
Artifact: Serverledge: Decentralized
Function-as-a-Service for the Edge-Cloud

Continuum
Gabriele Russo Russo∗, Tiziana Mannucci∗, Valeria Cardellini∗ and Francesco Lo Presti∗

∗ University of Rome Tor Vergata, Rome 00133, Italy
Email: {russo.russo, cardellini}@ing.uniroma2.it, tiziana.mannucci@alumni.uniroma2.eu, lopresti@info.uniroma2.it

Abstract—Serverledge is a research prototype to run serverless
functions in the Edge-Cloud Continuum. This artifact guide
illustrates the minimal steps required to obtain, configure and
run Serverledge. We also explain how to access the evaluation
results presented in the paper and generate the associated figures.

Index Terms—serverless, edge computing, offloading

I. INTRODUCTION

Serverledge [1] has been implemented in Go and its source
code is available as a GitHub repository1, also archived in
Zenodo [2]. The project comprises four key components:

• the core serverledge software, to be deployed in
every node and delivering core function management and
execution capabilities;

• serverledge-cli, a command-line interface (CLI)
to easily interact with Serverledge nodes;

• lb, a simple load balancer to dispatch function invocation
requests to multiple Serverledge nodes;

• function runtime container images: scripts to build
Docker container images to run functions written in
different languages (e.g., Python, NodeJS).

We provide instructions to run Serverledge on a single server:
although the execution is related to a simple scenario, it allows
the user to test the main features of Serverledge, including
function invocation and offloading.

In the remainder of this section, we describe Serverledge
prerequisites. For convenience, we also provide a script2

to automatically install Serverledge and its dependencies on
Ubuntu 22.04. It can be downloaded and run as follows:

$ wget -O deploy.sh \
https://bit.ly/serverledge2204 \
&& bash deploy.sh

After successfully executing the script, it is possible to imme-
diately skip to Sec. II.

Preliminary Steps

In order to use the artifact, the following hardware and
software requirements must be satisfied:

1https://github.com/grussorusso/serverledge
2https://gist.github.com/grussorusso/1c1cca879616a038a99641ce8097a81f

• Linux-based OS, on a x86-64 machine3

• Go4 1.19
• GNU Make
• Docker5 20.x, with permissions to create containers6.
Serverledge itself can be downloaded from Zenodo [2] or

GitHub7.

II. RUNNING SERVERLEDGE IN THE LOCAL HOST

Hereafter, we will assume that a terminal has been opened
in the project root directory.

Compiling. The project can be compiled running:

$ make

Generated executable files will be in the bin/ directory.
Starting Etcd. Serverledge uses Etcd to implement the

Global Registry component. The repository contains a script
to quickly run a local Etcd server using Docker:

$ bash scripts/start-etcd.sh

Starting Serverledge. We can start a Serverledge node on
the local host with a default configuration running:

$ bin/serverledge

If there are no issues, the process will initialize the node and
start listening on port 1323 for HTTP requests. Therefore, we
need to launch a new terminal to proceed with the next steps.

III. CREATING AND INVOKING FUNCTIONS

The repository contains example functions in the
examples/ directory. Among them, isprime.py
implements a trivial primality check as a Serverledge
function, written in Python. The source code includes the
handler function, which is called upon function invocation
and receives user-specified parameters. We must register
functions in Serverledge specifying their source file, the

3Actually, it is possible to run Serverledge on other Unix-like systems (e.g.,
macOS) or architectures (e.g., ARM). However, the project documentation and
scripts currently target x86-64 Linux hosts only.

4https://go.dev/dl/
5https://docs.docker.com/engine/install/
6https://docs.docker.com/engine/install/linux-postinstall/

#manage-docker-as-a-non-root-user
7https://github.com/grussorusso/serverledge/archive/refs/tags/v1.0.

0-percom23.zip

©2023 IEEE - This is the author's version of the work. It is posted here for your personal use. Not for redistribution.
The definitive Version of Record was published at https://doi.org/10.1109/PerComWorkshops56833.2023.10150345

amount of memory they require, the runtime environment
(e.g., Python) and the identification of the handler function.
Using serverledge-cli, we register an isprime function
as follows:

$ bin/serverledge-cli create \
--function isprime --memory 256 \
--src examples/isprime.py \
--runtime python310 \
--handler "isprime.handler"

If the creation succeeds, the node will reply:

{ "Created": "isprime" }

We can again use the CLI to invoke the function passing
the required parameter n as follows:

$ bin/serverledge-cli invoke -f isprime \
-p "n:50"

The expected output looks as follows:8

{ "Success": true,
"Result": "{\"IsPrime\": false}",
"ResponseTime": 1.01616,
"IsWarmStart": false,
"InitTime": 1.01040, ... }

The output produced by the CLI includes the actual execution
result within the Result field, along with a few metrics. For
instance, the IsWarmStart field indicates whether a warm
container has been used to execute the function or the request
has experienced a cold start. In the latter case, the InitTime
field reports the time spent initializing the container.

Repeating the command, we observe that new invocations
exploit the warm container and enjoy reduced response times.

IV. CONFIGURATION

Serverledge can be configured by means of a YAML con-
figuration file serverledge-conf.yaml, which can be
placed either in /etc/serverledge/, in the user $HOME
directory, or in the working directory where the server is
started. Alternatively, you can indicate a specific configuration
file when starting the node (an example is shown below).

The most relevant configuration options are listed in
docs/configuration.md. For instance, create a file
temp-conf.yaml in the current directory and enter the fol-
lowing lines to reduce the “expiration time” for idle containers:

container.expiration: 20
janitor.interval: 20

Terminate Serverledge and restart it as follows:

$ bin/serverledge ./temp-conf.yaml

Now, invoke the function as explained above and wait 30-40
seconds. Invoking again the function, we observe a cold start,
as the warm container has been already terminated.

8The first time Serverledge is used, it may need to pull function runtime
container images from Docker Hub. As such, the function invocation may
require several seconds to complete.

V. OFFLOADING

Serverledge supports function invocation offloading. In
this section, we describe a proof-of-concept configuration to
demonstrate the offloading mechanism without relying on a
distributed deployment. For this purpose, we run 2 Serverledge
nodes (i.e., Edge and Cloud nodes) on the local host, but we
configure the Edge node to always offload requests to the
Cloud (by doing so, we will have a single node spawning
containers on the host).

After terminating any active Serverledge node, launch the
two nodes using already prepared configuration files:

$ bin/serverledge \
examples/local_offloading/confEdge.yaml

$ bin/serverledge\
examples/local_offloading/confCloud.yaml

Now, using the instructions from Sec. III, invoke the isprime
function. Since the Cloud node is configured to listen for
requests on a non-default port, requests will be directed to
the Edge node. The output will look like the following:

{ "Success": true,
...
"OffloadLatency": 0.001413,
"Duration": 0.006174,
"SchedAction": "O" }

We verify that the request has been offloaded checking the
SchedAction and OffloadLatency fields. The former
signals an offloading decision through the string ’O’, while
the latter reports the additional latency caused by offloading
(e.g., network latency, which is negligible in this example).

VI. EVALUATION DATA

The results of the experiments presented in the paper [1]
are also publicly archived in Zenodo [3], along with scripts
and instructions to reproduce the figures from the paper using
Gnuplot.

For convenience, we also provide a Docker container image
with the required software. The following command down-
loads the data from Zenodo, generates the plots and makes
them accessible at http://127.0.0.1:8080 as EPS and
PDF files:

$ docker run --rm -it -p 8080:80 \
grussorusso/serverledge-data-artifact

REFERENCES

[1] G. Russo Russo, T. Mannucci, V. Cardellini, and F. Lo Presti,
“Serverledge: Decentralized function-as-a-service for the edge-cloud con-
tinuum,” in Proceedings of IEEE International Conference on Pervasive
Computing and Communications, PerCom 2023, Atlanta, GA, USA,
March 13-17, 2023. IEEE, 2023.

[2] G. Russo Russo, T. Mannucci, V. Cardellini, and F. Lo Presti,
“Serverledge: Decentralized Function-as-a-Service for the Edge-Cloud
Continuum,” Jan. 2023. [Online]. Available: https://doi.org/10.5281/
zenodo.7572481

[3] ——, “Experiment Results for ”Serverledge: Decentralized Function-
as-a-Service for the Edge-Cloud Continuum”,” Feb. 2023. [Online].
Available: https://doi.org/10.5281/zenodo.7607376

	Introduction
	Running Serverledge in the Local Host
	Creating and Invoking Functions
	Configuration
	Offloading
	Evaluation Data
	References

