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Abstract

In the service computing paradigm, a service broker caml imei applications by composing network-accessible
services offered by loosely coupled independent providémsthis paper, we address the problem of providing a
service broker, which offers to prospective users a conpasrvice with a range of different Quality of Service
(QoS) classes, with a forward-looking admission contrdicgdoased on Markov Decision Processes (MDP). This
mechanism allows the broker to decide whether to accepjextr@ new potential user in such a way to maximize its
gain while guaranteeing non-functional QoS requirememttstalready admitted users. We model the broker using
a continuous-time MDP and consider various techniqueslglgitto solve both infinite-horizon and finite-horizon
MDPs. To assess the effectiveness of the MDP-based admissitrol, we present experimental results where we
compare the optimal decisions obtained by the analytidatisa of the MDP with other admission control policies.

1 Introduction

In the Service Oriented Architecture (SOA) paradigm, theigle of complex software is facilitated by the possibility
to build new applications by composing network-accessdmeely-coupled services. The so built composite service
is offered by aservice broketo a range of different classes of users characterized eysivQuality of Service (QoS)
requirements. The broker and its users generally engageégatiation process, which culminates in the definition
of a Service Level Agreeme(8LA) about their respective duties and QoS expectations.

In the upcoming Internet service marketplace, multipleviser providers may offer similar competing services
corresponding to a functional description but at diffeimted levels of QoS and cost. Therefore, in undertaking
the management of the SOA-based system that offers the citmservice, the broker has to meet both functional
requirements concerning the overall logic to be implemetiated non-functional requirements concerning the QoS
levels that should be guaranteed. Hence, the service bhalsao select at runtime the best set of component services
implementing the needed functionalities in order to maxerdgome utility goal (e.g., its revenue) while guaranteeing
the QoS levels to the composite service users. Howeverattex Is a challenging task because of the highly variable
nature of the SOA environment. Recently, a significant nundfeesearch efforts have been devoted to service
selection issues, e.g., [2, 7, 8]. The common aim of thes&snigrto identify for each abstract functionality in the
composite service a pool (eventually a singleton) of c@wasing concrete services, selecting them from a set of
candidates.

However, the candidate concrete services that the serud@bcan use to provide the functionalities of its com-
posite service are in a limited number. Furthermore, theieeibroker contracts a SLA with each concrete service
provider; the set of these SLAs defines the constraints mvittich the broker should try to meet the QoS objectives

*This Technical Report has been issued as a Research Repeariipdissemination of its contents. No part of its text aoy illustration can
be reproduced without written permission of the Authors.



agreed with its users and possibly to earn some revenueefbinerthe service broker needs to apply some admission
control mechanism on the users requesting to establish &&@ithe composite service, so that it can admit only those
users for which the SOA system holds sufficient resourcdsowttincurring the risk of overcommitment, and, at the
same time, it can exploit the available resources in a dfsttere way.

In this paper, we consider a service broker that manages aasita service offering differentiated QoS service
classes to its prospective users and propose admissiorocpalicies to determine the admissibility of a user once
it requests to establish a SLA for using the composite servile formulate the admission control policies for the
broker using Markov Decision Processes (MDPs), which areveepful tool that allows to define an optimal policy
with the best actions to be taken. The decision to accephanaser of the composite service may influence both the
QoS levels perceived by that user as well as that of ongoiecswaready in the SOA system; moreover, this decision
changes the state of the system and therefore has an impatitather future users will be accepted.

Specifically, the MDP-based admission control policies wespnt in this paper are tailored to the service broker
we proposed in [8, 5] and that is named MOSES, which standgl@del-based SElf-adaptation of SOA systeWis
model the MOSES system as a continuous-time MDP, whosei@olaliows to define an optimal admission control
policy, where acceptance or rejection decisions are noemaygbpically, but they rather forecast rewards and costs
associated with the future system states. The admissidrotpnlicies aims at maximizing the service broker reward,
while guaranteeing non-functional QoS requirements tosess. Therefore, differently from our previous work [8, 5]
the broker does not carry on an altruistic strategy, butliterameets its targets in a selfish mood.

We consider admission control policies that apply infiiteizon and finite-horizon decisions and analyze their
performance through simulation experiments. We also coetpa MDP-based admission control policies to a myopic
admission control strategy, where the service broker tallgsission decisions only on the basis of the requesting user
and the admitted users that are already using the SOA system.

A considerable number of research efforts have focused@apbplication of MDP-based models and stochastic
programming to SOA systems and, more generally, to softeystems [3, 4, 6, 9, 11, 12, 15, 17].

Some of these works have proposed self-healing approactasiér to support the reconfiguration of running
services, e.g., [4, 9], considering also proactive sohgifor SOA systems [15]. Some recent approaches [11, 12, 17]
have used MDPs to model service composition with the aimeaterautomatically an abstract workflow of the service
composition that satisfies functional and non-functioeguirements, and also to allow the composite service totadap
dynamically to a varying environment [17].

Some works have proposed MDP-based admission controhiiteesriented systems [3, 6] and are therefore most
closely related to ours. In [3] Bannazadeh and Leon-Garmaia fproposed an admission control for service-oriented
systems which uses an online optimization approach for miaikig the system revenue, while in [6] Bichler and
Setzer have applied an MDP-based formulation to tackle s&lom control for media on demand services. However,
both these works do not consider composite services orgaaizcording to some business logic, while our approach is
able to manage the admission control for a composite senhose workflow entails the composition patterns typical
of orchestration languages such as BPEL [14], which is théad® standard for service workflows specification
languages. To the best of our knowledge, the approach wegedp this paper is the first admission control policy
based on MDPs for QoS-aware compaosite services.

Finally, MDPs have been extensively used to design call asioti control at session level in wired and wireless
networks, (e.g., [10, 13, 18] to name a few) and more gernetalcontrol communication systems (see [1] for a
survey).

The rest of the paper is organized as follows. In Section 2 ngegnt the SOA system managed by the service
broker. In Section 3 we describe how we have modeled the SGfesywith a continuous-time MDP. Then, in
Section 4 we sketch out the implementation of our admissaticips and present the simulation experiments to assess
the effectiveness of the proposed MDP-based approachllyiiwa draw some conclusions and give hints for future
work in Section 5.

2 MOSES System

MOSES, which stands fdviOdel-based SElf-adaptation of SOA systeimis QoS-driven runtime adaptation frame-
work for SOA-based systems, designed as a service brokéhnislisection, we provide an overview on the MOSES
system for which we propose in this paper MDP-based adnmssimtrol policies. A detailed description of the

MOSES methodology, architecture and implementing prg@tan be found in [8] and [5], respectively.
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Figure 1: MOSES and its operating environment.

MOSES acts as a third-party intermediary between servieesuand providers, performing a role of provider
towards the users and being in turn a requestor to the pnevalehe concrete services. It advertises and offers the
composite service with a range of service classes whichyimifferent QoS levels and monetary prices. Figure 2
shows a high-level view of the MOSES environment, where we inégghlighted the MOSES component on which we
focus in this paper, i.e., tHeLA Manager

The workflow that defines the composition logic of the servinaged by MOSES can include all the different
types of BPEL structured activitiessequence, swi t ch, whi | e, pi ck, andf| ow [14]. Figure 2 shows an
example of BPEL workflow, described as a UML2 activity diagrahat can be managed by MOSES. This example
encompasses all the BPEL structured activities mentiohede except for thpi ck construct. The figure also shows
the functionalities (nametdsksand represented by, . . ., Sg) needed to compose the new added value service.
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Figure 2: A MOSES-compliant workflow.

MOSES performs a two-fold role of service provider towardsusers, and of service user with respect to the
providers of the concrete services it uses to implement ¢ineposite service it is managing. Hence, it is involved
in two types of SLAs, corresponding to these two roles. Inegah a SLA may include a large set of parameters,
referring to different kinds of functional and non-functad attributes of the service, and different ways of measuri
them. MOSES presently considers the average value of tlosvial attributes:

e response timethe interval of time elapsed from the service invocatioitd@ompletion;
e reliability: the probability that the service completes its task whenked;
e cost the price charged for the service invocation.

Other attributes, like reputation or availability, could éasily added.

Our general model for the SLA between the provider and the afsa service consists of a tupl@,C, R, L),
where:T is the upper bound on the average service responsedirisethe service cost per invocatioR,is the lower
bound on the service reliability. The provider guarantées threshold§™ and R will hold on average provided that
the request rate generated by the user does not exceed dh@desholdL.



In the case of the SLAs between the composite service usdrM&SES (acting the provider role), we assume
that MOSES offers a sek of service classes. Hence, the SLA for each usef a classk € K is defined as a
tuple (7%, C*, Rk, Lk, PF, P¥). The two additional parametef3’ and P} represent the penalty rates MOSES
will refund its users with for possible violations of the @ee class response time and reliability, respectively. Al
these coexisting SLAs (for eaehandk) define the QoS objectives that MOSES must meet. We obseat/BOSES
considers SLAs stating conditions that should hold glgkfalt a flow of requests generated by a user.

To meet these objectives, we assume that MOSES (acting¢heals) has already identified for each tagke F
in the composite service a pool of corresponding concratécas implementing it. The SLA contracted between
MOSES and the provider of the concrete serviges I; is defined as a tuplg,;, c;;, 74, li;;). These SLAs define the
constraints within which MOSES should try to meet its QoSeotbiyes.

New users requesting the composite service managed by M@&ESubject to an accept/deny decision, with
which MOSES determines whether or not it is convenient toiatha user in the system according to the user SLA
and the system state (present or even future, on the basie atibpted admission control policy). We will present in
Section 3 the MDP-based formulation of the admission conanied out by the SLA Manager component.

Once a user requesting a SLA has been admitted by the SLA Maritgfarts generating requests to the composite
service managed by MOSES until its contract ends. Each ageest involves the invocations of the tasks according
to the logic specified by the composite service workflow. Farhetask invocation, MOSES binds dynamically the
task of the abstract composition to an actual implemenigie., concrete service), selecting it from the pool of
network accessible service providers that offer it. We nhtlle selection by associating with each tagka vector

x; = (z},...,2/""), whereat = [z§;] andi.j € I;. Each entryz}; of 2} denotes the probability that the claiss-
request will be bound to concrete servicg

The service selection is driven by the solution of a suitabplimization problem. We assume that the broker wants
to maximize its profit. We can formulate the service selecfimblem as a LP maximization problem which takes the

following form:

ProblemMAXRW:
maxC(A,x) = Y A* [C’“ - (Ck(A, @) + PErh 4 ngk)]
keK
subjectto: T*(A, ) < T +7°, k€K 0
R*(A, ) < Ry — p*, k€K @)
CHAx)<C* keK 3
Lij(Ax) <lij, jeli,ieF )

™>0,0">0, keK ®)

where: A = (AF)rer andA* = > LF is the aggregate clagsusers service request ratg*(A, z), R*(A, z),
andC* (A, x) the classk response time, reliability and implementation cost, retipely, under the service selection
strategyx. Inequalities (1) and (2) represent the service consgaintclass: response time and reliability. In
these equations® andp* represent the amount of violation with respect to the agueenh response time®, and
reliability R . for which the broker pays a penalty proportional to. Inediesl (3) are the cost constraints which
ensure to the broker that that cldsservice implementation cost* (A, x) is covered by the service class user per
invocation cosiC*, i.e., the implementation is cost-effective. Inequalities (4)uiee that each concrete service
load under policye, I;; (A, ) does not exceed the maximum ldagdthe broker has agreed with its service providers.
We omit the details which can be found in 18]

The objective functiorC' (A, ) is the broker per unit of time reward, which is the sum ovesatvice classes of
the service class service invocation rafetimes the per invocation reward that@é minus the cos€* (z) (which is

increased by the penalfgkr* + Pk p* for service violation).

1The formulation of the service selection optimization penb we consider in this paper differs from [8] in that in therf@r no violation of
the SLAs with the users is allowed.



Since the proposed optimization problemis a Linear Prograrg problem it can be efficiently solved via standard
techniques. We will denote hy*(A) the optimal service selection policy.

3 An MDP Formulation for MOSES Admission Control

In this section we formulate the MOSES admission controbfgm as a Continuous-time Markov Decision Process
(CTMDP). We first present our broker model and define the usde space model. Then, we define the broker
actions/decisions and present the state transition dyasarRinally, we present our performance criterion and how to
compute the optimal policy.

3.1 Model

We consider a broker that has a fixed set of candidate corseetees (and associated SLAS) with which offers the
composite service to prospective users. Prospective asetact the broker to establish a SLA for a given class of
servicek and for a given period of length. We model the arrival prodessservice clasg and contract duration

of expected length /1, as a Poisson process with rate. We assume that the contract durations are exponentially
distributed with finite mean/uq > 0d € D = {1,...,dmax} (Which we assume for the sake of simplicity to not
depend on the service claBs Upon a user arrival, the broker has to decide whether tatsloser or not. If a user

is admitted, the user will generate a flow of requests atE4téor the duration of the contract. When a user contract
expires, the user simply leaves the system. The broker sattafns is then just the pail = {a,,a,}, with a,
denoting the accepting decision amdthe refusal decision.

System State

We model the state of our system as in [18]. The statensists of the following two components:

o the broker users matrix = (n];)keK,deDn Wheren’;l’ denotes the number of users for each service élassd
expected contract duratidn' 1.4 before the last random event occurred,;

e the last random event.

n takes values in the sat of all possible broker user matrices for which the optiniaproblemMAXRW intro-
duced in Section 2 has a feasible solutierrepresents the last random evermt, a user arrival or departure, occurred
in the system. We will denote it by a matrix = (w(’;)keKﬂdep, Wherew§ = 1 if a new user makes an admission
request for service clagsand for a contract duration with meariuq, w% = —1 if an existing user of class and
contract duration of meab/ 4 terminates his contract, armd; = 0 otherwise. We will denote by the set of all
possible events.

The state spacg consists of all possible user configuration-next event doatlons,i.e.,

S:{sZ(n,w)|n€N,weQ,w§zoifn’fl:o}

It is important to observe that, following [18], there is @&#a relationship between a state= (n,w) value and
the associated user configuratienindeed, if the current state és= (n,w) it means that the user configuratioasn
before the last occurred event The actual current user configuration is insteadvhich depends on both the event
w and the decision taken by the broker as discussed below.

Actions

The broker avails itself of the possibility to accept or s&a new user. For each state- (n,w), the set of available
broker actions/decisiond(s) depends on the eveat If w denotes an arrival, the broker has to determine whether to
accept it or not; thusl(s) = {aq,a,}. If, insteadw denotes a contract termination, there is no decision todakle
A(s) = 0.



Table 1: System transitions.

| Eventw | Decision | Next states’ = (n/,w’) ||
arrival admitted ¢ = aa) (n+w,w)
refused § = a,) (n,w")
departure| - (n+w,w)

Transitions

System transitions are caused by users arrivals or departugiven the current state = (n,w), the new state
s’ = (n/,w’) is determined as follows:

e ' is the event occurred;

e 7’ is the user configuratioafter the eventv (the previous event) and the decisior A(s) taken by the broker
uponw. ' differs fromn upon a user departure or a user arrival provided it is acdepirecompact form we
can writen’ = n + wly,,,}, Wherely ; is the indicator function.

Observe that while the system is in stathe actual user configurationis, which will characterize the next staté
Table 1 summarizes all the possible transitions.
The associated transition rates are then readily obtained:

A Wi =1
(ss’ = { ,Udnfjk :/ik -1 (6)

3.2 Optimal Policy

An admission control policyr for the service broker is a function : S — A which defines for each statec S
whether the broker should admit or refuse a new user. We taeested in determining the admission control policy
which maximizes the broker discounted expected rewardi{pyith discounting ratex > 0. For a given policyr let
v7(s) be the expected infinite-horizon discounted reward givas initial state, defined as:

_ET {Z /g o sz,az)du} )

whereoy, 09, . . . represents the time of the successive system decision gpdith, in our model, coincide with user
arrivals and departures:(s;, a;) is the broker reward between decision epochsdi + 1, that is MOSES reward
under the optimal service selection strategybetween the two decision epochs. To compute its value, ldenste
by A*(s,a) the aggregate clagsusers service request rate when the stateasd the broker action wasand let
A(s,a) = (A*(s,a))rer. Then,A¥(s,a) = n’*L* wheren’ = n + wl,,,, is the next state configuration given
the actual state is = (n,w) and decisiorn was taken and’* = Y ,_ , n/} is the number of user in service cldss
We thus have

c(s,a) = C(A(s,a), 2" (A(s,a)) (8)
The optimal policyr* satisfies the optimality equation (see 11.5.4 in [16]):
T* _ c(s,a) ss’ ¥

va (9)= sup { e D D PR )} vees ©

wherej(s, a) is the rate out of stateif actiona is choseni.e.,

ZZ NE + 0l ).

keK deD

In (9), the first term% represents the expected total discounted reward betwedirghtwo decision epochs

given the system initially occupied statend taken decision. The second term represents the expected discounted
reward after the second decision epoch under the optimipol



The optimal policyr™ can be obtained by solving the optimality equation (9) vémdard techniques,g, value
iteration, LP formulation [16].

A potential limitation of the infinite-horizon approach weepented above arises from the curse of dimensionality
which gives rise to state explosion. As shown in the nexti@ectn our setting, even for small problem instances,
we incurred high computational costs because of the laaje space. As a consequence, this approach might not be
feasible for online operation where a new policy must be mgmated as user statistics or the set of concrete services
varies over time unless we resort to heuristics. In altéreaive also consider finite horizon policies which not only
are amenable to efficient implementations, and allow toetaffi complexity vs horizon length, but also take into
account the fact that in a time varying system it might not pprapriate to consider a stationary, infinite horizon
policy.

In a finite-horizon setting, our aim is to optimize the exjgeldV step finite-horizon discounted reward givens

initial state,v7 (s) defined as:
N On+1
viN(s) = ET {Z/ e~ e(s;, ai)du} (10)
i=17n

for a suitableV which defines the number of decision epochs over which thaneig computed.
For finite horizon problem, the optimal poliey;, satisfies the following optimality equation:

vfg (s) = SUDge A(s) {% +
ZS’GS a+(]ﬂ§€;,a) 'U;;NLQ(S/)},VS €S (11)

wherev; ) (s) is the expected discounted reward under patidgom decision epochup to N andvj™ (s) = v7%(s).
The optimal policyr}, can be computed directly from (11) via backward inductiorekgloiting the recursive nature
of the optimality equation [16]. In the special caseMof= 1, a 1-step horizon policy, which we will consider in the
next section, (11) reduces to:

xt B c(s,a)
v, (8) = ai‘j‘g) {7(1 n ﬂ(s,a)} VseS (12)

4 Experimental Analysis

In this section, we present the experimental analysis we kanducted through simulation to assess the effective-
ness of the MDP-based admission control for MOSES. We firstrilee the simulation model and then present the
simulation results.

4.1 Simulation Model

Following the broker model in Section 3, we consider an opetesn model, where new users belonging to a given
service clasg € K and expected contract duratiopu, arrive according to a Poisson process of refe We also
assume exponential distributed contract duration. Onsesisiadmitted, it starts generating requests to the caitepos
service according to an exponential inter-arrival timehwéteL” until its contract expires.

The discrete-event simulator has been implemented in Gigeyusing the CSIM 20 tool. Multiple independent
random number streams have been used for each stochastt enatponent. The experiments involved a minimum
of 10,000 completed requests to the composite serviceaftt measured mean value tHg% confidence interval has
been obtained using the run length control provided by CS\Mregards the admission control policies, they have
been implemented in MATLAB.

4.2 Experimental Results

We illustrate the dynamic behavior of our admission conpalicies assuming that MOSES provides the composite
service whose workflow is shown in Figure 2. For the sake opBaity, we assume that two candidate concrete
services (with their respective SLAs) have been identifieeach task, except féf, for which four concrete services
have been identified. The respective SLAs differ in termsost ¢, reliability », and response timie(being the latter



measured in sec.); the corresponding values are reporfeabie 2 (where.; denotes the concrete service). For all
concrete services;; = 10 invocations per second.

Table 2: Concrete service SLA parameters.

Lig [ej [ oryg [ty [ 6g [ej [ riy [ty ]

1.1 6 0995 | 2 32| 18] 099 | 2
1.2 3 0.99 4 4.1 1 0.995| 0.5
2.1 | 45| 0.99 1 4.2 | 0.8 | 0.99 1
2.2 4 0.99 2 5.1 2 0.99 2
2.3 2 0.95 4 52 | 14| 0.95 4
2.4 1 0.95 5 6.1 | 05| 099 | 1.8
3.1 2 0995 | 1 6.2 | 04| 0.95 4

On the user side, we assume a scenario with four classed (< k£ < 4) of the composite service managed by
MOSES. The SLAs negotiated by the users are characterizaavige range of QoS requirements as listed in Table 3,
with users in class 1 having the most stringent performaegeirements and highest cost paid to the broker, and users
in class 4 the least stringent performance requirementtomresbt cost. The penalty raté’ andP[f’ are equal to the
reciprocal of the corresponding SLA parameter. Furtheayfor each service class we consider two possible contract

Table 3: Class SLA parameters.

[Classk | C* | RF. | TE,,
1 25 0.95 7
2 18 0.9 11
3 15 0.9 15
4 12 0.85 18

durations (.e., dmax = 2), which can be eitheshortor long. Therefore, the system state= (n,w) is characterized
by a4 x 2 broker users matrix, as defined in Section 3.1.

We compare the results of the following admission contrditpes for MOSES. Under thimfinite horizon policy,
the admission control decisions are based on the optimaypel, which is obtained by solving the optimality
equation (9) via the value iteration method setting thealist ratec = —1n(0.9) = 0.1054 and the parameter
e = 0.01.

With the 1-step horizonpolicy, the admission control decisions are based on thienappolicy 73, with a local
1-step reasoning,e, N = 1. In this case, as explained in Section 3.2, we obtgjnby solving (12) setting the
discount exponent = —In(0.9) = 0.1054.

Finally, with theblind policy, no reasoning about future rewards is considerecaliee MOSES accepts a new
contract request only if the service selection optimizagiwoblemMAXRW described in Section 2 can be solved
given the SLA requested by the new users and the SLAs agreRIDISES with its currently admitted users. Specifi-
cally, the user request rafe’ is added to the aggregate floW of classk requests currently served by MOSES, and
the so obtained instance of the LP optimization problemligesb If a solution exists, the user is admitted; otherwise,
its SLA request is rejected, because MOSES does not cuyrtewitl sufficient resources to manage it and the already
admitted users with their SLAs.

We consider three different scenarios, where we vary theahrate of the contract requests. On the other hand, in
all scenarios the amount of request generated by an adritedsL” = 1 req/sec and the contract duration is fixed
to (1/uq4)aep = (50,200), where the first component corresponds to short contradtth@natter to longer contracts.

In the following, we will denote short and long contractsiwstandl, respectively.
0.02 0.02
In thefirst scenario we set the matriX\%) e x aep = (8;83 8;83) , that is all the contract requests arrive at the

0.02 0.02
same rate, irrespectively of the service class.
0.02 0.
In the second scenariq A} ) vex .aep = <8;8§ 8;04) , that is contract requests for service classesd4, which

are less profitable for the broker as their SLAs have lo@ei(see Table 3), arrive at a double (class 3) or quadruple



(class 4) rate with respect to requests for service clasaes?.
0.08 0.08
In thethird scenariq (\) ke i .aep = (8;8‘21 8;8‘21) , that is contract requests for service classasd2, which are
0.02 0.02
more profitable for the broker as their SLAs have highér(see Table 3), arrive at a quadruple (class 1) or double

(class 2) rate with respect to requests for service clasaad4.

To compare the performance of the different admission obptlicies, we consider as main metrics the average
reward per second of the service broker over the simulatesiog and the percentage of rejected contract requests.
Furthermore, for the MDP-based admission control poligiesanalyze also the mean execution time. For space
reason, we do not show the QoS satisfaction levels achieydldebusers for the response time, reliability, and cost
SLA parameters. Anyway, we found that once a contract reéduseesbeen accepted, the QoS levels specified in the
SLAs are quite largely met by MOSES for each flow of serviceglindependently on the applied admission policy.

Table 4 shows the average reward per second earned by tieedanoker for the various admission control policies
and under the different considered scenarios. We can pat&ihat, as expected, the infinite horizon policy maxisize

Table 4: Average reward per second.

[ Admission policy || Scenario 1] Scenario 2| Scenario 3]

Blind 40.536 25.012 58.801
1-step horizon 59.607 63.865 75.751
Infinite horizon 66.737 65.553 76.116

the broker reward, achieving a largely significant improeatrover the blind policy under all scenarios. Anyway, the
1-step horizon policy also allows to obtain a much bettearehwith respect to the blind policy and very close to that
achieved using the infinite horizon policy, notwithstargithat the first evaluates the optimal policy by taking into
account only one step in the future.

Let us now analyze the performance metrics separately fdr sgenario. From Table 4 we can see that in the first
scenario the 1-step horizon policy let the broker earn 47%ertiwan the blind policy, while the improvement achieved
by infinite horizon policy over blind is even higher, beinguatjto almost 65%.

Figure 3 shows the percentage of rejected SLA contractdlftireaservice classes, distinguishing further between
short and long contract durations, achieved by the diffiememission control policies (for each policy, the first four
bars regard the short-term contracts for the various seplasses, while the latter four the long-term ones). White t
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Figure 3: Rejected contract requests under scenario 1.

blind policy is not able to differentiate among the servitzsses from the admission control point of view, because it
rejects in the same way the classes that pay most and leastritiee broker, the MDP-based policies tend to accept
the more profitable classes 1 and 2, which pay more for the ositgpservice, and to reject the less profitable ones.
We also observe that the infinite horizon policy does notedéffitiate between short-term and long-term contracts,
probably because in this scenario contract durations aregsential in the decisions taken by the optimal policy in
the long distance. On the contrary, fixed the service clhesl tstep horizon policy tends to accept more the long-term
contracts than the short-term ones, except for class 1 farhathe two types of contract are accepted equally, being
the latter the most profitable class for which the policyrafiés to maximize its acceptance.



For the second scenario, which is characterized by a highetract request arrival rate for classes 3 and 4, Figure 4
shows that, as expected, all the admission control poligigst a higher percentage of contract requests for these
classes with respect to the first scenario. However, MDRdasimission control, independently on the horizon
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Figure 4: Rejected contract requests under scenario 2.

width, prefers clearly service classes 1 and 2 with respe8tand 4, since the former ones let the system achieve
higher rewards while the latter, that could use the limitgstesm resources with a low revenue for the broker, incur in
a very high refusal percentage (almost total for class 4¢chis the least advantageous one). We also observe that the
infinite horizon policy now slightly differentiates withitlasses 1 and 2 according to the contract duration: long-ter
contracts are preferred to short-term ones (a reductidmeimejection decisions equal to 16% and 11% for long-term
classes 1 and 2, respectively). This behavior is much madeetfor the 1-step horizon policy, especially for class 2.
Analyzing the average reward reported in Table 4, we canrsgeihder the second scenario the MDP-based policies
allow the broker to more than double its revenue: the 1-stefzbin and infinite horizon policies let the broker earn
155% and 162% respectively more than the blind policy. Tipe tgf MOSES rewards lets the 1-step horizon policy
behavior be enough accurate; therefore, the reward achigvthis policy is only slightly less than that obtained by a
strategy taking a wider (infinite) horizon into account.

In the third scenario, where classes 1 and 2 arrive more @&mtyuthan classes 3 and 4 (with a quadruple and
double rate, respectively), the MDP-based admission abptilicies still allow to achieve a good improvement in
the reward gained by the broker, as reported in Table 4 (298628n5% for 1-step horizon and infinite horizon
policies, respectively, when compared to the blind onejufé 5 shows the corresponding rejection percentage. We
observe that the infinite horizon policy does not differatgiin a significant way between long-term and short-term
contract requests, while the 1-step horizon admissionrebrefuses twice short-term requests with respect to long-
term requests for class 2.
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Figure 5: Rejected contract requests under scenario 3.
Under all the considered scenarios, the 1-step horizonyaliows the service broker to make a profit comparable,

although slightly reduced, to the infinite horizon policyowever, a strong argument in favor of the 1-step horizon
policy regards the execution time needed to achieve thenaptiecision. We have measured the mean execution time
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on a machine with Intel Core 2 Duo T7250 2 GHz and 2 GB RAM. Ttaeb horizon policy requires only 0.0021
sec, while the infinite horizon one requires 233 sec. for thiespace generation, 5502 sec. for the matrix generation,
and 800 sec. for the value iteration method. This long exectime is also due to the computation«¥, a), which
requires to solve the service selection optimization pob{see (8)). Therefore, the reduced computational cobeof t
1-step horizon policy makes it amenable to take online asioriscontrol decisions and to integrate the MDP-based

admission control with other adaptation triggers (e.ganges in the set of concrete services) that are managed by
MOSES.

5 Conclusions

In this paper, we have studied the admission control prolidem service broker, MOSES, which offers to prospective
users a composite service with different QoS levels. We Faweulated the admission control problem as a Markov
Decision Process with the goal to maximize the broker disteireward, while guaranteeing non-functional QoS
requirements to its users. We have considered both infiritezon and the less computational demanding finite-
horizon cost functions. We have compared the differenttgmia through simulation experiments. Our results show
that the MDP-based policies guarantee much higher profitadtoker while guaranteeing the users QoS levels with
respect to a simple myopic policy which accepts users asdarige broker has sufficient resources to serve them. In
particular, the simple 1-step horizon policy achieves nieaptimal performance at a fraction of the computational
cost which makes it amenable to online implementation.

In our future work we plan to implement the MDP-based adraissiontrol in the existing MOSES prototype and
run experiments in realistic scenarios.
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