
Scalable Service Selection for Web Service Composition
Supporting Differentiated QoS Classes ∗

Valeria Cardellini, Emiliano Casalicchio, Vincenzo Grassi, Francesco Lo Presti
Università di Roma “Tor Vergata”

Dipartimento di Informatica, Sistemi e Produzione
{cardellini, casalicchio}@ing.uniroma2.it, {vgrassi, lopresti}@info.uniroma2.it

Università di Roma “Tor Vergata”
Dipartimento di Informatica, Sistemi e Produzione

Technical Report RR-07.59

February 8, 2007

Abstract

A composite Web service can be constructed and deployed by combining independently developed
component services, each one may be offered by different providers with different non-functional Qual-
ity of Service (QoS) attributes. Therefore, a selection process is needed to identify which constituent
services are to be used to construct a composite service that best meets the QoS requirements of its
users.

In this paper, we consider a service broker that offers a composite service characterized by differ-
entiated QoS classes which imply diverse monetary prices. These QoS classes are settled on the basis
of some Service Level Agreements (SLAs) that the broker negotiate with both the requestors and the
service providers. Differently from most of the current approaches, which optimize independently the
end-to-end QoS of single requests and often require the solution of an NP-hard problem for each request,
we optimize the end-to-end aggregated QoS of all incoming flows of requests by means of a simple linear
programming problem, which can be efficiently solved. As a result, the proposed approach is scalable
and lends itself to an efficient implementation.

∗This Technical Report has been issued as a Research Report for early dissemination of its contents. No part of its text nor any
illustration can be reproduced without written permission of the Authors.

1

1 Introduction

The service-oriented paradigm encourages the implementation of new applications through the composition
of independently developed Web services. In this scenario, it is possible that different providers offer equiv-
alent services corresponding to the same functional description (we refer to the former as concrete services
and the latter as abstract service). Quality of Service (QoS) attributes provide a differentiation among the
competing services [9], allowing a prospective user to choose the services which best suit to his/her QoS
requirements. To formally define the QoS level required from the selected provider, the latter and the user
may engage in a negotiation process, which culminates in the creation of a Service Level Agreement (SLA).

The management of QoS-based SLAs has become a very active area of research and standardization,
including among its most interesting and promising challenges the QoS-aware service description, compo-
sition, and selection (e.g., [7, 8, 10, 14]).

In this paper, we tackle the issue of the QoS-aware selection of the concrete services from a larger
set of candidates, that plays an important role in the provisioning and management of a composite service
by a service-oriented architecture. To address the service selection issue, we propose the formulation of a
Linear Programming optimization problem, considering various QoS attributes, such as response time, cost,
and availability of the composite service. The solution provided by the optimization problem is used in
the context of a broker-based architecture for the provisioning of a composite service, which is advertised
with differentiated service classes. The broker negotiates SLAs with both the requestors and the service
providers. These SLAs specify both the values of the QoS attributes and the average flow of requests that
can be generated in a given time interval.

Our approach differs from previous works which have tackled the service selection as an optimization
problem [2, 3, 4, 13, 14] in that our optimization is performed on a per-flow rather than per-request basis.
Current proposals use exact algorithms or heuristics (e.g., [3] or genetic algorithms in [4]) to solve the QoS-
aware service selection problem for each request, whose exact solution has an exponential complexity. Yu
and Lin [13] defines the problem as a multi-dimension multi-choice 0-1 knapsack one as well as a multi-
constraint optimal path problem. Zeng et al. [14] present a global planning approach to select an optimal
execution plan by means of integer programming. Ardagna and Pernici [2] model the service composition
as a mixed integer linear problem where both local and global constraints are taken into account.

However, an actual implementation of a broker-based architecture should be able to solve the opti-
mization problem in real-time and under high volumes of service requests. Current solutions based on the
per-request service selection approach could be too complex for run-time broker decisions and may suffer
from scalability problems because of the computational overhead for solving the optimization problem for
each single requests (even more times per request [14]). On the contrary, in our approach the solution of the
optimization problem (i.e., a given selection of concrete services) holds for all the requests in a flow, and
needs to be recalculated only when some significant event occurs (e.g., a change in the QoS values of the
selected concrete services). Moreover, in our proposal the broker solves the optimization problem taking
into account simultaneously the flows of requests generated by multiple requestors, with possibly different
QoS constraints agreed in the SLAs. This is not possible in the per-request optimization approaches which,
since they do not account for the presence of other simultaneous requests, can result in sub-optimal and
possible instable solutions.

Our approach is able to give only a statistical guarantee to each request that its QoS constraints will
be actually met. Specifically, our guarantee takes the form of bounds on the expected values of the QoS
attributes. Hence, our approach is suitable for scenarios where “soft” rather than “hard” QoS goals must be
satisfied, because violations of guarantees are tolerated and may be compensated with penalties. Actually,
most proposals, which do not support a dynamic service re-binding executed during the process execution
(e.g., [5]), are not able to guarantee the strict enforcement of the agreed QoS levels, because they also
use some statical measurement in the problem formulation (e.g., the mean number of times a loop in the

2

workflow is executed).
We have introduced the per-flow service selection approach in [6]. However, this paper presents novel

and significant contributions, which include the problem formulation as a Linear Programming problem that
can be efficiently solved via standard techniques and the management of the concurrent execution pattern in
the workflow of the composite service.

The rest of the paper is organized as follows. Section 2 describes the broker architecture and introduces
the model of the composite service and the notation used in the problem formulation. Section 3 presents the
QoS model for the composite Web service and discusses how to compute the global QoS attributes of the
composite service. Section 4 discusses the formulation of the optimization problems and Section 5 presents
some examples of solution of the optimization problems. Finally, Section 6 concludes the paper.

2 Broker Architecture

In this section, we outline the broker architecture. We focus on the broker components and introduce the
composite service model and the notation we will later use to formulate the optimal selection of the concrete
services.

The service broker [11, 12] acts as an intermediary between service requestors and providers, performing
a role of service provider towards the requestors and being in turn a requestor to the providers of the concrete
services. We consider an independently operated broker, which is maintained by a third party; it is a Web
service itself and advertises the offered composite service in a public registry [11].

As a first step, the broker defines the business process for the composite service it wants to offer, and
discovers concrete services which offer the required functionalities and are therefore candidates for the
selection. In this paper, we do not focus on the discovery and selection process for creating a pool of
candidate services. For each candidate service in this pool, the broker negotiates a SLA with its provider,
establishing the values of the QoS attributes provided by each concrete service in correspondence with a
mean volume of requests generated by the broker for that service. Then, the broker may negotiate a SLA
with each requestor, establishing the offered QoS level of the composite service (i.e., its Service Level
Objectives or SLO) in correspondence with a mean volume of requests generated by the requestor to the
broker. In our architecture, we assume that the broker manages different, but fixed, QoS levels for the
operated composite service. Within this framework, one of the main broker tasks is to determine a service
selection that fulfills the SLAs it negotiates with its requestors, given the SLAs it has negotiated with the
providers. The selection criteria correspond to the optimization of a given utility goal of the broker.

In this paper, we mainly focus on the service selection task. However, in the following we briefly discuss
the main components of the overall broker architecture, assuming that the broker acts as a full intermediary,
which really provides the composite service to the requestors (the alternative approach relies on a heavy
client, which owns an execution engine to execute the process, e.g. [11, 12]). To this end, we consider that
the logic of the composite service is expressed through the Business Process Execution Language for Web
Services (WS-BPEL or BPEL for short) [1], which has emerged as the de-facto standard language for the
orchestration of Web services and the description of abstract business processes.

As illustrated in Figure 1, the broker consists of the following components: the Composition Manager,
the SLA Negotiation Manager, the Admission Control Manager, the BPEL Engine, the Selection Manager,
the Optimization Engine, the Execution Path Analyzer, and the SLA Monitor.

The main functions of the Composition Manager are the service composition (i.e., the specification of
the business process in BPEL) and the discovery of the candidate concrete services.

The SLA Negotiation Manager is responsible for establishing the SLAs with both the requestors and the
service providers.

3

Primergy

Primergy

Primergy

Primergy

Primergy

SLA Monitor

BPEL Engine

Analyzer
Execution Path

Admission
Control

Manager

SLA
Negotiation

Manager

Service
Registry

Manager

Manager
Selection

Engine
Optimization

Service Requestors

Composition

Service Broker

Service Providers

Figure 1: Broker architecture.

The role of the Control Admission Manager is to determine whether a new requestor can be accepted
for the required classes of service, without violating the SLAs of already accepted requestors.

The BPEL Engine is the software platform which allows the execution of the business process described
in BPEL. Once the request has been admitted and classified as pertaining to a flow with an established SLA,
the BPEL Engine acts as the broker front-end to the service requestors for the service provisioning; when
the requestor invokes the process, the BPEL Engine creates a new instance of the process itself.

The Selection Manager is invoked by the processes under execution and is responsible for binding each
request to the concrete services that meet the contracted QoS level by assigning to each invoked service
a real endpoint. The endpoints list is obtained at run time from the solution of the optimization problem
provided by the Optimization Engine. Moreover, the Selection Manager may trigger a new solution of the
optimization problem, when some relevant environmental change is detected.

The Optimization Engine determines the selection of the concrete services by solving the optimization
problem. In this paper, we mainly focus on methodologies underlying the implementation of this part of the
broker architecture.

Finally, the Execution Path Analyzer and the SLA Monitor are responsible, respectively, for collecting
information about the composite service usage, about the performance perceived by the requestors and
offered by the service providers and about the mean volume of requests generated by the requestors. This
information is used by the Selection Manager to find out whether a new solution of the optimization problem
is required. In a dynamic environment, service providers can change their services at any time in order to
remain competitive. This implies that there is no guarantee that the QoS obtained at run time for a particular
concrete service is still a valid value. However, we do not focus on this problem here, but rather assume that
the broker can use some SLA monitoring service that ensures a high level of objectivity [8]. Furthermore,
the information obtained by the SLA Monitor may be used to carry out a SLA enforcement [9], which is out
of the scope of this paper.

2.1 Composite Service

We assume that the composite service structure is defined using BPEL [1]. In this paper, we actually refer to
a significant subset of the whole BPEL definition, focusing on its structured style of modeling (rather than
on its graph-based one, thus omitting to consider the use of control links). Specifically, in the definition of
the workflow describing the composite service, besides the primitive invoke activity, which specifies the

4

synchronous or asynchronous invocation of a Web service, we consider all the different kinds of structured
activities: sequence, switch, while, pick, and flow, whose meaning is summarized in Table 1.

Activity Meaning
sequence Sequential execution of activities
switch Conditional execution of activities
while Repeated execution of activities in a loop
pick Conditional execution of activities based on

external event/alarm
flow Concurrent execution of activities

Table 1: Structured activities in BPEL.

...
<sequence>

<while condition=“condition=trigger” ...>
<flow ...>

<sequence>
<invoke ...

operation=“FlightTicketBooking” .../>
<invoke ...

operation=“HotelBooking” .../>
</sequence>
<invoke ...

operation=“AttractionSearch” .../>
</flow>

</while>
<invoke ...

operation=“DrivingTimeCalculation” .../>
<switch>

<case condition=“carRental=OK”>
<invoke ...

operation=“CarRental” .../>
</case>
<otherwise>

<invoke ...
operation=“BikeRental” .../>

</otherwise>
</switch>

</sequence>

Figure 2: The Travel Planner BPEL code.

As a running example throughout the paper we use the Travel Planner composite service, whose BPEL
representation is listed in Figure 2, while Figure 3 illustrates the BPEL code as a workflow, showing the
different abstract services that form the composite service. With the exception of the pick construct, this
example encompasses all the structured activities listed above.

The business process for the composite service defines a set of abstract services V . We denote by Ii the
set of all concrete services that can be used to implement the abstract service i ∈ V and by i.j ∈ Ii the
j-th concrete service for i. Figure 4 shows the Travel Planner workflow with the concrete services that can
implement each abstract service. We assume that there are two concrete services for each abstract one that

5

is, |Ii| = 2 for each i ∈ V . For the sake of simplicity, in the figure, we have renamed the activities with
numbers: 1 for the FlightTicketBooking activity, 2 for the HotelBooking activity, etc.

FlightTicketBooking

HotelBooking Car Rental

AttractionSearch

Bike Rental

DrivingTimeCalculation

Figure 3: The Travel Planner workflow.

As the broker generally acts on behalf of a significant amount of requestors, it is able to identify recurrent
requests for typical compositions of services, as well as usage patterns of these compositions. We assume
that this knowledge is embodied in the workflow, which therefore models not only the structure of a given set
of abstract services, but also their usage pattern. Therefore, we consider an annotated version of the work-
flow, where each branching point is annotated with suitable probabilities, that might differ for the different
service classes (in the following, we will refer to them as execution probabilities). These probability values
can be initialized by the workflow designer and are then periodically updated considering the information
obtained by the Execution Path Analyzer component, which monitors the workflow executions. Figure 4
also shows the Travel Planner workflow with the annotated execution probabilities, which are denoted with
p.

2
wp

1 2 1

pc2pc1 pc1 pc2

1 2
1111(x ,x) 1 2

1212(x ,x)

1 2
2121(x ,x) 1 2

2222(x ,x)

1 2
3131(x ,x) 1 2

3232(x ,x)

1 2
4242(x ,x)1 2

4141(x ,x)

1 2
5151(x ,x) 1 2

5252(x ,x) 1 2
6262(x ,x)1 2

6161(x ,x)

2.1

3.1 3.2

4.1 4.2

5.1 5.2 6.1 6.2

(), (),

1 2 1 2(), (),

w w1−p1−p

1.21.1

2.2

wp

Figure 4: The annotated Travel Planner workflow.

2.2 SLA Negotiation

The broker is involved in the SLA negotiation with two counterparts: on one side the requestors of the
composite service, on the other side the providers of the concrete services. Let us first discuss the SLA
settled with the latter. The QoS of each concrete service can be characterized according to various attributes
of interest, such as the response time, the cost, the reputation, the availability, and the throughput [7, 14].

6

The values of these QoS attributes are advertised by the service providers as part of the SLA. Without loss
of generality, in this paper we will consider the following QoS attributes for each concrete service i.j:

• the response time rij , which is the interval of time elapsed from the invocation to the completion of
the concrete service i.j;

• the cost cij which represents the price charged for each invocation of the concrete service i.j;
• the log of the availability, aij , i.e., the logarithm of the probability that the concrete service i.j is

available when invoked.

As in [14], we consider the logarithm of the availability, rather than the availability itself, in order to
obtain linear expressions when composing the availability of different services.

For a given concrete service i.j, the SLA established by the broker with the service provider defines
the service cost (measured in money per invocation), the service availability, and the expected response
time (measured in time unit), provided the volume of requests generated by the broker does not exceed the
negotiated average load. Therefore, the SLA for the concrete service i.j is represented by the template
< rij , cij , aij , Lij >, where Lij is the agreement on average load.

We denote by K the set of QoS classes offered by the broker. In the SLAs created with the requestors,
the broker characterizes the QoS of the composite service in terms of bounds on the expected response
time, cost, and availability for each QoS class k ∈ K (i.e., Rk

max, C
k
max, A

k
min). Each requestor has to

negotiate for each QoS class the volume of requests it will generate in that class (denoted by ∆γk). The
SLA established by the broker with the requestor for the QoS class k, k ∈ K, has therefore a template
< Rk

max, C
k
max, A

k
min,∆γk >.

2.3 Admission Control

The Admission Control Manager determines whether a new requestor can be accepted for the required class
of service, without violating the SLAs of already accepted requestors. Let γ be the aggregate arrival rate
of already accepted requestors (i.e., γ = (γ1, ..., γm), where m = |K|) and denote by ∆γ the arrival rate
requested by the new user for all the service classes (i.e., ∆γ = (∆γ1, ...,∆γm)). The Admission Control
Manager determines whether the new requestor can be accepted by invoking the Optimization Engine and
asking for a new resolution of the optimization problem with γ + ∆γ as aggregate arrival rate. We have
two possible cases. If a feasible solution to the optimization problem exists, it means that the additional
requests can be satisfied - at the requested QoS - without violating the QoS of already accepted users. The
new requestor can be thus accepted and the SLA finalized for the requested rate and QoS class. If, instead, a
feasible solution does not exists, the broker can: 1) turn down the new requestor; 2) renegotiate the SLA with
the requestor, e.g., by proposing another service class; 3) renegotiate the SLAs with the service providers
by redefining response time, costs, availability and/or the amount of requests per unit of time the concrete
services accept.

2.4 Optimal Service Selection

In this section, we present a general formulation of the optimization problem solved by the Optimization
Engine component. Each class k is characterized by a QoS vector < Rk

max, C
k
max, A

k
min, γ

k > which defines
the minimum/ maximum guaranteed values for the different QoS attributes.

The goal of the Selection Manager is to select, for each QoS class, the concrete service i.j that must be
used to fulfill a request for the abstract service i. We model this selection by associating with each abstract
service i a vector xi = (x1

i , ..., x
m
i), where xk

i = [xk
ij], and i.j ∈ Ii. Each entry xk

ij of xk
i denotes the

probability that the class-k request will be bound to the concrete service i.j. With this model, we assume

7

that, in general, the Selection Manager can probabilistically bind to different concrete services the requests
(belonging to a same QoS class k) for an abstract service i. The deterministic selection of a single concrete
service corresponds to the case xk

ij = 1 for a given i.j ∈ Ii. Figure 4 also shows the Travel Planner example
with the decision vector x.

We formulate the optimization problem solved by the Optimization Engine in the general form:

Max F (x) (1)

subject to Qα(x) ≤ Qα
max

Qβ(x) ≥ Qβ
min

S(x) ≤ L

x ∈ A (2)

where x = (x1, ..., xn) is the decision vector (being n = |V|), F (x) is a suitable objective function,
Qα(x) and Qβ(x) are, respectively those QoS attributes whose SLA values is settled as a maximum and a
minimum, S(x) are the constraints on the offered load determined by the SLAs with the service providers,
and x ∈ A is a set of functional constraints (e.g., this latter set includes the constraint

∑
j∈Ii

xk
ij = 1).

To carry out the service selection, the Selection Manager uses the solution of this optimization problem
as follows. Given the request service class (denoted by k), the Selection Manager considers only the ele-
ments of the solution vector x that pertains to class k. If for a given abstract service i there is more than one
xk

ij 6= 0, the Selection Manager selects randomly, using the probability values xk
ij , one concrete service to

which it binds the request.
The service selection provided by the solution of the optimization problem is valid until some event

occurs that requires a new solution. This happens in the following cases: a) some execution probabilities
changes: their value is periodically recomputed by the Execution Path Analyzer; b) the service composition
changes, because either an abstract service or a concrete service is added or removed; c) the SLA Monitor
identifies some significant change in the negotiated SLA parameters.

3 Web Service QoS Model

In this section we present the QoS model for the composed Web service and how to compute the composite
service QoS attributes. We also derive closed form expressions for the different attributes which we will use
in the optimization problem formulation.

For each class offered by the broker, the overall QoS attributes, namely,

• the expected response time Rk, which is the time needed to fulfill a class-k request for the composite
service;

• the expected execution cost Ck, which is the price to be paid to fulfill a class-k request;

• the expected availability Ak, which is expected value of the logarithm of the probability that the
composed service is available for a class-k request

depends on: 1) the actual concrete services selected to perform the different activities; and, 2) how they
are orchestrated to carry out the composed service. As shown below, the computation of Rk, Ck and Ak

can be carried out by recursively computing the QoS of the structured BPEL activities from the QoS of the
component activities (see, e.g. [7] where the same approach is applied to workflows).

8

3.1 Process Activities Tree

The algorithm to compute the QoS attributes can be easily described if we represent the BPEL process by
a labeled tree T = (V, E) which concisely captures the nesting relationship among the BPEL process ac-
tivities. In T , nodes are the activities in the BPEL code, and edges reflect the nesting relationship among
the activities. More precisely, we associate a node i ∈ V , with label t(i) =x, with each structured ac-
tivity x∈ {sequence, switch, pick, while, flow}. Similarly, we associate a node i ∈ V with
label t(i) =a with each primitive invoke a activity. We recall that in our composite service model a
primitive activity corresponds to a service invocation. For the sake of simplicity, in the following, we will
interchangeably speak of activity i and node i. For each non root node i ∈ V , its parent node f(i) is the
structured activity within which activity i occurs. Primitive activities are thus associated with leaf nodes,
while structured activities are associated with internal nodes. For each node i ∈ V , we will denote by d(i),
the (possibly empty) set of its children. We will also write i ≺ l if node i is a descendant of node l. Finally,
we label each edge (f(l), l) ∈ E, with the expected number of times the activity l is invoked within f(l).
Since execution probabilities may differ for the different QoS class, the label `((f(l), l)) is a m element
vector `((f(l), l)) = (`k((f(l), l)))k∈K . Figure 5 summarizes how each BPEL activity is represented in T .
Figure 6 shows the process activity tree for the Travel Planner example.

evN

</flow>

...

<a1>
<a2>

<an>
...

<sequence>

</sequence>

<a1>
<a2>

<aN>

</onMessage(/onAllarm)>......

<pick>

<onMessage(onAllarm) evN>

</onMessage(/onAllarm)>

</pick>

<onMessage(onAllarm) ev1>
<a1>

<aN>a1 aN

 switch

<while cond>

</while>

<a1>a1 a2 aN

1 11

 sequence

a1

 while

<switch>

</case>......

</case>
<otherwise>

</otherwise>

</switch>

<a1>

<aN>

<a(N+1)>

<case c1>

<case cN> cNpcN−1c1

a1 aN

pev1

 pick

pw

p1− w
a1 a2 aN

 flow

1 11

aN−1

pp p

<flow>

Figure 5: BPEL structured activities tree representation.

3.2 QoS Computation

Given the definitions above, we can now provide the algorithm to compute the composite service QoS
attributes. We will then derive closed form expressions for the different attributes.

First, let Zk
i , denote the QoS attribute of the abstract service i ∈ V , Z ∈ {R,C, A}. We have

Zk
i =

∑

j∈Ii

xk
i zij (3)

where zij , z ∈ {r, c, a} is the corresponding QoS attribute of the concrete services which can implement i.
For each structured activity, the expressions for the aggregate QoS, given the QoS of the composing

activities QoS are straightforward and are summarized in Table 2 (where pk
i denotes the probability of

executing activity i in the pick, switch and while statement for class k-requests). Observe that we

9

3

1 2
c1 c1 (p ,p)1 2

c2 c2

 seq.

seq.

 switch while

 flow

((

,
wp1

1−p1
wp2

1−p2w w

1 2

4

5 6

(p ,p)

Figure 6: BPEL process tree for the Travel Planner example. For the sake of clarity, only the labels which
differ from (1, 1) are shown.

Aggregate Function
sequence pick, switch while flow∑

Zk
i

∑
pk

i Z
k
i pk

i /(1− pk
i)Z

k
i maxZk

i , Z = R,
∑

Zk
i , Z ∈ {C, A}

Table 2: QoS attributes aggregation function for BPEL structured activities.

have similar expressions for all QoS attributes but for the response time of a flow activity which is given
the by largest response time of the parallel activities appearing in it.

The composed service QoS Zk, Z ∈ {R,C, A} is obtained by means of the recursive procedure speci-
fied in Algorithm 1, with arguments the root node ı̄ and the class k of interest. Computation is carried out
by visiting in post-order the process activity tree. For each leaf node i ∈ V the procedure simply returns the
QoS attribute Zk

i (line 3). For each internal node the procedure first recursively compute the QoS attribute
of its child nodes (lines 5-6) and then returns the aggregate QoS of the corresponding BPEL structured ac-
tivity (lines 8-12). The computations in lines 9 and 11 correspond to those listed in Table 2 for the different
structured activities.

Algorithm 1 Compute Composite QoS Attributes
1: function Compute Composite QoS(node i, class k)
2: if i is a leaf node then
3: return Zk

i

4: else
5: for all i′ ∈ d(i) do
6: Zk

i′ =Compute Composite QoS(i′,k);
7: end for
8: if t(i) = flow AND Z = R then
9: return Zk

i = maxi′∈d(i) Zk
i′ ;

10: else
11: return Zk

i =
∑

i′∈d(i) `(i, i′)Zk
i′

12: end if
13: end if

10

We now derive closed form expressions for the QoS attributes of the composite service we will use in
the optimization problem formulation.
Cost and Availability Let us consider first cost and availability. For these attributes, computation is carried
out by recursively composing linear functions (line 11 of Algorithm 1). From the algorithm, it is easy to
realize that the procedure yields

Zk =
∑

i∈V

∏

jºi

`(f(j), j)

Zk

i (4)

=
∑

i∈V
V k

i Zk
i . (5)

where we let V k
i =

∏
lºi `

k(f(l), l), i ∈ V . Observe that V k
i has a simple interpretation. To this end, note

that for a given node i ∈ V , V k
i is the product of all labels `k(.) along the path from i to the root node ı̄, i.e.,

the product of the expected number of times activity i is executed within f(i) times the expected number of
times activity f(i) is executed within f(f(i)) and so on till the root node. Thus, it is not difficult to realize
that V k

i is just the expected number of times activity i is invoked by the composed web service for a class k
user.

By replacing the proper expressions, we obtain from (5) the explicit form for cost and availability of the
composite service:

Ck(x) =
∑

i∈V
V k

i Ck
i (x) =

∑

i∈V
V k

i

∑

j∈Ii

xk
ijcij (6)

Ak(x) =
∑

i∈V
V k

i Ak
i (x) =

∑

i∈V
V k

i

∑

j∈Ii

xk
ijaij . (7)

Response Time. For the response time, instead, we obtain a closed form expression only as long as the
composed service does not include flow structured activities. In such a case, by using the same arguments
above, we immediately have:

Rk(x) =
∑

i∈V
V k

i

∑

j∈Ii

xk
ijrij . (8)

In the general case, instead, the situation is more complex because the response time of a flow activity
is given by the largest response time among all component activities; therefore, we cannot obtain a closed
form expression as in (8).

To deal with this case, we derive a set of equations for the response time, whose number is linear in the
number of flow activities in the process. As shown in the next section, these equations directly translate in
a set of inequalities which we will use in the derivation of the optimization problem.

To this end, we first introduce the notion of direct descendant among nodes in the BPEL process tree.
We say that a node l ∈ T is a direct descendant of l′ ∈ T , denoted by l ¹dd l′, if l ≺ l′ and for any other
node l′′ ∈ T , l ≺ l′′ ≺ l′ implies t(l′′) 6= flow, i.e., if there is no node labeled flow in the path from l to
l′.

Let F ⊂ V denote the set of nodes corresponding to flow activities. We have the following result for
the response time for a general BPEL process. The proof is postponed to the Appendix.

Theorem 1 For an activity l ∈ V , and QoS class k ∈ K, the response time Rk
l is:

11

Rk
l =

maxl′∈d(l) Rk
l′ l ∈ F∑

i∈V,i≺ddl
V k

i

V k
l

∑
j∈Ii

xk
ijrij+

+
∑

h∈F ,h≺ddl
V k

h

V k
l

Rk
h l /∈ F

(9)

Moreover, the overall expected response time Rk(x) is given by the following expressions:

Rk(x) =

maxl′∈d(ı̄) Rk
l′ ı̄ ∈ F∑

i∈V,i≺dd ı̄ V
k
i

∑
j∈Ii

xk
ijrij+

+
∑

h∈F ,h≺dd ı̄ V
k
h Rk

h ı̄ /∈ F
(10)

Theorem 1 provides the response time Rk
l of each activity l ∈ V and the composite service response

time Rk(x), for each k ∈ K. The second of the expressions for Rk(x) comprises two terms. The first term
is the expected overall response time of the services which do not appear within a flow structured activity.
The second term is the sum of the response times Rk

l of the outer flow activities, i.e., flow activity which
are non nested within other flow activities.

4 Optimization Problem

In this section we present the broker optimization problem. The Optimization Engine goal is to determine the
variables xk

ij , i ∈ V , k ∈ K, j ∈ Ii as to maximize a suitable objective function. We assume that the broker
wants, in general, to optimize multiple QoS attributes (which can be either mutually independent or possibly
conflicting), rather than just a single one, i.e., the response time. Therefore, in general the optimal service
selection takes the form of a multi-objective optimization. Here, we tackle the multi-objective problem by
transforming it into a single objective problem. Specifically, we consider as objective function F (x) an
aggregate QoS measure given by a weighted sum of the (normalized) QoS attributes. More precisely, let

R(x) =
1∑

k∈K γk

∑

k∈K

γkRk(x)

C(x) =
1∑

k∈K γk

∑

k∈K

γkCk(x)

A(x) =
1∑

k∈K γk

∑

k∈K

γkAk(x)

denote the expected overall response time, cost and availability, respectively. We define the objective
function as follows

F (x) = wr
Rmax −R(x)
Rmax −Rmin

+ wc
Cmax − C(x)
Cmax − Cmin

+

+ wa
A(x)−Amin

Amax −Amin
(11)

where wr, wc, wa ≥ 0, wr +wc +wa = 1, are weights for the different QoS attributes. Rmax (Rmin), Cmax

(Cmin) and Amax (Amin) denote, respectively, the maximum (minimum) value for the overall response time,
cost and the (log of) availability (for sake of presentation we postpone to the Appendix how to compute these
quantities). After normalization, each term takes value in the interval [0, 1]. Note that in (11) the response

12

time R(x) and cost C(x), which we wish to minimize, appear with negative sign, while the availability
A(x), which we wish to maximize, appears with positive sign.

The Optimization Engine task consists in finding the variables xk
ij , i ∈ V , k ∈ K, j ∈ Ii which solves

the following optimization problem.

max F (x)
subject to :

Rk(x) ≤ Rk
max k ∈ K (12)

Rk
l′ ≤ Rk

l l′ ∈ d(l),
l ∈ F , k ∈ K (13)

Rk
l′ =

∑

i∈V,i≺ddl

V k
i

V k
l

∑

j∈Ii

xk
ijrij+

+
∑

h∈F ,h≺ddl

V k
h

V k
l

Rk
h

l /∈ F , k ∈ K (14)

Ck(x) ≤ Ck
max k ∈ K (15)

Ak(x) ≥ Ak
min k ∈ K (16)∑

k∈K

xk
ijV

k
i γk ≤ Lij i ∈ V , j ∈ Ii (17)

∑

j∈Ii

xk
ij = 1 i ∈ V , k ∈ K (18)

xk
ij ≥ 0 i ∈ V , j ∈ Ii, k ∈ K (19)

Equations (12)-(16) are the QoS constraints on response time, cost and availability, where Rk
max, Ck

max,
and Ak

min are respectively the maximum response time, the maximum cost and the minimum (log of the)
service availability that characterize the QoS class k. The constraints(13)-(14), which can be easily derived
from (9), provide the expressions for the response times. Inequalities (13), in particular, allow us to express
the relationship among the response times Rk

l of a flow activity and that of its component activities Rk
l′ .

Equations (17) are the broker-providers SLA constraints and ensure the broker does not exceed the SLA
with the service providers. Finally, Equations (18)-(19) are the functional constraints.

We conclude by observing that the proposed Optimization Engine problem is a Linear Programming
problem which can be efficiently solved via standard techniques. The solution thus lends itself to both
on-line and off-line operations.

5 Numerical Results

In this section, we illustrate the behavior of the proposed selection scheme. We consider the Travel Planner
service of Figure 3. The composite Web service offers two QoS classes: the gold service and the silver ser-
vice, denoted by the superscripts, 1 and 2, respectively. Table 3 summarizes the two classes QoS attributes.
Users in the gold class accept to pay a higher cost to get better response time and availability, while users in
the silver class accept worse performance to pay a lower cost.

13

QoS Class Rk
max Ck

max Ak
min

gold 12 20 log(0.95)
silver 20 12 log(0.9)

Table 3: Composite service class attributes.

We assume that for each abstract service there are two concrete services which implement it, i.e., ni = 2,
i ∈ V (the resulting workflow is displayed in Figure 4). The concrete services differ in terms of response
time, cost and availability. Table 4 summarizes the parameters of the concrete services. They have been
chosen so that for each abstract service i ∈ V , concrete service i.1 represents the better service, which at a
higher cost ensures lower response time and higher availability with respect to service i.2 which costs less
but has higher response time and lower availability. For all services, we assume Lij = 10. Finally, we
consider the following values for the execution probabilities, (p1

w, p2
w) = (0.6, 0.6), (p1

c1, p
2
c1) = (0.7, 0.5)

and (p1
c2, p

2
c2) = (0.3, 0.5).

Service rij cij aij

1.1 2 6 log(0.999)
1.2 4 3 log(0.99)
2.1 2 4 log(0.999)
2.2 4 2 log(0.99)
3.1 1 2 log(0.999)
3.2 3 1 log(0.99)

Service rij cij aij

4.1 0.5 0.5 log(0.999)
4.2 1 0.3 log(0.99)
5.1 2 1 log(0.999)
5.2 2.2 0.7 log(0.99)
6.1 1.8 0.5 log(0.999)
6.2 2 0.2 log(0.99)

Table 4: Concrete services QoS attributes.

We assume that the arrival rates for the two QoS classes are (γ1, γ2) = (4, 7) and consider the selection
strategy for two different objective functions: 1) the Optimization Engine minimizes the average response
time (wr = 1); and, 2) it minimizes the mean cost (wc = 1). Figure 7 shows the solution of the optimization
problem in the two scenarios; the values within the graphs are those of the variables xk

ij when different from
1.

In the first scenario, the goal is to minimize the average response time. The broker treats quite differently
the requests of the two QoS classes. For the gold service requests, the broker always selects the faster
concrete services i.1 (see the upper left workflow in Figure 7. This allows to achieve the lowest possible
response time (8.44) at a cost (19.35) which is within gold user upper limit C1

max. For the silver requests,
instead, the solution adopted for the gold users cannot be applied as it is too expensive (well above C2

max =
12). For this class, instead, a fraction of requests is assigned to the cheaper services i.2 to satisfy the cost
constraints. It is worth observing that the abstract service 3 is handled differently as all requests are assigned
to 3.2. This is easily explained by observing that no matter how concrete services are chosen, abstract service
3 response time is lower than the sum of the response time of the 1 and 2, R2

3 < R2
1 +R2

2; hence, there is no
benefit in assigning requests to service 3.1 which would only increase cost without any gain in the response
time. Finally, we observe that, as a byproduct of the concrete services attributes, gold users also enjoy better
service availability with an availability of 98% versus an availability of about 95% for silver users.

In the second scenario, the goal is to minimize the average cost. Intuitively, this should be achieved
by using as much as possible the concrete services i.2, i ∈ V since they cost less (as long the other QoS
requirements are satisfied). To show that this is indeed the case, we list in Table 5 the concrete service
utilization, defined as

∑
k∈K xk

ijV
k
i γk/Lij , which shows that the cheaper web services are fully utilized

(except service 6.2 which, nevertheless, is assigned all requests for abstract service 6). Requests which
cannot be assigned to these services are assigned to the more expensive services i.1. Besides ensuring full

14

w =1

w =0

w =0

r

c

a

C =122

C =11,742

C =19.351

C =16.731

Gold class (1) Silver class (2)

w =0

w =0

w =1

r

c

a

Scenario 1

Scenario 2

0.77

0.77

0.29

0.13

0.6

0.82

0.87

0.78

0.3 0.70.8 0.2

0.25

0.36

0.79

0.4

0.7

0.6

0.3

0.6 0.4

0.40.6 0.4

0.64

0.75

0.21

0.18

0.22

0.13

0.23

0.23

0.71

0.87 0.88 0.12

R =13.14	22 2A =log(0.9565)

R =13.76	22 2A =log(0.9431)

R =8.4411 1A =log(0.9801)

R =10.3611 1A =log(0.9586)

Figure 7: Solution of the optimization problem.

utilization of the cheaper services, users requests are also assigned as to satisfy the other QoS attributes:
gold users are mainly assigned to the more expensive services because of the more stringent response time
constraints, while the opposite is true for the silver requests.

Service Util. (%)
1.1 65%
1.2 100%
2.1 65%
2.2 100%
3.1 65%
3.2 100%

Service Util. (%)
4.1 10%
4.2 100%
5.1 0%
5.2 63%
6.1 0%
6.2 47%

Table 5: Scenario 2: concrete services utilization.

6 Conclusions

In this paper, we have addressed the problem of selecting concrete services in a composite service offered
to the requestors by a broker which supports differentiated QoS service classes. Most of the existing ap-
proaches to the service selection problem deal with SLAs concerning a single service request. This could
cause scalability problems in the case of a sustained flow of requests, also because of the exponential com-
plexity of the proposed solution methodologies. Differently from these approaches, we consider SLAs

15

encompassing the overall flow of requests that can be generated by a requestor in some negotiated time
interval. Our method is based on the definition of a process activities tree to determine the global QoS
attributes of the whole composition and on the formulation of a constrained optimization problem, which
determines a probabilistic selection of the concrete services. This optimization problem can be efficiently
solved via standard techniques for linear programming; this makes its solution suitable not only to off-line
operations but also to on-line ones. Therefore, our approach allows to efficiently manage the service selec-
tion in a real operating broker-based architecture, where the broker efficiency and scalability in replying to
the requestors are important factors.

Our problem formulation can be easily modified to take into account other QoS attributes in the selection
process. Moreover, it can be easily extended to determine a new resource provisioning that can be contracted
with the service providers in order to satisfy a new flow of requests or a change in an already existing SLA.

This paper is part of an ongoing research; future work concerns the issue of dynamically binding the
concrete services during the process execution, the implementation of the broker-based architecture, and the
analysis and modeling of a multi-broker scenario, where the brokers cooperate or compete in the use of the
same concrete services.

A Proof of Theorem 1

The proof is by induction. For a leaf node l ∈ V , the second of (9) reduces to Rk
l =

∑
j∈Ii

xk
ijrij which is

the expression for the response time of activity l. For a non leaf node l ∈ V , assume (9) holds for all l child
nodes, i.e., for all l′ ∈ d(l). We distinguish two cases. If l ∈ F , Rk

l = maxl′∈d(l) Rk
l′ . If l /∈ F , we have:

Rk
l =

∑

l′∈d(l)

`(l, l′)Rk
l′ (20)

=
∑

l′∈d(l),l′ /∈F
`(l, l′)rk

l′ +
∑

l′∈d(l),l′∈F
`(l, l′)Rk

l′ (21)

=
∑

l′∈d(l),l′ /∈F
`(l, l′)

∑

i∈V,i¹ddl′

V k
i

V k
l′

∑

j∈Ii

xk
ijrij+

+
∑

l′∈d(l),l′ /∈F
`(l, l′)

∑

h∈F ,h¹ddl′

V k
h

V k
l′

Rk
h +

∑

l′∈d(l),l′∈F
`(l, l′)Rk

l′ (22)

=
∑

l′∈d(l),l′ /∈F

V k
l′

V k
l

∑

i∈V,i¹ddl′

V k
i

V k
l′

∑

j∈Ii

xk
ijrij+

+
∑

l′∈d(l),l′ /∈F

V k
h

V k
l′

∑

h∈F ,h¹ddl′

V k
h

V k
l′

Rk
h +

∑

l′∈d(l),l′∈F

V k
l

V k
l′

Rk
l′ (23)

=
∑

i∈V,i¹ddl

V k
i

V k
l

∑

j∈Ii

xk
ijrij +

∑

h∈F ,h¹ddl

V k
l

V k
l

Rk
h. (24)

(22) is obtained by replacing the expression for Rk
l′ for all the child nodes l′ ∈ d(l), l′ /∈ F . (23) is then

derived by substituting `(l, l′) with V k
l /V k

l′ (observe that V k
l′ =

∏
hºl′ `(f(h), h) =

∏
hÂl′ `(f(h), h) ·

`(f(l), l) = V k
l · `(f(l), l)). Finally, (24) is obtained: 1) by simplifying V k

l in the ratios; 2) and, by
rearranging the terms in the sums. This completes the proof.

16

B Computation of maximum and minimum values of the QoS attributes

The maximum and minimum values of the QoS attributes Rmax (Rmin), Cmax (Cmin), and Amax (Amin)in
the objective function (11) are determined as follows. Rmax, Cmax, and Amin are simply expressed re-
spectively in terms of Rk

max, Ck
max, and Ak

min. For example, the maximum response time Rmax is given
by:

Rmax =
1∑

k∈K γk

∑

k∈K

γkRk
max

Similar expressions hold for Cmax and Amin. The values for Rmin, Cmin, and Amax are determined by
solving a modified optimization problem in which the objective function is the QoS attribute of interest,
subject to the constraints (17)-(19). For example, the minimum cost Cmin is given by the solution of the
following constrained optimization problem:

min C(x)
subject to :∑

k∈K

xk
ijV

k
i γk ≤ Lij i ∈ V , j ∈ Ii

∑

j∈Ii

xk
ij = 1 i ∈ V , k ∈ K

xk
ij ≥ 0 i ∈ V , j ∈ Ii, k ∈ K

Similar optimization problems have to be solved to obtain the values for Rmin and Amax. In the latter
case, the objective function A(x) has to be maximized.

References

[1] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu, D. Roller, D. Smith,
S. Thatte, I. Trickovic, and S. Weerawarana. Business Process Execution Language for Web Services
Version 1.1, May 2003. http://www-106.ibm.com/developerworks/webservices/
library/ws-bpel/.

[2] D. Ardagna and B. Pernici. Global and Local QoS Guarantee in Web Service Selection. In Proc. of
Business Process Management Workshops, pages 32–46, 2005.

[3] R. Berbner, M. Spahn, N. Repp, O. Heckmann, and R. Steinmetz. Heuristics for QoS-aware Web
Service Composition. In Proc. of Int’l Conf. on Web Services, Sept. 2006.

[4] G. Canfora, M. Di Penta, R. Esposito, and M. L. Villani. An Approach for QoS-aware Service Com-
position Based on Genetic Algorithms. In Proc. of Genetic and Computation Conf., June 2005.

[5] G. Canfora, M. Di Penta, R. Esposito, and M. L. Villani. QoS-Aware Replanning of Composite Web
Services. In Proc. of Int’l Conf. on Web Services, July 2005.

[6] V. Cardellini, E. Casalicchio, V. Grassi, and R. Mirandola. A Framework for Optimal Service Selection
in Broker-based Architectures with Multiple QoS Classes. In Proc. of 2006 IEEE Service Computing
Workshops, Sept. 2006.

17

[7] J. Cardoso, A. P. Sheth, J. A. Miller, J. Arnold, and K. J. Kochut. Modeling Quality of Service for
Workflows and Web Service Processes. Web Semantics J.: Science, Services and Agents on the World
Wide Web, 1(3):281–308, 2004.

[8] A. Dan, D. Davis, R. Kearney, A. Keller, R. King, D. Kuebler, H. Ludwig, M. Polan, M. Spreitzer,
and A. Youssef. Web Services on Demand: WSLA-driven Automated Management. IBM Systems J.,
43(1):136–158, 2004.

[9] A. Dan, H. Ludwig, and G. Pacifici. Web Service Differentiation with Service Level Agreements. White
Paper, IBM Corporation, Mar. 2003.

[10] N. Milanovic and M. Malek. Current Solutions for Web Service Composition. IEEE Internet Comput-
ing, 8(6):51–59, Nov./Dec. 2004.

[11] M. Serhani, R. Dssouli, A. Hafid, and H. Sahraoui. A QoS Broker Based Architecture for Efficient
Web Services Selection. In Proc. of 2005 Int’l Conf. on Web Services, pages 113–120, July 2005.

[12] T. Yu and K. J. Lin. A Broker-Based Framework for QoS-Aware Web Service Composition. In Proc.
of 2005 IEEE Int’l Conf. on e-Technology, e-Commerce and e-Service, Mar. 2005.

[13] T. Yu and K. J. Lin. Service Selection Algorithms for Composing Complex Services with Multiple
QoS Constraints. In Proc. of 3rd Int’l Conf. on Service Oriented Computing, pages 130–143, Dec.
2005.

[14] L. Zeng, B. Benatallah, A. H. H. Ngu, M. Dumas, J. Kalagnanam, and H. Chang. QoS-Aware Middle-
ware for Web Services Composition. IEEE Trans. Softw. Eng., 30(5):311–327, Aug. 2004.

18

