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ABSTRACT

Exploiting on-the-fly computation, Data Stream Processing
(DSP) applications are widely used to process unbounded
streams of data and extract valuable information in a near
real-time fashion. As such, they enable the development of
new intelligent and pervasive services that can improve our
everyday life. To keep up with the high volume of daily
produced data, the operators that compose a DSP applica-
tion can be replicated and placed on multiple, possibly dis-
tributed, computing nodes, so to process the incoming data
flow in parallel. Moreover, to better exploit the abundance
of di↵used computational resources (e.g., Fog computing),
recent trends investigate the possibility of decentralizing the
DSP application placement.

In this paper, we present and evaluate a general formula-
tion of the optimal DSP replication and placement (ODRP)
as an integer linear programming problem, which takes into
account the heterogeneity of application requirements and
infrastructural resources. We integrate ODRP as prototype
scheduler in the Apache Storm DSP framework. By lever-
aging on the DEBS 2015 Grand Challenge as benchmark
application, we show the benefits of a joint optimization
of operator replication and placement and how ODRP can
optimize di↵erent QoS metrics, namely response time, inter-
node tra�c, cost, availability, and a combination thereof.

1. INTRODUCTION

The ever increasing di↵usion of cheap sensors and the
presence of an almost ubiquitous Internet connectivity is
producing an exponential growth in the amount of daily
produced data, which carry valuable information about our
surrounding environment. Indeed, by extracting valuable
information from noisy Big Data, it is possible to develop
new intelligent and pervasive services that can improve our
everyday life in several domains, e.g., healthcare, energy
management, logistic, and transportation. The volume and
velocity of daily produced data have fostered the develop-
ment of new processing approaches that rely on the usage
of multiple computing machines. Nowadays, two opposite
approaches are commonly adopted: batch processing and
stream processing. The former stores all the data, usually
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on a distributed file system, and then operates on them on
the basis of di↵erent programming models, among which
the well-known MapReduce [8]. The latter processes all the
data on-the-fly, i.e., without storing them, so it can produce
results in a near real-time fashion. Therefore, Data Stream
Processing (DSP) applications are widely used to process
unbounded streams of data and timely extract valuable in-
formation. We focus on this kind of applications.
A DSP application is represented as a directed acyclic

graph (DAG), with data sources, operators, and final con-
sumers as vertices, and streams as edges. Each operator
can be seen as a black-box processing element that contin-
uously receives incoming streams, applies a transformation,
and generates new outgoing streams. In the Big Data era,
DSP applications should be capable to seamlessly process
huge amount of data, which require to scale their execu-
tion on multiple computing nodes, because a single machine
cannot provide enough processing power. To this end, these
applications usually exploit data parallelism, which consists
in increasing or decreasing the number of parallel instances
for the operators, so that each instance can process a subset
of the incoming data flow in parallel (e.g., [12, 16]). More-
over, since data sources can be geographically distributed,
the execution of DSP applications can also take advantage
of the ever increasing presence of distributed Cloud and Fog
computing resources, which can improve the system scalabil-
ity and reduce latency by moving the computation towards
the network edge, closer to data sources. Nevertheless, the
use of such distributed infrastructure poses new challenges,
that include network and system heterogeneity, geographic
distribution as well as non-negligible network latencies [23].
This paper focuses on the deployment of DSP applications

over distributed computing nodes. Specifically, we investi-
gate and evaluate Optimal DSP Replication and Placement
(ODRP) [3], a unified general formulation of the operator
replication and placement problem. Di↵erently from most
works in literature [9, 20, 21, 24], ODRP can jointly deter-
mine the application placement and the replication of its
operators, while optimizing the Quality of Service (QoS) at-
tributes of the application. With respect to our previous
work [3], in this paper we describe the integration of ODRP
as prototype scheduler in Apache Storm, an open-source and
widely used DSP framework. Moreover, we extensively eval-
uate the prototyped solution in a real setting with the aim
of highlighting its strengths and drawbacks. To this end, we
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have designed and implemented a benchmark DSP applica-
tion that solves the DEBS 2015 Grand Challenge [17].

This paper is organized as follows. We review related work
in Section 2; in Section 3 we describe the system model and
the problem under investigation, before presenting ODRP
and its integration, as prototype scheduler, in Apache Storm
in Sections 4 and 5, respectively. Then, in Section 6, relying
on the Storm-based prototype and the benchmark applica-
tion that addresses the DEBS 2015 Grand Challenge, we
show the benefits of a joint optimization of replication and
placement and how ODRP can optimize di↵erent QoS met-
rics. Finally, we conclude in Section 7.

2. RELATED WORK

To deploy a DSP application, a DSP system needs to de-
termine the replication degree of the application operators
and their placement on the computing infrastructure. Even
though these problems have been widely investigated sepa-
rately, only few works study their joint optimization.

Placement and Replication Problem. Most works in lit-
erature consider DSP operator placement and operator repli-
cation as independent and orthogonal decisions, where the
operator placement is first carried out without determining
the optimal number of replicas for each operator. Then,
in response to some performance deterioration, the opera-
tors to be replicated and their new replication degree are
identified. This two-stage approach requires to reschedule
the DSP application in order to take the new application
configuration into account and may incur in a significant
overhead. In this paper, we propose a single-stage approach
to determine both the placement and the parallelism degree
of the operators in a DSP application. The DSP placement
problem has been widely investigated in literature under dif-
ferent modeling assumptions and optimization goals, e.g., [4,
9, 24]. In [4], we proposed a general formulation of the op-
timal DSP placement which takes into account the hetero-
geneity of computing and networking resources and which
encompasses the di↵erent solutions proposed in the litera-
ture. In [3] we extended that formulation so as to determine
the optimal number of replicas for each operator contextu-
ally to their placement on the underlying infrastructure; in
this paper, we integrate such formulation in a Storm-based
prototype and evaluate it using a real application.

Since the placement problem is NP-hard, several heuris-
tics have been proposed, e.g. [1, 22, 26]. They aim at mini-
mizing a diversity of utility functions, such as the DSP ap-
plication end-to-end latency, the inter-node tra�c, and the
network usage. Our problem formulation can be adjusted
to take into account these di↵erent utility functions.

Many research e↵orts have focused on scaling the amount
of operator replicas in response to changes observed in some
monitored performance metric. Some works, e.g., [5, 15],
exploited threshold-based policies based on the utilization
of either the system nodes or the operator instances. Other
works, e.g., [12, 20, 21], used more complex policies to de-
termine the scaling decisions. Lohrmann et al. [20] pro-
posed a strategy that enforces latency constraints by rely-
ing on a predictive latency model based on queueing theory.
Mencagli [21] presented a game-theoretic approach where
the control logic is distributed on each operator.

An important issue related to operator replication regards
the management of stateful operators, since their state must

be migrated in order to preserve the application integrity [12].
The approach we propose in this paper jointly places and
replicates operators, thus saving the overhead and latency
penalty incurred by stateful operator migrations in case of
disjointed replication and placement decisions.
The works most closely related to ours have been pre-

sented by Heinze et al. [14, 16]. They proposed a model
to estimate the latency spike created by a set of operator
movements and used it to define an operator placement al-
gorithm based on a bin packing heuristic that minimizes the
latency violations and focuses only on the placement of the
newly added operators. We present an optimal problem for-
mulation that targets the initial placement decision and can
be used to benchmark existing heuristics.
While most works, including ours, focus on replicating the

operators at the level of the application logic, thus changing
the graph topology, Fu et al. [11] proposed a queueing theory
approach to determine the number of computing resources
on which each operator is placed; however, their approach
does not consider network delays.

DSP Frameworks. A great variety of DSP frameworks has
been proposed so far; being interested in integrating our
ODRP model, we focus mainly on the open-source ones.
Apache Storm [25] is a DSP framework that provides an ab-
straction layer to execute event-based applications. It allows
the user to merely focus on the application logic, while the
e↵ort of placing, distributing, and executing the application
is handled by the framework. Several research e↵orts have
used Storm to either evaluate new operator placement algo-
rithms in a real environment or to propose some architec-
tural improvements (e.g., [1, 13, 19, 25, 26]). Developed as
the successor of Storm, Heron [18] preserves its abstraction
layer while introducing some architectural improvements.
Apache Spark [28] is a general-purpose framework for large-
scale processing, which provides a batch and micro-batch
processing approach. This latter alternative is throughput-
oriented, whereas Storm, which is a pure DSP system, can
further minimize the application latency and thus can be
preferred in latency sensitive scenarios. Another emerging
framework is Apache Flink1, which provides a unified solu-
tion for batch and stream processing.
Aside the specific functionalities, these open-source frame-

works use directed graphs to model DSP applications; there-
fore, our ODRP formulation well represents their placement
problem and can be integrated into their scheduler. As re-
gards the operator replication, so far these frameworks leave
completely to the user the definition of the number of repli-
cas that have to be instantiated. Nevertheless, since the
user might over-/under-estimate the incoming load, this ap-
proach can lead to a sub-optimal utilization of the avail-
able resources (i.e., over-/under-provisioning). Since several
placement policies [1, 2, 6, 10, 22, 26] and seminal replica-
tion policies [5] have been already integrated into Storm, we
have also chosen it to implement our ODRP scheduler.

3. SYSTEM MODEL AND PROBLEM

STATEMENT

In this section we present the resource and DSP applica-
tion model and define the operator replication and place-

1https://flink.apache.org/



Table 1: Main notation adopted in the paper

Symbol Description
Gdsp Graph representing the DSP application
Vdsp Set of vertices (operators) of Gdsp
Edsp Set of edges (streams) of Gdsp
Ci Cost of deploying operator i 2 Vdsp
Ri Latency of i 2 Vdsp on a reference processor
Resi Resources required to execute i 2 Vdsp
ki Maximum replication degree of i 2 Vdsp
�(i,j) Average tuple rate exchanged on (i, j) 2 Edsp

b(i,j) Avg. number of byte per tuple on (i, j) 2 Edsp

Gres Graph representing computing and
network resources

Vres Set of vertices (computing nodes) of Gres

Eres Set of edges (logical links) of Gres

Au Availability of node u 2 Vres

Resu Amount of resources available at u 2 Vres

Su Processing speed-up of u 2 Vres

A(u,v) Availability of (u, v) 2 Eres

C(u,v) Transmission cost per data on (u, v) 2 Eres

d(u,v) Network delay on (u, v) 2 Eres

V i
res ✓ Vres Subset of nodes where i 2 Vdsp can be placed

X < X Multiset of elements in X
xi,U Placement of i 2 Vdsp on nodes in U < V i

res
y(i,j),(U,V) Placement of (i, j) 2 Edsp on the network paths

from nodes in U < V i
res to nodes in V < V j

res
zu Activation variable for u 2 Vres

z(u,v) Activation variable for (u, v) 2 Eres

ment problem. For the sake of clarity, in Table 1 we sum-
marize the notation used throughout the paper.

3.1 Resource Model

Computing and network resources can be represented as a
labeled fully connected directed graph Gres = (Vres, Eres),
where the set of nodes Vres represents the distributed com-
puting resources, and the set of links Eres represents the
logical connectivity between nodes. Observe that, at this
level, links represent the logical links across the networks
corresponding to the network paths between nodes (as de-
termined by the network operator routing strategies). Each
node u 2 Vres is characterized by: Resu, the amount of
available resources; Su, the processing speed-up on a refer-
ence processor; and Au, its availability, i.e., the probability
that u is up and running. Each link (u, v) 2 Eres, with
u, v 2 Vres is characterized by: d(u,v), the network delay
between node u and v; A(u,v), the link availability, i.e., the
probability that the link between u and v is active; and
C(u,v), the cost per unit of data transmitted along the net-
work path between u and v. This model considers also edges
of type (u, u) (i.e., loops); they capture network connectivity
between operators placed in the same node u, and are con-
sidered as perfect links, i.e., always active with no network
delay. We assume that the considered QoS attributes can be
obtained by means of either active/passive measurements or
through some network support (e.g., SDN).

3.2 DSP Model

A DSP application can be represented at di↵erent levels
of abstraction, and we can distinguish between an abstract
model, which is defined by the user, and an execution model,
which is used to run the application.
The DSP abstract model defines the streams and their

characteristics, along with the type, role, and granularity
of the stream processing elements. At this level, the DSP
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Figure 1: Replication of the application operators and their
placement on the computing resources

application can be regarded as a network of operators con-
nected by streams. An operator is a self-contained process-
ing element that carries out a specific operation (e.g., filter-
ing, aggregation, merging) or something more complex (e.g.,
POS-tagging), whereas a stream is an unbounded sequence
of data (e.g., packet, tuple, file chunk). A DSP abstract
model can be represented as a labeled directed acyclic graph
(DAG) Gdsp = (Vdsp, Edsp), where the nodes in Vdsp repre-
sent the application operators as well as the data stream
sources (i.e., nodes without incoming links) and sinks (i.e.,
nodes without outgoing links), and the links in Edsp repre-
sent the streams, i.e., data flows, between nodes. Due to
the di�culties in formalizing the non-functional attributes
of an abstract operator, we characterize it with the non-
functional attributes of a reference implementation on a ref-
erence architecture: Resi, the amount of resources required
for running the operator; Ri, the operator latency (which
accounts for the waiting time on the input queues as well
as the execution time of a unit of data); Ci, the cost of de-
ploying an instance of the operator. We characterize the
stream exchanged from operator i to j, (i, j) 2 Edsp, with
its average tuple rate �(i,j) and average number of bytes per
tuple b(i,j). To model load-dependent latency, we assume
that the latency is function of �i, the operator input tuple
rate, Ri = Ri(�i), where �i =

P
j2Vdsp

�(j,i); without loss of

generality, we also assume that Ri is an increasing function
in �i. In this paper, we assume that Resi is a scalar value,
but our placement model can be easily extended to consider
Resi as a vector of required resources.
The DSP execution model is obtained from the abstract

model by replacing each operator with its replicas. In-
deed, in order to improve performance, multiple instances
(or replicas) of the same DSP operator can be instantiated
over di↵erent computing nodes. The premise is that by par-
titioning the streams over multiple processing elements, we
reduce the load of each processing element which in turn
yields lower operator (and overall application) latency. Dif-
ferently from most of the existing solutions, ODRP com-
putes the execution model by optimizing, in a single stage,
the number of operator instances and their placement.

3.3 Operator Replication and Placement

The DSP replication and placement problem consists in
determining, for each operator i 2 Vdsp, the number of repli-
cas and where to deploy them on the computing nodes in
Vres. Figure 1 represents a simple instance of the problem.



Observe that a DSP operator cannot be usually placed on
every node in Vres, because of physical (i.e., pinned oper-
ator) or other motivations (e.g., security, privacy). This
observation allows us to consider for each operator i 2 Vdsp

a subset of candidate resources V i
res ✓ Vres where it can

be deployed. For example, if sources and sinks (I ⇢ Vdsp)
are external applications, their placement is fixed, that is
8i 2 I, |V i

res| = 1. The operator placement can be repre-
sented by a function map which maps an operator i 2 Vdsp

to a multiset of computing nodes in V i
res. We recur to multi-

sets because a deployment can place multiple replicas of the
same operator on the same computing node. For instance,
map(i) = {u, u, v}, i 2 Vdsp, u, v 2 V i

res, indicates that
operator i deployment consists of 3 replicas, two of which
on node u and one on node v. A multiset X over a set
X, which we denote as X < X, is defined as a mapping
X : X ! N where, for x 2 X, X (x) denotes the multiplicity
of x in X . x 2 X if and only if X (x) � 1. The cardinality
of a multiset X , denoted |X |, is defined by the number of
elements in X , that is |X | =

P
x2X X (x). Hereafter, with-

out lack of generality, we will assume that in a deployment
each operator i 2 Vdsp can be replicated at most ki times.
Therefore, we also find convenient to define the power mul-
tiset P(X) of a set X as the set of all multisets with el-
ements taken from X and the subset P(X; k) ⇢ P(X) of
the multiset over X with cardinality no greater of k, that is
P(X; k) = {X 2 P(X)|

P
x2X X (x)  k}.

4. OPTIMAL REPLICATION AND PLACE-

MENT MODEL

In this section we present our model for the ODRP prob-
lem. As the optimal solution depends on non-functional at-
tributes, we first derive the expression for the di↵erent QoS
metrics of interest and then present the ODRP formulation.

4.1 ODRP Variables

We model the ODRP problem with binary variables xi,U ,
i 2 Vdsp and U < V i

res: xi,U = 1 if and only if the operator
map(i) = U , that is, i is replicated in |U| instances with
exactly U(u) copies deployed in u, with u 2 U . We also find
convenient to consider binary variables associated to links,
namely y(i,j),(U,V), (i, j) 2 Edsp, U < V i

res, V < V j
res, which

denotes whether the data stream flowing from operator i to
operator j traverses the network paths from nodes in U to
nodes in V. By definition, we have y(i,j),(U,V) = xi,U ^ xj,V .

Finally, we also consider the variables zu, u 2 Vres which
denote whether at least one operator is deployed on node u
and the variables z(u,v), (u, v) 2 Eres, which denote whether
a stream (or a portion of it) traverses the network path
(u, v). By definition, we have zu = _i2Vdsp,U2P(V i

res;ki)
xi,U

and z(u,v) = _
(i,j)2Edsp,U2P(V i

res;ki),V2P(V j
res;kj)

y(i,j),(U,V).

For short, in the following we denote by x and y the place-
ment vectors for nodes and edges, respectively, where x =
hxi,U i, 8i 2 Vdsp, 8U 2 P(V i

res; ki), and y = hy(i,j),(U,V)i,
8xi,U , xj,V 2 x. Similarly, we denote by zV and zE the vec-
tors zV = hzui, 8u 2 Vres, and zE = hz(u,v)i, 8(u, v) 2 Eres.

4.2 Qos Metrics

4.2.1 Operator QoS Metrics

Let us first consider an operator in isolation. For each
i 2 Vdsp, the QoS of the operator deployment depends on

the deployment U . Let Ri,U , Ci,U , and Ai,U denote the
maximum latency, the cost, and the availability of the de-
ployment U , respectively. We readily have:

Ri,U = max
u2U

Ri(
�i
|U| )

Su
(1)

Ci,U =
X

u2U

U(u)CiResi (2)

Ai,U =
Y

u2U

Au (3)

under the assumption that the tra�c is equally split among
the di↵erent operator replicas.

4.2.2 Stream QoS Attributes

We now turn our attention to the QoS attributes related
to a stream. For a stream (i, j), the QoS depends on the
upstream and downstream operators’ deployments U and
V. Let d(i,j),(U,V), C(i,j),(U,V), and A(i,j),(U,V) denote the
maximum latency, the cost, and the availability of the de-
ployments U and V, respectively. We readily have:

d(i,j),(U,V) = d(U,V) = max
u2U,v2V

d(u,v) (4)

C(i,j),(U,V) =
X

u2U,v2V

�(i,j),(U,V)Cu,v (5)

A(i,j),(U,V) =
Y

u2U,v2V

A(u,v) (6)

where

�(i,j),(U,V) =
�(i,j)

|U||V| u 2 U , v 2 V (7)

is the amount of stream (i, j) tra�c exchanged between two
operator replicas under the deployments U and V.

4.2.3 DSP Application QoS Metrics

We consider both user-oriented and system-oriented QoS
metrics, such as application response time, cost, and avail-
ability for the former, and network related metrics for the
latter.
Response Time: For a DSP application, with data flow-
ing from several sources to several destinations, there is no
unique definition of response time. In the following, we con-
sider as response time R the worst end-to-end delay from a
source to a sink. Given this definition, we have that:

R = max
⇡2⇧dsp

R⇡ (8)

being R⇡ the delay along path ⇡ and ⇧dsp the set of all
source-sink paths in Gdsp. Given a placement vector x (and
resulting y) and a path ⇡ = (i1, i2, . . . , in⇡ ), we have R =
R(x,y) = max⇡2⇧dsp R⇡(x,y) with R⇡(x,y) defined as:

R⇡(x,y) =
n⇡X

p=1

Rip(x) +
n⇡�1X

p=1

D(ip,ip+1)(y) (9)

where

Ri(x) =
X

U2P(V i
res;ki)

Ri,Uxi,U (10)

D(i,j)(y) =
X

U2P(V i
res;ki)

V2P(V j
res;kj)

d(U,V)y(i,j),(U,V) (11)



denote respectively the execution time of operator i when
deployed over the multiset U and the worst case network
delay for transferring data from i to j when the two opera-
tors are mapped over U and V, respectively.
Cost: We define the cost C of the DSP application as the
monetary cost of all the computing resources and paths in-
volved in the processing and transmission of the application
data streams. We have:

C(x,y) =
X

i2Vdsp

Ci(x) +
X

(i,j)2Edsp

C(i,j)(y) (12)

where

Ci(x) =
X

U2P(V i
res;ki)

Ci,Uxi,U (13)

C(i,j)(y) =
X

U2P(V i
res;ki)

V2P(V j
res;kj)

C(i,j),(U,V)y(i,j),(U,V) (14)

Availability: We define the application availability A as
the availability of all the nodes and paths involved in the
processing and transmission of the application data streams.
For the sake of simplicity, we assume the availability of the
di↵erent components to be independent. However, we ac-
knowledge that independence does not hold true in general
and that a more detailed model is needed to capture the
dependency relationship among logical components sharing
physical nodes and networks links; we postpone it to future
work. With the independence assumption, we readily have:

A(zV , zE) =
Y

u2Vres:zu=1

Auzu·
Y

(u,v)2Eres:z(u,v)=1

A(u,v)z(u,v)

(15)
To obtain a linear expression, we consider the logarithm of
the availability, obtaining:

logA(zV , zE) =
X

u2Vres

auzu +
X

(u,v)2Eres

a(u,v)z(u,v) (16)

where au = logAu and a(u,v) = logA(u,v). It is worth ob-
serving that in (16) we can take the summation over all
u 2 Vres and (u, v) 2 Eres since the terms not appearing
in (15) are those corresponding to zu = 0 or z(u,v) = 0,
which do not a↵ect the summation in (16).
Network Related QoS Metrics: In the DSP literature,
several alternative network-aware metrics have been defined,
including the inter-node tra�c T [1], the network usage
N [26], and an approximation of the elastic energy EE [22].
Let Z(y), Z = T |N |EE, denote the QoS attribute of the
DSP application under the placement policy y, we have:

Z(y) =
X

(i,j)2Edsp

Z(i,j)(y) (17)

where Z(i,j)(y) is defined as follows.
The inter-node tra�c T is the overall amount of data ex-

changed per time unit between operators placed on di↵erent
nodes. Therefore, using the placement policy y, the stream
(i, j) 2 Edsp generates an inter-node tra�c equals to:

T(i,j)(y) =
X

u2U,v2V,u 6=v
U2P(V i

res;ki)

V2P(V j
res;kj)

b(i,j)�(i,j),(U,V)y(i,j),(U,V) (18)

The network usage N is the amount of data that traverses
the network at a given time; therefore, the stream (i, j) 2
Edsp imposes a load expressed by:

N(i,j)(y) =
X

u2U,v2V,u 6=v
U2P(V i

res;ki)

V2P(V j
res;kj)

b(i,j)�(i,j),(U,V)d(u,v)y(i,j),(U,V)

(19)
where d(u,v) is the network delay among nodes u, v 2 Vres,
with u 6= v.
In their paper [22], Pietzuch et al. indirectly minimize the

network usage through the minimization of the elastic en-
ergy, which results from the equivalent system of springs
that represents the application. Basically, their solution
minimizes the amount of data that traverses each link weighted
by the latency of the link itself. Hence, the stream (i, j) 2
Edsp contributes to the elastic energy of the system with:

EE(i,j)(y) =
X

u2U,v2V,u 6=v
U2P(V i

res;ki)

V2P(V j
res;kj)

b(i,j)�(i,j),(U,V)d
2
(u,v)y(i,j),(U,V)

(20)
Observe that, in all cases, Z(y) is a linear function of y.

4.3 ODRP Formulation

Depending on the usage scenario, a DSP replication and
placement strategy could be aimed at optimizing di↵erent,
possibly conflicting, QoS attributes. To this end, we use the
Simple Additive Weighting (SAW) technique [27] to define
the utility function F (x,y, zV , zE) as a weighted sum of the
normalized QoS attributes of the application, as follows:

F (x,y, zV , zE) = wr
Rmax � R(x,y)

Rmax � Rmin
+ wa

logA(zV , zE) � logAmin

logAmax � logAmin

+ wc
Cmax � C(x,y)

Cmax � Cmin
+ wz

Zmax � Z(x,y)

Zmax � Zmin
(21)

where wr, wa, wc, wz � 0, wr + wa + wc + wz = 1, are
weights associated to the di↵erent QoS attributes. Rmax

(Rmin), Amax (Amin), Cmax (Cmin), and Zmax (Zmin) denote,
respectively, the maximum (minimum) value for the overall
expected response time, availability, cost and network re-
lated metric. Observe that after normalization, each metric
ranges in the interval [0, 1], where the value 1 corresponds
to the best possible case and 0 to the worst case.
We formulate the ODRP problem as an Integer Linear

Programming (ILP) model as follows:

max
x,y,r

F 0(x,y,zV ,zE , r)

subject to:

r �
X

p=1,...,n⇡

U2P(V i
res;ki)

Rip,Uxi,U +

X

p=1,...,n⇡�1
q=p+1

U2P(V
ip
res;kip )

V2P(V
iq
res;kiq )

d(U,V)y(ip,iq),(U,V) 8⇡ 2 ⇧dsp

(22)



Resu �
X

i2Vdsp

U2P(V i
res)

U(u)Resixi,U 8u 2 Vres

(23)

zu �

P
i2Vdsp

U2P(V i
res;ki)

xi,U

M
u 2 Vres

(24)

z(u,v) �

P

(i,j)2Edsp

U2P(V i
res;ki)

V2P(V j
res;kj)

y(i,j),(U,V)

N
(u, v) 2 Eres

(25)

1 =
X

U2P(V i
res;ki)

xi,U 8i 2 Vdsp

(26)

xi,U =
X

V2P(V j
res;kj)

y(i,j),(U,V)
8(i,j)2Edsp,

U2P(V i
res;ki)

(27)

xj,V =
X

U2P(V i
res;ku)

y(i,j),(U,V)
8(i,j)2Edsp,

V2P(V j
res;kj)

(28)

xi,U 2 {0, 1} 8i2Vdsp,

U2P(V i
res;ki)

(29)

y(i,j),(U,V) 2 {0, 1}
8(i,j)2Edsp,

U2P(V i
res;ki)

V2P(V j
res;kj)

(30)

zu 2 {0, 1} 8u 2 Vres

(31)

z(u,v) 2 {0, 1} 8(u, v) 2 Eres

(32)

In the problem formulation we use the objective function
F 0(x,y, zV , zE , r) that is obtained from F (x,y, zV , zE) by
replacing R(x,y) with the auxiliary variable r, which repre-
sents the application response time in the optimization prob-
lem, in order to obtain a linear objective function. Observe
that, indeed, while F is nonlinear in x, y since R(x,y) =
max⇡2⇧dsp R⇡(x,y) is a nonlinear term, F 0 is linear in r
as well as in x and y. Equation (22) follows from (8)–
(11). Since r must be larger or equal than the response
time of any path and, at the optimum, r is minimized,
r = max⇡2⇧dsp R⇡(x,y) = R(x,y). The constraint (23)
limits the placement of operators on a node u 2 Vres ac-
cording to its available resources. Constraints (24) and (25)
are the activation constraints for the variable zu and z(u,v),
respectively, with M and N large constants. Equation (26)
guarantees that each operator i 2 Vdsp is placed on one
and only one node u 2 V i

res. Finally, constraints (27)–(28)
model the logical AND between the placement variables, that
is, y(i,j),(u,v) = xi,u ^ xj,v.

Theorem 1. The ODRP problem is an NP-hard problem.

Proof. It is su�cient to observe that the Optimal DSP
Replication and Placement problem is a generalization of
the Optimal DSP Placement problem we presented in [4],
which has been shown to be NP-hard.

5. STORM INTEGRATION

To enable the usage of ODRP in a real DSP framework,
we have developed a prototype scheduler for Apache Storm,
named S-ODRP. We first briefly describe the main features
of Storm and how it represents and executes DSP applica-
tions. Then, we present the prototype design in details.

5.1 Apache Storm

Storm is an open source, real-time, and scalable DSP sys-
tem maintained by the Apache Software Foundation. It pro-
vides an abstraction layer where event-based applications
can be executed over a set of worker nodes interconnected
by an overlay network. A worker node is a generic comput-
ing resource (e.g., a physical host, a mobile device, a virtual
machine, a Docker container), whereas the overlay network
comprises the logical links among these nodes.
In Storm, an application is represented by its topology,

which is a DAG with spouts and bolts as vertices and streams
as edges. A spout is a data source that feeds the data into
the system through one or more streams. A bolt is either
a processing element, which extracts valuable information
from incoming tuples, or a final information consumer; a
bolt can also generate new outgoing streams, like spouts
do. A stream is an unbounded sequence of tuples, which are
key-value pairs. We refer to spouts and bolts as operators.
Figure 2a shows an example of a DSP application.
Storm uses three types of entities with di↵erent grain to

execute a topology: tasks, executors, and worker processes.
A task is an instance of an application operator (i.e., spout
or bolt), and it is in charge of a share of the incoming oper-
ator stream. An executor, which is the smallest schedulable
unit, can execute one or more tasks related to the same
operator; in other words, ti, the number of tasks of an op-
erator, is always greater or equal than ei, the number of
executors of the same operator, that is, ti � ei. Since the
operator executors run concurrently, they can increase the
operator throughput when subject to heavy incoming load.
A worker process is a Java process that runs a subset of the
executors of the same topology, i.e., a topology can be dis-
tributed across di↵erent worker processes. As represented
in Figure 2b, there is an evident hierarchy among the Storm
entities: a group of tasks runs sequentially in the executor,
which is a thread within the worker process, that in its turn
serves as container on the worker node. To date, Storm
leaves completely to the user the definition of the number of
worker processes, executors, and tasks for the DSP applica-
tion. Moreover, the framework enables the user to change
at runtime the parallelism degree of an application through
the rebalance API; however, its implementation is not ef-
ficient, because it restarts the whole application with new
executors, leading to possible data loss.
Besides the computing resources, i.e., the worker nodes,

the Storm architecture includes two additional components:
Nimbus and ZooKeeper. Nimbus is a centralized component
in charge of coordinating the topology execution; it uses its
scheduler to define the placement of the application opera-
tors on the pool of available worker nodes. The assignment
plan determined by the scheduler is communicated to all
the worker nodes through ZooKeeper2, which is a shared
in-memory service for managing configuration information
and enabling distributed coordination. Since each worker

2http://zookeeper.apache.org/
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node can execute one or more worker processes, a Super-
visor component on each worker node starts or terminates
worker processes on the basis of the Nimbus assignments.
Each worker node can concurrently run a limited number of
worker processes, based on the number of available worker
slots.

5.2 S-ODRP: ODRP in Storm

We develop a new scheduler for Storm, named S-ODRP,
whose core is the model presented in Section 4. In order
to design S-ODRP, we have to address two issues: (1) to
adapt the DSP and resource model to consider the specific
execution entities of Storm, and (2) to instantiate the ODRP
model with the proper QoS information about computing
and networking resources.

As regards the first issue, we have to model the fact that
Storm runs multiple executors to replicate an operator, and
that a Storm scheduler deploys these executors on the avail-
able worker slots, considering that at most EPSmax execu-
tors can be co-located on the same slot. Hence, S-ODRP
defines Gdsp = (Vdsp, Edsp), with Vdsp as the set of oper-
ators and Edsp as the set of streams exchanged between
them. Since in Storm an operator is considered as a black
box element, we conveniently assume that its attributes are
unitary, i.e., Ci = 1 and Resi = 1, 8i 2 Vdsp. By solving
the replication and placement model, S-ODRP determines
the number of executors for each operator i 2 Vdsp, leverag-
ing on the cardinality of U when xi,U = 1, with U < V i

res.
The resource model Gres = (Vres, Eres) must take into ac-
count that a worker node u 2 Vres o↵ers some worker slots
WS(u), and each worker slot can host at most EPSmax ex-
ecutors. For simplicity, S-ODRP considers the amount of
available resources Cu on a worker node u 2 Vres to be
equal to the maximum number of executors it can host, i.e.,
Cu = WS(u) ⇥ EPSmax. To enable the parallel execution
of executors, Cu should be equal (or proportional) to the
number of CPU cores available on u.

As regards the second issue, Storm allows us to easily de-
velop new centralized schedulers with the pluggable sched-
uler APIs. However, Storm is unaware of the QoS attributes
of its networking and computing resources, except for the
number of available worker slots. Since we need to know
these QoS attributes in order to apply the ODRP model,
we rely on Distributed Storm, a Storm extension3 we pre-
sented in [2], that enables the QoS awareness of the schedul-
ing system by providing intra-node (i.e., availability) and
inter-node (i.e., network delay and exchanged data rate) in-
formation. This extension estimates network latencies using

3Source code available at http://bit.ly/extstorm

a network coordinate system, which is built through the
Vivaldi algorithm [7], a decentralized algorithm having lin-
ear complexity with respect to the number of network lo-
cations. S-ODRP retrieves, from the monitoring compo-
nents of the extended Storm, the information needed to
parametrize the nodes and edges in Gdsp and Gres. Specifi-
cally, it considers: the average data rate exchanged between
communicating executors (i.e., �(i,j), 8(i, j) 2 Edsp), the
node availability (Au, 8u 2 Vres), and the network laten-
cies (d(u,v), 8u, v 2 Vres). Once built the ODRP model,
S-ODRP relies on CPLEX c�4, the state-of-the-art solver for
ILP problems, for its resolution.
From an operational prospective, Nimbus uses S-ODRP

to compute the optimal operator replication and placement
when a new application is submitted to Storm and when
a failure of the worker process compromises the applica-
tion execution. In the latter case, S-ODRP invalidates the
existing assignment and computes the new optimal place-
ment. Algorithm 1 summarizes the runtime execution of
S-ODRP, which has to face two main issues: to collect the
exchanged data rate between the operators, and to repli-
cate the operators as needed. When information on the
exchanged data rate is unknown (line 3), e.g., the first time
the application is scheduled, S-ODRP defines an early as-
signment and monitors the application execution to harvest
the needed information (lines 4–6). As soon as this infor-
mation is available, S-ODRP reassigns the application by
solving the updated ODRP model with the network-related
QoS attributes (line 8). To enact the replication decision
computed by ODRP (lines 5 and 9), S-ODRP leverages on
the Storm API rebalance, which restarts the application
with the correct number of executors, before assigning them
to the worker nodes as specified by the computed placement
solution.

Algorithm 1 Application placement with S-ODRP

1: function schedule(Gdsp, Gres)
2: RP = [ ] . replication and placement
3: if not streamsDatarateAvailable(Gdsp) then
4: RP  ODRP(Gdsp, Gres)
5: enact(RP )
6: Gdsp  collectStreamsDatarate(Gdsp)
7: end if

8: RP  ODRP(Gdsp, Gres)
9: enact(RP )
10: end function

4http://www-01.ibm.com/software/commerce/
optimization/cplex-optimizer/



6. EXPERIMENTAL RESULTS

Our experiments revolve around S-ODRP, the prototype
scheduler for Storm whose core is ODRP, and they aim to
show the generality and flexibility of the proposed formula-
tion as well as its impact in terms of achievable application
performance. After introducing the experimental setup and
the reference application (Section 6.1), we provide a gen-
eral overview on the runtime execution of S-ODRP (Sec-
tion 6.2). Then, in Section 6.3, we show the benefits of the
joint optimization of placement and replication when the
DSP application is subject to an increasing load. Finally, in
Section 6.4, we evaluate how S-ODRP can optimize several
QoS metrics, such as response time, cost, availability, and
inter-node tra�c.

6.1 Experimental Setup

We perform the experiments using Apache Storm 0.9.3 on
a cluster of 6 worker nodes, each with 2 worker slots, and
a further node to host Nimbus and ZooKeeper. Each node
is a machine with a dual CPU Intel Xeon E5504 (8 cores at
2 GHz) and 16 GB of RAM. To better exploit the presence
of independent CPU cores, we define that a worker slot can
host at most 4 executors, i.e., EPSmax = 4; therefore, a
worker node can host at most 8 operator replicas, one for
each available CPU core. We emulate wide-area network
latencies among the Storm nodes using netem, which ap-
plies to outgoing packets a Gaussian delay with mean and
standard deviation in the ranges [12, 32] ms and [1, 3] ms,
respectively. As regards the pricing policy, we charge only
the usage of computing resources, i.e., we set a unitary cost
for each operator replica. We solve the ILP problem using
CPLEX c� (version 12.6.3) on the node hosting Nimbus.

As test-case application we developed a benchmarking ap-
plication that solves the first query of the DEBS 2015 Grand
Challenge [17]: by processing data streams originated from
the New York City taxis, the goal of the query is to find
the top-10 most frequent routes during the last 30 minutes.
Its topology is represented in Figure 3. The data source
reads the dataset from Redis, an in-memory data store, and
pushes data towards a parser operator, which parses them
and filters out irrelevant and invalid data. Afterwards, fil-
terByCoordinates forwards only the events related to a spe-
cific observation area, whose extension is about 22 500 Km2.
The operator computeRouteID is in charge of identifying
the route covered by taxis, and countByWindow counts the
route frequency in the last 30 minutes; the notion of time
is managed by a coordinator component, called metronome,
which pulses when the time related to the dataset events
advances. The following operators, partialRank and glob-
alRank, compute the top-10 most frequent routes by lever-
aging on a two-step approach that enables to compute the
ranking in a distributed and parallel manner. Finally, glob-
alRank publishes the top-10 updates on a message queue,
implemented with RabbitMQ. We assume that data source
and globalRank are pinned operators. Moreover, since we in-
vestigate the initial application placement, we have set the
data source so to feed the topology with a constant data
rate, defined a-priori.
In the experiments, we define that each operator can be

replicated at most three times (i.e., ki = 3, 8i), except for
the pinned ones (i.e., data source and globalRank) and the
metronome, which cannot be easily parallelized. Without
loss of generality, in the ODRP model we estimate the re-

sinkoperatorsource

RabbitMQRedis

data source parser !lterByCoordinates

metronome

computeRouteID

partialRankcountByWindow globalRank

Figure 3: Reference DSP application

Table 2: Parameters of the experimental setup

Application: service rate per operator, expressed in tuples/s (tps)

Operator µi Operator µi

data source 284 tps metronome 190 tps

parser 233 tps countByWindow 335 tps

filterByCoordinates 253 tps partialRank 2371 tps

computeRouteID 253 tps globalRank 185 tps

Normalization factors for the ODRP utility function

Parameter Value Parameter Value

Rmin 5 ms Rmax 450 ms

Amin 95% Amax 100%

Cmin 8 Cmax 18

Zmin 0 tps Zmax 3400 tps

sponse time Ri of operator i subject to the incoming load
�i/|U| by modeling the underlying computing node as an
M/M/1 queue, i.e., Ri(�i/|U|) = (µi��i/|U|)�1, where µi is
the service rate of i measured on a reference processor. The
operators service rate and the other configuration param-
eters have been obtained through preliminary experiments
and are shown in Table 2.

6.2 Evaluation of S-ODRP

This first experiment aims at showing the runtime exe-
cution of the S-ODRP scheduler, described by Algorithm 1,
and its impacts on the application performance. As baseline
we use S-ODP, a prototype scheduler for Storm whose core
is the ODP model that optimizes only the operator place-
ment [4]. Note that ODP is a special case of ODRP where
ki = 1, 8i 2 Vdsp. To simplify the presentation, we con-
sider only the response time R and the monetary cost C as
QoS metrics; all worker nodes have an availability of 100%.
Both the optimization models focus on the minimization of
the application response time R (i.e., wr = 1, wc = 0),
so we name them as S-ODRP R and S-ODP R, respec-
tively. Di↵erently from S-ODP R, S-ODRP R computes R
relying on the exchanged data-rate between the operators;
as presented in Section 5, it deploys the application with a
preliminary placement so to harvest the relevant data; this
preliminary placement is computed by minimizing the de-
ployment cost (i.e., wc = 1, wr = 0). The rescheduling
event takes place after 100 s of execution and is represented
in Figure 4 with a vertical line.
We set the data rate of the source operator to 80 tuples/s

and launch the application. Figure 4 reports the resulting
application response time. We observe that as soon as the
placement is defined, i.e., after 0 s and after 100 s (the lat-
ter for S-ODRP R only), a transient period is experimented
where R is quite high and exceeds 1 s. This behavior de-
pends on a well-known issue of the Storm framework [26],
which starts the operators as soon as they are ready without
coordination at level of the whole application; as a conse-
quence, data emitted by an operator wait in inter-operator
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Table 3: Operator replication

S-ODP

S-ODRP

Operator 20, 40, 60 80, 100 120

tuples/s tuples/s tuples/s

data source 1 1 1 1

parser 1 1 1 3

filterByCoordinates 1 1 1 2

computeRouteID 1 1 2 2

metronome 1 1 1 1

countByWindow 1 1 1 3

partialRank 1 1 2 3

globalRank 1 1 1 1

bu↵ers until the following operator is up and running for
processing. When the transient period ends, after 200 s,
the applications deployed with the two schedulers experi-
ence quite similar performance in terms of response time.

Table 3 reports the total number of operator replicas de-
ployed by the two schedulers. S-ODP R cannot replicate
the operators, therefore it instantiates a replica for each of
them. With a source data rate of 80 tuples/s, S-ODRP R
replicates twice two operators, namely computeRouteID and
partialRank, and runs the application with a total of 10 ex-
ecutors. S-ODRP R replicates the operators as much as
possible while considering that, when a new replica has to
be located on a new worker node, the latter introduces net-
work latencies that can overcome the benefits of replication
in reducing the operator execution time. In this experiment,
it is worth to observe that, although the scheduler is forced
to use a second worker node, it places the replicas so to min-
imize the response time; in particular, only the replicas of
computeRouteID, which have the lowest data rate exchanged
with the other operators, are located on a separate node.

6.3 Impact of Replication

In the second set of experiments, we want to investigate
the replication benefits when the application is subject to
di↵erent incoming loads. We use the same settings of the
previous experiment except for the source data rate and
we compare how S-ODRP R and S-ODP R determine the
placement of the reference application. In each single ex-
periment, which lasts 900 s, the source data rate is constant
and is set in the range [20, 120] tuples/s with step 20. We
collect the resulting QoS metrics as soon as the transient pe-
riod ends (i.e., after 200 s) and we summarize the results in
Figure 5 leveraging on a boxplot, which represents the QoS
metric distribution through the minimum value, the 5th per-
centile, 50th percentile, 95th percentile, and the maximum
value; the average value is also represented using a full dot.

We define as active node utilization, the average utilization
of all the worker nodes involved in the application execution;
each node contributes with its average utilization calculated
on a time window of 60 s.
Figure 5a reports the application response time and Ta-

ble 3 the number of replicas per operator. Although S-
ODP R cannot replicate the operators, it finds the opti-
mal placement that minimizes R, as S-ODRP R does. In-
deed, when the replication is not needed, i.e., up to 60 tu-
ples/s, the two schedulers achieve the same application per-
formance. Note that, also in this case, network delays pre-
vent S-ODRP R from further replicating the operators: due
to the absence of inter-node tra�c (see Figure 5c), we can
easily detect that all the 8 replicas run on the same node.
When the data source emits 80 tuples/s, the replication

is needed: the partialRank operator represents a bottleneck,
because it receives on average 2500 tuples/s, i.e., 5% more
than its service rate. The utilization of the worker node
that hosts the whole application for S-ODP R, reported in
Figure 5b, is around 20%, therefore the overload situation
cannot be easily detected if not relying on fine-grain mon-
itoring tools, which work at the level of single operator or
CPU core. Conversely, S-ODRP R detects the bottleneck
and replicates the operator, which is then executed on a
second worker node (see Table 3 and Figure 5c).
A similar behavior can be observed when the data source

emits 100 tuples/s. This time the bottleneck operator, par-
tialRank, receives on average 30% more tuples than a single
replica can process per unit of time. With S-ODP R, the ap-
plication response time is unstable and continuously grows
during the experiment, up to 106 s per single tuple. Con-
versely, thanks to replication, with S-ODRP R the applica-
tion maintains the same response time of the configuration
with 80 tuples/s.
The need of replication is further exacerbated when the

data source emits 120 tuples/s. With S-ODP R, the appli-
cation response time explodes up to ⇠ 300 s per tuple. On
the contrary, S-ODRP R obtains an application response
time that is not influenced by the increased load. To keep
up with the incoming data rate, S-ODRP R needs to repli-
cate every operator. It instantiates 2 replicas for filterBy-
Coordinates and computeRouteID, and 3 replicas for parser,
countByWindow, and partialRank ; comprising also the other
operators, the application runs with a total of 16 executors
(see Table 3) on 2 worker nodes. In spite of the increased
incoming data rate, Figure 5c shows that the application
deployment produces a fairly limited inter-node tra�c. Fi-
nally, we observe from Figure 5b that, although the need of
replication, the average value of the active node utilization
is quite low. This behavior highlights that, for this specific
use case, a static mapping between replicas and CPU cores
does not lead to an e�cient usage of resources; a possible
solution to better exploit the available resources might be
based on a dynamic multiplexing of replicas on the same
CPU core. Since this optimization calls for the run-time
adaptation of the application deployment, it falls out of the
scope of this paper, but we plan to investigate more on it as
future work.

6.4 Optimal Replication and Placement

This experiment evaluates the e↵ect of di↵erent optimiza-
tion objectives on QoS metrics, i.e., availability A, cost C,
response time R, and inter-node tra�c T . To this end,
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Figure 5: Impact of replication on the application performance

we set our experimental environment so that half of the
worker nodes has an availability of 99% and the other of
100%, whereas the links are always available. We place
the pinned operators (i.e., data source and globalRank) on
a single worker node chosen randomly among those 100%
available. S-ODRP determines the placement of the refer-
ence application when the data source emits 100 tuples/s.
Figure 6 summarizes 25 runs, each of 900 s, where we col-
lect QoS metrics after the initial transient period of 200 s.
We first compute the replication and placement solution
by optimizing a single QoS metric. For example, to op-
timize the response time we set the weights as wr = 1,
wa = wc = wz = 0. Then, we optimize the multi-objective
function by uniformly weighting each metrics contribution
(i.e., wa = wc = wr = wz = 0.25); we report in Table 2
the normalization factors used in Equation (21). Figure 6
presents the results in term of the di↵erent QoS metrics.

When S-ODRP optimizes the application availability A
(for short, S-ODRP A), the solution finds the configura-
tion where all the replicas are on the most available worker
nodes. Observe that the placement of pinned operators,
which are not relocated by S-ODRP, impacts on the overall
application availability. In our experiments we placed these
operators on nodes with 100% of availability. From Fig-
ure 6d and Equation (15), we observe that, although this
configuration of S-ODRP does not optimize the number of
operator instances, multiple replicas can be executed until
a new worker node with availability lower than 100% has to
be activated. This setting of weights does optimize neither
the response time nor the inter-node tra�c (see Figure 6a
and 6c): on average, the response time is almost 1.6 times
higher than the minimum achievable, whereas the inter-node
tra�c is almost 35 times higher than the optimal one.

When S-ODRP optimizes the cost C (S-ODRP C), the
placement solution tries to use fewer replicas as possible, as
shown in Figure 6d. However, the explicit modeling of the
operator service rate enables to instantiate a configuration
that can properly handle the incoming tra�c: S-ODRP in-
stantiates 9 replicas, i.e., replicates twice the bottleneck op-
erator (partialRank). Nothing can be concluded about the
other QoS metrics, i.e., response time, application availabil-
ity, and inter-node tra�c (see Figures 6a, 6b, and 6c): since
these metrics are not optimized, there is a set of equally op-
timal solutions that di↵er each other only for the operator
placement on the same set of computing resources.
When S-ODRP optimizes response time (S-ODRP R),

the placement solution experiences the minimum achievable
value for this metric, as shown in Figure 6a, but it uses up to
16 replicas (Figure 6d). Observe that 16 replicas completely
occupy two worker nodes, and the presence of network de-
lays prevents the scheduler from instantiating other replicas.
Since the cost of running a configuration is directly propor-
tional to the total number of operator instances, this is also
the most expensive solution. From Figure 6c, we can also
observe that the inter-node tra�c is quite low (almost dou-
ble with respect to the optimal value), because transmitting
data over the network rather than locally introduces network
delays that penalize the response time.
When S-ODRP optimizes the network-related QoS metric,

that is the inter-node tra�c T (S-ODRP T), the solution
tries to co-locate the operator instances on the least number
of nodes, so to reduce the amount of data transmitted over
the network (see Figure 6c). In this configuration the num-
ber of replicas is neither minimized nor maximized; however,
if the load is equally split among replicas, S-ODRP might
take advantage of replication in order to reduce the amount
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Figure 6: Impact of di↵erent optimization objectives on the QoS metrics

of data transmitted on the network. As side e↵ect of the
co-location, the application response time is, on average,
very close to the optimal one. Nothing can be concluded
about the application availability (Figure 6b), which is not
considered as an optimization objective of S-ODRP T.

When S-ODRP optimizes all the considered QoS met-
rics, the resulting placement and replication solution has re-
sponse time and inter-node tra�c which are very close to the
values achievable when optimizing a single-objective func-
tion. The total number of operator instances is equal to 9, as
shown in Figure 6d, therefore only the bottleneck operator
is replicated. The application availability ranges from 100%
to 99%, and assumes 99.6% as average value. Although it
might appear counter-intuitive, this result follows from the
trade-o↵ between the minimization of response and the max-
imization of the availability pursued in the utility function
F . In particular, when the application availability is 99%,
on the basis of the pinned operators placement, whose lo-
cation is randomly defined a-priori, choosing a worker node
that minimizes the response time, rather than one that max-
imizes the availability, provides a bigger contribution to the
optimization of the utility function F .

On ODRP Resolution Time. We now discuss about
the resolution time of ODRP and its relationship with the
optimization goals. We consider as resolution time the time
needed to compute the exact solution of the ILP problem.
Although the investigated placement problem is fairly lim-
ited in size (|Vres| = 6, |Vdsp| = 8), the ODRP model in-
cludes about 55.8 K variables and, considering all the 25
runs of the last experiment, its average resolution time is
10.84 s. Figure 7 provides more details on the average res-
olution time of ODRP with respect to the di↵erent weights
(wa, wc, wr, and wz) used for the utility function F . Deter-
mining a placement that minimizes the application response

 4

 6

 8

 10

 12

 14

 16

 18

wa wc wr wz wq = 0.25 
 q = {a, c, r, z}

R
e

so
lu

tio
n

 t
im

e
 (

s)

Configuration

S-ODRP_A
S-ODRP_C
S-ODRP_R
S-ODRP_T

S-ODRP

Figure 7: Average resolution time of ODRP with respect to
the optimization objective

time is the most computationally demanding configuration;
conversely, the minimization of the application deployment
costs registers the fastest resolution time. Note that the
former is twice slower than the latter. Being ODRP an NP-
hard problem, as demonstrated in Theorem 1, it does not
scale well as the problem instance increases in size. Never-
theless, by determining the optimal replication and place-
ment of DSP operators, ODRP provides a benchmark for
evaluating heuristics, for developing new ones, and for iden-
tifying the most suitable ones with respect to the specific
optimization objectives.

7. CONCLUSIONS

In this paper, we have presented and evaluated ODRP,
an ILP formulation that jointly optimizes the replication
and placement of DSP applications. ODRP is a general and
flexible model that can take into account the heterogeneity



of computing and networking resources and can be conve-
niently configured to optimize di↵erent QoS metrics, whose
importance depends on the application scenario. With S-
ODRP, we have developed an ODRP-based prototype sched-
uler for Apache Storm, one of the widely used open-source
DSP frameworks. Then, relying on an application that pro-
cesses real time data generated by taxis moving in a urban
environment (DEBS 2015 Grand Challenge), we have con-
ducted a thorough experimental evaluation. The latter has
shown the benefits of a joint optimization of operators repli-
cation and placement on the application performance and
how ODRP can contextually optimize several QoS metrics.

As future work, we plan to develop e�cient heuristics to
deal with large problem instances for the initial application
replication and placement. Moreover, we plan to extend
ODRP in order to support run-time adaptations of the op-
erator deployment, so that a DSP application can e�ciently
handle input streams or execution environments with con-
tinuously changing characteristics. With the aim of optimiz-
ing reconfigurations, we will model their impact in terms of
application performance degradation (e.g., temporary incre-
ment of response time due to operator state migrations).
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