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Data Stream Processing (DSP) applications analyze data flows in near real-time by means of operators, which
process and transform incoming data. Operators handle high data rates running parallel replicas across
multiple processors and hosts. To guarantee consistent performance without wasting resources in face of
variable workloads, auto-scaling techniques have been studied to adapt operator parallelism at run-time.
However, most the effort has been spent under the assumption of homogeneous computing infrastructures,
neglecting the complexity of modern environments.

We consider the problem of deciding both how many operator replicas should be executed and which
types of computing nodes should be acquired. We devise heterogeneity-aware policies by means of a two-
layered hierarchy of controllers. While application-level components steer the adaptation process for whole
applications, aiming to guarantee user-specified requirements, lower-layer components control auto-scaling
of single operators. We tackle the fundamental challenge of performance and workload uncertainty, exploiting
Bayesian optimization and reinforcement learning to devise policies. The evaluation shows that our approach
is able to meet users’ requirements in terms of response time and adaptation overhead, while minimizing the
cost due to resource usage, outperforming state-of-the-art baselines. We also demonstrate how partial model
information is exploited to reduce training time for learning-based controllers.
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1 INTRODUCTION
Data analytics applications have become increasingly important in several domains, such as smart
manufacturing or remote healthcare, empowered by the increasing availability of rich data sets
and the ongoing development of powerful data analysis techniques. Data Stream Processing (DSP)
has emerged as a de facto standard to process high-volume data flows in (near) real-time [17]. Data
streams are unbounded, ordered sequences of data units (i.e., tuples or records) emitted by one
or more sources. DSP applications are usually defined as directed acyclic graphs (DAGs), whose
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Fig. 1. Example of a DSP application graph, composed of sources, which emit data streams, operators, which
apply some processing logic to the streams, and sinks, final consumers (e.g., dashboards, external databases).

Fig. 2. Horizontal scaling of a DSP operator, where multiple parallel replicas are executed to sustain higher
input rates.

vertices are data sources and operators, and the edges represent streams flowing between them
(see, Figure 1). Operators receive one or more streams as input, apply their processing logic (e.g.,
filtering, aggregation) and emit a new stream as the result, possibly updating an internal state
(stateful operators). Data streams eventually reach sink vertices, which act as consumers of the
produced results (e.g., dashboards, databases).
In practice, parallel replicas (or, instances) of each operator are executed across multiple – and

possibly heterogeneous – CPUs and hosts to sustain higher data rates. In this context, elasticity
is an essential feature for modern DSP systems [17, 50] that enables dynamic resource provision-
ing in response to workload and condition changes. Elasticity is mainly implemented by means
of horizontal operator auto-scaling that is, modifying the number of operator replicas during
execution, as illustrated in Figure 2. Scaling decisions should be taken at run-time to provision
enough computational capacity to meet users’ requirements (e.g., maximum processing latency),
while avoiding resource wastage due to over-provisioning. This problem, which has been widely
investigated for years in the field of Cloud computing [4], is particularly challenging in the context
of DSP, because parallelism reconfigurations come at the cost of significant overhead. Indeed, to
preserve stream and state integrity, specific reconfiguration protocols must be adopted, slowing
down or (more likely) interrupting normal data processing [24].
As surveyed in [5, 10, 50], auto-scaling DSP applications has been widely investigated in the

literature, but there are still open issues thatmotivate research on the topic. Indeed, existing solutions
mostly consist of either best-effort heuristics (e.g., threshold-based policies), which do not allow
users to fine-tune their requirements, ormodel-based approaches, which are hard to adopt in practice
because of the difficulty of obtaining accurate models as new applications are deployed. Moreover,
state-of-the-art solutions mostly neglect the existence of heterogeneous computing nodes, assuming
that any host will provide the same computational capacity. Unfortunately, this assumption is
very far from the reality of modern Cloud and Fog/Edge infrastructures, where providers offer
computing nodes (e.g., virtual machines or containers) of multiple types, characterized by different
computational capacity, energy consumption and price.

In this paper, we present an autonomic hierarchical approach to derive auto-scaling policies for
DSP applications deployed over heterogeneous computing infrastructures. We tackle the problem
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of minimizing the cost due to resource usage while meetings users’ Quality-of-Service (QoS) re-
quirements concerning application performance and scaling overheads. To this end, we rely on a
two-layered hierarchy of controllers, where an Application Manager (AM) steers the adaptation
process for each running application and coordinates lower-layer decentralized Operator Man-
agers (OM), which control auto-scaling of single operators. Our control architecture is based on
the Hierarchical Control pattern for decentralized self-adaptation [68], which avoids the scalability
limitations of fully centralized controllers as well as the lack of coordination of fully decentralized
schemes.
To cope with uncertainty about application performance, infrastructure conditions as well as

workload dynamics, we design Operator Managers as reinforcement learning (RL) agents. RL is a
collection of learning methods for sequential decision-making [62], where agents (i.e., the OMs)
must choose suitable scaling decisions over time so as to minimize the long-term value of a cost
function, which – in our formulation – accounts for operator performance, resource usage and
scaling overhead. A key challenge with RL methods is the possibly long time required to learn
a good policy. This is especially important when no historical information is available to train
agents off-line and, instead, the whole training happens on-line (i.e., while the application runs).
We tackle this challenge (i) exploiting neural networks (NNs) and deep RL [43], which allow
agents to learn over a reduced parameter space; and (ii) integrating partial model knowledge in the
learning algorithm, by means of the post-decision state [39] abstraction, which reduces the amount
of information to learn at run-time.

To make sure that decentralized OMs contribute to the satisfaction of application-level require-
ments, AMs must suitably tune the local multi-objective cost function of each OM, specifying a
performance target to guarantee for each operator and properly weighting the different objective
terms (i.e., resource usage, adaptation overhead, performance). We tackle this challenge by means
of black-box optimization techniques and, in particular, Bayesian optimization [18]. By constructing
an approximate application model during execution, the AM adapts the configuration of each
OM according to user’s QoS requirements. In such a way, our solution allows the user to express
high-level QoS requirements (e.g., the application response time must not exceed 500 ms for more
than 5% of the time), without the need of manually translating them into lower-level parameters
(e.g., utilization thresholds).

The main contributions of this paper can be summarized as follows:
• RL-based auto-scaling algorithms for DSP operators in a heterogeneous computing infras-
tructure, which combine DNNs for value function approximation and post-decision states to
incorporate partial knowledge about the system.

• An approach based on Bayesian optimization to steer application adaptation by dynamically
tuning the local objectives of lower-layer decentralized auto-scaling controllers, relieving
users from tuning low-level control knobs.

• An extensive numerical evaluation that considers different heterogeneity scenarios, workloads
and applications. Our results demonstrate the benefits of the RL-based policies over state-
of-the-art heuristic policies and show how our two-layered control hierarchy manages to
minimize resource usage while guaranteeing the desired service level.

While we focus on a particular class of distributed applications (i.e., DSP), our approach for hier-
archical learning-based adaptation is relevant and suitable for other service-based applications,
which are also typically modeled as DAGs (e.g., microservices and serverless applications).

The remainder of this paper is organized as follows. In the next section, we review related works
from the literature. In Sec. 3, we give an overview of the scenario we consider and the architecture
of our solution. Then, following a bottom-up approach, we illustrate the RL-based policies for the
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Operator Managers in Sec. 4, before presenting the upper-layer policy for the Application Manager
in Sec. 5. We evaluate our solution in Sec. 6 and conclude in Sec. 7.

2 RELATEDWORK
DSP applications deal with unbounded data sets and, as such, are usually long-running. Therefore,
working conditions and workloads may vary during execution and applications may need to adapt
to the new conditions to keep a consistent service level. Not surprisingly, researchers have spent a
lot of effort investigating strategies to make DSP systems capable of self-adaptation. As surveyed
in [10], a variety of mechanisms have been considered to modify one or more system aspects during
execution, including, e.g., operator migration, dynamic stream routing, load shedding.
Operator scaling is the most investigated mechanism so far [10], as elasticity is fundamental

to ingest data at dynamic rates and process them in a timely and cost-efficient manner. Elasticity
may be achieved by means of either horizontal or vertical operator scaling. The former consists in
changing the number of parallel operator replicas, whilst the latter modifies the amount of resources
allocated to the existing replicas. Vertical operator scaling is generally easier to implement, because
it does not require operator or state movements across different nodes, but at the same time it
enables limited scalability (i.e., limited by the capacity of the currently used processor or node). For
this reason, with a few exceptions (e.g., [14, 27, 40, 53, 59]), the majority of the existing solutions
focus on horizontal auto-scaling, as we do in this paper. Therefore, in the following we will use the
term “scaling” referring to horizontal operator scaling, unless differently specified.

Given their popularity in the last decade, solutions for operator auto-scaling have been the subject
of specific surveys, such as [5, 50]. An essential limitation we found in most of the existing solutions
regards the underlying computing infrastructures, which are assumed to comprise homogeneous
computing nodes, providing identical performance. An exception to this trend is represented
by [55], where a heuristic policy is proposed for auto-scaling on heterogeneous nodes. However,
their policy only considers throughput as the key objective metric, whereas we are interested in a
more general QoS optimization scenario, involving additional metrics such as resource cost and
adaptation overhead. Beyond auto-scaling, resource heterogeneity has been considered in the field
of DSP when studying other problems, such as operator placement and migration (see, e.g., [31]),
as well as query processing on heterogeneous CPU/GPU systems (see, e.g., the works on DSP
surveyed in [51]).

Operator auto-scaling solutions differ from each other along various dimensions and, in particular,
the methodology used to decide when and how scaling operations should be performed (i.e., the
policy). Several works, e.g., [16, 20, 22, 66], adopt simple threshold-based policies, where scaling
actions are triggered based on the monitored resource utilization. These policies benefit from their
simplicity and the lack of centralized controllers, which might limit scalability. While thresholds
must be usually hand tuned by users, approaches to automatically update them have also been
proposed, e.g., in [26, 36]. Given the popularity of threshold-based policies, we will compare our
solution to them.
Various techniques have also been used to devise more complex auto-scaling policies, such

as integer linear programming (ILP) [9], control theory [13], queueing theory [19, 35], game
theory [41]. These approaches aim to optimize one or more metrics (e.g., processing latency,
throughput, resource usage), often relying on some kind of system model. While most of them rely
on centralized controllers, in [41] a fully decentralized game-theoretic approach has been proposed,
where the control logic is distributed on each operator.

As the use ofmachine learning (ML) techniques in self-adaptive systems have become increasingly
popular in the last decade, as surveyed in [21], their adoption for DSP operator auto-scaling has been
fostered as well (e.g., [28, 30, 36, 44]). ML approaches have been mainly used for load prediction,
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thus enabling proactive scaling decisions. For instance, in [30] multiple regression techniques are
exploited to forecast the operator input rate and adjust the parallelism accordingly. For similar
purposes, Lombardi et al. [36] rely on artificial neural networks, whose predictions are used as
input for a threshold-based scaling policy.

Reinforcement learning (RL) is a branch of ML that suits well the problem of adaptation control
and has been applied to drive DSP adaptation in, e.g., [8, 12, 25, 32, 36, 54, 58]. Focusing on operator
scaling, in [25] RL is used considering a reward function that accounts for operator resource
utilization: the closer to a pre-defined target value, the higher the agent reward. They use the
SARSA algorithm, which is a model-free RL algorithm. RL-based operator scaling has also been
investigated by our group in [8], where we focused on model-based RL algorithms, which allow
for significant reduction of the training phases. Operator scaling is also considered by [36], where
RL is only used to learn the optimal utilization thresholds for their policy. None of these solutions
deals with heterogeneous computing nodes.
A work similar to ours has been recently proposed in [69], where the auto-scaling problem is

formulated as a finite-horizon Markov Decision Process (MDP) and solved using RL. While they
study a heterogeneous computing environment, decisions on the type of node to use (i.e., Edge,
Fog or Cloud) are made at deployment time and not incorporated in the auto-scaling problem,
differently from our solution. Their MDP optimizes multiple weighted objective terms. As the task
of tuning these weights is left to the users, the policy we propose for the AM in Sec. 5 could be
integrated in their work to support higher-level QoS specifications.

RL has also been used to control different DSP adaptationmechanisms, such as operator placement
in [32] and [58] and micro-batch scheduling in [12]. In particular, Li et al. [32] tackle the placement
problem and, to deal with very large state spaces, resort to DNNs for function approximation.
Clearly, the adoption of RL methods for system management has gained popularity beyond the
field of DSP systems, with applications to virtual machine (VM) and container auto-scaling [47,
52, 64], VM consolidation [15], container migration [63], power management [33], network-level
adaptation [38], scheduling [23]. In particular, Tesauro et al. [64] use a hybrid RL approach for Cloud
resource allocation, combining queueing models and learning. Mastronarde and van der Schaar [39]
rely on the concept of post-decision state (PDS) to devise a RL algorithm that exploits the available
knowledge about the system in their solution for energy-efficient wireless communication. Similarly
to these works, we will try to incorporate partial knowledge andmodels into the learning algorithms,
leveraging the PDS abstraction as in [39].
We complement the RL-based auto-scaling agents with a higher-layer Application Manager,

which steers the adaptation process by tuning their local objectives (i.e., the cost function used
in their local optimization problem). A similar latency apportioning problem, where the response
time bound for each DSP operator must be identified, has been previously tackled by [49], relying
both on an ILP formulation and a heuristic approach. However, their work assumes that the quality
of different latency bound configurations can be analytically evaluated by means of a cost function,
formulated in terms of estimated response time only. We take the more general perspective where
such cost function is not given, as it happens in practice. Therefore, we will resort to black-box
optimization and, specifically, Bayesian optimization (BO).
The adoption of BO for configuration tuning of computing systems is not novel, as emerges

from [56]. Popular applications of BO include hyperparameter tuning for ML systems [60], parame-
ter optimization for high-performance computing applications [42], automated configuration of
serverless functions [2]. In [29] and [65], BO has also been applied for configuration tuning of
DSP applications and frameworks. For example, in [29] BO is applied to configure Apache Storm
applications, where it leads to performance improvements of at least an order of magnitude with a
limited experimental budget.
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3 OVERVIEW
We present a hierarchical auto-scaling solution for DSP applications, which adapts the parallelism
level of operators at run-time in order to keep the desired service level in face of workload fluctua-
tions while, at the same time, minimizing the costs due to resource usage. We target DSP systems
deployed in heterogenous computing infrastructures where computing nodes (e.g., virtual machines,
containers) can be acquired on-demand and differ in price and computational capacity.

3.1 DSP Application Model
A DSP application is defined as a directed acyclic graph 𝐺𝑑𝑠𝑝 =

�
𝑉𝑑𝑠𝑝 , 𝐸𝑑𝑠𝑝

�
, where 𝑉𝑑𝑠𝑝 is a set of

vertices (i.e., data sources, operators and sinks) and 𝐸𝑑𝑠𝑝 a set of edges (i.e., data streams flowing
between vertices). Data sources are vertices with no incoming edges and generate data streams. Sinks
are vertices with no outgoing edges and represent final information consumers (e.g., dashboards,
database systems). Processing operators instead take one or more streams as input, apply some
transformation or function to the data, and output a new stream. By chaining and interconnecting
several operators, DSP applications can implement complex processing functions.1 For instance,
the example application shown in Figure 1 is represented as a DAG with 𝑉𝑑𝑠𝑝 = {A, B, C, D, E, F, G}
and 𝐸𝑑𝑠𝑝 = {(A, B) , (B, C) , (B, E) , (C, D) , (E, F) , (F, G)}.
In practice, modern DSP frameworks (e.g., Apache Flink2, Apache Storm3) provide developers

with high-level programming libraries to define the application logic using general-purpose pro-
gramming languages (e.g., Flink supports Java, Scala and Python). These libraries at least allow
developers to define the processing logic of each operator and specify how different operators are
inter-connected (i.e., how they exchange data streams). Some frameworks also feature higher-level
interfaces and libraries that ease the development of specific classes of applications (e.g., FlinkCEP
for Complex Event Processing). Once written using any of these libraries, applications are submitted
to a DSP engine, which parses them and builds an internal representation based on the graph model
introduced above (e.g., called JobGraph in Flink).
We consider applications concerned with QoS requirements revolving around (i) performance

aspects and (ii) adaptation overheads. The former capture performance-based expectations in
terms, e.g., of application response time or throughput. Since DSP applications are usually latency-
sensitive [61], in this work we focus on requirements formulated in terms of maximum application
response time. For instance, users may require application response time to exceed a given value
𝑅𝑚𝑎𝑥
𝜋 no more than 5% of the time.
Besides performance requirements, we are concerned with the overheads due to parallelism

adaptation, which are usually significant for DSP applications (see, e.g., [8, 57]), as specific re-
configuration protocols must be used to preserve state and stream integrity, possibly forcing
application execution to be paused in the process. For these reasons, users may require parallelism
reconfiguration to be limited within a given fraction of time (e.g., no more than 10% of the time).

3.2 Computing Infrastructure Model
For application execution, we consider computing infrastructures managed by an external resource
provider and offered under a pay-as-you-go cost model. As often the case in cloud computing, the
provider offers different types of computing resources where operator replicas can run, possibly
including different VMs (e.g., c4.large, t2.small in AWS EC2) or different container configurations

1An in-depth discussion of the DSP paradigm is beyond the scope of this paper. We refer interested readers to [3, 7] for
more details about the stream processing paradigm and its semantics.
2https://flink.apache.org/
3https://storm.apache.org/
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Fig. 3. In presence of heterogeneous computing nodes, the auto-scaling controller must not only decide how
many replicas to run, but also which type of node to use for them.

(e.g., with different CPU shares and memory reservations). Hereafter, we will use the expression
“computing node” (or, simply, node) to refer to any instance of the computing resources that can be
acquired and can host application operators, regardless of the underlying technological aspects.

Specifically, we consider a resource provider offering 𝑁𝑟𝑒𝑠 types of computing nodes exhibiting
a trade-off between performance and price. We will denote by 𝑇𝑟𝑒𝑠 the set of the available node
types, i.e., 𝑁𝑟𝑒𝑠 = |𝑇𝑟𝑒𝑠 |. Each node type 𝜏 ∈ 𝑇𝑟𝑒𝑠 is associated with a monetary cost 𝑐𝜏 , which is
paid for deploying an operator replica on a node of type 𝜏 for a reference time period.4

Note that our model is general enough to support fine-grained resource reconfiguration through,
e.g., vertical scaling. Indeed, we do not make assumptions about the infrastructure-level operations
required to switch between different node types in our model (e.g., spawning a new VM or scaling
up an existing VM).
Example: VM-based infrastructure. We may have 𝑇𝑟𝑒𝑠 = {vm.small, vm.medium, vm.large},

where vm.small has 1 CPU core and 0.5 GB of memory vm.medium has 2 cores and 1 GB of memory,
and vm.large has 4 cores and 2 GB of memory. The usage cost for vm.small, vm.medium and
vm.large is, respectively, 0.005 $/h, 0.01 $/h and 0.02 $/h. Figure 3 illustrates how an auto-scaler
can exploit the heterogeneous VMs introduced in this example to handle load variations.
Example: container-based infrastructure. We may have 𝑇𝑟𝑒𝑠 = {32, 64, 128, 256, 512, 1024},

where each 𝑖 ∈ 𝑇𝑟𝑒𝑠 represents a container configuration where the container is given 𝑖 shares of
CPU and a fixed amount of memory. The usage cost for container 𝑖 is computed as 𝑖 × 0.001$/h.
Such a model may represent a scenario where a container orchestration platform is used (e.g.,
Kubernetes). Such platforms allow for fine-grained resource allocation to containers and, thus,
support heterogeneous computing nodes, in the sense explained above. While platforms like
Kubernetes provide mechanisms to acquire and release heterogeneous containers, our solution
provides a DSP system with the control logic to exploit such heterogeneity.

3.3 Proposed Auto-Scaling Solution
DSP applications scale their execution over the available computing nodes and, as already explained,
exploit parallel operator replicas to handle high data rates. The operator auto-scaling problem
we consider aims to minimize the monetary cost paid for resource usage, while guaranteeing
application QoS requirements.
4In practice, a monetary cost may be associated with the usage of a computing node independently of what it hosts. In this
case, the cost 𝑐𝜏 still guides the auto-scaler towards better configurations, while actual money savings may be achieved
through consolidation.
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Fig. 4. Our two-layered auto-scaling framework exploits an application-level Application Manager, which
supervises adaptation and aims to meet user-given requirements, and decentralized Operator Managers,
which control auto-scaling of single operators. The Application Manager is responsible for translating global
requirements into local requirements for each operator.

We tackle this problem by means of a two-layered hierarchical auto-scaling solution, whose
architecture is adapted from our previous work [8]. Leveraging such hierarchical approach, we
aim to overcome both the limitations of fully centralized controllers, which suffer from limited
scalability, and fully decentralized schemes, which do not easily provide guarantees on application-
level QoS. Our solution, which is illustrated in Figure 4, comprises two main components. At
the higher layer, an Application Manager (AM) supervises the adaptation of the application as a
whole, taking into account user-specified QoS requirements. At the lower layer, each operator is
associated with an Operator Manager (OM), which controls auto-scaling for that operator. Since
OMs have a local vision of the system (i.e., limited to a single operator), they are concerned with
local adaptation objectives, specified – as explained below – through a multi-objective cost function
that accounts for resource usage, performance requirements and adaptation overhead. Therefore,
a key responsibility of the AM in our solution consists of properly tuning the local objective of
each OM, by means of weights and performance targets, according to the global application-level
objective (i.e., minimizing resource usage cost and meeting application QoS requirements).

Both the AM and the OMs are organized according to the well-knownMonitor, Analyze, Plan and
Execute (MAPE) pattern for autonomous software systems. As such, our auto-scaling control archi-
tecture represents an instance of the Hierarchical Control pattern for decentralized self-adaptation,
as presented in [68]. According to this pattern, illustrated in Figure 5, decentralized controllers are
organized in a hierarchy, with separation of concerns and time scales. Specifically, loops at lower
layers guarantee timely adaptation concerning the part of the system under their direct control
(i.e., an operator, in our solution). Higher layers operate at a longer time scale with a more global
vision that accounts for the overall adaptation objectives. Note also that, on a control-theoretic
perspective, our approach resembles an instance of cascade control [6], where an outer controller
(i.e., the AM) attempts to keep the output close to the reference by manipulating the reference
input of an inner controller (i.e., the OM). Cascade control is especially useful when the inner
loop involves less delay and dynamics, and its tight feedback reduces effects of disturbances and
uncertainties.
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Fig. 5. Our two-layered framework is an instance of the hierarchical control pattern [68] for decentralized
adaptation, where MAPE-based controllers at different layers act with separation of concerns and time scales.
Top: hierarchical control pattern. Bottom: example of a concrete instance of the pattern.

OMs directly interact with operators and act independently from one another. The key responsi-
bilities of their internal MAPE components can be summarized as follows:

• Monitor : collection of metrics regarding the operator activity and deployment (e.g., CPU
usage, data arrival rate, current number of replicas);

• Analyze: application of models and/or policies to the available metrics to identify auto-scaling
actions to perform. The OM aims to optimize a multi-objective cost function that comprises
(i) its local cost due to resource usage, which depends on how many replicas it run and
which computing nodes host them; (ii) adaptation overheads it incurs triggering scaling
operations; (iii) performance penalties, based on a local response time requirement 𝑅𝑚𝑎𝑥

𝑢 , for
each operator 𝑢;

• Plan: based on the analysis result, planning of a specific auto-scaling operation (e.g., choosing
the exact replica to terminate in case of scale-in);

• Execute: activation of new operator replicas or termination of existing ones, possibly by
means of specific reconfiguration protocols.

The cost function and the performance requirement for each OM are periodically updated by the
higher-layer AM, which relies on the following MAPE components:

• Monitor : collection of metrics regarding the overall application performance (e.g., response
time) as well as monitoring data coming from OMs (e.g., average arrival rate per operator);

• Analyze: application of models and/or policies to the available metrics to identify suitable
weights for the local OM cost functions as well as local performance requirements to optimize
the overall objective;

• Plan: based on the analysis result, identification of the local updates to be communicated to
OMs;

• Execute: communication of new objective configuration to OMs.
According to the high-level description provided above, it is clear that MAPE components at

different layers do interact with each other – as also illustrated in Figure 5. In particular, (i) monitor-
ing information directly collected by OMs for each operator can be aggregated and shared with the
AM-level Monitor component; (ii) adaptation actions executed at the higher layer directly impact
on the OMs, as they alter their objective configuration.

ACM Trans. Autonom. Adapt. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.



1:10 Gabriele Russo Russo, Valeria Cardellini, and Francesco Lo Presti

It is worth remarking that in this work we focus on the definition of control policies for both
the AM and the OM and we do not investigate issues related to the implementation of monitoring
functionalities and adaptation execution. In the next sections, we will follow a bottom-up approach
and we will first describe in Sec. 4 how the auto-scaling problem is tackled at operator-level by the
OMs, before discussing in Sec. 5 how the AM adapts the local objectives to optimize the overall
cost and QoS.

4 OPERATOR AUTO-SCALING THROUGH RL
The OM controls auto-scaling for a single DSP operator, aiming to satisfy a response time require-
ment, while also minimizing resource usage and scaling overheads. In this section, we formulate
this problem as a discrete-time Markov Decision Process and, then, we discuss the challenges
related to its resolution and how we tackle them by means of RL.

4.1 Operator Model and Problem Formulation
We assume that the operator scaling controller is activated periodically and, hence, we consider
a slotted time model with intervals of length 𝑇𝑂𝑀 (i.e., the 𝑖-th time slot corresponds to the time
interval [𝑖𝑇𝑂𝑀 , (𝑖 + 1)𝑇𝑂𝑀 ]). The operator deployment at the beginning of time slot 𝑖 is defined
by the vector k𝑖 , with 𝑘𝜏,𝑖 ≥ 0 being the number of replicas deployed on nodes of type 𝜏 . At any
time, 1 ≤ Í

𝜏 𝑘𝜏,𝑖 ≤ 𝐾𝑚𝑎𝑥 , as (i) at least one instance must be running for each operator, and (ii) we
consider a maximum parallelism level 𝐾𝑚𝑎𝑥 . We denote by 𝜆𝑖 the average input data rate measured
during slot 𝑖 − 1 (i.e., the previous slot).
We formulate the operator auto-scaling control problem as a discrete-time Markov Decision

Process (MDP). An MDP is defined by a 5-tuple ⟨S,𝐴, 𝑝, 𝑐,𝛾⟩, where S is a finite set of states, 𝐴(𝑠)
a finite set of actions for each state 𝑠 , 𝑝 (𝑠′ |𝑠,𝑎) are the transition probabilities from state 𝑠 to state
𝑠′ given action 𝑎 ∈ 𝐴(𝑠)5, 𝑐 (𝑠,𝑎) is the immediate cost6 when action 𝑎 is executed in state 𝑠 , and
𝛾 ∈ [0, 1] a discount factor that weights future costs.

The state of the system at time 𝑖 is defined by the pair 𝑠𝑖 = (k𝑖 , 𝜆𝑖 ), that is the current operator
deployment and the input data rate. For the sake of analysis, we consider a discrete state space,
where 𝜆𝑖 ∈ {0, 𝜆, 2𝜆, . . . ,𝑁𝜆𝜆} and 𝜆 is a suitable quantum.

For each state 𝑠 , the set of the available actions A(𝑠) is defined as follows:

A(𝑠) = {𝜔} ∪
n
(𝛿, 𝜏) : 𝛿∈Δ(𝑠 )𝜏∈𝑇𝑟𝑒𝑠

o
(1)

where 𝜔 is the “do nothing” action that leaves the operator deployment unchanged, and recon-
figuration actions are denoted by pairs (𝛿, 𝜏), which specify the number 𝛿 ∈ Δ(𝑠) of replicas to
add/remove on nodes of type 𝜏 . Specifically, we let Δ(𝑠) = {+1,−1} for all states, except for those
where the operator parallelism is 1 and Δ(𝑠) = {+1} (we cannot have less than one replica), or the
parallelism is equal to 𝐾𝑚𝑎𝑥 and Δ(𝑠) = {−1} (we cannot add more instances).
State transitions occur as a consequence of reconfiguration decisions and tuple arrival rate

variations. Following an action 𝑎, the operator deployment k is (possibly) updated according to 𝑎
into k′. In the following, we will describe a deployment reconfiguration as k′ = k ⊕ 𝑎. Let us denote

5To improve readability, we will omit the time subscripts where possible, denoting state 𝑠𝑖 simply as 𝑠 , and the next state
𝑠𝑖+1 as 𝑠′ .
6In this section – with a slight abuse of notation – we adopt the MDP terminology and use the term “cost” to indicate
the penalty value incurred by the agent after performing any action. This cost must not be confused with the application
resource usage cost that represents the objective of our problem, as presented in the previous section.
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Fig. 6. Example of states and actions from the MDP model used by the OM.

by 𝑝 (𝑠′ |𝑠,𝑎) the transition probability from state 𝑠 to state 𝑠′ given action 𝑎. We readily obtain:
𝑝 (𝑠′ |𝑠,𝑎) = 𝑃 [𝑠𝑖+1 = (k′, 𝜆′) |𝑠𝑖 = (k, 𝜆),𝑎𝑖 = 𝑎] =

=

�
𝑃 [𝜆𝑖+1 = 𝜆′ |𝜆𝑖 = 𝜆] k′ = k ⊕ 𝑎
0 otherwhise

It is easy to realize that the system dynamics comprise a stochastic component due to the tuple rate
variation, which we assume exogenous, captured by the transition probabilities 𝑃 [𝜆𝑖+1 = 𝜆′ |𝜆𝑖 = 𝜆],
and a deterministic component due to the fact that, given action𝑎, the new deployment configuration
k′ is k ⊕ 𝑎.
Figure 6 provides a simple example of the resulting state-action space, based on the example

VM-based infrastructure presented in the previous section, where three types of VMs are available
and 𝑇𝑟𝑒𝑠 = {vm.small, vm.medium, vm.large}. In the example, the current state of the operator is
𝑠 = ( [2, 0, 1], 𝜆), that is two small instances and one large instance are in use, and the input rate level
is 𝜆. Possible actions from the set A(𝑠) are (−1, 𝐿) and (+1,𝑀), which, respectively, correspond to
removing a large instance, and adding a medium instance.
A cost is associated with the execution of actions and state transitions. The function 𝑐 (𝑠,𝑎, 𝑠′)

captures the cost of operating the system in state 𝑠′, after carrying out action 𝑎 in state 𝑠 . The
function accounts for the three different cost metrics we have been considering so far: resource
usage, performance violation, adaptation overhead.

The resources cost cres is the cost paid for using the computing resources on which the operator
is deployed throughout the next interval. Formally, we have:

𝑐𝑟𝑒𝑠 (𝑠,𝑎, 𝑠′) =
∑︁

𝜏∈𝑇𝑟𝑒𝑠
𝑘 ′𝜏𝑐𝜏

where 𝑐𝜏 is the cost paid for deploying an operator replica on a resource of type 𝜏 for the next time
interval.
The reconfiguration penalty crcf captures the impact of deployment adaptation (i.e., state move-

ment, application downtime). We model such a penalty with a constant value, because the large
reconfiguration overhead imposed by most DSP frameworks dominates the variable impact of
state movements for many applications.7 Therefore, we have 𝑐𝑟𝑐 𝑓 (𝑎) = 1{𝑎≠𝜔 } , where 1{ ·} is the
indicator function.

The performance requirement violation cost cperf captures the penalty incurred whenever the oper-
ator violates its performance requirement in the next interval. Specifically, as we consider response
7More accurate and detailed models of the adaptation overhead can be formulated, as we did, e.g., in [9], and integrated in
our auto-scaling model. However, as we have observed in practice that the reconfiguration time is often dominated by the
overhead imposed by DSP frameworks to pause-and-resume the whole application upon parallelism changes, we decided to
adopt a simple adaptation penalty model and rely on a constant penalty for scaling actions.
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time requirements assigned by the AM to each operator, we have 𝑐𝑝𝑒𝑟 𝑓 (𝑠,𝑎, 𝑠′) = 1{�̃� (𝑠′ )>�̃�𝑚𝑎𝑥 } ,
where �̃�(𝑠) is the average8 operator response time in state 𝑠 and �̃�𝑚𝑎𝑥 is the per-operator latency
bound. Note that the same approach may be used in presence of different performance requirements
(e.g., throughput), updating the penalty evaluation as needed.

We combine the different costs into a single cost function using the Simple Additive Weight-
ing (SAW) technique. According to SAW, we define the cost function 𝑐 (𝑠,𝑎, 𝑠′) as the weighted sum
of the normalized costs:

𝑐 (𝑠,𝑎, 𝑠′) = 𝑤𝑟𝑒𝑠
𝑐𝑟𝑒𝑠 (𝑠,𝑎, 𝑠′)

𝐶𝑚𝑎𝑥
+𝑤𝑟𝑐 𝑓 𝑐𝑟𝑐 𝑓 (𝑎) +𝑤𝑝𝑒𝑟 𝑓 𝑐𝑝𝑒𝑟 𝑓 (𝑠,𝑎, 𝑠′) (2)

where𝑤𝑟𝑒𝑠 ,𝑤𝑟𝑐 𝑓 and𝑤𝑝𝑒𝑟 𝑓 are non negative weights (with𝑤𝑟𝑒𝑠 +𝑤𝑟𝑐 𝑓 +𝑤𝑝𝑒𝑟 𝑓 = 1), and 𝐶𝑚𝑎𝑥 is a
normalization parameter defined as max𝜏∈𝑇𝑟𝑒𝑠 𝑐𝜏𝐾𝑚𝑎𝑥 .

It is worth observing that we might drop the explicit adaptation cost term, as it could be indirectly
captured by other terms (e.g., increased response time). Having an explicit adaptation cost has a
twofold motivation. First, it makes the formulation more general, as it allows us to capture the
impact of adaptation beyond response time degradation (e.g., with respect to network usage or
application unavailability, due to state migrations possibly required by auto-scaling). A second
advantage will be evident when presenting the learning algorithms in the following. Since the
adaptation impact is known, it can be excluded from the dynamics that algorithms have to learn.
The ultimate goal of the OM, which corresponds to the decision making agent in the MDP

parlance, is to minimize the total cost incurred by its actions over time. To this end, the OM seeks
for a good policy, that is a function 𝜋 : S → A which associates each state with an action to
perform.
Formally, given a policy 𝜋 , the value function 𝑉 𝜋 (𝑠) denotes the expected discounted cost paid

over the infinite time horizon when following 𝜋 from the initial state 𝑠 , that is:

𝑉 𝜋 (𝑠) = 𝐸𝜋

" ∞∑︁
𝑖=0

𝛾𝑖𝑐 (𝑠𝑖 ,𝑎𝑖 , 𝑠𝑖+1)
�����𝑠0 = 𝑠

#

We are interested in determining the optimal policy 𝜋∗ that minimizes the expected discounted
cost. The optimal policy satisfies the Bellman optimality equation for every state 𝑠:

𝑉 𝜋∗ (𝑠) = min
𝑎∈A(𝑠 )

( ∑︁
𝑠′ ∈S

𝑝 (𝑠′ |𝑠,𝑎)
h
𝑐 (𝑠,𝑎, 𝑠′) + 𝛾𝑉 𝜋∗ (𝑠′)

i)
(3)

where the expected future costs starting from state 𝑠′ are recursively expressed by means of
𝑉 𝜋∗ (𝑠′). It is also convenient to define the action-value function 𝑄𝜋 : S ×𝐴 → R (also known as
“𝑄 function”), which is the expected infinite-horizon discounted cost incurred by taking action 𝑎 in
state 𝑠 and then following the policy 𝜋 :

𝑄𝜋 (𝑠,𝑎) =
∑︁
𝑠′ ∈S

𝑝 (𝑠′ |𝑠,𝑎) [𝑐 (𝑠,𝑎, 𝑠′) + 𝛾𝑉 𝜋 (𝑠′)] (4)

It is easy to realize that the value functions𝑉 and𝑄 are closely related in that𝑉 𝜋 (𝑠) = min𝑎 𝑄𝜋 (𝑠,𝑎).
More importantly, the knowledge of Q provides the associated policy 𝜋 , as 𝜋 (𝑠) = argmin𝑎 𝑄 (𝑠,𝑎),
for every state 𝑠 .

8While we consider average response time in this work, the approach can be readily updated to work with different
requirements, e.g., in terms of percentiles. Indeed, we only require the ability to evaluate whether the requirement is met in
each time slot.
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Algorithm 1 Auto-Scaling Policy based on Q-learning (QL)
1: 𝑖 → 0
2: Initialize the 𝑄 function
3: loop
4: choose a scaling action 𝑎𝑖 based on current estimates of 𝑄 , e.g., 𝜖-greedy
5: observe the next state 𝑠𝑖+1 and the incurred cost 𝑐𝑖
6: 𝑄 (𝑠𝑖 ,𝑎𝑖 ) ← 𝑄 (𝑠𝑖 ,𝑎𝑖 ) + 𝛼 [𝑐𝑖 + 𝛾 min𝑎′ ∈A 𝑄 (𝑠𝑖+1,𝑎′) −𝑄 (𝑠𝑖 ,𝑎𝑖 )]
7: 𝑖 ← 𝑖 + 1
8: end loop

4.2 Reinforcement Learning: Background on Tabular and Deep Q-learning
Given aMDP instance whose parameters, including the cost function and the transition probabilities,
are known, planning algorithms can compute the optimal policy (e.g., through Value Iteration).
However, in many scenarios, information about the system dynamics are not available. A natural
choice in these scenarios is to use reinforcement learning (RL) techniques which learn the optimal
policy through experience and direct interaction with the system [62]. The core idea behind RL
algorithms is to improve the policy over time based on feedback, that is the incurred costs, through
direct interaction with the system.9 This high-level idea has led to the development of many different
RL approaches and algorithms. Hereafter, we will focus on value function-based algorithms, whose
general scheme is shown in Algorithm 1: value function entries (e.g., 𝑄 entries) are first initialized
(setting all to 0 will often suffice) (line 1); then, by direct interaction with the system, the RL agent
(i.e., the OM) at each step 𝑡 chooses an action 𝑎𝑡 based on current estimates of 𝑄 (line 3), observes
the incurred cost 𝑐𝑡 and the next state 𝑠𝑡+1 (line 4), and updates𝑄 based on what it just experienced,
that is the tuple (𝑠𝑖 ,𝑎𝑖 , 𝑐𝑖 , 𝑠𝑖+1) (line 5). Existing algorithms mainly differ in the way actions are
selected and 𝑄 is updated at each step.
As regards the choice of actions to be performed while learning, RL algorithms often face the

so-called exploration-exploitation dilemma. To expand their knowledge, agents need to explore new
states and actions. At the same time, in order to minimize the incurred cost, agents would need to
exploit actions that have proven to be good in the past. Therefore, most RL algorithms seek for a
suitable balance between exploration and exploitation.

4.2.1 Q-learning. The simplest RL algorithm is the well-known Q-learning algorithm, which
is a model-free algorithm (i.e., it does not require any knowledge of the system dynamics). Q-
learning [67] (denoted as QL for short in figures and tables), is a learning algorithm that estimates
the optimal action value function 𝑄∗ by its sample averages. At any decision step (line 4 of
Algorithm 1), Q-learning either: 1) exploits its current knowledge and greedily selects the action
expected to minimize future costs, i.e., 𝑎𝑖 =argmin𝑎′ ∈𝐴(𝑠𝑖 )𝑄 (𝑠𝑖 ,𝑎′); alternatively, 2) it explores the
environment by choosing a random action to improve its knowledge of the system. A common
approach to mix exploration and exploitation is the so-called 𝜖-greedy action selection policy, which
chooses either a random action with probability 𝜖 or the greedy action with probability 1 − 𝜖 .

The algorithm performs simple one-step updates at the end of each time slot (line 6), as follows:

𝑄 (𝑠𝑖 ,𝑎𝑖 ) ← (1 − 𝛼)𝑄 (𝑠𝑖 ,𝑎𝑖 ) + 𝛼
�
𝑐𝑖 + 𝛾 min

𝑎′ ∈A(𝑠𝑖+1 )
𝑄 (𝑠𝑖+1,𝑎′)

�
(5)

9RL terminology usually considers agents aiming to maximize action rewards. To be consistent with our MDP formulation,
we instead consider an equivalent cost minimization problem.
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Fig. 7. Example of neural network used by deep Q-learning.

where 𝛼 ∈ (0, 1) is the learning rate parameter. It is worth remarking the simplicity of this rule,
which involves the updating of a single entry, 𝑄 (𝑠𝑖 ,𝑎𝑖 ), with the latest observed cost 𝑐𝑖 plus the
expected cost of following the greedy policy onward, that is min𝑎′ ∈A 𝑄 (𝑠𝑖+1,𝑎′).
4.2.2 Deep Q-learning. Algorithms that rely on tabular representations of the value function as
Q-learning, although effective in many cases, may suffer from limited scalability as the size of the
state space grows. To overcome these issues, Function Approximation (FA) techniques have been
largely adopted in the literature. When using FA, the Q table is replaced by a parametric function
�̂� (𝑠,𝑎, 𝜃 ) that is used to approximate 𝑄 (𝑠,𝑎). By so doing, rather than storing and updating every
single entry 𝑄 (𝑠,𝑎), we only have to store and update the - usually much smaller - parameters
vector 𝜃 . This approach can dramatically reduce the computational and storage demand of learning
algorithms.
The quality of the computed policy clearly depends on how well �̂� approximates 𝑄 . For this

purpose, a large number of approximation models may be used, ranging from linear models to
(deep) neural networks. Artificial neural networks and, in particular, deep neural networks (DNNs)
have gained enormous popularity in the last decade, thanks to the outstanding advancements
they enabled in various areas of research. The field of RL has not ignored this trend, with the
development of deep RL methods (see, e.g., deep Q Networks [43]), where DNNs support nonlinear
FA and enable learning over continuous or very large state spaces.
The core idea behind deep RL is using an approximate value-function �̂� (𝑠,𝑎;𝜃 ) obtained as

the output of a DNN, where 𝜃 denotes the weights of the network. For this purpose, the network
has to be trained using samples of 𝑄 collected through experience, using, e.g., stochastic gradient
descent (SGD). It is worth noting that such training often requires a lot of data and time and, thus, it
is performed off-line by means, e.g., of system simulators. In our setting, instead, we aim to perform
the training on-line, assuming that new applications can be submitted to the system at any time,
preventing us from computing an auto-scaling policy in advance.

An example architecture of a DNN used within RL is given in Figure 7. Given a state 𝑠 , the input
of the network consists of a vector𝜓 (𝑠), which is a suitable encoding of 𝑠 (we discuss possible state
encoding strategies in Appendix B.3). One or more hidden layers contribute to the computation
of the network output, which comprises one element for each available action 𝑎, yielding the
approximate value �̂� (𝑠,𝑎).

In principle, DNN-based FA can be integrated in Q-learning by simply replacing the traditional
𝑄 update rule in Equation (5) with an iteration of network training that uses the newly collected
experience. However, to reduce the risk of overfitting due to correlation between consecutive
observations, DRL approaches usually rely on experience replay. The agent does not immediately
use its experience for learning and instead stores the associated information (i.e., state transitions,
performed actions and paid costs) in an experience buffer. Periodically, when a learning step has to
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Algorithm 2 Auto-Scaling Policy based on Deep Q-learning (DQL)
1: Initialize 𝜃 and the experience buffer B
2: loop
3: pick scaling action 𝑎𝑖 (e.g., with 𝜖-greedy)
4: observe the next state 𝑠𝑖+1 and the incurred cost 𝑐𝑖
5: add the experience tuple ⟨𝑠𝑖 ,𝑎𝑖 , 𝑠𝑖+1, 𝑐𝑖⟩ to B
6: if 𝑠ℎ𝑜𝑢𝑙𝑑𝑈𝑝𝑑𝑎𝑡𝑒 (𝑖) then
7: sample batch of ⟨𝑠 𝑗 ,𝑎 𝑗 , 𝑠 𝑗+1, 𝑐 𝑗 ⟩ tuples from B
8: 𝑦 𝑗 ← 𝑐 𝑗 + 𝛾 min𝑎′ ∈A(𝑠𝑖+1 ) �̂� (𝑠𝑖+1,𝑎′;𝜃 ), ∀𝑗
9: train the network using samples (𝑠 𝑗 ,𝑦 𝑗 )
10: end if
11: 𝑖 ← 𝑖 + 1
12: end loop

be performed, a mini-batch of experience items is randomly drawn from the buffer. In addition to
reducing correlation between samples, this approach promotes reuse of past observations to avoid
forgetting.

The resulting deep Q-learning (DQL) algorithm is reported in Algorithm 2. As for the standard
Q-learning algorithm, the agent picks an action at every time step (line 3), observing a transition
and paying a cost (line 4). As mentioned, the latest observation is stored into an experience buffer
B (line 5), which is usually a fixed-capacity FIFO buffer. When a learning iteration has to be done
(e.g., periodically every 𝑘 steps), a batch of experience tuples are drawn from B (line 7). A training
iteration is then performed (using, e.g., SGD) against a batch of samples 𝑦 𝑗 obtained through the
available experience (lines 8-9).

4.3 Operator Autoscaling: Learning Policies with Post Decision States
The aforementioned learning techniques, as Q-learning and DNN, are based on the underlying
assumption that we have no knowledge about the system and everything must be learnt through
direct interaction with the system itself. This is clearly a feature when indeed no knowledge about
the system dynamics is available, but it can become a liability otherwise, since - by using Q-learning
and DNN as previously described - we are basically using the learning algorithm to also learn what
we already know, which in turn results in slower converging algorithms.

In our domain as well as in many others, the dynamics of the system are not completely un-
predictable. In particular, in our setting, the impact of actions on the system state is known and
deterministic (e.g., scale-out actions increase the operator parallelism by one level). Therefore, it
seems desirable to provide the learning agent with such basic knowledge, rather than letting it
discover it by itself, in order to provide faster convergence and, as a result, better scaling algorithm
performance.

In this paper, in order to integrate the partial knowledge we have in the learning algorithm, we
use the concept of post-decision state (PDS) (also known as afterstate), exploiting the generalized
definition given in [39]. A PDS refers to the state of the system after the known dynamics takes
place, but before the unknown dynamics does. Formally, we denote a PDS as 𝑠 ∈ S. At any time 𝑖 ,
we logically split the state transition 𝑠𝑖 → 𝑠𝑖+1 into two distinct transitions: 𝑠𝑖 → 𝑠𝑖 and 𝑠𝑖 → 𝑠𝑖+1.
The first transition 𝑠𝑖 → 𝑠𝑖 represents the impact of the decision 𝑎𝑖 and the known dynamics,
hence the name post-decision state; the second transition 𝑠𝑖 → 𝑠𝑖+1 represents the impact of the
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...

...

Fig. 8. Relationships between current state, actions, PDS, and next state, assuming 𝑁𝑟𝑒𝑠 = 1 and, thus, only
three actions exist in the model. (Adapted from the diagram reported in [39].)
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Fig. 9. The post-decision state (PDS) abstraction allows us to separate known and unknown dynamics. By
doing so, we can design enhanced RL algorithms where we only have to learn the unknown components,
possibly achieving faster convergence.

unknown dynamics, which brings the system from the post-decision state 𝑠𝑖 to the next state 𝑠𝑖+1
(see, Figure 8).

In our setting, given the current state 𝑠𝑖 = (𝑘𝑖 , 𝜆𝑖 ) and the selected action 𝑎𝑖 , we have:

𝑠𝑖 = (k𝑖 ⊕ 𝑎𝑖 , 𝜆𝑖 ) = (k𝑖+1, 𝜆𝑖 ) (6)
𝑠𝑖+1 = (k𝑖+1, 𝜆𝑖+1) (7)

where k𝑖 ⊕ 𝑎𝑖 indicates the deployment reconfiguration dictated by action 𝑎𝑖 . The post-decision
state 𝑠𝑖 reflects the consequences of action 𝑎𝑖 (and, in general, any other known dynamics), whilst
the next state 𝑠𝑖+1 incorporates the unknown system dynamics (i.e., the input rate variation).

Correspondingly to the splitting of the state transition, we have to separate the cost function (2)
in known and unknown components as follows:

𝑐 (𝑠,𝑎, 𝑠′) = 𝑐𝑘 (𝑠,𝑎) + 𝑐𝑢 (𝑠, 𝑠′) (8)

where 𝑐𝑘 (𝑠,𝑎) accounts for the known deterministic cost associated to the scaling action 𝑎 in state 𝑠 ,
and 𝑐𝑢 (𝑠, 𝑠′) incorporates the unknown unpredictable impact of the rate variation on the system
performance when transitioning from the PDS 𝑠 to the new state 𝑠′. Comparing the expression
above to (2), we have 𝑐𝑘 (𝑠,𝑎) = 𝑤𝑟

𝑐𝑟𝑒𝑠 (𝑠,𝑎,𝑠′ )
𝐶𝑚𝑎𝑥

+ 𝑤𝑎𝑐𝑟𝑐 𝑓 (𝑎) which accounts for the costs due to
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adaptation and resource usage, and the unknown cost 𝑐𝑢 (𝑠, 𝑠′) = 𝑤𝑠𝑐𝑝𝑒𝑟 𝑓 (𝑠,𝑎, 𝑠′) which accounts
for the performance penalty, which depends on the input data rate in the next time state.

Separating known and unknown dynamics through the PDS abstraction allows us to design an
enhanced version of the Q-learning and DNN algorithms. Intuitively, once we have separated the
system dynamics in known and unknown components, we can restrict ourselves to only learning
the unknown part, as illustrated in Figure 9, possibly leading to a faster learning process. Following
the approach presented in [39], we introduce the PDS value function �̃� (𝑠), which represents the
expected discounted cost paid when starting from a PDS 𝑠 10.

The resulting learning algorithm (QL+PDS, for short) updates at each step the Q-function along
with the post decision state value function �̃� . More precisely, we replace the Q-learning update
step (5), with the following two steps:

𝑄 (𝑠𝑖+1,𝑎) ← 𝑐𝑘 (𝑠𝑖+1,𝑎) + �̃� (𝑠𝑖+1) ∀𝑎 ∈ A (9)

�̃� (𝑠𝑖 ) ← (1 − 𝛼)�̃� (𝑠𝑖 ) + 𝛼
�
𝑐𝑢,𝑖 + 𝛾 min

𝑎′ ∈A(𝑠𝑖+1 )
𝑄 (𝑠𝑖+1,𝑎′)

�
(10)

Comparing them to (5), we can observe that in QL+PDS: (i) we first update𝑄 (𝑠𝑖+1,𝑎) but, differently
from (5), we only take into account the known dynamics, that is the known cost 𝑐𝑘 (𝑠𝑖+1,𝑎) and the
PDS value �̃� (𝑠𝑖+1); (ii) then we update �̃� (𝑠𝑖 ) by taking into account the unknown dynamics, that
is the incurred cost 𝑐𝑢,𝑖 and the input rate variation from 𝜆𝑖 to 𝜆𝑖+1. As shown in [39], the update
equations (9)-(10) ensure convergence as 𝑖 → ∞.
As we will demonstrate in Sec. 6, separating known and unknown parts of the model results

in significant boosts to the learning speed. In this context, a legitimate question is if we can do
more: intuitively, the less we need to learn, the faster the learning speed. To this end, we now also
consider the idea of estimating the unknown part of our model, that is the unknown cost 𝑐𝑢 (𝑠, 𝑠′): if
we manage to estimate the performance violation cost over the next interval, 𝑐𝑢 (𝑠), which depends
on the workload dynamics and the operator response time model, we reduce the unknown part of
our model to the performance violation prediction error.
The resulting enhanced PDS-based algorithm (QL+PDS+, for short) replaces (9)-(10) with

𝑄𝑖 (𝑠𝑖+1,𝑎) ← 𝑐𝑘 (𝑠𝑖+1,𝑎) + 𝑐𝑢 (𝑠𝑖+1) + �̃�𝑖 (𝑠𝑖+1) ∀𝑎 ∈ A (11)
�̃�𝑖+1(𝑠𝑖 ) ← (1 − 𝛼)�̃�𝑖 (𝑠𝑖 ) + 𝛼

�
𝛿𝑐,𝑖 + 𝛾 min𝑎′ ∈A(𝑠𝑖+1 ) 𝑄𝑖 (𝑠𝑖+1,𝑎′)

�
(12)

where 𝛿𝑐,𝑖 = 𝑐𝑢,𝑖 − 𝑐𝑢 (𝑠𝑖 ) represents the performance violation estimation error. Comparing the
updating rules, it is worth observing that QL+PDS+ differs from QL+PDS in that: (i) in (11) we
replace the known cost 𝑐𝑘 (𝑠𝑖+1,𝑎) with the sum of the known cost and the estimate of the unknown
cost 𝑐𝑘 (𝑠𝑖+1,𝑎) +𝑐𝑢 (𝑠𝑖+1); and (ii), in (12) we replace the unknown cost 𝑐𝑢,𝑖 with the estimation error
𝛿𝑐,𝑖 .

4.3.1 Deep Q-learning with Post-Decision States. In order to improve the performance and respon-
siveness of the learning algorithm we also propose a PDS-based DQL algorithm (DQL-PDS, for
short) by analogous reasoning.

In QL-PDS we introduced the PDS value function𝑉 (𝑠) to capture the unknown system dynamics
that we must learn. Here, we approximate �̃� by𝑉 (𝑠) using the DNN and to update over time, whilst
𝑄 can be readily computed from �̃� and the known dynamics. To do so, we need a different network
architecture, shown in Figure 10. Network input still consists of a single state, which is now a PDS
𝑠 . The main difference with respect to the DNN presented above regards the output layer, which is
now composed of a single neuron, associated with the value 𝑉 (𝑠).
10Observe that we do not have a corresponding action-value function associated to 𝑠 since there are no actions in post-
decision states.
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Fig. 10. Example of neural network used by deep Q-learning to exploit the PDS concept.

The resulting algorithm is very similar to the standard DQL from Algorithm 2, with the notable
exception that only the unknown cost terms are stored in the experience buffer (lines 4-5) and used
to compute the target values for training (line 8). Furthermore, as we did for the tabular case, we
can also define an enhanced version of the algorithm (denoted as DQL-PDS+), where we bootstrap
the learning process with estimates of the unknown costs. In this case, we observe the difference
between the expected and the observed costs on-line and use it for learning (see Sec. 4.3).

5 APPLICATION MANAGER POLICY
The Application Manager (AM) is the top-layer entity of our hierarchical auto-scaling framework,
as illustrated in Figure 4. The AM is responsible for steering application adaptation by supervising
the lower-layer decentralized OMs.
Instead of directly making auto-scaling decisions, the AM aims to optimize application QoS by

configuring OM local objectives. In particular, the role of the AM is illustrated in Figure 11. Given
a set of user QoS requirements, the AM aims to minimize the application operating costs while
guaranteeing the desired service level (e.g., in terms of processing latency). To this end, the AM
runs its own control loop, which comprises three main components: Application Monitor, QoS
Analyzer and Optimizer.

The Application Monitor collects key performance metrics from the lower-layer OMs about the
running application (e.g., data arrival rate, operator response times). This information is passed to
the QoS Analyzer to build a model of the system, which is used to evaluate the achieved QoS under
various configurations. To this end, we equip the QoS Analyzer with simulation-based models
of the system, which are used asynchronously with respect to application execution. As further
explained below, these models are exploited by an Optimizer to adjust OM configuration.
We formalize the problem tackled by the AM in the next subsection, before presenting the

resolution strategy we propose.

5.1 Problem Formulation
The goal of the AM is to minimize the monetary application operating costs due to acquisition and
usage of computing resources while satisfying the applications QoS requirements. Without lack of
generality, we assume QoS requirements to be specified in terms of three target values, as follows:

• 𝑅𝑚𝑎𝑥
𝜋 , the maximum response time for each source-to-sink path 𝜋 in the application graph;

source-to-sink paths may correspond to different queries on the input data streams and, thus,
be associated with different latency requirements.

• 𝜂𝑉 , the maximum fraction of time when the response time requirement is allowed to be
violated (e.g., no more than 5% violations).
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Fig. 11. Application Manager architecture and its interaction with the Operator Managers.
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Fig. 12. Example results showing the impact of changing the weights used in the OM cost function, in terms
of resource usage, as well as percentage of performance violations and parallelism reconfigurations.

• 𝜂𝑅 , the maximum fraction of time when the application deployment can be reconfigured,
possibly incurring overheads (e.g., no more than 10% reconfigurations).

The AM aims to minimize operating costs and meet the requirements introduced above, while the
lower-layer OMs independently optimize a different local cost function (i.e., Equation 2). Therefore,
the key knobs available to the AM correspond to the parameters of the local OM objectives, which
can be tuned so as to optimize the application-level QoS. Specifically, the OM cost function can be
adjusted by tweaking the objective weights w =

�
𝑤𝑝𝑒𝑟 𝑓 ,𝑤𝑟𝑐 𝑓 ,𝑤𝑟𝑒𝑠

�
and the operator response time

bounds 𝑅𝑚𝑎𝑥
𝑢 , ∀𝑢 ∈ 𝑉𝑑𝑠𝑝 .

As regards the response time requirement, the AM is only given the values 𝑅𝑚𝑎𝑥
𝜋 , which specify

the maximum response time at level of end-to-end paths in the application graph. From these
values, the AM has to derive the response time requirement for each operator, so as to satisfy
the application-level requirement through a set of local requirements. As operators have different
resource demands, it is clear that local bounds should be set accordingly to optimize resource usage
(e.g., highly loaded operators would benefit the most from larger response time “budgets”).

As regards the weights w, they express the relative importance of the different objective terms at
the operator level. Figure 12 reports an example of the impact of setting different objective weights
to an OM, in terms of performance violations, resource usage and reconfigurations. It can be seen
that tuning the weights leads to a different trade-off between the three key metrics. Such tuning
should be abstracted away from users concerned with higher-level QoS requirements and should
be delegated to the AM. Therefore, the AM has to suitably tune them according to the user-given
target performance violation and reconfiguration requirements (i.e., 𝜂𝑉 and 𝜂𝑅).
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The optimization problem tackled by the AM can be formulated as follows:

min
w,𝑅𝑚𝑎𝑥

𝑢

𝑇∑︁
𝑡=0

𝐶𝑟𝑒𝑠 (𝑡) (13)

s.t. 1
𝑇

𝑇∑︁
𝑡=0

𝑉𝑖𝑜𝑙 (𝑡) ≤ 𝜂𝑉 (14)

1
𝑇

𝑇∑︁
𝑡=0

𝑅𝑐 𝑓 (𝑡) ≤ 𝜂𝑅 (15)

𝑤𝑝𝑒𝑟 𝑓 ,𝑤𝑟𝑐 𝑓 ,𝑤𝑟𝑒𝑠 ∈ (0, 1) (16)
𝑅𝑚𝑎𝑥
𝑢 ≥ 0,∀𝑢 ∈ 𝑉𝑑𝑠𝑝 (17)

where𝐶𝑟𝑒𝑠 (𝑡) denotes the application resource usage cost at time 𝑡 , which accounts for the resource
usage of each operator in the application:

𝐶𝑟𝑒𝑠 (𝑡) =
∑︁

𝑢∈𝑉𝑑𝑠𝑝
𝑐𝑢𝑟𝑒𝑠 (𝑡)

and 𝑉𝑖𝑜𝑙 (𝑡) and 𝑅𝑐 𝑓 (𝑡) are binary functions indicating whether, respectively, a performance viola-
tion or a reconfiguration happens at time step 𝑡 .
Unfortunately, we cannot tackle this problem by standard methods as we cannot rely on an

analytical expression of the objective function, which depends on the policies adopted at run-time
by the OMs, not known a priori, and their interaction.

5.2 Problem Resolution via Bayesian Optimization
In order to resolve the problem presented above, we resort to black-box optimization methods.
These techniques aim to optimize the value of objective functions that are not analytically available
(and neither are their derivatives), but can be evaluated on given candidate solutions. Among this
group of methods, we turn our attention to Bayesian optimization (BO) [56], which searches for
the global optimum of an objective 𝑓 given a limited number of steps in which the function can
be evaluated on arbitrary points. To do so, BO builds a probabilistic surrogate model of 𝑓 , which
captures prior belief about the function and guides the choice of the most “promising” points to
sample.

5.2.1 Basics of Bayesian Optimization. Algorithm 3 shows the pseudocode for a generic BOmethod,
whichworks as follows. To initialize the surrogatemodel of 𝑓 , we first evaluate the objective function
at 𝑛0 arbitrary points, which can be chosen, e.g., randomly (lines 1–3). Then, we iteratively sample
new points until allowed (i.e., until the desired number of iterations 𝑁𝐵𝑂 is reached or, alternatively,
the available time budget expires). At each iteration, the point to sample x̄ is chosen so as to
maximize a so-called acquisition function (line 6). The acquisition function relies on the surrogate
model and usually balances exploitation (i.e., sampling where the surrogate model predicts a high
value) and exploration (i.e., sampling points where uncertainty is high). After sampling 𝑓 (x̄), the
surrogate model is updated accordingly (lines 7–8). At the end, BO yields the “best” point x, which
– depending on the requested behavior – is either the point evaluated with largest 𝑓 (x), or the
point that maximizes the surrogate model.

Figure 13 illustrates the main concepts involved in BO. A popular choice for the surrogate model
in this context is represented by Gaussian Processes [48], a statistical tool for stochastic modeling
of functions. As regards the acquisition function, several options exist, including, e.g., expected
improvement, or upper confidence bounds.

ACM Trans. Autonom. Adapt. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.



Hierarchical Auto-Scaling Policies for Data Stream Processing on Heterogeneous Resources 1:21

Algorithm 3 Basic Bayesian optimization approach.
Input: Black-box objective 𝑓 , domain 𝐷 , allowed iterations 𝑁𝐵𝑂

1: choose arbitrarily x1, x2, . . . , xn0 ∈ 𝐷 , 𝑛0 < 𝑁𝐵𝑂

2: evaluate 𝑓 (x1), 𝑓 (x2), . . . , 𝑓 (xn0 )
3: build a surrogate model of 𝑓 using the available samples
4: 𝑛 ← 𝑛0
5: while 𝑛 < 𝑁𝐵𝑂 do
6: pick x̄ ∈ 𝐷 that maximizes the acquisition function
7: evaluate 𝑓 (x̄)
8: update the surrogate model using the new sample
9: 𝑛 ← 𝑛 + 1
10: end while
11: return x that either is the point evaluated with largest 𝑓 (x) or maximizes the surrogate model

0 . 0 0 . 2 1 . 0

x
x

f(x)

Acquisition
functionObservations

Surrogate
model

Next point

Fig. 13. Bayesian optimization searches for the global optimum of an objective 𝑓 (𝑥) given a limited number
of observations (i.e., function evaluations on arbitrary points). To do so, BO builds a probabilistic surrogate
model of 𝑓 , which captures prior belief about the function. An acquisition function uses this surrogate model
to guide the choice of the most “promising” points to sample (e.g., those where uncertainty is maximum).

5.2.2 Using BO within the AM. We exploit BO to minimize the objective function (13), i.e., the
resource usage cost, given the local objective weights w and the operator response time bounds. To
do so, we must be able to evaluate (13) over an observation period𝑇 given a candidate solution. We
fulfill this requirement equipping the AM with a system simulator, which can be used in parallel
with the real system. In order to build such a simulation model, the AM needs to collect data
about the application, so this method cannot be used to bootstrap the auto-scaling framework
(for this purpose, it suffices to use the naive approach described above). In particular, the AM
needs information about both the workload and the operators. For the workload, the AM needs
to collect a sequence of input data rate values, which will be used for trace-driven simulation. As
regards the operators, the AM needs to collect basic information to build an estimated performance
model. Specifically, we monitor the average operator service time and its variance and use them to
instantiate an M/G/1 queueing model of each operator instance.

To limit the number of variables involved in the optimization, we separately optimize the objective
weights and the response time bounds, as described in the next two subsections. Then, we will
present an iterative algorithm that wraps the two phases.

5.2.3 Latency apportioning. To determine the response time bound for each operator, we let BO
search for the vector x = (𝑥1, 𝑥2, . . . , 𝑥𝑛),𝑥𝑖 ∈ (0, 1), such that𝑅𝑚𝑎𝑥

𝑖 = 𝑥𝑖𝑅𝑚𝑎𝑥 is the time apportioned
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Algorithm 4 Iterative response time bounds and objective weights tuning.
Input: application 𝐺𝑑𝑠𝑝 , QoS requirements 𝜁 = ⟨𝑅𝑚𝑎𝑥 , 𝜂𝑉 , 𝜂𝑅⟩, max BO iterations 𝑁𝐵𝑂

Output: obj. weights𝒘 , operator max. response times 𝝆
1: initialize w and 𝝆 using the naive approach ⊲ see Sec. 6.3
2: repeat
3: 𝝆0 ← 𝝆
4: 𝝆 ← optimizeLatency(𝐺𝑑𝑠𝑝 , 𝜁 ,𝑁𝐵𝑂 , 𝝆0,𝒘)
5: 𝒘0 ← 𝒘
6: 𝒘 ← optimizeWeights(𝐺𝑑𝑠𝑝 , 𝜁 ,𝑁𝐵𝑂 ,𝒘0, 𝝆)
7: reduce 𝑁𝐵𝑂 if needed
8: until max iterations or no improvement

to the 𝑖-th operator.11 Therefore, the number of variables equals the number of operators in the
application. Since a limited number of objective evaluations are available to the algorithm, it
is important to carefully select the points to sample. For this reason, we guide the search by
introducing constraints, which are taken into consideration when maximizing the acquisition
function. Specifically, we introduce two types of constraints. We enforce the variable domain:

0 < 𝑥𝑖 < 1, ∀𝑖 ∈ 𝑉𝑑𝑠𝑝
Moreover, we require that the total latency allocation along any source-to-sink path roughly
corresponds to 𝑅𝑚𝑎𝑥 , with a margin 𝜖 > 0:

1 − 𝜖 ≤
∑︁
𝑖∈𝜋

𝑥𝑖 ≤ 1 + 𝜖, ∀𝜋 ∈ Π𝑑𝑠𝑝

5.2.4 Weights tuning. In this setting we only have three variables corresponding to the weights
𝑤𝑟𝑒𝑠 ,𝑤𝑟𝑐 𝑓 and𝑤𝑝𝑒𝑟 𝑓 . As for the latency apportioning problem, we introduce constraints, starting
with the variable domain enforcement:

0 < 𝑤𝑋 < 1, ∀𝑋 ∈ {𝑟𝑒𝑠, 𝑟𝑐 𝑓 , 𝑝𝑒𝑟 𝑓 }
An additional constraint requires the sum of the weights to equal 1:

𝑤𝑟𝑒𝑠 +𝑤𝑟𝑐 𝑓 +𝑤𝑝𝑒𝑟 𝑓 = 1

5.2.5 Iterative AM algorithm. The AM tunes both the response time bounds and the objective
weights through an iterative procedure, where the two sets of parameters are alternatively updated
through BO. The resulting Algorithm 4 works as follows. Both the weights and the response time
bounds are first initialized using the naive approach described above (line 1). Then the algorithm
iteratively exploits BO to optimize the bounds or the weights in an alternate fashion (lines 3–6).
When response time bounds (or, respectively, the weights) are to be tuned, the weights (response
time bounds) are kept fixed using the best solution found so far. In each optimization round, the BO
is initialized with the current solution to speedup the process. The algorithm stops iterating when
a stop condition is met (i.e., when the desired number of iterations is reached or no improvement
has been provided by the latest iteration). We will show in the evaluation that in practice a
couple of iterations are enough to significantly improve the objective value compared to a baseline
configuration and the algorithm converges.

11To simplify the formulation, we assume that the maximum response time requirement is the same for all the source-to-sinks
paths in𝐺𝑑𝑠𝑝 and it is equal to 𝑅𝑚𝑎𝑥 . The algorithm can be readily generalized to deal with different requirements.
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Fig. 14. Overview of the experimental workflow built around the auto-scaling simulator that implements all
the policies presented.

6 EVALUATION
We numerically evaluate the presented policies, aiming to answer the following key questions:

• Q1: How do auto-scaling policies for DSP operators computed through RL compare to
heuristic or model-based baselines?

• Q2: Which is the impact of function approximation (i.e., DNN-based RL) and injected model
knowledge (i.e., post-decision states) on RL policies?

• Q3: How effective is the Application Manager in configuring independent RL-based Operator
Managers to optimize application-level auto-scaling?

In this section, we first describe the software used for evaluation and then present the experiments
performed to answer the questions listed above.

6.1 Evaluation Software
We implemented an evaluation software in Java12. Our software consists both of the implementation
of all the auto-scaling policies presented in the paper and the required logic to simulate their
execution against a given workload and infrastructure configuration.
A high-level view of the experimental workflow is provided in Figure 14. The input of each

experiment comprises (i) the specification of a DSP application (i.e., the operators and their inter-
connections), including the service time distribution of each operator, (ii) a trace of data arrival rates,
(iii) the specification of the computing infrastructure (i.e., types of available computing nodes, their
speedup andmonetary cost), and (iv) all the parameters related to the auto-scaling policy to simulate.
Based on the provided input, our software initializes the simulated computing infrastructure (i.e.,
the set of available node types ans associated instances) and operator deployment (i.e., a single
replica for each operator is created using the cheapest available node type). Then, a simulation is
started where the following key tasks are performed periodically at the beginning of fixed-length
time slots until the arrival trace is fully consumed:
(1) the mean application response time is evaluated given the current arrival rate and the operator

response time models; if the response time exceeds the user-given maximum response time,
a violation penalty is paid in the time slot;

12https://github.com/grussorusso/dsp-elasticity-sim
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Fig. 15. Illustrative segments of the two arrival traces used in the experiments.

(2) the auto-scaling policy is provided with the current arrival rate data and computes a recon-
figuration decision for each operator;

(3) operator deployment is updated based on auto-scaling decisions;
(4) resource usage cost and reconfiguration count are updated based on auto-scaling decisions,

and the overall MDP cost function is computed according to (2);
(5) the MDP cost is communicated to the OMs, which can perform a learning iteration;
(6) the new application arrival rate is read from the trace.
The output of the simulation consists of statistics about the metrics of interest, mostly revolving

around response time performance violations, cost due to resource usage and number of performed
reconfigurations.

In principle, the logic of the simulation and, thus, the output of each experiment is deterministic.
However, since RL-based policies might take randomized decisions (e.g., because of the 𝜖-greedy
action selection), we repeated all the experiments 10 times using different seeds for random number
generation.
As regards the policies integrated within the evaluation software, we implemented all the RL-

based algorithms described above as well as heuristic baselines that will be used in the following
for comparison. DNN-based algorithms have been implemented exploiting Deeplearning4j13, an
open-source library for deep learning in Java. As regards the AM and the Bayesian optimization,
we used GPyOpt14, an open-source library for Gaussian Process-based optimization.

6.2 Operator Manager Policies (Q1, Q2)
In these experiments, we focus on the computation of auto-scaling policies at operator-level and,
thus, evaluate single Operator Managers, according to the following setup.
Workloads.We consider data arrival rates retrieved from real traces at the beginning of each

time interval. In particular, we use two traces. The first trace (Taxi, for short) is extracted from
a data set of taxi trips in New York City throughout 1 year15. The resulting trace shows a daily
pattern with average arrival rate equal to 330 tuple/s.16 The second trace (Tweets) is extracted
from a data set containing tweets related to the COVID-19 pandemic collected from Twitter in the
first half of 2020.17 This trace is, thus, shorter than the previous one and has a higher average rate
equal to 2200 tuple/s. A sample of the two traces is shown in Figure 15.

13https://deeplearning4j.org/
14https://github.com/SheffieldML/GPyOpt
15https://chriswhong.com/open-data/foil_nyc_taxi/
16We scaled the event arrival rate of the original data set by 60x to achieve a more demanding workload.
17https://github.com/lopezbec/COVID19_Tweets_Dataset_2020

ACM Trans. Autonom. Adapt. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.



Hierarchical Auto-Scaling Policies for Data Stream Processing on Heterogeneous Resources 1:25

Table 1. Numerical speedup of nodes in the computing infrastructures A and B. Note: node type ordering in
the table is such that, when 𝑁𝑟𝑒𝑠 = 𝑛 node types are considered, only nodes with index 𝑖 ≤ 𝑛 are selected.

Node Type Index
1 2 3 4 5 6 7 8 9 10

Infrastructure Speedup
A 1.0 0.7 1.3 0.9 1.7 0.8 1.8 2.0 1.65 1.5
B, B2 1.0 0.05 30.0 0.1 0.2 0.4 0.8 2.0 5.0 7.0

Operators. We consider a DSP operator which runs up to 𝐾𝑚𝑎𝑥 ∈ {10, 20} parallel replicas.
Each replica is modeled as a G/G/1 queue, with mean service time 𝜇 and service time variance
equal to 𝜇2

2 . When using the Taxi trace we set 𝜇 = 180 tuple/s, whereas for the Tweets trace we set
𝜇 = 1600 tuple/s.
Infrastructure. We define different computing infrastructures for the experiments (Infr. A,

B and B2, for short), where heterogeneous nodes can be allocated.18 As explained above, nodes
are characterized by (i) a scalar speedup value, and (ii) a monetary price per unit of time. The
speedup values for the infrastructures are reported in Tab. 1, where it is evident that nodes in
infrastructure B are more heterogeneous compared to A. As regards the price, it is assumed to
be equal to the speedup in Infrastructure A and B. Nodes in Infrastructure B2 have the same
speedup of Infrastructure B, but their price does not grow linearly with the speedup. Specifically,
in Infrastructure B2, the cost 𝑐𝜏 is computed as: 𝜎1.1𝜏 , where 𝜎𝜏 is the speedup of node type 𝜏 . In
the experiments, we consider settings where a different number of node types are available, with
𝑁𝑟𝑒𝑠 ∈ {3, 6, 10}.
Problem parameters. The OM objective terms in the cost function are weighted so as to give

more importance to performance over resource usage and reconfiguration overhead, as follows
𝑤𝑝𝑒𝑟 𝑓 = 0.6,𝑤𝑟𝑒𝑠 = 𝑤𝑟𝑐 𝑓 = 0.2. We will show how these weights can be automatically set by the
AM in the following. The input rate is discretized using 𝑁𝜆 = 30 levels. The maximum response
time 𝑅𝑚𝑎𝑥

𝑜𝑝 is set to 50 ms. The discount factor 𝛾 in the MDP is set to 0.99, which is a typical choice.
RL andDNNparameters. For tabular Q-learning, we use decaying learning rate and exploration

probability – as suggested in [62] – and, specifically, we set 𝛼 (𝑡) = 0.98⌊ 𝑡−110 ⌋ , and 𝜖 (𝑡) = 0.95𝑡−1.
For DNN-based algorithms, we use a fully connected network with 3 hidden layers, using ReLU
as activation function. The number of neurons in each layer is set as 3

4 of its inputs. We use an
experience buffer with capacity 10, 000. Every 5 time steps, we randomly draw a batch of 32 items
from the buffer and perform a training iteration using SGD.
For QL-PDS+and DQL-PDS+, as they need to estimate the immediate action costs, we let them

use an approximate system model, where (i) the operator service process is assumed to follow
an exponential distribution and its rate is randomly under-estimated or over-estimated with a
relative error comprised between 5% and 10% with respect to the true value; (ii) the computing node
speedups are estimated with a uniform error not larger than 20%; (iii) the input rate is assumed to
remain unchanged in the next time step.

6.2.1 Comparison against Baseline Policies (Q1). We compare our solution against baseline ap-
proaches from the literature:

• Threshold-based (Thr) policies increase operator parallelism whenever the average re-
source utilization𝑈 exceeds a given threshold𝑈 . Conversely, if 𝑛 > 1 instances are active

18We assume that the resource capacity in the infrastructure – as usual in a Cloud scenario – is much larger than the
application demand and, thus, nodes can always be provisioned as requested.
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and the utilization without one of them would be sufficiently smaller than the threshold (i.e.,
𝑛

𝑛−1𝑈 < 𝛽𝑈 ), a scale-in decision is made. This approach has been frequently adopted in the
literature (e.g., [11, 16, 20]), not only for DSP auto-scaling [37]. In the experiments, we set
𝛽 = 0.75 and𝑈 = 0.7, after preliminary experiments.

• DRS (Fu et al. [19]): a queueing-based approach to scale DSP applications with latency
constraints, based on the theory of Jackson open queueing networks.

• Lohrmann et al. [35] (Lohrmann, for short): a queueing-based approach to auto-scale DSP
applications with latency constraints, which exploits Kingman’s approximation for GI/GI/1
queues.

• Heinze et al. [25] (Heinze, for short): a model-free RL-based solution to auto-scale DSP
systems. The goal of the agent is to keep the system resource utilization as close as possible to
a target value, avoiding both over- and under-utilization. While the original implementation
in [25] performs scaling operations at level of computing nodes, we implement it to scale
operator parallel replicas, enabling a comparison with our solution.

Note that all these policies have been usually adopted in presence of homogeneous computing
nodes. To cope with resource heterogeneity, we combine them with simple node selection strategies.
The first one (denoted with suffix -C) always picks the cheapest available node. The second one
(denoted with -S) instead picks the node with maximum speedup. The third one (denoted with -0)
only considers the first type of node as listed in Table 1.

As regards the model-based policies, i.e., Lohrmann and DRS, we consider their “best case” and
assume that they have exact knowledge of the operator service time process and the speedup
provided by each computing node. While in practice they would hardily have such information, we
will show that they struggle with heterogeneity even in this ideal scenario.

Figure 16 shows the average operating cost19 achieved by the baseline policies and our solution,
represented by QL-PDS. In Infrastructure A, which shows the least heterogeneity degree, all
the considered baseline policies and RL perform well, with the only exceptions of Heinze-C and
Lohrmann-C showing slight higher costs due to a suboptimal choice of nodes.
However, the situation changes significantly when looking at Infrastructure B, where more

heterogeneous nodes are available. In this setting, our QL-PDS policy achieves a significantly lower
average cost. The model-based policies by Heinze and Lohrmann do not make good use of the
available nodes and incur higher costs. The threshold-based policy shows acceptable performance
when always picking the most powerful nodes (i.e., Thr-S), but completely fails to satisfy the
response time requirement when using the cheapest nodes (i.e., Thr-C). In Infrastructure B2, where
a nonlinear cost-speedup relationship is used, things are even worse for baseline policies, which
fail to optimize the trade-off between resource capacity and price. In this third and last setting, the
RL policy is the only one delivering acceptable results, when looking at configurations with more
than a single type of node.

6.2.2 Comparison of RL algorithms (Q2). We now extend the comparison to all the RL algorithms
presented above, under a variety of settings. In addition to the algorithms presented above, we
include in the comparison the solution we have previously presented in [54] (denoted as QL+FA),
where linear function approximation is used in conjunction with Q-learning.

Complete tabular reporting of this comparison can be found in Appendix B. The results associated
with a relevant subset of the configurations (i.e., those where 𝐾𝑚𝑎𝑥 = 20) are illustrated in Figure 17.
Note that, although the threshold-based policies are included in this comparison, the corresponding

19In these experiments, where we focus on the OM policy, the average cost refers to the average MDP cost incurred by the
agent, i.e., computed according the cost function (2).
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Fig. 16. Comparison of state-of-the-art and RL policies with different computing infrastructures.

results are not shown in the figure and we will not further discuss them, since they basically confirm
what we observed in the previous subsection. The related results can be found in Appendix B.

Looking at the tabular RL algorithms, we first note that plain Q-learning has poor behavior in
all the considered settings, especially as regards the large number of performed reconfigurations
due to the need of exploration. The PDS-based Q-learning clearly outperforms the base version
when considering infrastructure A, managing to exploit the knowledge provided to the agent to
simplify learning. In this setting, QL+PDS keeps performance violations below 0.5%, reconfiguring
the operator less than 1% of the time. Unfortunately, QL+PDS does not work well in infrastructure
B, where the difference across node types is more significant. We observed that the OM fails
to pick suitable types of nodes at the beginning and keeps them for most the experiment while
it learns which deployment configurations are good. As such, it performs even worse than QL,
which avoids this issue because of exploratory actions. This issue is also fixed by QL-PDS+, which
leverages reasonable cost estimates to quickly rank node types. It consistently shows very good
performance in both the considered infrastructures and under both the workloads, emerging as the
best auto-scaling solution.
The only drawback of QL-PDS+, as well as the other tabular methods, consists in the memory

requirement to store the value function. As shown in Figure 18, the memory required by tabular
methods grows significantly as we consider more types of computing nodes in the infrastructure.
While not challenging on its own (e.g., tens of megabytes with 10 types of nodes), such memory
requirement may be undesirable in presence of many applications and, thus, many operators to
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approximation.

control. For this reason, it is worth considering function approximation techniques, starting with
the linear QL+FA that we presented in [54]. Linear FA dramatically reduces memory demands
(see, Figure 18) and also leads to faster learning convergence compared to plain QL in several
configurations. Unfortunately, it also suffers when considering infrastructure B, where sub-optimal
decisions about node types can have a huge impact. In this setting, QL+FA leads to unacceptable
performance violations (up to 50% on average).

To overcome these limitations, in this work we have turned our attention towards nonlinear FA
by means of DNNs. Experimental results show that DQL performs consistently better than plain QL,
exploiting the generalization ability of the underlying DNN. It leads to less than 1% of performance
violations in infrastructure A, with slightly worse accuracy in infrastructure B, where in some
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Fig. 19. DSP applications used in the experiments.

configurations violations increase up to 9%. When we introduce the PDS in the algorithm, we note
that DQL+PDS has a similar behavior to what we observed with QL+PDS. It clearly outperforms
DQL in infrastructure A, under both the workloads, whilst the benefits decrease (and even disappear
in some settings) in the more challenging infrastructure B. However, differently from the tabular
case, DQL+PDS still provides acceptable results in the worst case, with performance violations
exceeding 10% in few configurations, but staying below 5% in the vast majority. Again, by exploiting
cost estimates, DQL-PDS+overcomes this issue and consistently performs well in all the considered
configurations, blending together the benefits of nonlinear FA and model-based initialization.

6.3 Application Manager Policies (Q3)
We now turn our attention to the whole auto-scaling solution, where multiple OMs are supervised
by an AM at the first layer of the control hierarchy. Therefore, we consider three DSP application
graphs (i.e., A, B and C), which are illustrated in Figure 19. In particular, applications A and B
have been frequently used in the literature as reference application topologies (e.g., in [30, 34, 45])
and are often indicated as, respectively, pipeline and diamond topologies. The third application
C instead features multiple sinks and end-to-end paths with different length. For all of them, we
consider a maximum response time 𝑅𝑚𝑎𝑥

𝜋 , equal for all their end-to-end paths. Unless differently
stated, we will set 𝑅𝑚𝑎𝑥

𝜋 = 40 ms and require response time violations and reconfigurations not
to exceed, respectively, 𝜂𝑉 = 5% and 𝜂𝑅 = 10%. While most of the setup is left unchanged with
respect to the previous section, in this experiment we consider the Taxi workload only, as it does
not directly impact the AM policy. Furthermore, as the OM scalability has already been discussed,
we focus on the case where 𝑁𝑟𝑒𝑠 ∈ {1, 3}. We equip the OMs with the QL-PDS+algorithm, which
has been shown to work well.
As regards BO, we used the following settings. After preliminary experiments, we selected

the Matérn kernel with parameter 𝜈 = 5/2 (see, [18]) as the surrogate function, and expected
improvement for the acquisition. We limit the number of iterations 𝑁𝐵𝑂 to 25. At each iteration,
the objective function is evaluated running a simulation of the system with length 50,000 steps.

Baseline. As a baseline technique, we consider a model-free naive approach to apportion latency to
operators and tune their objectives. According to this approach, the objective weights are simply
set as equal, i.e., 𝑤𝑟𝑒𝑠 = 𝑤𝑟𝑐 𝑓 = 𝑤𝑝𝑒𝑟 𝑓 = 1

3 . To set operator response time bounds, we exploit a
simple idea: apportioning an equal share of 𝑅𝑚𝑎𝑥

𝜋 to each operator along any source-to-sink path 𝜋 ,
independently of the operator characteristics. Such baseline can be used both to (i) compare more
complex resolution techniques as we do in this section, and (ii) bootstrap the auto-scaling solutions
when new applications are deployed and no information is available about them. For the sake of
completeness, we report the detailed pseudocode in Appendix A.

Results. We start the evaluation focusing on the latency apportioning problem, where the objective
weights are assumed to be given. We report in Figure 20 the monetary cost incurred using the
baseline and the BO-based approach, when 𝑅𝑚𝑎𝑥 is equal to 50 and 40 ms. We observe that the
BO-based AM leads to cost savings in all the considered settings and for all the applications. While
not dramatic, the cost reduction is particularly evident in the homogeneous infrastructure (i.e.,
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Fig. 20. Monetary operating cost with and without the BO-based AM policy for latency apportioning.
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Fig. 21. Monetary operating cost with and without the BO-based AM policy for weights tuning.

𝑁𝑟𝑒𝑠 = 1), where the scarce variety of the computing nodes makes it critical to optimally tune the
OM objectives to exploit the best trade-off between cost and performance.
We then focus on the problem of tuning the objective weights, given a fixed assignment of the

response time bounds (i.e., computed using the baseline approach). Figure 21 shows the monetary
cost paid considering different requirements 𝜂𝑉 and 𝜂𝑅 for all the applications. Compared to
the previous experiment, in this case the cost savings provided by the BO-based AM are more
evident, as the baseline weights assignment can lead up to double resource usage expenses. More
importantly, looking at the QoS requirements, we note that the baseline algorithm actually satisfies
the constraints in 42% of the considered runs, whilst the BO approach satisfies the requirements in
96% of the settings. Based on these results, it also emerges that increasing the maximum allowed
reconfiguration percentage does not lead to significant cost savings. Conversely, in most the cases
the BO approach manages to further reduce costs when allowed to violate maximum response
time for more time. This is not possible to evaluate for the baseline, as it is not sensible to different
requirements.

As a final experiment, we evaluate the AM when optimizing both the response time bounds and
the weights, using Algorithm 4. We show in Figure 22a the results obtained using the baseline and
the BO-based AM for different requirements 𝜂𝑉 , which again demonstrate how the BO approach
does not only reduce costs, but keeps reconfigurations and violations within the desired bounds,
as required by users. Figure 22b instead shows the value of the candidate solutions identified by
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Fig. 22. Results with the complete BO-based AM policy for iterative latency apportioning and weights tuning.

BO throughout a single run of the iterative Algorithm 4. We can observe that the objective value
quickly converges to the final value after a couple of iterations.
As regards the execution time, a whole run of the optimization process with 𝑁𝐵𝑂 = 25 takes

between 3 and 5 minutes, depending on the application in use. As the optimization can be performed
asynchronously with respect to application execution and on a larger time scale compared to the
OM auto-scaling, we consider the AM performance acceptable.

6.4 Summary of Evaluation Findings
We can summarize the results we have presented as answers to the three key questions introduced
at the beginning of the section.

• Q1: While both model-based and model-free auto-scaling approaches from the state of the
art perform well in computing infrastructures characterized by limited heterogeneity or no
heterogeneity at all, in presence of heterogeneous node types and, hence, performance-cost
trade-offs, our RL-based solution achieves superior results, as it learns the best type of node
to use given the current scenario.

• Q2: Compared to plain Q-learning policies, DRL can deal with larger problem instances
(i.e., infrastructures with a larger number of node types). The use of PDS to inject partial
model information into the learning process leads to dramatic reduction of the training time
necessary to learn a near optimal policy.

• Q3: Introducing AM-level policies, we achieve a fully adaptive solution that manages to
translate user-given high-level QoS requirements to internal configuration parameters, as
needed by the OM policies. This marks an advancement compared to similar RL-based models
from the literature (e.g., [69]), where performance objectives can only be specified at local
operator level.
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6.5 Threats to Validity
Although our experimental analysis covers different scenarios, a fewmust be considered concerning
the validity of these results and their generalization to other types of applications or environments.

Internal Validity. Our evaluation relies on simple performance models for the operators, whose
replicas are modeled as single-server queues. By means of analytical results for these models, we
computed the response time of each operator at the end of every time slot in the experiments. While
we remark that the proposed improvement (i.e., especially the use of partial model information
within the RL framework) does not depend on the model used to obtain performance measures,
we will consider the integration of a more accurate DSP operator simulator or a real prototype for
future work.

We also made assumptions on the time scale of auto-scaling decisions. Specifically, we assumed
that the control interval is long enough to allow OMs to observe the effects of reconfiguration
decisions on the system after transient overheads have disappeared. As scaling operations in a DSP
system can often require tens of seconds, the operation frequency of our OMs should be in the
order of one or more minutes. In practice, this issue can also be addressed by letting auto-scalers
run more frequently and skipping a few iterations after a scaling operation has been triggered.

External Validity. Focusing on the auto-scaling problem, we assumed that replicas of the same
operator all run in the same geographical region, i.e., we are not concerned about network-level
considerations when picking the type of node to use. Placement [31] decision at level of operators,
which may run in different locations, are possibly taken at higher level by a distinct scheduler
module, as assumed in similar works (e.g., [69]). Regarding the operator replicas, we also expect
the incoming data streams to be evenly distributed among them or, at least, the load imbalance to
be limited. If this is not the case, scale-out operations may be unable to actually reduce the load on
the bottleneck replica (e.g., in the extreme case where all the incoming data must be routed to a
single replica) and different mechanisms should be adopted. Several strategies have been studied in
the literature to ensure such load balancing even in presence of stateful operators (see, e.g., [46]),
and we expect the DSP system to exploit them.

Our experiments consider heterogeneous nodes that deliver different performance levels. How-
ever, we do treat different computing nodes of the same type as identical. In practice, a real
computing infrastructure (especially if virtualized) may exhibit unpredictable performance vari-
ability across different computing nodes, even though created with identical specifics (e.g., due
to performance interference). Such performance variability represents an additional source of
uncertainty, which could make it harder for agents to learn an optimal policy and, thus, require a
longer training phase.

Moreover, we relied on the assumption that the resource provider (e.g., a public Cloud provider)
has enough computational capacity to always accommodate acquisition requests coming from the
auto-scaler. While we find this assumption reasonable for Cloud- or cluster-based deployments, it
would not necessarily hold in resource-constrained environments (e.g., Edge computing). In the
future, we will consider an extension of our model that can handle constrained resource capacities
and possibly make decisions based on current availability.
When presenting the AM policies in Sec. 5, we adopted the simplifying assumption of having

identical response time requirements along all the paths in the application DAG. This assumption
allowed us to slightly simplify the presentation of the algorithms, using a single symbol to denote
the maximum response time. Nonetheless, all the ideas discussed in the section can be applied to the
general case, evaluating the SLO satisfaction along each path according to its specific requirement.
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7 CONCLUSION
In this paper, we have presented an auto-scaling solution for DSP applications in heterogeneous
infrastructures, based on a two-layered control architecture. An application-level manager steers
adaptation, aiming to minimize the cost due to resource usage while guaranteeing the satisfaction
of user-given QoS constraints, specified in terms of response time and adaptation overhead. At the
operator-level, a RL agent controls operator auto-scaling resolving a local multi-objective MDP.
We devised policies to deal with model uncertainty both at the top and lower layer of the

hierarchy, exploiting, respectively, Bayesian optimization and reinforcement learning. The former
allows the Application Manager to turn user requirements into weights for the local multi-objective
cost function of each Operator Manager. Reinforcement learning is then exploited by Operator
Managers to learn a local auto-scaling policy, according to the given cost function. Overall, our
approach reduces the number of “knobs” that are directly exposed to users, who can instead focus
on the definition of few requirements (i.e., desired maximum response time and tolerated percentage
of reconfigurations and response time violations).
Our numerical experiments demonstrate the efficacy of our solution, where we exploit partial

knowledge about the system to increase learning velocity. It is worth remarking that throughout
the paper we took the worst-case perspective where RL agents can only be trained against on-line
collected data, assuming that no historical data sets are available for off-line training. Clearly, if
any data is available for such pre-training, our algorithms can leverage it to further reduce on-line
training time.
As already mentioned, the approach we presented is applicable beyond the considered domain

(i.e., data stream processing). Indeed, the concepts we have presented can be exploited to control
run-time adaptation of similar distributed systems, as long as we can (i) define a set of adaptation
actions that deterministically alter system configuration, and (ii) formulate a cost function (based,
e.g., on the satisfaction of performance requirements and resource usage). For instance, similar
RL-based adaptation solutions have been investigated in the literature for microservice-based
applications [52] and serverless applications [1].
For future work, we plan to extend our solution and drop some of the assumptions we relied

on in this work. In particular, we plan to adopt a more general notion of resource heterogeneity,
not limited to the cost-performance trade-off, and possibly account for additional aspects such as
different cost models (e.g., Spot instances, acquired through bidding) or ethical/strategical differences
among providers. We will also consider resource-constrained deployments, where the desired type
of computing node may be not always available for acquisition.
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A DETAILS ON BASELINE APPLICATION MANAGER POLICY
We report below the pseudocode for the baseline AM policy used in the evaluation. This pol-
icy equally weights the objective terms and computes the operator response time requirements
according to the following algorithm. Equal latency shares are assigned to operators along any
source-to-sink path 𝜋 in the application graph 𝐺𝑑𝑠𝑝 (lines 2–4). Clearly, for operators belonging to
multiple paths, the minimum requirement is selected, possibly leaving spare latency to allocate on
some paths. For the sake of simplicity, the latter can be re-distributed to operators proportionally
to their current allocation (line 5).

Algorithm 5 Naive 𝑅𝑚𝑎𝑥
𝑜𝑝 computation.

Input: application 𝐺𝑑𝑠𝑝 , R𝑚𝑎𝑥

Output: operator max. response times 𝝆
1: 𝜌𝑢 ← ∞, ∀𝑢 ∈ 𝑉𝑑𝑠𝑝
2: for all 𝜋 ∈ Π𝑑𝑠𝑝 do
3: 𝜌𝑢 ← min

n
1
|𝜋 |𝑅

𝑚𝑎𝑥
𝜋 , 𝜌𝑢

o
, ∀𝑢 ∈ 𝜋

4: end for
5: allocateSpareLatency(𝐺𝑑𝑠𝑝 , 𝝆)

B SUPPLEMENTARY EXPERIMENTAL RESULTS
B.1 Supplementary Tables
We report here the full results of the comparison of various operator auto-scaling policies presented
in Sec. 6.2.2. Each table shows average cost, percentage of performance violations, reconfigurations
and resource cost for both the considered infrastructures and different number of resource types
𝑁𝑟𝑒𝑠 . In particular, Table 2 and Table 3 consider the experiments performed using the Taxi trace,
whilst Table 4 and Table 5 consider the experiments performed using the Tweets trace.
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Table 2. Results of the experiments with the Taxi trace and maximum parallelism 𝐾𝑚𝑎𝑥 = 10.

Infrastructure A Infrastructure B
Nres OM Policy Avg. Cost Viol. (%) Rcf. (%) Res. Avg. Cost Viol. (%) Rcf. (%) Res.
3 TB-C 0.0366 < 0.1 1.1 3.44 0.6024 100.0 1.0 0.50
3 TB-S 0.0415 < 0.1 0.8 4.00 0.0200 < 0.1 < 0.1 30.00
3 QL 0.1866 1.1 54.7 7.05 0.1530 13.9 23.6 33.31
3 QL+PDS 0.0836 0.6 4.6 7.07 0.0525 5.5 3.2 19.51
3 QL+PDS+ 0.0772 0.3 3.9 6.78 0.0089 < 0.1 0.2 12.51
3 QL+FA 0.0468 0.5 3.2 3.74 0.0779 6.2 14.9 16.27
3 DQL 0.0936 2.5 1.8 7.48 0.0753 2.7 1.3 85.02
3 DQL+PDS 0.0599 0.3 0.1 5.80 0.0430 0.3 0.2 61.35
3 DQL+PDS+ 0.0494 0.2 0.2 4.80 0.0294 < 0.1 < 0.1 43.26
6 TB-C 0.0366 < 0.1 1.1 3.44 0.6024 100.0 1.0 0.50
6 TB-S 0.0507 < 0.1 0.8 4.92 0.0200 < 0.1 < 0.1 30.00
6 QL 0.2306 5.0 71.9 5.69 0.6281 78.9 69.0 25.23
6 QL+PDS 0.0756 0.6 3.5 6.49 0.5404 76.2 31.9 29.26
6 QL+PDS+ 0.0645 < 0.1 2.0 5.99 0.0522 5.9 2.6 17.64
6 QL+FA 0.1145 1.8 18.7 6.62 0.0318 3.6 2.0 9.59
6 DQL 0.0959 0.6 2.4 8.74 0.1620 16.2 2.1 91.03
6 DQL+PDS 0.0660 0.1 < 0.1 6.52 0.0756 3.6 0.1 80.79
6 DQL+PDS+ 0.0548 < 0.1 0.3 5.38 0.0117 0.2 < 0.1 15.35
10 TB-C 0.0366 < 0.1 1.1 3.44 0.6050 100.0 1.0 1.45
10 TB-S 0.0576 < 0.1 0.8 5.61 0.0496 < 0.1 0.8 24.04
10 QL 0.2753 12.0 75.8 5.15 0.6137 74.7 73.6 9.24
10 QL+PDS 0.0740 1.2 3.4 6.00 0.6769 97.9 38.8 5.91
10 QL+PDS+ 0.0600 0.2 1.7 5.56 0.0317 2.1 1.0 8.56
10 QL+FA 0.1085 0.7 6.1 9.21 0.2840 35.8 18.5 16.01
10 DQL 0.1260 < 0.1 3.2 11.92 0.0962 4.8 2.1 31.66
10 DQL+PDS 0.0749 < 0.1 < 0.1 7.47 0.0591 3.3 < 0.1 19.69
10 DQL+PDS+ 0.0753 < 0.1 0.1 7.51 0.0416 1.1 < 0.1 17.40

B.2 RL Convergence
Figure 23 provides additional insight about the different learning approaches discussed in the paper,
with respect to the time they require to learn the optimal behavior. In particular, the figure shows
the cumulative average cost incurred by an OM throughout a single simulated experiment using
the various learning algorithms. We can note that QL shows very slow convergence, remaining
far from the optimal cost achieved by dynamic programming techniques (denoted as DP, which
determines the optimal MDP policy off-line) even at the end of the experiment. Tabular PDS-based
methods instead exploit the available knowledge since the beginning and achieve definitely better
results. On the right-hand side of Figure 23, we can see how FA-based algorithms generally perform
better than tabular ones. In particular, with the only exception of DQL, which converges slowly
towards the optimum, the other algorithms all converge to small cost values, close to the level of
DP.

B.2.1 Non-stationary Environment. We verify how learning convergence is impacted by non-
stationary working conditions. In particular, we conduct two experiments. In the first one, we
consider the case where the workload suddenly changes at run-time. Specifically, we scale the
arrival rate of the Taxi trace by 2x after the first half of the experiment. In the second scenario, we
simulate a change in the resource offering and, specifically, we let the cost of all the node types
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Table 3. Results of the experiments with the Taxi trace and maximum parallelism 𝐾𝑚𝑎𝑥 = 20.

Infrastructure A Infrastructure B
Nres OM Policy Avg. Cost Viol. (%) Rcf. (%) Res. Avg. Cost Viol. (%) Rcf. (%) Res.
3 TB-C 0.0194 < 0.1 1.1 3.44 0.6063 100.0 3.0 0.95
3 TB-S 0.0215 < 0.1 0.8 4.00 0.0100 < 0.1 < 0.1 30.00
3 QL 0.1663 0.7 55.7 10.15 0.1651 16.1 25.7 51.44
3 QL+PDS 0.0599 0.1 2.2 10.95 0.2498 31.1 17.1 86.65
3 QL+PDS+ 0.0569 < 0.1 1.9 10.56 0.0020 < 0.1 < 0.1 5.86
3 QL+FA 0.0391 0.5 4.7 5.36 0.1222 14.4 12.9 29.61
3 DQL 0.0918 1.1 1.6 16.41 0.0703 1.1 1.5 181.47
3 DQL+PDS 0.0354 < 0.1 < 0.1 7.05 0.0877 0.4 < 0.1 254.93
3 DQL+PDS+ 0.0506 < 0.1 < 0.1 10.12 0.0107 < 0.1 < 0.1 31.91
6 TB-C 0.0194 < 0.1 1.1 3.44 0.6063 100.0 3.0 0.95
6 TB-S 0.0261 < 0.1 0.8 4.92 0.0100 < 0.1 < 0.1 30.00
6 QL 0.1886 5.0 65.4 5.58 0.5752 73.1 64.0 25.42
6 QL+PDS 0.0392 0.4 1.0 6.96 0.6824 99.1 41.0 17.82
6 QL+PDS+ 0.0319 < 0.1 0.4 6.17 0.0019 < 0.1 < 0.1 5.66
6 QL+FA 0.0907 0.7 15.8 10.97 0.0643 8.5 2.8 23.35
6 DQL 0.0942 0.5 2.8 17.15 0.1359 7.0 2.1 269.94
6 DQL+PDS 0.0499 0.1 < 0.1 9.79 0.2971 44.3 0.1 93.67
6 DQL+PDS+ 0.0551 < 0.1 < 0.1 11.01 0.0180 0.4 < 0.1 46.21
10 TB-C 0.0194 < 0.1 1.1 3.44 0.6079 100.0 3.0 1.90
10 TB-S 0.0296 < 0.1 0.8 5.61 0.0256 < 0.1 0.8 24.04
10 QL 0.2449 12.0 73.6 5.10 0.5807 71.8 70.3 9.19
10 QL+PDS 0.0409 0.6 1.0 7.08 0.6786 99.1 40.1 3.91
10 QL+PDS+ 0.0312 < 0.1 0.3 6.03 0.0094 0.3 0.2 7.04
10 QL+FA 0.0890 0.2 5.2 15.45 0.2497 34.7 6.8 27.92
10 DQL 0.1251 < 0.1 3.4 23.65 0.0936 3.7 2.5 66.76
10 DQL+PDS 0.0835 < 0.1 < 0.1 16.65 0.1864 20.2 < 0.1 65.14
10 DQL+PDS+ 0.0620 < 0.1 < 0.1 12.38 0.0355 0.2 < 0.1 34.52

except one become 100 times higher at run-time (e.g., because of resource scarcity). Figure 24
shows the cumulative average cost in the first experiment. We include in the comparison a dynamic
programming (DP, for short) resolution algorithm, which determines the optimal MDP policy off-
line. We can note that this approach results in the minimal cost in the first part of the experiment
and in the highest cost in the end, as it does nothing to adapt to the workload change. Conversely,
both the threshold-based and the RL-based algorithms keep acceptable performance after the arrival
rate increase.
Figure 25 provides similar insight for the second experiment, where the cost of the available

node types is modified. Again, offline DP leads to unacceptable performance after the changes
and so does the threshold-based policy, as its resource picking logic is not adaptive. Conversely,
RL-based approaches manage to adapt their policies to the new scenario.

B.3 Neural Network Configuration
As explained in Sec. 4, DRL uses a neural network to predict the value function. For this purpose,
the network is given a state 𝑠 as input and processes it through one or more hidden layers. In
practice, we have some freedom in deciding (i) how many hidden layers L to use and (ii) how any
state should be turned into an input vector (i.e., picking a function𝜓 , as in Figure 7). We provide
here some results of preliminary experiments we performed to select the parameters to use in our
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Table 4. Results of the experiments with the Tweets trace and maximum parallelism 𝐾𝑚𝑎𝑥 = 10.

Infrastructure A Infrastructure B
Nres OM Policy Avg. Cost Viol. (%) Rcf. (%) Res. Avg. Cost Viol. (%) Rcf. (%) Res.
3 TB-C 0.1096 5.7 24.1 2.75 0.5361 79.8 28.6 0.43
3 TB-S 0.0861 3.3 17.4 3.13 0.0200 < 0.1 < 0.1 30.00
3 QL 0.1795 0.8 52.8 6.94 0.1557 13.4 25.9 35.27
3 QL+PDS 0.0864 0.6 6.5 7.00 0.1145 12.9 7.6 32.95
3 QL+PDS+ 0.0779 0.3 5.4 6.55 0.0079 0.1 0.2 10.21
3 QL+FA 0.1316 1.5 40.8 4.11 0.3884 43.8 57.9 14.48
3 DQL 0.0980 0.7 2.2 8.93 0.0895 1.5 1.6 116.39
3 DQL+PDS 0.0479 0.3 0.1 4.57 0.0201 0.6 < 0.1 24.42
3 DQL+PDS+ 0.0467 < 0.1 0.2 4.62 0.0046 < 0.1 < 0.1 6.41
6 TB-C 0.1096 5.7 24.1 2.75 0.5361 79.8 28.6 0.43
6 TB-S 0.0927 3.3 17.4 3.79 0.0200 < 0.1 < 0.1 30.00
6 QL 0.2054 1.8 69.6 5.56 0.5390 63.8 69.4 26.22
6 QL+PDS 0.0764 0.4 5.3 6.36 0.3912 55.6 22.0 20.74
6 QL+PDS+ 0.0723 0.1 4.9 6.18 0.0084 0.6 0.3 6.24
6 QL+FA 0.0812 1.0 7.1 6.07 0.4154 49.1 54.3 18.34
6 DQL 0.1036 0.2 3.3 9.59 0.0990 9.3 3.5 54.24
6 DQL+PDS 0.0517 0.3 0.1 4.98 0.1411 20.0 0.4 30.29
6 DQL+PDS+ 0.0477 < 0.1 0.2 4.69 0.0121 0.2 < 0.1 16.51
10 TB-C 0.1096 5.7 24.1 2.75 0.5054 75.2 25.8 1.36
10 TB-S 0.0976 3.3 17.4 4.28 0.0896 3.3 17.4 17.42
10 QL 0.2223 4.2 73.0 5.08 0.5207 59.6 72.3 9.32
10 QL+PDS 0.0743 0.7 5.2 5.97 0.5032 72.7 27.7 5.93
10 QL+PDS+ 0.0673 0.2 4.4 5.73 0.0180 1.1 0.5 5.12
10 QL+FA 0.0997 0.4 5.2 8.71 0.3246 35.5 39.0 16.79
10 DQL 0.1275 < 0.1 3.6 12.02 0.0965 5.3 3.3 28.93
10 DQL+PDS 0.0581 0.2 0.2 5.67 0.0264 0.6 < 0.1 11.47
10 DQL+PDS+ 0.0588 < 0.1 0.2 5.82 0.0195 0.1 < 0.1 9.27
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Fig. 24. Average cost with a sudden workload change.

solution, with the aim of showing the impact of picking different configurations for the neural
network.

As regards state encoding, a Minimal approach is associating each component of the state vector
with exactly one component of the input vector after a simple normalization (an example is given
in Figure 26a). In this case, it is totally up to the network to extract relevant and meaningful
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Table 5. Results of the experiments with the Tweets trace and maximum parallelism 𝐾𝑚𝑎𝑥 = 20.

Infrastructure A Infrastructure B
Nres OM Policy Avg. Cost Viol. (%) Rcf. (%) Res. Avg. Cost Viol. (%) Rcf. (%) Res.
3 TB-C 0.0959 5.7 24.1 2.75 0.5108 74.3 32.5 0.83
3 TB-S 0.0705 3.3 17.4 3.13 0.0100 < 0.1 < 0.1 30.00
3 QL 0.1592 0.4 53.8 9.80 0.1704 15.7 28.9 54.52
3 QL+PDS 0.0602 0.1 4.0 10.29 0.0505 6.7 2.3 16.19
3 QL+PDS+ 0.0553 < 0.1 3.4 9.66 0.0033 < 0.1 < 0.1 9.74
3 QL+FA 0.1462 0.8 53.3 6.91 0.3315 28.2 75.0 36.26
3 DQL 0.0876 0.5 2.2 15.99 0.0467 0.9 1.6 113.83
3 DQL+PDS 0.0359 0.3 < 0.1 6.86 0.0988 15.2 0.1 21.58
3 DQL+PDS+ 0.0384 < 0.1 < 0.1 7.65 0.0086 < 0.1 < 0.1 24.90
6 TB-C 0.0959 5.7 24.1 2.75 0.5108 74.3 32.5 0.83
6 TB-S 0.0738 3.3 17.4 3.79 0.0100 < 0.1 < 0.1 30.00
6 QL 0.1624 1.8 62.2 5.41 0.4962 59.5 65.2 26.84
6 QL+PDS 0.0347 0.3 1.6 5.96 0.4932 71.8 28.6 15.50
6 QL+PDS+ 0.0305 < 0.1 1.2 5.52 0.0021 < 0.1 < 0.1 5.53
6 QL+FA 0.0894 0.9 17.2 9.94 0.2551 29.0 35.7 29.83
6 DQL 0.0920 0.4 2.9 16.77 0.0719 6.3 3.1 83.86
6 DQL+PDS 0.0557 < 0.1 < 0.1 11.03 0.0608 1.6 0.1 152.07
6 DQL+PDS+ 0.0579 < 0.1 < 0.1 11.52 0.0018 < 0.1 < 0.1 5.17
10 TB-C 0.0959 5.7 24.1 2.75 0.4956 72.6 29.2 1.75
10 TB-S 0.0762 3.3 17.4 4.28 0.0722 3.3 17.4 17.42
10 QL 0.1902 4.3 69.7 5.01 0.4945 57.6 69.9 9.42
10 QL+PDS 0.0338 0.4 1.5 5.65 0.4863 71.1 27.6 4.38
10 QL+PDS+ 0.0295 < 0.1 1.1 5.33 0.0067 0.3 0.1 4.71
10 QL+FA 0.0861 < 0.1 4.2 15.44 0.2431 27.9 23.7 28.28
10 DQL 0.1217 < 0.1 4.1 22.68 0.0830 4.4 3.6 49.37
10 DQL+PDS 0.0785 < 0.1 0.1 15.57 0.0409 0.9 < 0.1 35.49
10 DQL+PDS+ 0.0766 < 0.1 0.1 15.26 0.0404 4.4 0.1 13.87
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Fig. 25. Average cost with a sudden change in the cost of resources.

information from the input. While this is possible and desirable, because we do not want to rely on
human-driven feature engineering, better results in terms of learning speed can be achieved by
engineering the state representation.
An alternative approach (denoted as Large) exploits one-hot vectors to encode the value of the

state components k and 𝜆, as neural network have been shown to work well on binary inputs
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(a) Minimal (b) Large

(c) Reduced1 (d) Reduced2

Fig. 26. Example of different state representations as network input vectors. In the example, we assume
𝑁𝑟𝑒𝑠 = 2, 𝐾𝑚𝑎𝑥 = 3 and 𝜆 ∈ {0, 1, 2}.

(see Figure 26b). Clearly, this strategy has the drawback of leading to a large number of input
neurons and, hence, parameters as the problem scale grows. Therefore, we try to find a better
balance between representation accuracy and computational demand. For this purpose, we also use
a strategy that independently encodes each component of k (i.e., the number of instances for each
node type). According to this approach, we define two configurations where (i) the input rate 𝜆
is encoded as single neuron (denoted as Reduced1 in Figure 26c) or (ii) the input rate is encoded
using a one-hot vector (Reduced2, Figure 26d).

Figure 27 shows the average cost paid by DQL using different state representations and 1 ≤ L ≤ 3,
in a reference scenario with 𝐾𝑚𝑎𝑥 = 10 and 𝑁𝑟𝑒𝑠 ∈ {3, 6, 10}. Overall, we can note that the
performance difference across the considered configuration space is not significant. This observation
marks a positive point for DRL, as it manages to achieve acceptable accuracy with multiple different
configurations, while identifying the optimal hyperparameters is often difficult. As regards the
hidden layers, the configuration with three layers provided minor advantages over the alternative
ones and we kept it for the experiments. The state coding strategy with best results is Large.
However, this approach is also the most demanding both in terms of memory and computation
to train the network. Therefore, we only tested it with 𝑁𝑟𝑒𝑠 = 3, where it was computationally
feasible. The other coding strategies led to very similar results, with Reduced2 emerging as the
most consistent one, with an acceptable memory footprint, and was selected for use in the other
experiments.
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Fig. 27. (a) Average cost paid using DQL with different NN configurations and state representations, and (b)
memory required to store NN weights under different state representations, in the case of 3 hidden layers.
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