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Abstract

In the service computing paradigm, a service broker can build new applications by composing network-accessible
services offered by loosely coupled independent providers. In this paper, we address the problem of providing a
service broker, which offers to prospective users a composite service with a range of different Quality of Service
(QoS) classes, with a forward-looking admission control policy based on Markov Decision Processes (MDP). This
mechanism allows the broker to decide whether to accept or reject a new potential user in such a way to maximize its
gain while guaranteeing non-functional QoS requirements to its already admitted users. We model the broker using
a continuous-time MDP and consider various techniques suitable to solve both infinite-horizon and finite-horizon
MDPs. To assess the effectiveness of the MDP-based admission control, we present experimental results where we
compare the optimal decisions obtained by the analytical solution of the MDP with other admission control policies.

1 Introduction

In the Service Oriented Architecture (SOA) paradigm, the design of complex software is facilitated by the possibility
to build new applications by composing network-accessibleloosely-coupled services. The so built composite service
is offered by aservice brokerto a range of different classes of users characterized by diverse Quality of Service (QoS)
requirements. The broker and its users generally engage in anegotiation process, which culminates in the definition
of a Service Level Agreement(SLA) about their respective duties and QoS expectations.

In the upcoming Internet service marketplace, multiple service providers may offer similar competing services
corresponding to a functional description but at differentiated levels of QoS and cost. Therefore, in undertaking
the management of the SOA-based system that offers the composite service, the broker has to meet both functional
requirements concerning the overall logic to be implemented and non-functional requirements concerning the QoS
levels that should be guaranteed. Hence, the service brokerhas to select at runtime the best set of component services
implementing the needed functionalities in order to maximize some utility goal (e.g., its revenue) while guaranteeing
the QoS levels to the composite service users. However, the latter is a challenging task because of the highly variable
nature of the SOA environment. Recently, a significant number of research efforts have been devoted to service
selection issues, e.g., [2, 7, 8]. The common aim of these works is to identify for each abstract functionality in the
composite service a pool (eventually a singleton) of corresponding concrete services, selecting them from a set of
candidates.

However, the candidate concrete services that the service broker can use to provide the functionalities of its com-
posite service are in a limited number. Furthermore, the service broker contracts a SLA with each concrete service
provider; the set of these SLAs defines the constraints within which the broker should try to meet the QoS objectives

∗This Technical Report has been issued as a Research Report for early dissemination of its contents. No part of its text norany illustration can
be reproduced without written permission of the Authors.
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agreed with its users and possibly to earn some revenue. Therefore, the service broker needs to apply some admission
control mechanism on the users requesting to establish a SLAfor the composite service, so that it can admit only those
users for which the SOA system holds sufficient resources without incurring the risk of overcommitment, and, at the
same time, it can exploit the available resources in a cost-effective way.

In this paper, we consider a service broker that manages a composite service offering differentiated QoS service
classes to its prospective users and propose admission control policies to determine the admissibility of a user once
it requests to establish a SLA for using the composite service. We formulate the admission control policies for the
broker using Markov Decision Processes (MDPs), which are a powerful tool that allows to define an optimal policy
with the best actions to be taken. The decision to accept another user of the composite service may influence both the
QoS levels perceived by that user as well as that of ongoing users already in the SOA system; moreover, this decision
changes the state of the system and therefore has an impact onwhether future users will be accepted.

Specifically, the MDP-based admission control policies we present in this paper are tailored to the service broker
we proposed in [8, 5] and that is named MOSES, which stands forMOdel-based SElf-adaptation of SOA systems. We
model the MOSES system as a continuous-time MDP, whose solution allows to define an optimal admission control
policy, where acceptance or rejection decisions are not made myopically, but they rather forecast rewards and costs
associated with the future system states. The admission control policies aims at maximizing the service broker reward,
while guaranteeing non-functional QoS requirements to itsusers. Therefore, differently from our previous work [8, 5],
the broker does not carry on an altruistic strategy, but it rather meets its targets in a selfish mood.

We consider admission control policies that apply infinite-horizon and finite-horizon decisions and analyze their
performance through simulation experiments. We also compare the MDP-based admission control policies to a myopic
admission control strategy, where the service broker takesadmission decisions only on the basis of the requesting user
and the admitted users that are already using the SOA system.

A considerable number of research efforts have focused on the application of MDP-based models and stochastic
programming to SOA systems and, more generally, to softwaresystems [3, 4, 6, 9, 11, 12, 15, 17].

Some of these works have proposed self-healing approaches in order to support the reconfiguration of running
services, e.g., [4, 9], considering also proactive solutions for SOA systems [15]. Some recent approaches [11, 12, 17]
have used MDPs to model service composition with the aim to create automatically an abstract workflow of the service
composition that satisfies functional and non-functional requirements, and also to allow the composite service to adapt
dynamically to a varying environment [17].

Some works have proposed MDP-based admission control in service-oriented systems [3, 6] and are therefore most
closely related to ours. In [3] Bannazadeh and Leon-Garcia have proposed an admission control for service-oriented
systems which uses an online optimization approach for maximizing the system revenue, while in [6] Bichler and
Setzer have applied an MDP-based formulation to tackle admission control for media on demand services. However,
both these works do not consider composite services organized according to some business logic, while our approach is
able to manage the admission control for a composite servicewhose workflow entails the composition patterns typical
of orchestration languages such as BPEL [14], which is the de-facto standard for service workflows specification
languages. To the best of our knowledge, the approach we propose in this paper is the first admission control policy
based on MDPs for QoS-aware composite services.

Finally, MDPs have been extensively used to design call admission control at session level in wired and wireless
networks, (e.g., [10, 13, 18] to name a few) and more generally to control communication systems (see [1] for a
survey).

The rest of the paper is organized as follows. In Section 2 we present the SOA system managed by the service
broker. In Section 3 we describe how we have modeled the SOA system with a continuous-time MDP. Then, in
Section 4 we sketch out the implementation of our admission policies and present the simulation experiments to assess
the effectiveness of the proposed MDP-based approach. Finally, we draw some conclusions and give hints for future
work in Section 5.

2 MOSES System

MOSES, which stands forMOdel-based SElf-adaptation of SOA systems, is a QoS-driven runtime adaptation frame-
work for SOA-based systems, designed as a service broker. Inthis section, we provide an overview on the MOSES
system for which we propose in this paper MDP-based admission control policies. A detailed description of the
MOSES methodology, architecture and implementing prototype can be found in [8] and [5], respectively.
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Figure 1: MOSES and its operating environment.

MOSES acts as a third-party intermediary between service users and providers, performing a role of provider
towards the users and being in turn a requestor to the providers of the concrete services. It advertises and offers the
composite service with a range of service classes which imply different QoS levels and monetary prices. Figure 2
shows a high-level view of the MOSES environment, where we have highlighted the MOSES component on which we
focus in this paper, i.e., theSLA Manager.

The workflow that defines the composition logic of the servicemanaged by MOSES can include all the different
types of BPEL structured activities:sequence, switch, while, pick, andflow [14]. Figure 2 shows an
example of BPEL workflow, described as a UML2 activity diagram, that can be managed by MOSES. This example
encompasses all the BPEL structured activities mentioned above, except for thepick construct. The figure also shows
the functionalities (namedtasksand represented byS1, . . . , S6) needed to compose the new added value service.

Figure 2: A MOSES-compliant workflow.

MOSES performs a two-fold role of service provider towards its users, and of service user with respect to the
providers of the concrete services it uses to implement the composite service it is managing. Hence, it is involved
in two types of SLAs, corresponding to these two roles. In general, a SLA may include a large set of parameters,
referring to different kinds of functional and non-functional attributes of the service, and different ways of measuring
them. MOSES presently considers the average value of the following attributes:

• response time: the interval of time elapsed from the service invocation toits completion;

• reliability: the probability that the service completes its task when invoked;

• cost: the price charged for the service invocation.

Other attributes, like reputation or availability, could be easily added.
Our general model for the SLA between the provider and the user of a service consists of a tuple〈T, C, R, L〉,

where:T is the upper bound on the average service response time,C is the service cost per invocation,R is the lower
bound on the service reliability. The provider guarantees that thresholdsT andR will hold on average provided that
the request rate generated by the user does not exceed the load thresholdL.
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In the case of the SLAs between the composite service users and MOSES (acting the provider role), we assume
that MOSES offers a setK of service classes. Hence, the SLA for each useru of a classk ∈ K is defined as a
tuple 〈T k

max, C
k, Rk

min, L
k
u, P k

τ , P k
ρ 〉. The two additional parametersP k

τ andP k
ρ represent the penalty rates MOSES

will refund its users with for possible violations of the service class response time and reliability, respectively. All
these coexisting SLAs (for eachu andk) define the QoS objectives that MOSES must meet. We observe that MOSES
considers SLAs stating conditions that should hold globally for a flowof requests generated by a user.

To meet these objectives, we assume that MOSES (acting the user role) has already identified for each taskSi ∈ F
in the composite service a pool of corresponding concrete services implementing it. The SLA contracted between
MOSES and the provider of the concrete servicei.j ∈ Ii is defined as a tuple〈tij , cij , rij , lij〉. These SLAs define the
constraints within which MOSES should try to meet its QoS objectives.

New users requesting the composite service managed by MOSESare subject to an accept/deny decision, with
which MOSES determines whether or not it is convenient to admit the user in the system according to the user SLA
and the system state (present or even future, on the basis of the adopted admission control policy). We will present in
Section 3 the MDP-based formulation of the admission control carried out by the SLA Manager component.

Once a user requesting a SLA has been admitted by the SLA Manager, it starts generating requests to the composite
service managed by MOSES until its contract ends. Each user request involves the invocations of the tasks according
to the logic specified by the composite service workflow. For each task invocation, MOSES binds dynamically the
task of the abstract composition to an actual implementation (i.e., concrete service), selecting it from the pool of
network accessible service providers that offer it. We model this selection by associating with each taskSi a vector
xi = (x1

i , ..., x
|K|
i ), wherex

k
i = [xk

ij ] andi.j ∈ Ii. Each entryxk
ij of x

k
i denotes the probability that the class-k

request will be bound to concrete servicei.j.
The service selection is driven by the solution of a suitableoptimization problem. We assume that the broker wants

to maximize its profit. We can formulate the service selection problem as a LP maximization problem which takes the
following form:

ProblemMAXRW:

max C(Λ, x) =
X

k∈K

Λk
h

Ck
−

“

Ck(Λ, x) + P k
T τk + P k

Rρk
”i

subject to: T
k(Λ, x) ≤ T

k
max + τ

k
, k ∈ K (1)

R
k(Λ, x) ≤ R

k
min − ρ

k
, k ∈ K (2)

C
k(Λ, x) ≤ C

k
, k ∈ K (3)

lij(Λ, x) ≤ lij , j ∈ Ii, i ∈ F (4)

x
k
ij ≥ 0,j ∈ Ii,

X

j∈Ii

x
k
ij = 1, i ∈ F , k ∈ K

τ
k
≥ 0, ρ

k
≥ 0, k ∈ K (5)

where: Λ = (Λk)k∈K andΛk =
∑

u Lk
u is the aggregate class-k users service request rate;T k(Λ, x), Rk(Λ, x),

andCk(Λ, x) the class-k response time, reliability and implementation cost, respectively, under the service selection
strategyx. Inequalities (1) and (2) represent the service constraints on class-k response time and reliability. In
these equationsτk andρk represent the amount of violation with respect to the agreedupon response timeT k

max and
reliability Rk

min for which the broker pays a penalty proportional to. Inequalities (3) are the cost constraints which
ensure to the broker that that class-k service implementation costCk(Λ, x) is covered by the service class user per
invocation costCk, i.e., the implementation is cost-effective. Inequalities (4) require that each concrete servicei.j
load under policyx, lij(Λ, x) does not exceed the maximum loadlij the broker has agreed with its service providers.
We omit the details which can be found in [8]1.

The objective functionC(Λ, x) is the broker per unit of time reward, which is the sum over allservice classes of
the service class service invocation rateΛk times the per invocation reward that isCk minus the costCk(x) (which is
increased by the penaltyP k

T τk + P k
Rρk for service violation).

1The formulation of the service selection optimization problem we consider in this paper differs from [8] in that in the former no violation of
the SLAs with the users is allowed.
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Since the proposed optimization problem is a Linear Programming problem it can be efficiently solved via standard
techniques. We will denote byx∗(Λ) the optimal service selection policy.

3 An MDP Formulation for MOSES Admission Control

In this section we formulate the MOSES admission control problem as a Continuous-time Markov Decision Process
(CTMDP). We first present our broker model and define the user state space model. Then, we define the broker
actions/decisions and present the state transition dynamics. Finally, we present our performance criterion and how to
compute the optimal policy.

3.1 Model

We consider a broker that has a fixed set of candidate concreteservices (and associated SLAs) with which offers the
composite service to prospective users. Prospective userscontact the broker to establish a SLA for a given class of
servicek and for a given period of length. We model the arrival processfor service classk and contract duration
of expected length1/µd as a Poisson process with rateλk

d . We assume that the contract durations are exponentially
distributed with finite mean1/µd > 0 d ∈ D = {1, . . . , dmax} (which we assume for the sake of simplicity to not
depend on the service classk). Upon a user arrival, the broker has to decide whether to admit a user or not. If a user
is admitted, the user will generate a flow of requests at rateLk for the duration of the contract. When a user contract
expires, the user simply leaves the system. The broker set ofactions is then just the pairA = {aa, ar}, with aa

denoting the accepting decision andar the refusal decision.

System State

We model the state of our system as in [18]. The states consists of the following two components:

• the broker users matrixn = (nk
d)k∈K,d∈D, wherenk

d denotes the number of users for each service classk and
expected contract duration1/µd before the last random event occurred;

• the last random eventω.

n takes values in the setN of all possible broker user matrices for which the optimization problemMAXRW intro-
duced in Section 2 has a feasible solution.ω represents the last random event,i.e., a user arrival or departure, occurred
in the system. We will denote it by a matrixω = (ωk

d)k∈K,d∈D, whereωk
d = 1 if a new user makes an admission

request for service classk and for a contract duration with mean1/µd, ωk
d = −1 if an existing user of classk and

contract duration of mean1/µd terminates his contract, andωk
d = 0 otherwise. We will denote byΩ the set of all

possible events.
The state spaceS consists of all possible user configuration-next event combinations,i.e.,

S =
{

s = (n, ω)|n ∈ N , ω ∈ Ω, ωk
d ≥ 0 if nk

d = 0
}

It is important to observe that, following [18], there is a subtle relationship between a states = (n, ω) value and
the associated user configurationn. Indeed, if the current state iss = (n, ω) it means that the user configurationwasn
before the last occurred eventω. The actual current user configuration is insteadn′, which depends on both the event
ω and the decisiona taken by the broker as discussed below.

Actions

The broker avails itself of the possibility to accept or refuse a new user. For each states = (n, ω), the set of available
broker actions/decisionsA(s) depends on the eventω. If ω denotes an arrival, the broker has to determine whether to
accept it or not; thusA(s) = {aa, ar}. If, instead,ω denotes a contract termination, there is no decision to takeand
A(s) = ∅.
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Table 1: System transitions.
Eventω Decision Next states′ = (n′, ω′)

arrival admitted (a = aa) (n + ω,ω′)
refused (a = ar) (n, ω′)

departure - (n + ω,ω′)

Transitions

System transitions are caused by users arrivals or departures. Given the current states = (n, ω), the new state
s′ = (n′, ω′) is determined as follows:

• ω′ is the event occurred;

• n′ is the user configurationafter the eventω (the previous event) and the decisiona ∈ A(s) taken by the broker
uponω. n′ differs fromn upon a user departure or a user arrival provided it is accepted. In compact form we
can writen′ = n + ω1{a6=ar}, where1{.} is the indicator function.

Observe that while the system is in states the actual user configuration isn′, which will characterize the next states′.
Table 1 summarizes all the possible transitions.

The associated transition rates are then readily obtained:

qss′ =

{

λk
d ω′k

d = 1
µdn

′k
d ω′k

d = −1
(6)

3.2 Optimal Policy

An admission control policyπ for the service broker is a functionπ : S → A which defines for each states ∈ S
whether the broker should admit or refuse a new user. We are interested in determining the admission control policy
which maximizes the broker discounted expected reward/profit with discounting rateα > 0. For a given policyπ let
vπ

α(s) be the expected infinite-horizon discounted reward givens as initial state, defined as:

vπ
α(s) = Eπ

s

{

∞
∑

i=1

∫ σn+1

σn

e−αuc(si, ai)du

}

(7)

whereσ1, σ2, . . . represents the time of the successive system decision epochs which, in our model, coincide with user
arrivals and departures.c(si, ai) is the broker reward between decision epochsi andi + 1, that is MOSES reward
under the optimal service selection strategyx∗ between the two decision epochs. To compute its value, let usdenote
by Λk(s, a) the aggregate class-k users service request rate when the state iss and the broker action wasa and let
Λ(s, a) = (Λk(s, a))k∈K . Then,Λk(s, a) = n′kLk wheren′ = n + ω1{a6=ar} is the next state configuration given
the actual state iss = (n, ω) and decisiona was taken andn′k =

∑

d∈D n′k
d is the number of user in service classk.

We thus have
c(s, a) = C(Λ(s, a), x∗(Λ(s, a)) (8)

The optimal policyπ∗ satisfies the optimality equation (see 11.5.4 in [16]):

vπ∗

α (s) = sup
a∈A(s)

8

<

:

c(s, a)

α + β(s, a)
+

X

s′∈S

qss′

α + β(s, a)
vπ∗

α (s′)

9

=

;

,∀s ∈ S (9)

whereβ(s, a) is the rate out of states if actiona is chosen,i.e.,

β(s, a) =
∑

k∈K

∑

d∈D

(λk
d + n′k

d µd).

In (9), the first term c(s,a)
α+β(s,a) represents the expected total discounted reward between the first two decision epochs

given the system initially occupied states and taken decisiona. The second term represents the expected discounted
reward after the second decision epoch under the optimal policy.
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The optimal policyπ∗ can be obtained by solving the optimality equation (9) via standard techniques,e.g., value
iteration, LP formulation [16].

A potential limitation of the infinite-horizon approach we presented above arises from the curse of dimensionality
which gives rise to state explosion. As shown in the next section, in our setting, even for small problem instances,
we incurred high computational costs because of the large state space. As a consequence, this approach might not be
feasible for online operation where a new policy must be recomputed as user statistics or the set of concrete services
varies over time unless we resort to heuristics. In alternative, we also consider finite horizon policies which not only
are amenable to efficient implementations, and allow to trade-off complexity vs horizon length, but also take into
account the fact that in a time varying system it might not be appropriate to consider a stationary, infinite horizon
policy.

In a finite-horizon setting, our aim is to optimize the expectedN step finite-horizon discounted reward givens as
initial state,vπ

α(s) defined as:

vπN

α (s) = Eπ
s

{

N
∑

i=1

∫ σn+1

σn

e−αuc(si, ai)du

}

(10)

for a suitableN which defines the number of decision epochs over which the reward is computed.
For finite horizon problem, the optimal policyπ∗

N satisfies the following optimality equation:

v
π∗

N

i,α (s) = supa∈A(s)

{

c(s,a)
α+β(s,a) +

∑

s′∈S
q

ss′

α+β(s,a)v
π∗

N

i+1,α(s′)

}

, ∀s ∈ S (11)

wherevπN

i,α (s) is the expected discounted reward under policyπ from decision epochi up toN andvπN

α (s) = vπN

1,α(s).
The optimal policyπ∗

N can be computed directly from (11) via backward induction byexploiting the recursive nature
of the optimality equation [16]. In the special case ofN = 1, a 1-step horizon policy, which we will consider in the
next section, (11) reduces to:

v
π∗

1

1,α(s) = sup
a∈A(s)

{

c(s, a)

α + β(s, a)

}

, ∀s ∈ S (12)

4 Experimental Analysis

In this section, we present the experimental analysis we have conducted through simulation to assess the effective-
ness of the MDP-based admission control for MOSES. We first describe the simulation model and then present the
simulation results.

4.1 Simulation Model

Following the broker model in Section 3, we consider an open system model, where new users belonging to a given
service classk ∈ K and expected contract duration1/µd arrive according to a Poisson process of rateλk

d . We also
assume exponential distributed contract duration. Once a user is admitted, it starts generating requests to the composite
service according to an exponential inter-arrival time with rateLk

u until its contract expires.
The discrete-event simulator has been implemented in C language using the CSIM 20 tool. Multiple independent

random number streams have been used for each stochastic model component. The experiments involved a minimum
of 10,000 completed requests to the composite service; for each measured mean value the95% confidence interval has
been obtained using the run length control provided by CSIM.As regards the admission control policies, they have
been implemented in MATLAB.

4.2 Experimental Results

We illustrate the dynamic behavior of our admission controlpolicies assuming that MOSES provides the composite
service whose workflow is shown in Figure 2. For the sake of simplicity, we assume that two candidate concrete
services (with their respective SLAs) have been identified for each task, except forS2 for which four concrete services
have been identified. The respective SLAs differ in terms of costc, reliability r, and response timet (being the latter
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measured in sec.); the corresponding values are reported inTable 2 (wherei.j denotes the concrete service). For all
concrete services,lij = 10 invocations per second.

Table 2: Concrete service SLA parameters.

i.j cij rij tij i.j cij rij tij

1.1 6 0.995 2 3.2 1.8 0.995 2
1.2 3 0.99 4 4.1 1 0.995 0.5
2.1 4.5 0.99 1 4.2 0.8 0.99 1
2.2 4 0.99 2 5.1 2 0.99 2
2.3 2 0.95 4 5.2 1.4 0.95 4
2.4 1 0.95 5 6.1 0.5 0.99 1.8
3.1 2 0.995 1 6.2 0.4 0.95 4

On the user side, we assume a scenario with four classes (i.e., 1 ≤ k ≤ 4) of the composite service managed by
MOSES. The SLAs negotiated by the users are characterized bya wide range of QoS requirements as listed in Table 3,
with users in class 1 having the most stringent performance requirements and highest cost paid to the broker, and users
in class 4 the least stringent performance requirements andlowest cost. The penalty ratesP k

τ andP k
ρ are equal to the

reciprocal of the corresponding SLA parameter. Furthermore, for each service class we consider two possible contract

Table 3: Class SLA parameters.

Classk Ck Rk
min T k

max

1 25 0.95 7
2 18 0.9 11
3 15 0.9 15
4 12 0.85 18

durations (i.e., dmax = 2), which can be eithershortor long. Therefore, the system states = (n, ω) is characterized
by a4 × 2 broker users matrixn, as defined in Section 3.1.

We compare the results of the following admission control policies for MOSES. Under theinfinite horizon policy,
the admission control decisions are based on the optimal policy π∗, which is obtained by solving the optimality
equation (9) via the value iteration method setting the discount rateα = − ln(0.9) = 0.1054 and the parameter
ǫ = 0.01.

With the1-step horizonpolicy, the admission control decisions are based on the optimal policy π∗
N with a local

1-step reasoning,i.e., N = 1. In this case, as explained in Section 3.2, we obtainπ∗
N by solving (12) setting the

discount exponentα = − ln(0.9) = 0.1054.
Finally, with theblind policy, no reasoning about future rewards is considered, because MOSES accepts a new

contract request only if the service selection optimization problemMAXRW described in Section 2 can be solved
given the SLA requested by the new users and the SLAs agreed byMOSES with its currently admitted users. Specifi-
cally, the user request rateLk

u is added to the aggregate flowΛk of class-k requests currently served by MOSES, and
the so obtained instance of the LP optimization problem is solved. If a solution exists, the user is admitted; otherwise,
its SLA request is rejected, because MOSES does not currently hold sufficient resources to manage it and the already
admitted users with their SLAs.

We consider three different scenarios, where we vary the arrival rate of the contract requests. On the other hand, in
all scenarios the amount of request generated by an admitteduser isLk

u = 1 req/sec and the contract duration is fixed
to (1/µd)d∈D = (50, 200), where the first component corresponds to short contracts and the latter to longer contracts.
In the following, we will denote short and long contracts with sandl, respectively.

In thefirst scenario, we set the matrix(λk
d)k∈K,d∈D =

(

0.02 0.02
0.02 0.02
0.02 0.02
0.02 0.02

)

, that is all the contract requests arrive at the

same rate, irrespectively of the service class.

In thesecond scenario, (λk
d)k∈K,d∈D =

(

0.02 0.02
0.02 0.02
0.04 0.04
0.08 0.08

)

, that is contract requests for service classes3 and4, which

are less profitable for the broker as their SLAs have lowerCk (see Table 3), arrive at a double (class 3) or quadruple
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(class 4) rate with respect to requests for service classes1 and2.

In thethird scenario, (λk
d)k∈K,d∈D =

(

0.08 0.08
0.04 0.04
0.02 0.02
0.02 0.02

)

, that is contract requests for service classes1 and2, which are

more profitable for the broker as their SLAs have higherCk (see Table 3), arrive at a quadruple (class 1) or double
(class 2) rate with respect to requests for service classes3 and4.

To compare the performance of the different admission control policies, we consider as main metrics the average
reward per second of the service broker over the simulation period and the percentage of rejected contract requests.
Furthermore, for the MDP-based admission control policieswe analyze also the mean execution time. For space
reason, we do not show the QoS satisfaction levels achieved by the users for the response time, reliability, and cost
SLA parameters. Anyway, we found that once a contract request has been accepted, the QoS levels specified in the
SLAs are quite largely met by MOSES for each flow of service class, independently on the applied admission policy.

Table 4 shows the average reward per second earned by the service broker for the various admission control policies
and under the different considered scenarios. We can anticipate that, as expected, the infinite horizon policy maximizes

Table 4: Average reward per second.

Admission policy Scenario 1 Scenario 2 Scenario 3

Blind 40.536 25.012 58.801
1-step horizon 59.607 63.865 75.751
Infinite horizon 66.737 65.553 76.116

the broker reward, achieving a largely significant improvement over the blind policy under all scenarios. Anyway, the
1-step horizon policy also allows to obtain a much better reward with respect to the blind policy and very close to that
achieved using the infinite horizon policy, notwithstanding that the first evaluates the optimal policy by taking into
account only one step in the future.

Let us now analyze the performance metrics separately for each scenario. From Table 4 we can see that in the first
scenario the 1-step horizon policy let the broker earn 47% more than the blind policy, while the improvement achieved
by infinite horizon policy over blind is even higher, being equal to almost 65%.

Figure 3 shows the percentage of rejected SLA contracts for all the service classes, distinguishing further between
short and long contract durations, achieved by the different admission control policies (for each policy, the first four
bars regard the short-term contracts for the various service classes, while the latter four the long-term ones). While the
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Figure 3: Rejected contract requests under scenario 1.

blind policy is not able to differentiate among the service classes from the admission control point of view, because it
rejects in the same way the classes that pay most and least theservice broker, the MDP-based policies tend to accept
the more profitable classes 1 and 2, which pay more for the composite service, and to reject the less profitable ones.
We also observe that the infinite horizon policy does not differentiate between short-term and long-term contracts,
probably because in this scenario contract durations are not essential in the decisions taken by the optimal policy in
the long distance. On the contrary, fixed the service class, the 1-step horizon policy tends to accept more the long-term
contracts than the short-term ones, except for class 1 for which the two types of contract are accepted equally, being
the latter the most profitable class for which the policy attempts to maximize its acceptance.
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For the second scenario, which is characterized by a higher contract request arrival rate for classes 3 and 4, Figure 4
shows that, as expected, all the admission control policiesreject a higher percentage of contract requests for these
classes with respect to the first scenario. However, MDP-based admission control, independently on the horizon
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Figure 4: Rejected contract requests under scenario 2.

width, prefers clearly service classes 1 and 2 with respect to 3 and 4, since the former ones let the system achieve
higher rewards while the latter, that could use the limited system resources with a low revenue for the broker, incur in
a very high refusal percentage (almost total for class 4, which is the least advantageous one). We also observe that the
infinite horizon policy now slightly differentiates withinclasses 1 and 2 according to the contract duration: long-term
contracts are preferred to short-term ones (a reduction in the rejection decisions equal to 16% and 11% for long-term
classes 1 and 2, respectively). This behavior is much more evident for the 1-step horizon policy, especially for class 2.
Analyzing the average reward reported in Table 4, we can see that under the second scenario the MDP-based policies
allow the broker to more than double its revenue: the 1-step horizon and infinite horizon policies let the broker earn
155% and 162% respectively more than the blind policy. The type of MOSES rewards lets the 1-step horizon policy
behavior be enough accurate; therefore, the reward achieved by this policy is only slightly less than that obtained by a
strategy taking a wider (infinite) horizon into account.

In the third scenario, where classes 1 and 2 arrive more frequently than classes 3 and 4 (with a quadruple and
double rate, respectively), the MDP-based admission control policies still allow to achieve a good improvement in
the reward gained by the broker, as reported in Table 4 (29% and 29.5% for 1-step horizon and infinite horizon
policies, respectively, when compared to the blind one). Figure 5 shows the corresponding rejection percentage. We
observe that the infinite horizon policy does not differentiate in a significant way between long-term and short-term
contract requests, while the 1-step horizon admission control refuses twice short-term requests with respect to long-
term requests for class 2.
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Figure 5: Rejected contract requests under scenario 3.

Under all the considered scenarios, the 1-step horizon policy allows the service broker to make a profit comparable,
although slightly reduced, to the infinite horizon policy. However, a strong argument in favor of the 1-step horizon
policy regards the execution time needed to achieve the optimal decision. We have measured the mean execution time
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on a machine with Intel Core 2 Duo T7250 2 GHz and 2 GB RAM. The 1-step horizon policy requires only 0.0021
sec, while the infinite horizon one requires 233 sec. for the state space generation, 5502 sec. for the matrix generation,
and 800 sec. for the value iteration method. This long execution time is also due to the computation ofc(s, a), which
requires to solve the service selection optimization problem (see (8)). Therefore, the reduced computational cost of the
1-step horizon policy makes it amenable to take online admission control decisions and to integrate the MDP-based
admission control with other adaptation triggers (e.g., changes in the set of concrete services) that are managed by
MOSES.

5 Conclusions

In this paper, we have studied the admission control problemfor a service broker, MOSES, which offers to prospective
users a composite service with different QoS levels. We haveformulated the admission control problem as a Markov
Decision Process with the goal to maximize the broker discounted reward, while guaranteeing non-functional QoS
requirements to its users. We have considered both infinite-horizon and the less computational demanding finite-
horizon cost functions. We have compared the different solutions through simulation experiments. Our results show
that the MDP-based policies guarantee much higher profit to the broker while guaranteeing the users QoS levels with
respect to a simple myopic policy which accepts users as longas the broker has sufficient resources to serve them. In
particular, the simple 1-step horizon policy achieves nearto optimal performance at a fraction of the computational
cost which makes it amenable to online implementation.

In our future work we plan to implement the MDP-based admission control in the existing MOSES prototype and
run experiments in realistic scenarios.
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