.

We presented an approach, based on a forest of AND-OR trees, for specifying
additional non-functional application requirements, which are hardily captured by
existing techniques for placement optimization. Relying on this formalism, we also
defined a set of metrics that allow to quantitatively reason about requirements sat-
isfaction, especially as regards security aspects. We included these metrics in the
ILP-based SDP problem, which determines the optimal DSP application placement
according to several QoS constraints. By means of an illustrative case study of a
smart health application in the fog, we provided insights about the trade-offs be-
tween performance, cost, and security computed by SDP. Our approach provides
great flexibility for specifying requirements, as well as optimization objectives and
constraints. We pointed out some open research directions, especially as regards
the integration of SDP with existing DSP frameworks. As future work, we plan to



28 Gabriele Russo Russo, Valeria Cardellini, Francesco Lo Presti, and Matteo Nardelli

investigate this direction, by complementing our modeling effort with experimental
validations, where concrete cybersecurity issues must be fitted within SDP.

References

1. Abadi, D.J., Ahmad, Y., Balazinska, M., Çetintemel, U., et al.: The design of the Borealis
stream processing engine. In: Proc. CIDR ’05. pp. 277–289 (2005)

2. Agbo, C.C., Mahmoud, Q.H., Mikael Eklund, J.: A scalable patient monitoring system using
Apache Storm. In: Proc. 2018 IEEE Canadian Conf. on Electrical Computer Engineering.
pp. 1–6. CCECE ’18 (2018)

3. Anh, D.T.T., Datta, A.: Streamforce: Outsourcing access control enforcement for stream data
to the clouds. In: Proc. ACM CODASPY ’14. pp. 13–24 (2014)

4. Aniello, L., Baldoni, R., Querzoni, L.: Adaptive online scheduling in Storm. In: Proc. ACM
DEBS ’13. pp. 207–218 (2013)

5. Arkian, H.R., Diyanat, A., Pourkhalili, A.: MIST: Fog-based data analytics scheme with cost-
efficient resource provisioning for IoT crowdsensing applications. J. Parallel Distrib. Comput.
82, 152–165 (2017)

6. de Assunção, M.D., da Silva Veith, A., Buyya, R.: Distributed data stream processing and edge
computing: A survey on resource elasticity and future directions. J. Netw. Comput. Appl. 103,
1–17 (2018)

7. Backman, N., Fonseca, R., Çetintemel, U.: Managing parallelism for stream processing in the
cloud. In: Proc. HotCDP ’12. pp. 1:1–1:5. ACM (2012)

8. Bellendorf, J., Mann, Z.A.: Classification of optimization problems in fog computing. Future
Gener. Comput. Syst. 107, 158–176 (2020)

9. Brogi, A., Forti, S., Guerrero, C., Lera, I.: How to place your apps in the fog: State of the art
and open challenges. Software: Practice and Experience (2019)

10. Burkhalter, L., Hithnawi, A., Viand, A., Shafagh, H., Ratnasamy, S.: TimeCrypt: Encrypted
data stream processing at scale with cryptographic access control. In: Proc. USENIX NSDI
’20. pp. 835–850 (Feb 2020)

11. Cao, J., Carminati, B., Ferrari, E., Tan, K.L.: ACStream: Enforcing access control over data
streams. Proc. IEEE ICDE ’09 pp. 1495–1498 (2009)

12. Cardellini, V., Lo Presti, F., Nardelli, M., Rossi, F.: Self-adaptive container deployment in the
fog: A survey. In: Proc. ALGOCLOUD ’19. LNCS, Springer (2020)

13. Cardellini, V., Lo Presti, F., Nardelli, M., Russo Russo, G.: Optimal operator deployment and
replication for elastic distributed data stream processing. Concurr. Comput.: Pract. Exper. 30(9)
(2018)

14. Cardellini, V., Grassi, V., Lo Presti, F., Nardelli, M.: Optimal operator placement for distributed
stream processing applications. In: Proc. ACM DEBS ’16. pp. 69–80 (2016)

15. Cardellini, V., Grassi, V., Lo Presti, F., Nardelli,M.:Optimal operator replication and placement
for distributed stream processing systems. ACM SIGMETRICS Perfom. Eval. Rev. 44(4), 11–
22 (May 2017)

16. Carminati, B., Ferrari, E., Cao, J., Tan, K.L.: A framework to enforce access control over data
streams. ACM Trans. Inf. Syst. Secur. 13(3) (Jul 2010)

17. Carminati, B., Ferrari, E., Tan, K.: Enforcing access control over data streams. In: Proc. ACM
SACMAT ’07. pp. 21–30 (2007)

18. Chandramouli, B., Goldstein, J., Barga, R., Riedewald, M., Santos, I.: Accurate latency es-
timation in a distributed event processing system. In: Proc. IEEE ICDE ’11. pp. 255–266
(2011)

19. Chaturvedi, S., Simmhan, Y.: Toward resilient stream processing on clouds usingmoving target
defense. In: Proc. IEEE ISORC ’19. pp. 134–142 (2019)

20. Chatzistergiou, A., Viglas, S.D.: Fast heuristics for near-optimal task allocation in data stream
processing over clusters. In: Proc. ACM CIKM ’14. pp. 1579–1588 (2014)



Towards Security-aware Deployment of Data Streaming Applications 29

21. Eidenbenz, R., Locher, T.: Task allocation for distributed stream processing. In: Proc. IEEE
INFOCOM ’16 (2016)

22. Eskandari, L., Mair, J., Huang, Z., Eyers, D.: T3-Scheduler: A topology and traffic aware
two-level scheduler for stream processing systems in a heterogeneous cluster. Future Gener.
Comput. Syst. 89, 617–632 (2018)

23. Fischer, L., Scharrenbach, T., Bernstein,A.: Scalable linked data streamprocessing via network-
aware workload scheduling. In: Proc. 9th Int’l Workshop Scalable Semantic Web Knowledge
Base Systems (2013)

24. Fisher, R., Hancke, G.: DTLS for lightweight secure data streaming in the Internet of Things.
In: Proc. 2014 9th Int’l Conf. on P2P, Parallel, Grid, Cloud and Internet Computing. pp.
585–590 (Nov 2014)

25. Forti, S., Ferrari, G.L., Brogi, A.: Secure cloud-edge deployments, with trust. Future Gener.
Comput. Syst. 102, 775–788 (2020)

26. Gedik, B., Özsema, H., Öztürk, O.: Pipelined fission for stream programs with dynamic
selectivity and partitioned state. J. Parallel Distrib. Comput. 96, 106–120 (2016)

27. Ghaderi, J., Shakkottai, S., Srikant, R.: Scheduling storms and streams in the cloud. ACM
Trans. Model. Perform. Eval. Comput. Syst. 1(4), 14:1–14:28 (2016)

28. Ghosh, R., Simmhan, Y.: Distributed scheduling of event analytics across edge and cloud.
ACM Trans. Cyber-Phys. Syst. 2(4) (Jul 2018)

29. Gu, L., Zeng, D., Guo, S., Xiang, Y., Hu, J.: A general communication cost optimization
framework for big data stream processing in geo-distributed data centers. IEEE Trans. Comput.
65(1), 19–29 (2016)

30. Havet, A., Pires, R., Felber, P., Pasin, M., Rouvoy, R., Schiavoni, V.: SecureStreams: A reactive
middleware framework for secure data stream processing. In: Proc. ACM DEBS ’17. pp.
124–133 (2017)

31. Janßen, G., Verbitskiy, I., Renner, T., Thamsen, L.: Scheduling stream processing tasks on
geo-distributed heterogeneous resources. In: Proc. IEEE Big Data ’18. pp. 5159–5164 (2018)

32. Jiang, J., Zhang, Z., Cui, B., Tong, Y., Xu, N.: StroMAX: Partitioning-based scheduler for
real-time stream processing system. In: Proc. DASFAA ’17, pp. 269–288. Springer (2017)

33. Khare, S., Sun, H., Gascon-Samson, J., Zhang, K., Gokhale, A., Barve, Y., Bhattacharjee, A.,
Koutsoukos, X.: Linearize, predict and place: Minimizing the makespan for edge-based stream
processing of directed acyclic graphs. In: Proc. ACM/IEEE SEC ’19. pp. 1–14 (2019)

34. Lakshmanan, G.T., Li, Y., Strom, R.: Placement of replicated tasks for distributed stream
processing systems. In: Proc. ACM DEBS ’10. pp. 128–139 (2010)

35. Li, J., Deshpande, A., Khuller, S.: Minimizing communication cost in distributed multi-query
processing. In: Proc. IEEE ICDE ’09. pp. 772–783 (2009)

36. Li, T., Tang, J., Xu, J.: A predictive scheduling framework for fast and distributed stream data
processing. In: Proc. 2015 IEEE Int’l Conf. on Big Data. pp. 333–338 (2015)

37. Lindner, W., Meier, J.: Securing the Borealis data stream engine. In: Proc. 10th Int’l Database
Engineering and Applications Symp. pp. 137–147. IDEAS ’06 (2006)

38. Loukopoulos, T., Tziritas, N., Koziri, M., Stamoulis, G., Khan, S.U.: A Pareto-efficient algo-
rithm for data stream processing at network edges. In: Proc. IEEE CloudCom ’18. pp. 159–162
(2018)

39. Luna Garcia, J., Langenberg, R., Suri, N.: Benchmarking cloud security level agreements using
quantitative policy trees. In: Proc. 2012 ACM Workshop on Cloud Computing Security. pp.
103–112. CCSW ’12 (2012)

40. Nardelli, M., Cardellini, V., Grassi, V., Lo Presti, F.: Efficient operator placement for distributed
data stream processing applications. IEEE Trans. Parallel Distrib. Syst. 30(8), 1753–1767
(2019)

41. Nehme, R.V., Lim, H., Bertino, E.: FENCE: continuous access control enforcement in dynamic
data stream environments. In: Proc. IEEE ICDE ’10. pp. 940–943 (2010)

42. Nehme, R.V., Rundensteiner, E.A., Bertino, E.: A security punctuation framework for enforcing
access control on streaming data. In: Proc. IEEE ICDE ’08. pp. 406–415 (2008)

43. Ng,W.S.,Wu,H.,Wu,W., Xiang, S., Tan, K.: Privacy preservation in streaming data collection.
In: Proc. IEEE ICPADS ’12. pp. 810–815 (Dec 2012)



30 Gabriele Russo Russo, Valeria Cardellini, Francesco Lo Presti, and Matteo Nardelli

44. O’Keeffe, D., Salonidis, T., Pietzuch, P.: Frontier: Resilient edge processing for the Internet of
Things. Proc. VLDB Endow. 11(10), 1178–1191 (Jun 2018)

45. Park, H., Zhai, S., Lu, L., Lin, F.X.: Streambox-TZ: Secure stream analytics at the edge with
trustzone. In: Proc. USENIX ATC ’19. pp. 537–554 (2019)

46. Peng, B., Hosseini, M., Hong, Z., Farivar, R., et al.: R-Storm: Resource-aware scheduling in
Storm. In: Proc. Middleware ’15. pp. 149–161. ACM (2015)

47. Peng, Q., Xia, Y., Wang, Y., Wu, C., Luo, X., Lee, J.: Joint operator scaling and placement
for distributed stream processing applications in edge computing. In: Proc. ICSOC ’19. pp.
461–476. LNCS, Springer (2019)

48. Pietzuch, P., Ledlie, J., Shneidman, J., Roussopoulos, M., et al.: Network-aware operator
placement for stream-processing systems. In: Proc. IEEE ICDE ’06 (2006)

49. Quoc, D.L., Beck, M., Bhatotia, P., Chen, R., Fetzer, C., Strufe, T.: PrivApprox: Privacy-
preserving stream analytics. In: Proc. USENIX ATC ’17. pp. 659–672 (Jul 2017)

50. Rizou, S., Durr, F., Rothermel, K.: Solving the multi-operator placement problem in large-scale
operator networks. In: Proc. ICCCN ’10. pp. 1–6 (2010)

51. Röger, H., Mayer, R.: A comprehensive survey on parallelization and elasticity in stream
processing. ACM Comput. Surv. 52(2), 36:1–36:37 (2019)

52. Rychly, M., Koda, P., Pavel: Scheduling decisions in stream processing on heterogeneous
clusters. In: Proc. 8th Int’l Conf. Complex, Intelligent and Software Intensive Systems (2014)

53. Sajjad, H.P., Danniswara, K., Al-Shishtawy, A., Vlassov, V.: SpanEdge: Towards unifying
stream processing over central and near-the-edge data centers. In: Proc. IEEE/ACM SEC ’16.
pp. 168–178 (2016)

54. Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-based access control models.
Computer 29(2), 38–47 (1996)

55. Sandhu, R.S., Samarati, P.: Access control: Principle and practice. IEEE Commun.Mag. 32(9),
40–48 (1994)

56. Satyanarayanan, M., Klas, G., Silva, M., Mangiante, S.: The seminal role of edge-native
applications. In: Proc. IEEE EDGE ’19. pp. 33–40 (2019)

57. Schilling, B., Koldehofe, B., Rothermel, K., Ramachandran, U.: Access policy consolidation
for event processing systems. In: Proc. NetSys ’13. pp. 92–101. IEEE Computer Society (2013)

58. Sicari, S., Rizzardi, A., Grieco, L., Coen-Porisini, A.: Security, privacy and trust in Internet of
Things: The road ahead. Comput. Netw. 76, 146–164 (2015)

59. da Silva Veith, A., de Assunção, M.D., Lefèvre, L.: Latency-aware placement of data stream
analytics on edge computing. In: Proc. ICSOC ’18. pp. 215–229. LNCS, Springer (2018)

60. Smirnov, P.,Melnik,M., Nasonov, D.: Performance-aware scheduling of streaming applications
using genetic algorithm. Procedia Computer Science 108, 2240–2249 (2017)

61. Stanoi, I., Mihaila, G., Palpanas, T., Lang, C.: WhiteWater: Distributed processing of fast
streams. IEEE Trans. Softw. Eng. 19(9), 1214–1226 (2007)

62. Starks, F., Goebel, V., Kristiansen, S., Plagemann, T.: Mobile distributed complex event pro-
cessing – Ubi sumus? Quo vadimus? In: Mobile Big Data: A Roadmap from Models to
Technologies, pp. 147–180. Springer (2018)

63. Thoma, C., Labrinidis, A., Lee, A.J.: Automated operator placement in distributed data stream
management systems subject to user constraints. In: Proc. IEEE ICDEW ’14. pp. 310–316
(2014)

64. Thoma, C., Lee, A.J., Labrinidis, A.: PolyStream: Cryptographically enforced access controls
for outsourced data stream processing. In: Proc. ACM SACMAT ’16. pp. 227–238 (2016)

65. Tian, L., Chandy, K.M.: Resource allocation in streaming environments. In: Proc. 7th
IEEE/ACM Int’l Conf. Grid Computing. pp. 270–277 (2006)

66. Xu, J., Chen, Z., Tang, J., Su, S.: T-Storm: Traffic-aware online scheduling in Storm. In: Proc.
IEEE ICDCS ’14. pp. 535–544 (2014)

67. Zhou, Y., Ooi, B.C., Tan, K.L., Wu, J.: Efficient dynamic operator placement in a locally
distributed continuous query system. In: On the Move to Meaningful Internet Systems 2006,
LNCS, vol. 4275, pp. 54–71. Springer (2006)

68. Zhuang, R., DeLoach, S.A., Ou, X.: Towards a theory of moving target defense. In: Proc. 1st
ACMWorkshop on Moving Target Defense. pp. 31–40. MTD ’14 (2014)




