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Abstract

We present a brokering service for the adaptive management of composite services. The goal of this broker is
to dynamically adapt at runtime the composite service configuration, to fulfill the Service Level Agreements (SLAs)
negotiated with different classes of requestors, despite variations of the operating environment. Differently from most
of the current approaches, where the performance guarantees are characterized only in terms of bounds on average
QoS metrics, we consider SLAs that also specify upper boundson the percentile of the service response time, which
are expected to better capture user perceived QoS. The adaptive composite service management is based on a service
selection scheme that minimizes the service broker cost while guaranteeing the negotiated QoS to the different service
classes. The optimal service selection is determined by means of a linear program that can be efficiently solved. As a
result, the proposed approach is scalable and lends itself to an efficient implementation.

∗This Technical Report has been issued as a Research Report for early dissemination of its contents. No part of its text norany illustration can
be reproduced without written permission of the Authors.
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1 Introduction

The Service Oriented Architecture (SOA) paradigm encourages the construction of new applications through the com-
position of loosely coupled network-accessible services offered by independent providers. One of the underlying ideas
is that different providers may offer different implementations of the same functionality, differentiated by their quality
of service (QoS) and cost attributes, thus allowing a prospective user to choose the services that best suit his/her needs.
To state the respective expectations and obligations concerning the delivered QoS and cost, users and providers of
services engage in a negotiation process that culminates inthe definition of aService Level Agreement(SLA) contract.

Given a SOA system consisting of a composition of services, the fulfillment of the QoS requirements stated in its
SLA is a challenging task that requires the system to take complex decisions within short time periods, because of
the intrinsically dynamic and unpredictable nature of the SOA operational environment. A promising way to manage
effectively this task is to make the system able to self-configure at runtime in response to changes in its operational
environment. In this way, the system can timely react to environment changes (concerning for example the available
resources or the type and amount of user requests), to keep the ability of fulfilling at runtime the QoS requirements
stated in a SLA, thus avoiding SLA violations that could cause loss of income and reputation.

Several methodologies have been already proposed to drive the self-configuration of QoS-aware SOA systems.
Most of them (e.g., [1, 2, 3, 14, 15]) address this issue as aservice selectionproblem: given the set of functionalities
(abstract services) needed to compose a new added value service, the goal is to identify at runtime a set ofconcrete
services(one for each abstract service) that implement them, selecting it from a pool of candidates. Each selected
concrete service is then dynamically bound to the corresponding abstract service. Other methodologies [4, 8, 9]
extend this idea by also considering the possibility of binding each abstract service to a set of functionally equivalent
concrete services rather than a single service, coordinated according to some redundancy pattern (e.g., one-out-of-N
or sequential retry), to achieve higher QoS at the expense ofhigher cost: in this case both the redundancy pattern and
the set of equivalent concrete services must be selected at runtime.

The proposed methodologies also differ in the type of scenario they deal with: most of them (e.g., [1, 2, 9, 14, 15])
deal withsingle requestfor the composite service independently of each another. The goal in this case is to determine
the concrete implementation of each abstract service for that request that is best suited to satisfy the requestor SLA
given the current conditions of the operating environment.Others [3, 4] jointly consider the aggregateflowof requests.
In this case, the goal is to determine how to switch differentflows of requests, possibly generated by several classes of
users, to the different candidate implementations as to satisfy the different SLAs.

Most of the proposed approaches for self-configurable QoS-aware SOA systems consider SLAs where the perfor-
mance guarantees are specified only in terms of bounds on the expected values of the QoS metrics of interests. A
potential limitation of these approaches lies in the fact that user perceived QoS is often better expressed in terms of
bounds on the percentile of the QoS metrics, as also reflectedin commercial practices. For example, the Amazon
SOA-based e-commerce platform [6] includes SLAs concerning the 99.9 percentile of the response time under a given
peak load of service requests per second. To the best of our knowledge, only the approaches proposed in [7, 13] offer
guaranteees on the percentile of the response time. The results in [13], though, are limited to sequential patterns and
only apply to thesinglerequest scenario, while [7] proposes a heuristic for request scheduling in a single database
server which is based on the prediction of execution time.

In this paper, we overcome this limitation of current methodologies for self-configurable QoS-aware SOA systems.
We consider theflowscenario and propose a service selection scheme to drive theself-configuration of composite SOA
applications, which consider SLAs that include performance guarantees on the percentiles of the QoS attributes. We
present our solution from the perspective of an applicationimplemented as a composite service and implemented by
an intermediary broker. We show that the application can efficiently provide the SLAs by selecting among the pool of
available services, those services that allow it to fulfill the SLA negotiated with the users, given the constraints defined
by the SLA settled with the providers. The selection is driven by the goal of maximizing some broker utility goal.
The search for a new solution is triggered by the occurrence of events that could make no longer valid a previously
calculated solution,e.g., the arrival or departure of a client or a change in the set of providers. We formulate the
service selection problem as an optimization problem with non-linear constraints. For the solution, we linearise the
constrains. The resulting linear programming problem can thus be efficiently solved via standard techniques. Hence
the proposed approach is suitable for on-line operations.

The rest of the paper is organized as follows. In Section 2 we provide an overview of the system architecture
offering the composite service with percentile-based SLAsand outline the SLA definition. In Section 3 we discuss
how to compute the QoS attributes of the composite service. In Section 4 we present the formulation of the optmiza-
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tion problem that is solved to determined the percentile-based service selection. Then, in Section 5 we present the
simulation experiments to assess the effectiveness of the proposed approach. Finally, we draw some conclusions and
give hints for future work in Section 6.

2 Sytem Architecture

We present our approach from the perspective of an application architected as a composite service and provided by
an intermediaryservice broker. The service broker offers to prospective users a compositeservice with a range of
different service classes. It acts as a full intermediary between users and concrete services, performing a role of
service provider towards the users and being in turn a requestor to the concrete services offering the operations used
to implement the composite service. Its main task is to drivethe adaptation of the service it manages to fulfill the
SLAs negotiated with its users, given the SLAs it has negotiated with the concrete services. Moreover, it also aims at
optimizing a given utility goal.
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Figure 1: Service broker high-level architecture.

Figure 1 shows the core components of the broker high-level architecture and their interaction. A detailed descrip-
tion of the architecture can be found in [4]; in the next, we summarize the respective tasks of the components. The
Composition Managerdescribes the composite service in some suitable workflow orchestration language (e.g., BPEL
[12]) and identifies the concrete services implementing therequired tasks of the abstract composition (including their
SLAs).

TheWorkflow Engineis the software platform executing the business process andrepresents the user front-end for
the composite service provisioning. For each invocation ofthe component services it interacts with theAdaptation
Manager. The latter binds dynamically the request to the real endpoint that represents the concrete service, which
is identified through the solution of an optimization problem. Together, the Workflow Engine and the Adaptation
Manager manage the user requests flow, once the user has been admitted to the system with an established SLA.
TheOptimization Engineis the component that solves the broker optimization problem. The parameters values for
this problem are derived from the parameters of the SLAs negotiated with the composite service users and concrete
services, and from a monitoring activity carried out by the QoS Monitor and the WS Monitor.

The QoS Monitorcollects information about the performance and reliability levels (specified in the SLAs) per-
ceived by the users and offered by the concrete services. This component is also in charge to observe and compute the
distribution of the response time of the composite service for each service class and to estimate itszα value (defined
in Section 3). TheWS Monitorchecks periodically the responsiveness of the pool of concrete services and notifies
if some of them becomes unavailable. Besides maintaining upto date the parameters of the optimization problem,
the QoS Monitor and WS Monitor check and notify whether some relevant change occurs in the composite service
environment. This may lead to the solution of a new instance of optimization problem which accounts for the occurred
changes. Events to be tracked include the arrival/departure of a user, an observed variation in the SLA parameters of
the concrete services, and the addition/removal of concrete services.

TheService Managerand theSLA Managerare mainly responsible for the SLA negotiation processes inwhich the
broker is involved as intermediary. The former negotiates the SLAs with the concrete services. The tasks of the latter
are the user SLA negotiation and user registration processes, that is, it is in charge to add, modify, and delete SLAs
and users profiles. The SLA negotiation process towards the user side includes also the admission control of new
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users; to this end, it involves the use of the Optimization Engine in order to evaluate the broker capability to accept the
incoming user. Most of the broker components access to a storage layer (not shown in Figure 1) to know the model
parameters of the composite service operations and environment.

2.1 Composite Service

We assume that the composite service structure is defined using BPEL [12]. In this paper, we actually refer to a signif-
icant subset of the whole BPEL definition, focusing on its structured style of modeling (rather than on its graph-based
one, thus omitting to consider the use of control links). Specifically, in the definition of the workflow describing the
composite service, besides the primitiveinvoke activity, which specifies the synchronous or asynchronous invoca-
tion of a Web service, we consider most of the structured activities: sequence,switch, while, andpick, whose
meaning is summarized in Table 1. The percentile-based service selection proposed in this paper is not currently able
to manage theflow structured activity, which is used for the concurrent execution of activities.

Table 1: Structured activities in BPEL.
Activity Meaning
sequence Sequential execution of activities
switch Conditional execution of activities
while Repeated execution of activities in a loop
pick Conditional execution of activities based on external event/alarm

Figure 2 shows an example of a BPEL workflow described as a UML2activity diagram. With the exception of the
pick construct, this example encompasses all the structured activities listed above.

Figure 2: An example of BPEL workflow.

The business process for the composite service defines a set of abstract services{S1, . . . , Sn}. Each abstract
service can be instanciated with a specific concrete servicekij ∈ Ki, whereKi is the set of functionally equivalent
concrete services that have been identified by the Composition Manager as candidates to implementSi.

2.2 SLA Negotiation

The broker is involved in the SLA negotiation with two counterparts: on one side the requestors of the composite
service, on the other side the providers of the concrete services. Let us first discuss the SLA settled with the latter. The
QoS of each concrete service can be characterized accordingto various attributes of interest, such as response time,
cost, reputation, availability, and throughput [5, 15]. The values of these QoS attributes are advertised by the service
providers as part of the SLA. Without loss of generality, in this paper we consider the following QoS attributes for
each concrete servicekij :

• the response timetij , which is the interval of time elapsed from the invocation tothe completion of the concrete
servicekij ;

• the costcij , which represents the price charged for each invocation of the concrete servicekij ;
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• the log of the availability,aij , i.e., the logarithm of the probability that the concrete servicekij is available when
invoked.

In the latter case, as in [15] we consider thelogarithmof the availability, rather than the availability itself, in order
to obtain linear expressions when composing the availability of different services.

For a given concrete servicekij , the SLA established by the broker with the service providerdefines the service
cost (measured in money per invocation), availability, andexpected response time (measured in time unit), provided
the volume of requests generated by the broker does not exceed the negotiated average load. Therefore, the SLA for
the concrete servicekij is represented by the template〈tij , cij , aij , Lij〉, beingLij the agreement on average load.

We denote byK the set of QoS classes offered by the broker. In the SLAs created with the requestors, the broker
characterizes the QoS of the composite service in terms of bounds on the expected response time, quantile of the
response time, expected cost, and excepted availability for each QoS classk ∈ K (i.e., T k

max, T k
α,max, Ck

max, Ak
min),

whereT k
α,max is a bound on theα-quantileT k

α of the response time. Observe that while the concrete service provides
only guarantees on the expected response timetij , the composite service offered by the broker provides guarantees on
the tail of the response time distribution.

Each requestor has to negotiate for each QoS class the volumeof requests it will generate in that class (denoted
by ∆γk). The SLA established by the broker with the requestor for the QoS classk ∈ K has therefore the template
〈T k

max, T k
α,max, Ck

max, Ak
min, ∆γk〉.

2.3 Admission Control

The Admission Control Manager determines whether a new requestor can be accepted for the required class of service,
without violating the SLAs of already accepted requestors.Let γ be the aggregate arrival rate of already accepted
requestors (i.e., γ = (γ1, ..., γ|K|) and denote by∆γ the arrival rate requested by the new user for all the service
classes (i.e., ∆γ = (∆γ1, ..., ∆γ|K|)). The Admission Control Manager determines whether the new requestor can
be accepted by invoking the Optimization Engine and asking for a new resolution of the optimization problem with
γ +∆γ as aggregate arrival rate. We have two possible cases. If a feasible solution to the optimization problem exists,
it means that the additional requests can be satisfied - at therequested QoS - without violating the QoS of already
accepted users. The new requestor can be thus accepted and the SLA finalized for the requested rate and QoS class.
If, instead, a feasible solution does not exists, the brokercan: 1) turn down the new requestor; 2) renegotiate the SLA
with the requestor; 3) renegotiate the parameters of the SLAs with the service providers.

2.4 Service Selection Model

The Selection Manager determines, for each QoS class, the concrete servicekij that must be used to fulfill a request
for the abstract serviceSi. We model this selection by associating with each abstract serviceSi a service selection
policy vectorxi = (x1

i , ..., x
|K|
i ), wherexk

i = [xk
ij ] andkij ∈ Ki. Each entryxk

ij of x
k
i represents the probability that

the class-k request will be bound to the concrete servicekij . The Selection Manager determines the values of thexk
ij

by invoking the Optimization Engine. With this model, we assume that the Selection Manager can probabilistically
bind to different concrete services the requests (belonging to a same QoS classk) for an abstract serviceSi.

As an example, consider the caseKi = {ki1, ki2, ki3} and assume that the selection policyx
k
i for a given classk

specifies the following values:xk
i1 = xk

i2 = 0.3, xk
i3 = 0.4. This strategy implies that 30% of the class-k requests for

serviceSi are bound to serviceki1, 30% are bound to serviceki2 while the remaining 40% are bound toki3. From this
example we can see that, to get some overall QoS objective fora given class flow of requests, the Selection Manager
may bound different requests to different providers

3 Composite Service QoS Model

In this section, we present the QoS model for the composite service and show how to compute its QoS attributes.
Upon a composite service invocation, the broker executes a sequence of tasks as dictated by the service workflow.

Each time a taskSi is invoked, the broker determines at runtime the concrete service kij to be bound to the abstract
serviceSi and invokes it. We denote byNk

i the number of times taskSi is invoked by a classk user service request.
For each classk ∈ K offered by the broker, the overall QoS attributes, namely,
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• the expected response timeT k, which is the time needed to fulfill a class-k request for the composite service;

• theα-quantileT k
α of the response time;

• the expected execution costCk, which is the price to be paid to fulfill a class-k request;

• the expected availabilityAk, which is the logarithm of the probability that the composite service is available for
a class-k request

depend on: 1) the actual concrete servicekij selected to perform each activitySi, i = 1, . . . , n, and 2) how the services
are orchestrated.

Expected Value To compute these quantities, letZk
i (x) denote the QoS attribute of the abstract serviceSi, Z ∈

{T, C, A}. We have
Z

k
i (x) =

X

kij∈Ki

x
k
ijz

k
ij

wherezk
ij , z ∈ {t, c, a} is the corresponding QoS attribute offered by the concrete servicekij which can implement

Si.
From these quantities, we can derive closed form expressions for the QoS attributes of the composite service. Since

all metrics, namely, the cost, the (logarithm of the) availability, and the response time QoS metrics are additive [5], for
their expected value we readily obtain

Zk(x) =

n
∑

i=1

V k
i Zk

i (x) =

n
∑

i=1

V k
i

∑

kij∈Ki

xk
ijzij

whereV k
i = E[Nk

i ] is the expected number of timesSi is invoked for a classk request.

Response Time α-quantile It is not possible to find a general expression for a percentile of the response time. We
assume to know - or to be able to estimate - thezk

α-value of the distribution,i.e., theα-quantile of the normalized

response time, which is defined aszk
α =

T k
α−E[T k]√
Var[T k]

. Hence,

T k
α = E[T k] + zk

α

√

Var[T k] (1)

i.e., we rewrite the percentile of the distribution as function of the expected valueE[T k], the varianceVar[T k], and
the associatedz-value. The response time variance takes the following form(the derivation of which can be found in
Appendix A):

Var[T k] =

n
∑

i=1

V k
i Var[T k

i ] +

n
∑

i=1

n
∑

i′=1

Cov[Nk
i Nk

i′ ]T
k
i (x)T k

i′ (x) (2)

where

Var[T k
i ] =

∑

kij∈Ki

xij(t
2
ij + σ2

ij) −





∑

kij∈Ki

xijtij





2

(3)

is the variance of the response time of taskSi (beingσ2
ij the response time variance of servicekij which we also

assume to estimate). Observe that the variance (2) comprises two terms: the first accounts for the variability of the
response time of each tasks weighted by the expected number of times each task is invoked; the second term accounts
for the variability of the number of tasks invocations (which are correlated), weighted by the tasks expected response
time.
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4 Optimization Problem

The Optimization Engine goal is to determine the service selection strategyxk
ij , i = 1, . . . , n, k ∈ K, kij ∈ Ki which

maximizes a suitable utility function. For the sake of simplicity, here we consider the simple case that the broker wants
to minimize the overall expected cost, defined asC(x) = 1

P

k∈K
γk

∑

k∈K γkCk(x). In general we could optimize

multiple QoS attributes (which can be either mutually independent or possibly conflicting). Therefore, in general the
optimal service selection would take the form of a multi-objective optimization which can be solved by reducing to a
single objective problem using scalarization methods,e.g., the weighted sum approach.

The Optimization Engine task consists in finding the variablesxk
ij , i = 1, . . . , n, k ∈ K, kij ∈ Ki, which solve

the following optimization problem:

OPT : min C(x)

subject to: T k(x) ≤ T k
max k ∈ K (4)

Ck(x) ≤ Ck
max k ∈ K (5)

Ak(x) ≥ Ak
min k ∈ K (6)

P[T k > T k
α,max] ≤ 1 − α k ∈ K (7)

∑

k∈K

xk
ijV

k
i γk ≤ Lij i = 1, . . . , n, kij ∈ Ki (8)

xk
ij ≥ 0,kij ∈ Ki, x

k
ij = 1 i = 1, . . . , n, k ∈ K (9)

Equations (4)-(6) are the QoS constraints for each service class on average response time, average cost and availability,
whereT k

max, Ck
max, andAk

min are respectively the maximum response time, the maximum cost and the minimum
(logarithm of the) availability that characterize the QoS classk. Equation (7) is the QoS constraint on the percentile
of the response time. Equations (8) are the broker-providers SLA constraints and ensure the broker does not exceed
the SLA with the service providers. Finally, equations (9) are the functional constraints. The constraintsP[T k >
T k

α,max] ≤ 1 − α can be rewritten asT k
α ≤ T k

α,max. Hence,

T k
α ≤ T k

α,max ⇐⇒ E[T k] + zα

√

Var[T k] ≤ T k
α,max

Thus, the constraints on the response time percentile can berewritten as:

zα





n
∑

i=1

n
∑

i′=1

Cov[NiNi′ ]
∑

kij∈Ki

xijtij
∑

kij∈Ki′

xi′jti′j + . . .

n
∑

i=1

V k
i







∑

kij∈Ki

xij(t
2
ij + σ2

ij) −





∑

kij∈Ki

xijtij





2












1
2

≤

T k
α,max −

n
∑

i=1

V k
i

∑

kij∈Ki

xk
ijtij k ∈ K (10)

Constraints Linearization Because of the constraints (10), there is no know technique to solve problemOPT1.
We tackle the problem by deriving a linear program (LP) whichis obtained by linearising (10) in two steps. First of
all we eliminate the square root, which is not differentiable in zero by taking the square of both side of (2). Then, we
linearise the constraints by approximating both sides withthe first term of the Taylor expansion around a suitable point

1Had the constraints be convex, we could have used semidefinite programming to solve the problem. Since convexity does nothold in general,
we have resorted to linearisation instead.
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x0, which yields (the computation of the first term of the Taylorexpansion is in Appendix B):

n
∑

i=1

∑

kij∈Ki

xk
ij

[

z2
α

(

2

n
∑

i′=1

Cov[NiNi′ ]T
k
i′ (x0)tij+

V k
i

(

t2ij + σ2
ij − 2tijT

k
i (x0)

))

+ 2tij
(

T k
α max − T k(x0)

)]

≤

z2
α

(

n
∑

i=1

n
∑

i′

Cov[NiNi′ ]T
k
i′ (x0)T

k
i (x0) −

n
∑

i=1

V k
i T k2

i (x0)

)

+

(

T k
α,max − T k(x0)

)2
+ 2

(

T k
α,max − T k(x0)

)

T k(x0) (11)

By replacing (7) with (11) inOPT we obtain the following LPLINOPT which we use to determine the optimal
service selection policy:

LINOPT : min C(x)

subject to:
n
∑

i=1

V k
i

∑

kij∈Ki

xk
ijtij ≤ T k

max k ∈ K (12)

n
∑

i=1

V k
i

∑

kij∈Ki

xk
ijcij ≤ Ck

max k ∈ K (13)

n
∑

i=1

V k
i

∑

kij∈Ki

xk
ijaij ≥ Ak

min k ∈ K (14)

percentile constraints (11) k ∈ K (15)
∑

k∈K

xk
ijV

k
i γk ≤ Lij i = 1, . . . , n, kij ∈ Ki (16)

xk
ij ≥ 0, kij ∈ Ki,

∑

kij∈Ki

xk
ij = 1 i = 1, . . . , n, k ∈ K (17)

LINOPT is a LP problem and can be efficiently solved via standard techniques. The solution thus lends itself to
both on-line and off-line operations.

The choice of the linearisation pointx0 is crucial to obtain good solutions,i.e., solutions close to those that would
have been obtained by solvingOPT. We found that a good choice forx0 is provided by a most recent solution
x itself. In case such a solution is not available,e.g., when the broker is initialized, we simply do not consider the
constraints (15) the first timeLINOPT is executed.

5 Simulation Model and Experiments

In this section, we first describe the simulation model we have defined to study the effectiveness of the percentile-based
adaptation policy and then present the results of simulation experiments.

5.1 Simulation Model

The broker simulation model comprises the same components of the architecture shown in Figure 1. We consider an
open system model, where new users belonging to a given service classk ∈ K offered by the broker arrive at mean
user inter-arrival rateΛk. Eachk-class user is characterized by its SLA parameters defined inSection 2.2 and by the
contract durationdk. If admitted (according to the admission control mechanismexplained in Section 2.2), the user
will start generating requests to the composite service until its contract expires.

Differently from traditional Web workload, SOA workload characterization has been not deeply investigated up to
now (some preliminary results are in [11]). Therefore, in our workload model we assume exponential distributions with
parametersΛk and1/dk for the user inter-arrival time and contract duration, respectively, and a Gaussian distribution
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with parametersmk andσk for the inter-arrival rate of requests to the composite service generated by each user.
We also assume that the response time of the concrete services follows Erlang distributions with different shape
parameters.

The discrete-event simulator has been implemented in C language using the CSIM package [10]. Multiple inde-
pendent random number streams have been used for each stochastic model component. The experiments involved a
minimum of 10,000 completed requests to the composite service; for all reported mean and percentile values the95%
confidence interval have been obtained.

5.2 Experimental Results

We illustrate the dynamic behavior of our adaptive service selection through the simple abstract workflow of Figure 2.
For the sake of simplicity we assume that two candidate concrete services (with their respective SLAs) have been
identified for each abstract service, except forS2 for which four concrete services have been identified. The respective
SLAs differ in terms of cost, reliability, and response time(all time values are measured in sec.). Table 2 summarizes

Table 2: Concrete service SLA parameters and shape parameter of Erlang distribution.

Service cij aij tij Erlij

k11 6 0.995 2 4
k12 3 0.99 4 2

k21 4.5 0.99 1 4
k22 4 0.99 2 4
k23 2 0.95 4 2
k24 1 0.95 5 2

k31 2 0.995 1 4
k32 1.8 0.95 2 2

Service cij aij tij Erlij

k41 1 0.995 0.5 4
k42 0.8 0.99 1 2

k51 2 0.99 2 4
k52 1.4 0.95 4 2

k61 0.5 0.99 1.8 4
k62 0.4 0.9 4 2

for each concrete servicekij the SLA parameters〈tij , cij , aij〉 and the shape parameterErlij of the Erlang distribution
for the response time (for eachkij , the mean value of the Erlang distribution corresponds totij ). The SLA and the
Erlang shape parameters have been chosen so that for abstract serviceSi, concrete serviceki1 represents the best
implementation, which at a higher cost guarantees higher availability and lower response time (in terms of mean as
well as variance) with respect to concrete servicekij for j ≥ 2, which costs less but has lower availability and higher
response time. For all concrete services,Lij = 10.

On the user side, we assume a scenario where the broker offersthe composite servite with four QoS classes. The
SLAs negotiated by the users are characterized by a wide range of QoS requirements as listed in Table 3, with users
in class 1 having the most stringent requirementsA1

min = 0.95 andT 1
max = 7, and users in class 4 the least stringent

requirementsA4
min = 0.8 andT 4

max = 18. With regard to the bound on theα-quantileT k
α,max of the response time, we

assume that for all classesT k
α,max = βT k

max andα = 0.95 (i.e., we consider 95-percentile of the response time). The
SLA costs parameters for the four classes have been set accordingly, where class 1 has the highest cost per request and
class 4 is the cheapest. The expected number of service invocations for the different classes is:V k

1 = V k
2 = V k

3 = 1.5,
V k

4 = 1, k ∈ K; V k
5 = 0.7, V k

6 = 0.3, k ∈ {1, 3, 4}; V 2
5 = V 2

6 = 0.5, that is, all classes have the same usage profile
except users in class 2, who invokeS5 andS6 with different intensity. The values of the parameters thatcharacterize
the workload model aredk = 100 and(mk, σk) = (3, 1) for eachk (Λk, dk, andmk values have to be set so that
γk = Λkmkdk for Little’s formula).

Table 3: User-side SLA parameters for each service class.

Classk Ck Ak
min T k

max T k
0.95,max γk

1 25 0.95 7 βT 1
max 10

2 18 0.9 11 βT 2
max 4

3 15 0.9 15 βT 3
max 2

4 12 0.8 18 βT 4
max 1
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Figure 3: Response time.

We compare the performance obtained by the service selection with tight bounds on the percentile of the response
time with that of the service selection where only guarantees on the mean values are offered to the users of the
composite service. The problem formulation of the latter case is in [3] and we denote it withβ = ∞ (i.e., the tail
of the response time distribution is unbounded). We initially set β = 2.2, which represents a tight bound on the
95-percentile of the response time; we then analyze the sensitivity of the response time toβ.

Figure 3(a) shows the cumulative distribution of the response time of the composite service for all the service
classes when the percentile-based and mean-based optimizations are used, corresponding toβ = 2.2 andβ = ∞
curves, respectively. We can see that the percentile-basedoptimization achieves a better response time than the mean-
based optimization for classes 1 and 2, which have the more stringent SLA requirements. Through Figure 3(b) we
further investigate the tendency of the response time for classes 1 and 2 by plotting its complementary cumulative
distribution on a linear-logarithmic scale. The vertical lines represent the 95-percentile of the response time agreed
in the SLA with the users of the composite services. We can seethat the percentile-based service selection largely
satisfies the 95-percentile SLA, that is only 1.6% and 2.1% ofclass 1 and class 2 requests respectively experience a
response time greater than the 95-percentile value. The conservative behavior of the percentile-based approach is due
to the constraints linearization explained in Section 4.

To compare in more detail the percentile-based and mean-based approaches with respect to the response time QoS
parameter, Figure 4 shows how the mean and 95-percentile response times of the composite service vary over time for
classes 1 and 2. The horizontal line is the agreed response time (both mean and 95-percentile values), as reported in
Table 3. We observe that the mean-based approach leads to some violations of the agreed response time, while the
percentile-based approach allows the broker to offer always a response time much better than that agreed.
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Figure 4: 95-percentile and mean response time over time forclasses 1 (left) and 2 (right).

We conducted a last set of experiments to analyze the sensitivity of the percentile-based service selection to the
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β parameter, which correlates in the SLA the 95-percentile tothe mean of the composite service’s response time
(smaller values ofβ correspond to a tighter bound on the distribution tail). Figure 5 shows the trend of the 95-
percentile response time toβ for all classes (the corresponding SLA value is only shown for the most demanding
classes 1 and 2). The percentile-based approach succeeds inrespecting the agreed 95-percentile for all service classes
andβ values. The disadvantage of a tighter bound on the percentile (e.g.,β = 2.1) is that a larger fraction of incoming
contract requests are rejected.
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Figure 5: Sensitivity of 95-percentile response time toβ.

6 Conclusions

In this paper, we have addressed the problem of selecting concrete services in a composite service offered by a bro-
kering service which supports differentiated QoS service classes. Most of the existing approaches only consider SLAs
based on bounds of the expected values of the relevant QoS metrics. A limitation of these solutions lies in the fact that
user perceived quality is often better expressed in terms ofbounds on the percentile rather than the expected value of
the QoS metrics. To overcome this limitation, in this paper we have considered SLAs which also specify bounds on
percentile of the response time. We have formulated the service selection problem as an optimization problem with
non-linear constraints. For the solution, we have linearised the constrains. The resulting linear programming problem
can be efficiently solved via standard techniques. Therefore, our approach can be used to efficiently manage the ser-
vice selection in a real operating broker-based architecture, where the broker efficiency and scalability in replying to
the users requests are important factors.

The model proposed in this paper provides statistical guarantees on the percentile of the response time. The results,
though, only apply to the service selection scenario and only consider a subset, albeit significant, of the workflows’
structured activities. Our future work includes the extension of these results to the use of redundant coordination
patterns and the inclusion of other structured activities,i.e., theflow activity.

A Computation of the Variance of the Response Time

Upon a composite service invocation, the broker executes a sequence of tasks as dictated by the service workflow.
Each time a taskSi is invoked, the broker determines at runtime the concrete service kij to be bound to the taskSi

and invokes it. For a given user invocation, letNi denote the number of times taskSi is invoked and for each time, let
k

(l)
ij , l = 1, . . . , Ni the actual concrete service chosen for its implementation.The timeT elapsed from the invocation

of the service up to its completion is then

T =

n
∑

i=1

Ni
∑

l=1

T
(l)
i (18)
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where

T
(l)
i =

∑

kij∈Ki

1
{k

(l)
ij

=kij}
T

(l)
ij (19)

is the execution time of thel-th invocation of taskSi. For the expected value and variance of the response time, itis
easy to verify that under our assumptions,

E[T
(l)
i ] = E[Ti] =

∑

kij∈Ki

xijtij (20)

Var[T
(l)
i ] = Var[Ti] =

∑

kij∈Ki

xij(t
2
ij + σ2

ij) −





∑

kij∈Ki

xijtij





2

(21)

For the overall response time we have,

E[T ] =

n
∑

i=1

ViE[Ti] (22)

=
n
∑

i=1

Vi

∑

kij∈Ki

xijtij (23)

and

Var[T ] = σ2 = E
[

T 2 − E[T ]2
]

(24)

= E





(

n
∑

i=1

Ni
∑

l=1

T
(l)
i

)2


 (25)

= E





(

n
∑

i=1

Ni
∑

l=1

T
(l)
i

)

·





n
∑

i′=1

N ′

i
∑

l′=1

T
(l)
i







 (26)

= E





(

n
∑

i=1

Ni
∑

l=1

T
(l)
i

)

·





n
∑

i′=1,i′ 6=i

N ′

i
∑

l′=1

T
(l)
i







+ E









n
∑

i=1

Ni
∑

l=1

T
(l)
i

N ′

i
∑

l′=1

T
(l)
i







 . (27)

We now expand the two terms of (27): for the first term we have

E

2

4

0

@

n
X

i=1

Ni
X

l=1

T
(l)
i

1

A ·

0

@

n
X

i′=1,i′ 6=i

N′

i
X

l′=1

T
(l)
i

1

A

3

5 =
n
X

i=1

n
X

i′=1,i′ 6=i

∞
X

k=0

∞
X

k′=0

E

2

4

k
X

l=1

T
(l)
i

k′

X

l′=1

T
(l′)
i′

3

5P
ˆ

Ni = k,N ′
i′ = k′

˜

(28)

=
n
X

i=1

n
X

i′=1,i′ 6=i

E[Ti]E[Ti′ ]E
ˆ

NiN
′
i′

˜

; (29)

and for the second term

E

2

4

0

@

n
X

i=1

Ni
X

l=1

T
(l)
i

N′

i
X

l′=1

T
(l)
i

1

A

3

5 =
n
X

i=1

∞
X

k=0

E

"

k
X

l=1

T
(l)
i

k
X

l′=1

T
(l′)
i

#

P [Ni = k] (30)

=
n
X

i=1

∞
X

k=0

 

k
X

l=1

k
X

l′=1

E
h

T
(l)
i T

(l′)
i

i

+
k
X

l=1

T
(l)2
i

!

P [Ni = k] (31)

=
n
X

i=1

∞
X

k=0

`

k(k − 1)E[Ti]
2 + kE

ˆ

T 2
i

˜´

P [Ni = k] (32)

=
n
X

i=1

`

E
ˆ

N2
i

˜

− E[Ni]
´

E[Ti]
2 + E[Ni]E[T 2

i ] (33)
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We can thus rewrite (27) as

Var[T ] =
n
X

i=1

n
X

i′=1,i′ 6=i

E[NiN
′
i′ ]E[Ti]E[Ti′ ] +

n
X

i=1

E[N2
i ]E[Ti]

2
−

 

n
X

i=1

ViE[Ti]

!2

− E[Ni]E[Ti]
2 + E[Ni]E[T 2

i ] (34)

=
n
X

i=1

n
X

i′=1

Cov[NiNi′ ]E[Ti]E[Ti′ ] +
n
X

i=1

ViVar[Ti] (35)

By replacingE[Ti] anfVar[Ti] with the expressions (20)-(21) we finally obtain

Var[T ] =
n
X

i=1

n
X

i′=1

Cov[NiNi′ ]
X

kij∈Ki

xijtij
X

kij∈Ki′

xi′jti′j +
n
X

i=1

Vi

0

@

X

kij∈Ki

xij(t
2
ij + σ2

ij) −

0

@

X

kij∈Ki

xijtij

1

A

21

A (36)

B Computation of the First Term Taylor Expansion

We compute the first term of the Taylor expansion of both side of (10), that we rewrite for convenience below

z2
α

0

@

n
X

i=1

n
X

i′=1

Cov[NiNi′ ]
X

kij∈Ki

xijtij
X

kij∈Ki′

xi′jti′j+

n
X

i=1

Vi

0

@

X

kij∈Ki

xij(t
2
ij + σ2

ij) −

0

@

X

kij∈Ki

xijtij

1

A

21

A

1

A ≤

0

@T k
max −

X

i∈V

V k
i

X

kij∈Ki

xk
ijtij

1

A

2

(37)

For sake of simplicity we consider each term separately.

Term
∑n

i=1

∑n

i′=1
Cov[NiNi′]

∑

kij∈Ki
xijtij

∑

kij∈Ki′
xi′jti′j

n
X

i=1

n
X

i′=1

Cov[NiNi′ ]R
k
i (x0)Rk

i′ (x0)+

n
X

i=1

X

kij∈Ki

∂

∂kij

0

@

n
X

m=1

Cov[NmNm]Rk2
m (x) +

n
X

m=1

n
X

m′=1,m′ 6=m

Cov[NmNm′ ]Rk
m(x)Rk

m′ (x)

1

A

˛

˛

˛

˛

˛

˛

x=x0

(xij − xij0) = (38)

n
X

i=1

n
X

i′=1

Cov[NiNi′ ]R
k
i (x0)Rk

i′ (x0)+

n
X

i=1

X

kij∈Ki

0

@2Cov[NiNi]R
k
i (x0)tij + 2

n
X

i′=1,i′ 6=i

Cov[NiNi′ ]R
k
i′ (x0)tij

1

A (xij − xij0) = (39)

n
X

i=1

n
X

i′=1

Cov[NiNi′ ]R
k
i (x0)Rk

i′ (x0)+

2
n
X

i=1

n
X

i′=1

Cov[NiNi′ ]R
k
i′ (x0)

“

Rk
i (x) − Rk

i (x0)
”

= (40)

n
X

i=1

n
X

i′=1

Cov[NiNi′ ]R
k
i (x0)

“

2Rk
i (x) − Rk

i (x0)
”

(41)
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Term −

∑n

i=1
Vi

(

∑

kij∈Ki
xijtij

)2

−
n
∑

i=1

ViR
k2
i (x0) +

n
∑

i=1

∑

kij∈Ki

∂

∂kij

(

−
n
∑

i=1

ViR
k2
i (x)

)∣

∣

∣

∣

∣

x=x0

(xij − xij0) = (42)

−
n
∑

i=1

ViR
k2
i (x0) +

n
∑

i=1

∑

kij∈Ki

(−2ViRi(x0)tij) (xij − xij0) = (43)

−
n
∑

i=1

ViR
k2
i (x0) − 2

n
∑

i=1

ViR
k
i (x0)

(

Rk
i (x) − Rk

i (x0)
)

= (44)

−
n
∑

i=1

ViR
k
i (x0)

(

2Rk
i (x) − Rk

i (x0)
)

(45)

Term (T k
max

− T
k(x))2

(T k
max − T k(x0))

2 +

n
∑

i=1

∑

kij∈Ki

∂

∂kij

(

(T k
max − T k(x))2

)∣

∣

x=x0
(xij − xij0) = (46)

(T k
max − T k(x0))

2 − 2

n
∑

i=1

∑

kij∈Ki

(T k
max − T k(x0))Vitij(xij − xij0) = (47)

(T k
max − T k(x0))

2 − 2(T k
max − T k(x0))(T

k(x) − T k(x0)) (48)

Plugging these terms into (37) we obtain:

z2
α

 

n
X

i=1

n
X

i′

Cov[NiNi′ ]T
k
i′(x0)

“

2T k
i (x) − T k

i (x)
”

+

n
X

i=1

V k
i

0

@

X

kij∈Ki

xk
ij(t

2
ij + σ2

ij) − T k
i (x0)

“

2T k
i (x) − T k

i (x0)
”

1

A

1

A ≤

“

T k
max − T k(x0)

”2
− 2

“

T k
max − T k(x0)

”“

T k(x) − T k(x0)
”

(49)

and after moving all constant terms to the RHS:

z2
α

0

@

n
X

i=1

n
X

i′

Cov[NiNi′ ]T
k
i′ (x0)2T k

i (x) +
n
X

i=1

V k
i

0

@

X

kij∈Ki

xk
ij(t

2
ij + σ2

ij) − 2T k
i (x0)T k

i (x))

1

A

1

A+

2
“

T k
max − T k(x0)

”

T k(x) ≤

z2
α

 

n
X

i=1

n
X

i′

Cov[NiNi′ ]T
k
i′ (x0)T k

i (x0) −
n
X

i=1

V k
i T k2

i (x0)

!

+
“

T k
max − T k(x0)

”2
+ 2

“

T k
max − T k(x0)

”

T k(x0) (50)

Finally, we expand the termT k(x) =
∑

kij∈Ki
xk

ijtij obtaining

z2
α

0

@2
n
X

i=1

n
X

i′

Cov[NiNi′ ]T
k
i′ (x0)

X

kij∈Ki

xk
ijtij +

n
X

i=1

V k
i

0

@

X

kij∈Ki

xk
ij(t

2
ij + σ2

ij) − 2T k
i (x0)

X

kij∈Ki

xk
ijtij)

1

A

1

A+

2
“

T k
max − T k(x0)

”

X

kij∈Ki

xk
ijtij ≤

z2
α

 

n
X

i=1

n
X

i′

Cov[NiNi′ ]T
k
i′ (x0)T k

i (x0) −
n
X

i=1

V k
i T k2

i (x0)

!

+
“

T k
max − T k(x0)

”2
+ 2

“

T k
max − T k(x0)

”

T k(x0) (51)
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which after grouping yields

n
X

i=1

X

kij∈Ki

xk
ij

"

z2
α

 

2
n
X

i=1

n
X

i′

Cov[NiNi′ ]T
k
i′ (x0)tij + V k

i

“

t2ij + σ2
ij − 2tijT k(x0)

”

!

+ 2tij

“

T k
max − T k(x0)

”

#

≤

z2
α

 

n
X

i=1

n
X

i′

Cov[NiNi′ ]T
k
i′ (x0)T k

i (x0) −
n
X

i=1

V k
i T k2

i (x0)

!

+
“

T k
max − T k(x0)

”2
+ 2

“

T k
max − T k(x0)

”

T k(x0) (52)
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