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Abstract—Modern applications, e.g., for pervasive computing scenar-
ios, are increasingly reliant on systems built from multiple distributed
components, which must be suitably composed to meet some specified
functional and non-functional requirements. A key challenge is how to
efficiently and effectively manage such complex systems. The use of
self-management capabilities has been suggested as a possible way
to address this challenge. To cope with the scalability and robustness
issues of large distributed systems, self-management should ideally be
architected in a decentralized way, where the overall system behavior
emerges from local decisions and interactions. Within this context, we
propose GOPRIME, a fully decentralized middleware solution for the
adaptive self-assembly of distributed services. The GOPRIME goal is
to build and maintain an assembly of services that, besides functional
requirements, fulfils also global quality-of-service and structural require-
ments. The key aspect of GOPRIME is the use of a gossip protocol to
achieve decentralized information dissemination and decision making.
To show the validity of our approach, we present results from the
experimentation of a prototype implementation of GOPRIME in a mobile
health application, and an extensive set of simulation experiments that
assess the effectiveness of GOPRIME in terms of scalability, robustness
and convergence speed.

Index Terms—Service-oriented architecture, pervasive computing, run-
time adaptation, quality of service, gossip protocol.

1 INTRODUCTION

THE pervasive computing paradigm aims to develop
information processing infrastructures that seam-

lessly integrate into everyday activities. Systems built
under this paradigm, like ambient intelligence or intelli-
gent transportation systems, consist of several (from tens
to thousands) services that cooperatively contribute to
the achievement of some common goal [1].

How to properly architect and manage such systems
is one of the major challenges for today’s software
engineering. Indeed, the high number of services and
the intrinsic dynamism of these systems (where the
quality and number of available resources can rapidly
change) push scalability and complexity issues well
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beyond traditional scenarios. The use of autonomic ca-
pabilities has been suggested as a possible solution to
overcome these problems [2]–[4]. The autonomic com-
puting paradigm enables the system to automatically
self-configure and self-adapt in response to variations of
operating conditions, thus guaranteeing short reaction
times and minimal or no human intervention at all.
Scalability and robustness considerations call for fully
decentralised solutions to the implementation of these
autonomic capabilities [5]. Indeed, for the systems we
are considering, centralised control can seriously hinder
scalability and fault-tolerance, and can also be difficult
or even impossible to achieve.

This paper provides a contribution towards the design
and implementation of decentralised solutions for the
autonomic management of large and highly dynamic
distributed pervasive systems. Specifically, we propose
GOPRIME1, a fully decentralised middleware for the
adaptive self-assembly of distributed services. Abstract-
ing from characteristics of specific application domains,
GOPRIME is intended to manage distributed systems
where a set of peers cooperatively work to accomplish
specific tasks. In general, each peer possesses the know-
how to perform some tasks (offered services), but could
require services offered by other peers to carry out these
tasks. In this context, the GOPRIME goal is to drive a self-
assembly procedure among the peers, aimed at matching
required and provided services. Moreover, we assume
that the system operates under non-functional require-
ments concerning the quality of the offered services
(QoS) (e.g., performance, dependability, cost) and/or the
structure of the resulting assembly. Hence, GOPRIME
is able to drive the systems it manages towards the
selection, among the set of functionally feasible assem-
blies, of an assembly that fulfills global non-functional
requirements.

According to decentralisation principles, GOPRIME
operations are characterised by the following proper-
ties [7]:

• absence of external control, so that the self-
(re)configuration process is initiated and managed
internally;

1. GOPRIME stands for GOssip-based PRIME, an extension, centered
around the use of a gossip protocol, of the PRIME middleware [6].
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• dynamic operation, so that GOPRIME is continu-
ously able to adapt the system to requirement or en-
vironment changes (including arrival of new peers
or failure of existing ones);

• absence of central control, where GOPRIME main-
tains the assembly among peers through local
decision-making only, with dissemination of infor-
mation in order to improve the binding process.

A key element of GOPRIME is the use of a gossip
protocol [8]–[10] to support information dissemination
and decentralised decision-making. Experimental results
show that this solution is able to produce a fully resolved
service assembly very quickly; also, the whole system
can quickly restructure itself to cope with node failures.

This paper extends the early results presented in [11]
with substantial new contributions along two directions:
(i) we extend the methodology proposed in [11] to deal
with the case of multiple (possibly conflicting) non-
functional requirements; (ii) we present GOPRIME, a
middleware implementing this methodology, and results
from its experimentation in a practical case study.

The paper is organised as follows. Section 2 describes
the system model and introduces the concept of com-
pound utility, a quantitative measure of the “quality” of
a service assembly. In Section 3 we illustrate the archi-
tecture of GOPRIME, and describe the gossip-based fully
decentralised algorithm that is used to build an assembly
fulfilling QoS and structural requirements. Section 4 de-
scribes the implementation of GOPRIME. In Section 5 we
show a practical case study of GOPRIME in an e-Health
scenario, and evaluate the scalability and robustness of
the proposed algorithms using simulation. We survey
related work in Section 6 and present conclusions and
future work in Section 7.

2 SYSTEM MODEL
In this section we define the model of the system man-
aged by GOPRIME and introduce the terminology and
notation used in the rest of the paper. As a part of
the model, we illustrate the assumptions and formalise
the notion of compound utility, a unified mechanism
that GOPRIME uses to enforce both functional and non-
functional requirements on the assembly to be built and
maintained.

2.1 Model definition
We consider a system containing N distributed services
S = {S1, . . . , SN}, with each service having type d 2 T =
{1, . . . , T}. Services are hosted on peer nodes, each node
containing one or more services. Nodes can be located
anywhere and communicate with each other through a
network.

Each service S 2 S has a provided interface, through
which S provides functionalities to clients. Also, each
service has a set of required interfaces, that must be bound
to the provided interfaces of other services. Formally, a
service S is a tuple (Type,Deps,Util , In,Out), where:

• S.Type 2 T denotes the type of the provided inter-
face (we say that S.Type is the type of S). We assume
that a function exists matches : T ⇥ T ! [0, 1]
such that matches(d1, d2) = 0 if type d1 does not
match type d2 and matches(d1, d2) > 0 if some
matching exists according to some suitable matching
criterion [12].

• S.Deps ✓ T denotes the set of dependencies of
S (if S.Deps = ;, then S has no dependen-
cies). The set S.Deps contains the types of the re-
quired dependencies of S; therefore, for each d 2
S.Deps , S must be bound to a service S

0 such that
matches(d, S

0
.Type) > 0, in order to be executed.

Note that the dependency set S.Deps does not con-
tain duplicates, meaning that a service may depend
at most once on any specific interface type. We
assume that the set of dependency types S.Deps is
fixed for each service and known in advance.

• S.Util ✓ m is a vector of m real values belonging to
m representing QoS (e.g., reliability, cost, response

time) or structural attributes, which express the
utility of service S in isolation, depending only on
the internal characteristics of S. If S has a non empty
set of dependencies, then S.Util gives only a partial
view of the overall utility of S, which also depends
on the utility of the services used to resolve them;
therefore, we introduce in Section 2.2 the concept of
compound utility.

• S.In ✓ S is the set of services S is currently bound
to, to resolve its dependencies.

• S.Out ✓ S is the set of other services that are bound
to S, to resolve one of their dependencies.

We point out that while S.Type and S.Deps represent
static information that does not change throughout the
service lifetime, S.Util , S.In and S.Out represent dy-
namic state information whose value can change because
of internal changes of S or of the services it is bound to.

A service assembly A is a graph A = (S,E), where E ✓
S⇥ S is the set of resolved dependencies. Specifically, a
directed edge (Si, Sj) 2 E denotes that Si is used by Sj

to resolve one of its dependencies.
In general, we allow multiple simultaneous bindings

to the same service S by other services that use S to
resolve one of their dependencies. The number of si-
multaneous bindings to a service can be upper bounded
(e.g., to avoid service overloading).

A service S is fully resolved in a given assembly A if
either:

• S has no dependencies (S.Deps = ;); or
• for all d 2 S.Deps there exists a fully resolved service

S
0 2 S.In such that matches(S.Type, d) > 0.

A service S is partially resolved in a given assembly A if
it is not fully resolved in A. A partially resolved service
S has a non empty list of dependencies, and at least one
dependency is either not matched, or is matched by a
partially resolved service.

As an example, in Figure 1 we show two assem-
blies involving the services {S1, S2, S3, S4, S5} using the
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Fig. 1. Assembly examples with N = 5 services and T =
7 interface types.

TABLE 1
Symbols used in this paper

N Number of services (peers)
S Set of services S = {S1, . . . , SN}
T Set of service types T = {1, . . . , T}
A Service Assembly A = (S,E)
m Number of QoS and structural attributes of service S

S.Type Service type of S
S.Deps Set of dependencies of S

S.In Set of peers that S is bound to, to resolve its own
dependencies

S.Out Set of peers that have a binding with S to resolve one
of their dependencies

S.Util “Local” utility vector of service S
U(S) Compound utility of the assembly rooted at S (a scalar

compound utility is denoted with U(S))
F Function (1+|S.Deps|)m ! m that combines S.Util

with the compound utility of all dependencies of S

standard UML 2.0 component diagram notation. Service
S1 in Figure 1.(a) is fully resolved, while service S1 in
Figure 1.(b) is not, since it is bound to S2 and S5 which
have missing dependencies.

Since our model adheres to Service Statelessness design
principle [13], services do not maintain the interaction
state between service invocations, i.e., a consumer’s re-
quest is served in complete isolation, without relying on
information from previous requests. Hence, we assume
that the state of the interaction between the consumer
and the service is kept on the user’s side, and requests
include all information necessary for their processing.

Service statelessness enhances (i) decoupling of in-
teracting services, (ii) flexibility of the model, since it
allows for easily rearranging the assembly at run time
and, (iii) scalability, by exploiting service caching and
replication. On the other hand, since the whole state
of the interaction must be transferred at each request,
a greater network capacity is required in order to keep
the quality of service acceptable.

Table 1 summarises the notation used in this paper;
the table also includes additional symbols which will be
introduced in the next sections.

2.2 Compound utility
The last important part of our model is the definition
of the compound utility function that associates a utility
value to each service S 2 S. In general, the compound
utility is a vector-valued function U : S ! m [ {?},
such that U(S) is a vector of m compound utility values,
each of them referring to some specific QoS or structural
property. Such utility values are a function of: (i) the local
utility S.Util , (ii) the compound utilities of the services S

is bound to, and, possibly, (iii) other domain-dependent
parameters that could be useful to better characterise the
compound utility evaluation (for example, parameters
capturing environment information for a context-aware
utility calculation).

The compound utility function U(S) for a service S is
recursively defined according to the following structure2:

U(S) =

8
>>>>>><

>>>>>>:

S.Util if S.Deps = ;
? if S is partially resolved
F (S.Util ,U(Sd1), . . . ,U(Sdk))

if S fully resolved,
S.Deps = {d1, . . . , dk}

(1)

If S has no dependencies (S.Deps = ;), then S is by
definition fully resolved, and U(S) coincides with its
local utility vector S.Util . If S has a nonempty set of
dependencies and is not fully resolved, U(S) is set to ?,
i.e., the special value that is guaranteed to be “worse”
than the utilities of any fully resolved instance of S.
Finally, if S has a nonempty set of dependencies and
is fully resolved, U(S) is computed using a function
F : (1+|S.Deps|)m ! m, which combines S.Util with
the compound utility of all S dependencies.

We now provide some examples to show how the
general expression (1) can be specialised to express
specific QoS or structural attributes; for simplicity, we
focus on a single attribute at a time.

Reliability-based Compound Utility: We can de-
fine the reliability of a service S as the probability
that S correctly completes its task, for a given service
request. For each dependency d 2 S.Deps , let S

0
.n be

the average number of times a service S
0 resolving d

is invoked during the execution of S. The value of
S
0
.n can be estimated by the peer hosting S through

a monitoring task; S
0
.n will likely only depend on the

type d, and not on the specific identity of S
0. Let r(S) be

the internal reliability of S, that is the probability that no
internal failure occurs when S is executed. Therefore, the
reliability-based compound utility Ur(S) for S is the joint
probability that S experiences no internal failures, and
all S

0
.n invocations of each dependency S

0 produce no
failure; the joint probability of these events is the product
of probabilities [14]. Ur(S) can be defined as (we omit
the arguments of F () for the sake of simplicity):

2. For the sake of simplicity, we omit the indication of context
parameters U(S) could depend on, thus showing only the dependence
on S.Util and on the utility of services S is bound to.



4

Ur(S) =

8
>>>>><

>>>>>:

r(S) if S.Deps = ;
? if S is partially resolved
F ()

def
= r(S) ⇥

Y

S02S.In

Ur(S
0)S0.n

if S is fully resolved

(2)

(since each dependency S
0 is executed S

0
.n times, its

contribution to the compound reliability is Ur(S0)⇥ . . .⇥
Ur(S0) (S0

.n times) = Ur(S0)S0.n).
Cost-based Compound Utility: The average cost

of a service S is the overall average cost incurred for
one execution of S. The cost could be expressed in
monetary units, or some other suitable unit (e.g., en-
ergy consumption). Let c(S) denote the cost for each
invocation of S. We distinguish two cases, depending on
how cost accumulates for multiple service invocations.
In the first case, we assume that an additive cost is
incurred for each single invocation of a service S

0 2 S.In .
This is reasonable for costs referring, for example, to
energy consumption. Under this assumption, the cost-
based compound utility Uc(S) for an assembly rooted at
S can be defined as:

Uc(S) =

8
>>>>><

>>>>>:

�c(S) if S.Deps = ;
? if S is partially resolved
F ()

def
= �c(S) +

X

S02S.In

Ur(S
0) ⇥ S

0
.n

if S is fully resolved

(3)

Note that, to force Uc(S) to be a higher-is-better metric,
the compound utility is the negated total cost. Alterna-
tively, we may assume a flat cost model, where a fixed
cost is paid for the use of a service, independently of the
number of times it is actually invoked (this could be the
case, for example, of monetary cost). In this case, the flat
cost-based compound utility Uc(S) can be defined as:

Uc(S) =

8
>>>>><

>>>>>:

�c(S) if S.Deps = ;
? if S is partially resolved
F ()

def
= �c(S) +

X

S02S.In

Uc(S
0)

if S is fully resolved

(4)

Response Time-based Compound Utility: The av-
erage response time of a service S is the overall average
time needed to fulfill one service request addressed to
S. Let s(S) denote the average time spent within service
S for internal operations only. Then, we can define the
response-time compound utility Ut(S) of service S as:

Ut(S) =

8
>>>>><

>>>>>:

�s(S) if S.Deps = ;
? if S is partially resolved
F ()

def
= �s(S) +

X

S02S.In

Ut(S
0) ⇥ S

0
.n

if S is fully resolved

(5)

Ut(S) expresses the overall average response time of
S; in this case too U(S) is negative so that the compound
utility U(S) is a higher-is-better metric. We point out that
equation 5 is based on the assumption of a sequential
execution model for the dependencies of S. In the case
of a parallel execution model for some of those depen-
dencies, the definition should be modified accordingly
(see for example [15], [16]).

Structural Compound Utility: Besides QoS require-
ments, one could be interested also in structural re-
quirements about the resulting assembly of services (en-
forcing, for example, some specific architectural style).
These requirements could concern local properties (e.g.,
the number of dependencies solved by a given service
S should not be greater than a given threshold, to
avoid service overloading), or global properties (e.g., the
overall assembly should conform to a pipeline structure,
where each offered service is bound to only one required
service). Global properties seem more difficult to be
enforced in a system where each peer has only a limited
local knowledge of the whole structure. However, we
give below examples showing that by suitably defining
U(S), a systems that tries to maximise it actually drives
itself towards the construction of an assembly that fulfills
local or global structural properties, in the latter case lim-
ited to those properties that can be recursively defined.
Let us consider first a local constraint on the maximum
number of dependencies that can be resolved by S,
meaning that S can be used by at most S.Dmax other
services to resolve their dependencies, e.g., to avoid
overload. The compound utility Ul(S) defined as:

Ul(S) =

8
><

>:

? if S is partially resolved
0 if |S.Out | > S.Dmax

1 if |S.Out |  S.Dmax

(6)

returns 1 if and only if the structural constraint above is
satisfied, i.e., at most S.Dmax other services are currently
using S. Note that recursion (i.e., definition of F ()) is not
present in (6) as this utility depends on a local property
only, and thus Ul(S) actually corresponds to S.Util .

Let us consider instead a global structural constraint
enforcing a pipeline structure on a fully resolved assem-
bly. We define the compound utility Up(S) as follows:

Up(S) =

8
>>><

>>>:

? if S is partially resolved
0 if |S.Deps| > 1

1 if S.Deps = ;
F ()

def
= Up(S0) if |S.Deps| = 1 ^ S.In = {S0}

(7)
From (7), Up(S) yields 1 if and only if either S has

no dependencies, or S is fully resolved and its direct
and indirect dependencies are organised as a chain
(pipeline structure). Hence, Up(S) = ? denotes that no
fully resolved assembly rooted at S has been built so
far (irrespective of any structural constraint). A value
Up(S) = 0 denotes that a fully resolved assembly has
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been built, but the structural constraint has not been
satisfied; a better assembly may or may not be identified
as the algorithm progresses. Finally, a value Up(S) = 1
denotes that a fully resolved assembly satisfying the
pipeline constraint has been found.

2.3 Comparing compound utilities
GOPRIME encodes the set of QoS and structural at-
tributes associated with a service S in a suitably defined
utility function U(S), as shown in Section 2.2. In the
given examples, each U(S) function can be considered
as an indication of “how good” service S is with re-
spect to a given QoS or structural attribute. In case
of a vector-valued utility U(S), the question arises of
how good a service S is (including the assembly that
resolves its dependencies) with respect to the whole set
of considered and possibly conflicting attributes. Hence,
an important issue is how to compare the compound
utilities of different assemblies to determine which one
is “better” with respect to a given set of requirements.

Towards this aim, let us denote by S1, S2 two
functionally equivalent services, i.e., such that
matches(S1.Type, S2.Type) > 0 (actually, S1, S2 could
denote the same service with its dependencies solved
by a different assembly). GOPRIME can manage the
comparison between U(S1) and U(S2) in two different
ways.

A first way is to map both U(S1) and U(S2) to a single
scalar value using, for instance, the Simple Additive
Weighting (SAW) technique [17]. According to SAW we
can map U(S) = (US,1, . . . US,m) to a scalar value U(S)
by taking the weighted sum of U(S) components, as
follows:

U(S) =
mX

i=1

wiUS,i (8)

for a suitable choice of weights such that
Pm

i=1 wi = 1,
0  wi  1. The relative values of weights wi are
intended to specify the relative importance associated
with each attribute. If the structural or QoS attributes
expressed by the US,i’s take values in different domains,
they should be normalised in the same range (e.g., [0, 1])
before computing the weighted average.

Normalisation can be done by considering instead of
the attribute value US,i, 1  i  m, the value:

Umax i � US,i

US,i � Umini
(9)

where Umax i and Umini denote, respectively, the max-
imum and minimum value of the considered i-th at-
tribute.

However, assigning meaningful values to the weights
wi is not an easy task, and determining Umax i and
Umini requires additional effort in a distributed environ-
ment (it can be done using gossip-based aggregation [8],
at the cost of increased complexity). Besides, the SAW

technique could be impossible to apply when some
attributes are measured on an ordinal scale [18].

In this case, GOPRIME can compare the compound
utilities of different assembly within a Pareto optimality
framework, as suggested in [19]. Under Pareto optimal-
ity, S1 is better than S2 if U(S1) dominates U(S2), i.e.,
U(S1) is better than U(S2) for at least one of its entries
and no worse according to all of the others.

The use of Pareto optimality actually leads to the
identification of a set of services that are non-dominated
with respect to a given compound utility definition, thus
forming a Pareto front. This raises the question of what
service must be selected to solve a dependency from
a Pareto front [20]. The answer to this question is in
general domain-dependent.

3 GOPRIME ARCHITECTURE

The GOPRIME goal is to drive the distributed system we
are considering towards the construction of a service as-
sembly that is increasingly good (in the sense discussed
in Section 2.3) with respect to a given set of attributes. In
this section we present the GOPRIME fully decentralised
architecture that allows achieving this goal. We outline
in Section 3.1 the overall architecture, in Section 3.2 we
detail the algorithm that implements its core functions
and in Section 3.3 we discuss the algorithm’s properties.

3.1 Architecture
Figure 2 shows the two GOPRIME macrocomponents,
namely Service Management and Assembly Management.
Each peer node hosts an instance of this pair of macro-
components, besides the services it offers. Overall, these
pairs, by cooperating among them as outlined below
and detailed in Section 3.2, give rise to a fully decen-
tralised implementation of the GOPRIME operations. In
particular, the Assembly Management macrocomponents
cooperate according to a gossip schema that allows fully
decentralised information dissemination and decision-
making about the assembly construction and mainte-
nance. This makes the system robust and scalable in
the presence of events like arrival of new requirements,
upgrade/downgrade of service utility (including the
extreme case of service failure), or arrival/departure of
new peers (and corresponding hosted services).

Each of the macrocomponents in Figure 2 is actually
architected as a set of interacting components, as shown
in Figure 3. We give below some details about these
components and their functions.

Service Management includes Local Utility Monitor,
which monitors the local utilities of hosted services
and notifies detected changes to the Utility Manager
hosted by the same node. Service Management could also
include other components, possibly concerned with the
implementation of internal adaptation actions aimed at
maintaining local QoS attributes, but they are not part
of the current GOPRIME implementation.
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Fig. 2. Reference architecture.

The Assembly Management macrocomponent includes
Gossip Manager, Assembly Manager, Utility Manager and
Assembly Utility Monitor.

Gossip Manager is the core component that implements
the GOPRIME decentralised information dissemination
and decision-making. We detail in Section 3.2 its op-
erations. It activates and manages one or more gossip
algorithm instances, based on directives received from
Utility Manager, building a suitable S.In set for a local
S service. Moreover, it notifies the current value of S.In

to Assembly Manager and Assembly Utility Monitor.

Utility Manager receives requirements – expressed in
terms of utility definition and related metrics – from the
above Goal Manager, and sends to Gossip Manager di-
rectives about corresponding “gossips” to be started (one
new gossip is possibly activated for each newly received
requirement), to build and maintain an assembly able to
fulfill the requirement. For each maintained assembly,
Utility Manager receives from the Local Utility Monitor
and the Assembly Utility Monitor information about
the utilities of local and remote services, respectively,
which are used to build the assembly. Based on this
information, Utility Manager keeps updated the value
of the compound utility for the locally hosted services,
and notifies it to Goal Manager. Note that Goal Manager
is an abstract architectural entity whose definition and
implementation are strongly tied with the service it
refers to. Therefore, it is not part of GOPRIME and its
specific implementation is left to the service developer.

Assembly Manager receives from Gossip Manager the
current composition of the set S.In that specifies which
services should currently be used to solve the dependen-
cies of a local service S, and manages the corresponding
bindings. Moreover, it receives notifications of incoming
binding requests for each local service S, and keeps
updated the corresponding set S.Out .

Assembly Utility Monitor receives from Gossip Manager
the current composition of the set S.In , for each local
service S, and monitors the QoS of services in S.In ,
sending to Utility Manager notifications about observed
changes.

Assembly  
Management 

Service  
Management 

network(

Service 

Local(U.lity(
Monitor(

Gossip(Manager( Assembly(
Manager(

Assembly(U.lity(
Monitor(

Goal(
Manager(

U.lity(Manager(

Fig. 3. GOPRIME high-level architecture.

3.2 Core Algorithm

In this section we describe in detail how GOPRIME
operates to dynamically build and maintain in a fully
decentralised way a suitable assembly of services.

To achieve this goal, the various instances of the Gossip
Manager, located on the different nodes, implement a de-
centralised algorithm, based on a gossip communication
model [8], [10] for the dissemination of local information
about the system state. Gossip communication builds
upon epidemic protocols to achieve reliable information
exchange among large sets of interconnected peers, also
in presence of network instability (e.g., peers join/leave
the system suddenly). Specifically, in a gossip commu-
nication model, each peer in the system periodically
exchanges information with a dynamically built peer set,
and spreads information epidemically, similar to a virus
in biological communities.

Algorithm 1 describes the core of the gossip algorithm
for service assemblies cooperatively executed by the
Gossip Managers hosted by peer nodes. This algorithm
iteratively resolves the dependencies of each service,
thus leading to the construction of an assembly where
each service S 2 S is (possibly) fully resolved and the
value of U(S) is monotonically increased until it reaches
its maximum value or, at least, a given threshold is
exceeded (see Section 3.3).

Besides service S, the algorithm takes as in-
put parameters the functions U(), UPDATEBESTd(),
SELECTFROMBESTd(), for each d 2 S.Deps . We gave
in Section 2 the general definition and examples of
possible instantiations of function U(), while functions
UPDATEBESTd() and SELECTFROMBESTd() are described
below.

Function UPDATEBESTd() keeps the set BestS,d, d 2
S.Deps updated, where BestS,d collects the currently
known H (or less) “best” services with respect to U(S)
that can be used to solve dependency d. The upper
bound H on the cardinality of BestS,d is a system
parameter. As a consequence, the specific definition
of UPDATEBESTd() depends on the definition of U()
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Algorithm 1 Algorithm executed by the agent responsi-
ble for service S

// Input parameters
1: S;U(); SELECTFROMBESTd(); UPDATEBESTd(), (for all d 2

S.Deps)
// Local variables

2: S.In  ;
3: BestS,d  ;; for all d 2 S.Deps

4: procedure ACTIVETHREAD
5: loop

6: Wait �t

7: for all Sj 2 GETPEERS() do

8: Send hS.In [ {S}i to Sj

9: procedure PASSIVETHREAD
10: loop

11: Wait for message hBi from Sj

12: for all Sk 2 B do

13: if there exists d 2 S.Deps s.t.
matches(d, Sk.Type) > 0 then

14: BestS,d  UPDATEBESTd(BestS,d;Sk;U())
15: S.In  SELECTFROMBESTd(BestS,d;S.In;U())

Algorithm 2 UPDATEBESTd() for scalar U()

// Input parameters
1: BestS,d ✓ S;Si 2 S;U()

// Algorithm
2: BestS,d  BestS,d [ {Si}
3: if |BestS,d|  H then

4: continue

5: else/* drop the worst service to keep |BestS,d|  H */
6: jmin argminj{U(Sj) | Sj 2 BestS,d}
7: BestS,d  BestS,d \ {Sjmin}

return BestS,d

and of a suitable metric for it, as discussed in Sec-
tion 2.3. Algorithms 2 and 3 show possible definitions
of UPDATEBESTd() in case of a scalar or Pareto-based
metric for U(), respectively.

On the other hand, each function SELECTFROMBESTd()
takes as input the set BestS,d and the set S.In , and
selects from BestS,d (according to some suitable crite-
rion) the service that must actually be used to solve the
dependency d. This service is added to S.In , possibly
substituting a previously selected service. Algorithm 4
gives a possible definition of SELECTFROMBESTd() in
case of a scalar metric for the compound utility U(). In
case of Pareto-based compound utility U() the definition
of SELECTFROMBESTd() is domain dependent.

Finally, Algorithm 1 describes the general gossip-
based scheme implemented by each Gossip Manager.
It includes an initialisation phase and two concurrent
threads: an active thread that starts an interaction by
sending a message to a peer, and a passive thread
that responds to messages received from other peers.
The set of peers is provided by the underlying gossip
communication protocol (more details will be given in
Section 4). During initialisation (lines 2–3) the sets S.In

of services bound to S and BestS,d, d 2 S.Deps are set to
empty.

Algorithm 3 UPDATEBESTd() for Pareto-based U()

// Input parameters
1: BestS,d ✓ S;Si 2 S;U()

// Algorithm
2: BestS,d  BestS,d [ {Si}
3: for all Sj 2 BestS,d do

4: if U(Si) dominates U(Sj) then

5: Bestd  BestS,d \ {Sj}
6: if U(Sj) dominates U(Si) then

7: Bestd  BestS,d \ {Si}
8: break

9: if |BestS,d|  H then

10: continue

11: else

12: /* remove a service from BestS,d according to some
domain dependent criterion, to keep |BestS,d|  H */
return BestS,d

Algorithm 4 SELECTFROMBESTd() for scalar U()

// Input parameters
1: BestS,d ✓ S;S.In 2 S;U()

// Algorithm
2: jmax  argmaxj{U(Sj) | Sj 2 BestS,d}
3: if there exists Sk 2 S.In s.t. matches(Sk.Type, d) > 0 then

4: if U(Sk) < U(Sjmax ) then

5: S.In  S.In \ {Sk} [ {Sjmax}
6: else

7: S.In  S.In [ {Sjmax}
return S.In

The active thread is extremely simple: every �t time
units, Gossip Manager sends a message to its peer set.
The message payload is a set of services, containing the
list of currently bound dependencies S.In plus S itself.

The passive thread listens for messages coming from
other peers. Upon receiving a message containing the
set B, Gossip Manager checks all services Sk 2 B to see
whether some of them can be used to fill its own de-
pendencies. If Sk.Type is required as a dependency, then
Sk is considered as a candidate to be added to BestS,d

(line 13). The decision whether to include Sk in BestS,d

is taken by function UPDATEBEST() (line 14), possibly
dropping from BestS,d some other service whose utility
is worse than Sk (see examples given in Algorithms 2
and 3). The update of the sets BestS,d can lead to a substi-
tution of the service currently used to solve dependency
d (as specified in the set S.In) with a new “better” service
taken from BestS,d. The decision about this possible
substitution is taken by function SELECTFROMBESTd()
(line 15).

As is typical with gossip-based protocols, a new in-
stance of Algorithm 1 is created at each node for each
query entered into the system, where a query essentially
specifies a service S and one or more requirements that
the assembly rooted at S needs to fulfill. Each node can
define its own policies for deciding if and when a new
instance of some of the hosted services can be created in
response to the arriving stream of queries.

It is worth noting that, by maintaining a set BestS,d

with |BestS,d| > 1, GOPRIME allows for a quick local
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Fig. 4. Example of execution of Algorithm 1. At the
beginning, service S2 has {S1, S3} as neighbours.

recovery from the loss of the binding with the service
currently used by S to solve dependency d (e.g., because
of a failure, or the hosting peer leaving the system).
Indeed, in this case, a new service can be locally selected
from BestS,d. This recovery action can at least keep S

fully resolved, even if some non-functional requirement
could no longer be fulfilled.

Figure 4 shows an example of algorithm execution
over a set of eight services S1, . . . , S8. UML 2.0 com-
ponent diagrams represent the services, with provided
and required interfaces labeled with the interface type.
For simplicity, the compound utility is a single scalar
value (m = 1), so that the scalar versions of functions
UPDATEBESTd() and SELECTFROMBESTd() can be used
(see algorithms 2 and 3).

The compound utility of some of the services is shown
inside each block, and is assumed to be simply the
maximum of the compound utilities of each dependency;
note that S3 and S8 are not fully resolved, therefore
U(S3) = U(S8) = ?. The initial situation is shown
in Figure 4 (a); we assume that S2 executes the active
thread, and S1 and S3 are in its peer set. First, S2 sends

the list S2.In [ {S2} = {S2, S5, S6} to its first peer S1.
S1 observes that it can replace its dependency S4 with
S2 (both have type 2), since S2 provides a higher com-
pound utility than S4. Therefore, the services are rewired
according to Figure 4 (b). Now S2 sends the same list
{S2, S5, S6} to the other peer S3. S3 then discovers that it
can replace its dependency S7 with S6, since it provides
higher compound utility than the existing dependency.
Figure 4 (c) shows the final wiring of the services.

3.3 Algorithm Properties
In this section we argue that, thanks to Algorithm 1,
GOPRIME is able to guarantee the construction and
maintenance of an assembly fulfilling functional and
non-functional requirements, defined as follows:

• functional requirement: service S must be fully re-
solved;

• non-functional requirement: the value of aS must
be maximised (or, also, it must hold aS � amin),
where aS is a given QoS or structural attribute of S

and amin is some suitable threshold value for that
attribute.

Let us denote by U(S)k and U(S)k+1 the compound
utility of a service S 2 S at two consecutive rounds of
Algorithm 1. The central element of our argument is that
U(S)k+1 is possibly better and in any case no worse than
U(S)k, under the hypothesis that:

1) no service leaves the system;
2) the local utility of each service does not change;
3) function F() in equation 1 is non decreasing with

respect to any of its arguments.
Actually, hypotheses (1) and (2) above could be too

strong in the dynamic environment we are considering.
Hence, after discussing the case when they hold, we
generalise our argument to the case where they are
released.

To prove the non-decreasing monotonicity of U(S)k

with respect to k when all the three hypotheses above
hold, let us consider first the case where S does not
change any of its bindings from round k to round
k + 1. In this case, hypotheses (1) and (2) guarantee that
U(S)k+1 = U(S)k.

Let us consider instead the case where S does change
from round k to round k + 1 its binding to solve a
dependency d 2 S.Deps , and let us denote by S

0 and
S
00 the old and new service S is bound to solve d. The

non-decreasing monotonicity of U(S)k is immediately
evident in the case of a scalar metric. Indeed, looking at
Algorithms 2 and 4, we see that S changes its current
binding from S

0 to S
00 only if U(S00) > U(S0). This,

together with hypothesis (3) above, guarantees that in
case of change of binding, we have U(S)k+1 � U(S)k.

In case of a Pareto-based metric, we can see from
Algorithm 3 that a new service Si is added to the set
BestS,d at round k +1 only if U(Si) is not dominated by
U(Sj) for any other service Sj 2 BestS,d at round k, and
possibly U(Si) dominates U(Sh) for some service Sh 2
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BestS,d. As a consequence, U(S00) can never be domi-
nated by U(S0), however function SELECTFROMBESTd()
is defined. This, together with hypothesis (3), guarantees
that, in case of change of binding, U(S)k+1 cannot be
dominated by U(S)k.

The arguments above show that the algorithm imple-
mented by the Gossip Manager makes U(S)k a mono-
tonic non-decreasing function, with respect to k. We now
discuss how, thanks to this property, GOPRIME guar-
antees the fulfilment of functional and non-functional
requirements.

Let us consider functional requirements first. We know
from equation 1 that U(S)k takes the lowest value when
S is not resolved, for any service S 2 S. Hence, if services
exist in S able to fully solve the dependencies of S, then
the monotonicity of U(S)k together with the properties
of a gossiping scheme, guarantee that the system will
be eventually driven towards the construction of an
assembly where all S dependencies are resolved, for any
definition of function F() in equation 1.

For non-functional requirements, we have presented
in Section 2.2 example definitions of function F() for
specific QoS or structural attributes. By instantiating the
general definition of U(S) according to these definitions,
the monotonicity of U(S)k together with the properties
of a gossiping scheme, guarantee that an assembly will
be eventually built for a service S where maximisa-
tion or threshold-based non-functional requirements are
fulfilled (in the latter case, provided that the specified
threshold is below the achievable maximum). For re-
quirements involving the maximisation of the compound
utility value, the gossip protocol actually only guaran-
tees that the compound utility value of the assembly
will be non-decreasing, so that some user-defined criteria
must be set to stop the protocol when the utility is
considered “good enough”. The simulation experiments,
which will be presented in Section 5.2, suggest that, as
the rate of improvements of the compound utility value
slows down, the assembly is approaching its optimal
configuration.

It remains to be discussed the case where hypotheses
(1) or (2) above do not hold. Let us consider hypothesis
(1). If a service that is currently part of an assembly
rooted at a service S leaves the system, then U(S)
suddenly drops to the lowermost value ?, since the S

dependencies are no longer fully resolved. GOPRIME will
recover from this situation thanks to its continuous effort
in monotonically increasing the U() value, as discussed
above. Let us consider now hypothesis (2). If the local
utility of some service belonging to an assembly rooted
at S increases, then U(S) will increase by hypothesis
(3), thus having no negative impact, as expected. If the
local utility of some service decreases, then U(S) could
decrease too, by hypothesis (3). In this case, the situation
is similar (even if less extreme) to the case where a
service leaves the system, and GOPRIME recovers in an
analogous way from this situation.

Hence, in general, U(S)k will present a piecewise
monotonic non-decreasing behaviour, as a result of ser-
vices leaving the system or decreasing their local utility
(e.g., because of some internal failure), and the parallel
continuous operation of GOPRIME. We will present in
Section 5 experiments providing evidence of this be-
haviour.

4 GOPRIME IMPLEMENTATION

GOPRIME is implemented as an extension of PRIME, a
support middleware for developing pervasive applica-
tions that adhere to the Pervasive-REST (P-REST) ar-
chitectural style [6]. We give first a quick overview of
PRIME, then we present its GOPRIME extension3.

Communication 
Layer 

API Programming 
Layer 

… Bluetooth UMTS Wi-Fi LAN 

Point-to-Point 

Structured Overlay 

Point-to-Multipoint 

      GOPrimeApplication 
      PrimeApplication 

Observe/Notify Lookup 

Resource 

Service 

Access 

DNS 
HTTP 

Service Management 

Assembly Management 

Gossip 

Unstructured Overlay 

Fig. 5. GOPRIME Software Architecture.

PRIME exploits a two-layer software architecture to
provide engineers with a set of enhanced functionalities
(white boxes in Figure 5) facilitating the design and de-
velopment of P-RESTful applications – i.e., applications
adhering to the P-REST style [6]. Specifically:
Communication layer – To deal with the inherent
instability of pervasive environments, PRIME arranges
devices in an overlay network built on top of
low-level network technologies (e.g., Bluetooth, Wi-
Fi). Such an overlay is exploited to provide two ba-
sic communication facilities, namely point-to-point
and point-to-multipoint. Point-to-point communi-
cation grants a given node direct communication with
a remote node, whereas point-to-multipoint communi-
cation allows communication with many different nodes
at the same time. Furthermore, PRIME implements a DNS
facility for managing device mobility [21].
API Programming layer – PRIME provides the pro-
gramming abstractions to implement P-RESTful applica-
tions. PrimeApplication acts as container for exposed
Resources – i.e., it handles both resource life-cycle and
provision – and provides the set of operations allowed
on resources: (i) Access, which gathers the set of op-
erations to access and manipulate resources according
to the REST uniform interface, (ii) Observe/Notify,
which allows resources to declare interest in a given
resource and to be notified whenever changes occur, and
(iii) Lookup, which supports resource discovery.

3. GOPRIME is available at http://github.com/maurocaporuscio/
prime-middleware-extensions
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These functionalities grant PrimeApplication a
set of key characteristics, such as: (i) loose coupling:
resources are deployed and executed independently
of other resources, (ii) flexibility: resources can be
added and removed into the running application, (iii)
dynamism resources of interests are discovered and
bound into the running application, and (iv) serendip-
ity: unforeseen resources are accommodated into the
running application.

GOPRIME exploits such characteristics and extends
PRIME with the set of capabilities discussed in previous
sections, namely Gossip communication, Assembly
Management, and Service Management. Indeed, the
GOPrimeApplication (light-grey boxes in Figure 5)
uses the extended communication layer and API pro-
gramming layer to provide up-level Services with the
Utility-Aware Service Assembly functionality. Specifically,
referring to the high-level architecture described in
Section 3, GOPRIME includes three macrocomponents,
namely Gossip communication (Section 4.1), Assembly
Management (Section 4.2), and Service Management
(Section 4.3).

4.1 Gossip Communication
Gossip macrocomponent extends the PRIME communi-
cation layer by providing GOPrimeApplication with
the ability of gossiping information of interest.

To optimise information dissemination, Gossip builds
and maintains the peer set over which information of in-
terest is disseminated. To this end, Gossip implements
the NEWSCAST epidemic protocol [9], and maintains a
local view of a set of peers it can exchange messages with.
The local view is constantly updated, so that a node is
always provided with “fresh” list of peers. Updating the
local views is also necessary to maintain an updated peer
set in presence of node and link failures. Specifically,
each peer maintains a set of K peers, where K is a
predefined constant; periodically, each peer merges its
list with that of a randomly chosen peer, keeping the
most K recently added links and dropping older ones.
This protocol exhibits useful features: (i) the peer set it
produces is a good approximation of a true random
sample among all peers, and (ii) the protocol is highly
resilient and can maintain a full peer set in presence of
node or link faults.

4.2 Assembly Management
Assembly Management implements assembly construc-
tion and maintenance functionalities.

Referring to Figure 6, the GOPrimeApplication
class makes use of Assembly Management, which in
turn includes AssemblyManager, UtilityManager,
AssemblyUtilityMonitor, and GossipManager.
AssemblyManager is in charge of managing the

assembly specified by the local service by satisfying
the set of dependencies and resolving the correspond-
ing bindings. To this end, AssemblyManager interacts

with GossipManager, which in turn provides gossip
communication facility: (i) sending/receiving messages
to/from the underlying network, and (ii) implement-
ing Algorithm 1, as well as the UPDATEBESTd() and
SELECTFROMBESTd() functions (see Section 3.2), to keep
the Assembly Management updated.

Finally, UtilityManager is implemented as a sup-
porting abstract class used to map the set of high-level
requirements, specified by Service Management, to
low-level directives needed to instruct GossipManager.
Specifically, UtilityManager is extended by the
AssemblyUtilityMonitor to combine local and re-
mote utility and keep the compound utility updated.

4.3 Service Management
Service Management monitors the utility of the lo-
cal service through LocalUtilityMonitor, and for-
wards detected changes to UtilityManager, which in
turn re-computes the compound utility and notifies the
GossipManager.

It is worth noting that LocalUtilityMonitor ex-
ploits the semantic-aware PRIME Resource Description
mechanism for implementing the matching function
matches : T ⇥ T ! [0, 1] (defined in Section 2). Specif-
ically, following the P-REST architectural style imposed
by the PRIME middleware, a Service is implemented as
a GOPrimeApplication, which exposes information
of interest through the instantiation of Resources. In
turn, Resources are provided/consumed through the
P-REST uniform interface, and must be described by
means of the PRIME Resource Description Ontology,
which specifies the set of concepts needed to properly
advertise/retrieve resources of interest to/from the net-
working environment. In particular, a Description
is composed of (i) aURI and cURI, which define the
Service Type implemented by the resource and its concrete
identifier, respectively; (ii) the functional description,
which describes the set of functionalities offered by
the resource, and (iii) the contextual properties of the
resource (e.g., the geographic coordinates).

Exploiting such a mechanism, the matching function
is redefined as matches : aURI ⇥ aURI ! [0, 1] and
exploits the signature matching algorithm [12] to check
whether provided and required Service Type satisfy one
of the following subsumption relationships: (i) if no
subsumption relation exists between the two types (fail
matching) then matches returns 0, (ii) if the required
type subsumes the provided one (subsume matching)
then matches returns 1/3, (iii) if the provided type
subsumes the required one (plugin matching) matches

returns 2/3, and (iv) if the types are equivalent (exact
matching) then matches returns 1.

GOPRIME extends the PRIME Resource Description
Ontology by defining the set of concepts needed to
specify the Utility of the local service, as well as the set of
its dependencies. For instance, referring to the example
presented in Figure 4.c, Figure 7 shows the semantic-
aware description for the Resource implementing S2. In
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Fig. 6. An excerpt of the GOPRIME Class Diagram.

@prefix :<http://www.prime.org/ResourceDescription#>.
@prefix ex:<http://www.prime.org/Example#> .

[] a :Resource ;
:aURI [ a ex:Type2 ] ;
:cURI "S2" ;
:offers [ a :Interface ;

:method [ a :GET ;
:output "text/html" ;
:semanticRef "getSomeData" ] ] ;

:hasQoS [ a :QoSSpecification ;
:utility "0.9" ] ;

:requires [ a :ReqSpecification ;
:resType ex:Type3 ; :times "1" ] .
[ a :ReqSpecification ;

:resType ex:Type7 ; :times "1" ] .

Fig. 7. Resource Description.

particular, the Description defines a service identified
as S2 (the cURI attribute) of type Type2 (the aURI
attribute), which implements a GET method. Further,
S2 declares the current compound utility (hasQoS at-
tribute), and its dependence on two service types, Type3
and Type7 respectively. Each dependency declares a
times attribute that specifies the number of times such
a dependency is resolved during the execution of the
local service (see Section 2.2).

5 EXPERIMENTAL RESULTS
The GOPRIME assessment carried out in this section is
twofold and concerns (i) its suitability when dealing
with a real world application (Section 5.1), and (ii)
its scalability, convergence speed and robustness (Sec-
tion 5.2).

5.1 GOPRIME in action: eHealth application
The experiment presented in this section aims to vali-
date the utility-aware decentralised service assembly ap-
proach implemented by GOPRIME through a real world
case study, namely the eHealth application.

The eHealth application aims at (i) monitoring elder
people’s health parameters (e.g., weight, blood pressure,

Patient

Health Service
CS1 CS2 CS3 CS4 CT1 CT2 CT3

Technical Assistance

First Aid

FA2
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Tec Tec

Doc

Doc

Ut(S)Ut(S)
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H

H3
H

B
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Fig. 8. Case study: the eHealth scenario.

heart rate, etc . . . ), as well as their daily activity (e.g.,
sleeping, eating, walking, etc . . . ), and (ii) raising health
alarms whenever either the health parameters or the
activity deviate from usual (e.g., the patient is sleeping
too much and/or the blood pressure is too low). To this
end, the eHealth application is built as composition of a
set of services. Figure 8 depicts the eHealth scenario by
highlighting the set of involved service types (the labeled
boxes) and service instances (the icons within each box).
For each service type, arrows point to other service types
it depends on. Specifically:

1) Wearable Things sense health parameters and pro-
vide them to Patient.

2) Ambient Things monitor daily activities and pro-
vide them to Patient.

3) Patient analyses sensed data and, in case of
anomaly detection, issues a query for a (medi-
cal or technical) Health Service, specifying its non-
functional requirement. In this experiment, we as-
sume that it is “minimise the Response Time”,
which corresponds to max(Ut(HealthService)) ac-
cording to Equation 5.
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Fig. 9. The eHealth system model.

4) Health Service receives the alarm and, depending
on its type (i.e., medical or technical), alerts First
Aid or Technical Assistance, accordingly.

5) Technical Assistance, upon receiving a Technical
alarm, sends a Technician to the patient’s home.

6) First Aid contacts the Ambulance Service, and makes
a reservation at the Hospital.

7) Hospital reserves Analysis Laboratory and Operating
Rooms to efficiently manage the alarm.

8) Ambulance Service selects an Ambulance according
to the requirements for the ongoing emergency.

Figure 9 describes the eHealth system model, which
is defined according to a three layer schema composed
of Service Layer, GOPRIME Layer, and PRIME Layer.

In general, the Service layer specifies the set of Service
Types (defined as aURI) involved in the running appli-
cation. Referring to the eHealth scenario, Service layer
in Figure 9 describes (i) the set of services composing
the eHealth system (i.e., Wearable Thing, Ambient Things,
Patient, etc.), and (ii) the non-functional requirement
max(Ut(HealthService)) and the dependencies declared
by Patient, i.e., the service initiating the interaction.

The GOPRIME layer manages the selection of actual
services satisfying the non-functional requirement. GO-
PRIME encapsulates the descriptions of those services
that match each type. GOPRIME layer provides a vi-
talisation layer used to introduce a further degree of
indirection, enabling for loose binding between Service
Types and their implementing PRIME instances. Indeed,
the Service types are not directly bound to their con-
crete implementations. Besides, decoupling the Service
Types from their concrete implementations, achieves
the flexibility degree required for supporting run-time
adaptation. Once specified the Service types and the
set of descriptions, services are bound to instances at
run time by means of the PRIME binding mechanisms.
Still referring to the eHealth scenario, GOPRIME layer in
Figure 9 maps the abstract set of Service Types defining
the eHealth system to the set of Service Descriptions
matching such types. For example, the Wearable Thing
type is matched by two different Service Descriptions

(e.g., d1 and d2), whereas the Patient type is matched by
one Service Description (e.g., d7).

The PRIME layer manages the life-cycle of components
implementing the service descriptions. PRIME layer con-
tains the set of all possible component instances im-
plementing the Service Types specified within the Ser-
vice layer, as well as other companion components that
might be used to support the computation. Each Service
Type might be implemented by several components that
vary from each other in terms of QoS properties (e.g.,
availability and reliability). Note that the GOPRIME layer
plays the role of filtering layer: (i) a description specifies
both functional and non-functional requirements for the
service, and (ii) the PRIME binding mechanism makes
use of such descriptions for selecting the component in-
stance, among all the available ones, which provides the
needed functionality and satisfy QoS requirements. For
example, referring to Figure 9 the Service Descriptions
d1 and d2 refer to, respectively, component c14 and c11,
whereas the description d7 refers to the component c8.

Since the underlying components are implemented by
means of PRIME, services must be designed and imple-
mented by adhering to the P-REST architectural style. To
this end, Figure 10 presents an excerpt of the eHealth
Application software architecture, specified according
to the P-REST metamodel [6], which shows the archi-
tectural design of the patient service: let /patient
be the GOPRIME Resource representing the Patient ser-
vice in Figure 8. /patient includes a /list resource,
which can be accessed by following the link labeled as
store. Indeed, /list is defined as a Resource Set of
resources {res_id}. Moreover, /patient makes use
of three abstract resources, namely #WearableThing,
#AmbientThing and #HealthService.

observe
 

/patient 

dp 

POST GET 

ρp 

[]: “analyse” 

[#WearableThing] 

/list/{res_id} 

ρl dl 

GET[pdf] GET[xml] 

[#AmbientThing] 

[anomaly]: “alarm” 

[#HealthService] 

Fig. 10. PRIME-based eHealth software architecture.

At run-time, data will be actually read from concrete
resources belonging to the classes #WearableThing,
and #AmbientalThing, and stored as a list of val-
ues: the actual URIs of the resources identified by
{res_id}, are derived in two steps: (1) considering the
include relation from /list/{res_id} to /patient,
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Fig. 11. GOPRIME-based Patient assembly.

then obtaining the /list/{res_id} URI Template,
and (2) substituting the res_id variable with actual
values. This results in a set of n distinct resources
identified by /patient/list/1, /patient/list/2,
. . ./patient/list/n URIs, respectively. Patient keeps
analysing data in list and, in case of anomaly detec-
tion, sends an alarm to the actual concrete resource
belonging to #HealthService and matching the non-
functional requirement max(Ut(HealthService)).

Figure 11 shows the service assembly made by
GOPRIME from the Patient perspective, with re-
sponse time-based compound utility defined in equa-
tion (5). Specifically, once the Patient has declared the
max(Ut(HealthService)) requirement for the final as-
sembly, GOPRIME gossips compound utilities until all
dependencies are iteratively resolved and the response
time of the resulting assembly is minimised.

Initially (at step s0), the compound utilities (expressed
in units of time ut) are: Truck Ambulance = �100ut,
Ambulance Service =?, Hospital = �25ut, First Aid =?,
and Technical Assistance = �10ut. Hence, applying the
above equation it results Health Service =?, as some
dependencies are still not resolved. From step s0 to step
s6 (see 1 ), GOPRIME gossips local utilities and resolves
the dependencies by recursively calculating compound
utilities. At step s6, the compound utilities are: Truck
Ambulance = �100ut, Ambulance Service = �100 � 10 =
�110ut, Hospital = �25ut, First Aid = �10 � 25 � 110 =
�145ut, Technical Assistance = �10ut, and Health Service
= �10�10�145 = �165ut. Hence, at step s7 (see 2 ) the
dependencies for Patient are resolved, and its compound
utility is Ut = �10 � 165 = �175ut.

Figure 11 also shows how the Patient’s compound
utility changes as soon as a faster ambulance, namely Air
Ambulance with Ut = �30ut, becomes available (see 3 ).
When Air Ambulance appears, GOPRIME gossips its re-
sponse time-based utility, and reassembles the service,
accordingly (see 4 ). Specifically, Air Ambulance = �30ut,
Ambulance Service = �10�30 = �40ut, Hospital = �25ut,
First Aid = �10 � 25 � 40 = �75ut, Technical Assistance
= �10ut, and Health Service = �10 � 10 � 75 = �95ut.
Hence, at step s7 (see 5 ) the new compound utility for

Patient is Ut = �10 � 95 = �105ut.
It is worth noting that, for the sake of simplicity, such

experimentation has been carried out by considering a
single attribute for the compound utility, namely Ut as
defined in equation (5). Alternatively, Patient can specify
a multi-attribute requirement that aims to balance re-
sponse time and some other quality attribute (e.g., cost).
For example, to avoid using the costly Air Ambulance
when not needed, Patient can combine Ut and Uc (i.e.,
the cost-based compound utility defined in Equation (3))
by means of either SAW or Pareto technique (as defined
in Section 2.3), to specify a non-functional requirement
that balances cost and response time.

5.2 Scalability and Robustness Analysis
In order to test the effectiveness of GOPRIME on a larger
scale than our case study allows, we implemented a
simulation model using the cycle-based engine of the
PeerSim [22] simulator. PeerSim is a free Java package
designed for efficient simulation of Peer-to-Peer proto-
cols; the cycle-based engine it provides implements the
time-stepped simulation model, in which all interactions
happen at specific time steps. The cycle-based engine
is well suited to evaluate Peer-to-Peer protocols, where
the most important metric is the convergence speed
measured as the number of rounds (message exchanges)
that are needed to reach a desired configuration. Such
a performance metric (number of interactions) has the
advantage of being independent from the details of the
underlying hardware and network infrastructure.

Model Parameters: Using the same notation from
Table 1, we consider a system with T interface types and
C � 1 services of each type, so that N = C⇥T . Moreover,
to perform the experiments in the least favourable con-
ditions, we assume that each peer hosts a single service.
This implies that N is also equal to the number of peers;
hence, in the following we will refer to N as the “system
size”.

For each service we define D random dependencies.
Abstracting from specific utility definitions (like those
described in Section 2.2), each service S is assigned a
scalar utility S.Util that is uniformly distributed in (0, 1),
and we compute the compound utility of a fully resolved
assembly as the product of utilities of individual ser-
vices. For each type d 2 T we randomly choose Nopt � 1
services of type t and set their utility to 1; this ensures
that a maximum compound utility value of 1 can always
be achieved, by binding together those services.

We point out that, even if we adopt a scalar utility in
our experiments, the obtained indications extend also to
the case of a non-scalar utility compared according to
Pareto dominance. Indeed in this case GOPRIME would
drive the system towards the construction of an assem-
bly whose utility belongs to the corresponding Pareto
front. Hence, the Pareto front would play the role of
the maximum achievable utility value of 1 in the scalar
setting of our experiments, and the cardinality of the
Pareto front would correspond to the Nopt value.
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TABLE 2
Simulation Parameters

D Number of dependencies per node
K Number of neighbours returned by GETPEERS() function
C Number of instances of each service type

Nopt Number of services of each type with utility 1
Rt Fraction of fully resolved services at step t
Ut Average utility of fully resolved services at step t
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Fig. 12. Mean number of iterations required to produce
fully resolved assemblies with utility at least 0.99. There
are T = 50 service types Each data point is the average
of 50 independent simulation runs. Lower is better.

Performance Measures: We consider two metrics:
the fraction Rt of fully resolved services at simulation
step t, 0  Rt  1, and the average utility Ut of fully
resolved services at step t, 0  Ut  1. Both are higher-
is-better metrics. Rt is computed by counting the fraction
of fully resolved assemblies at the end of each simulation
step; the optimal value of Rt is 1 (all services are fully
resolved). Ut is computed as the average utility of all
fully resolved services at step t (there are NRt such
services). As already explained above, the maximum
value of Ut is 1. Unless stated otherwise, all results
are computed by taking the average of ten independent
simulation runs.

Table 2 summarises the simulation parameters. We
now report the results in different scenarios.

System Size: We first evaluate the mean number
of iterations that are necessary to produce fully resolved
assemblies, for increasing values of the system size N ,
1000  N  15000. This is important for understanding
the scalability of the proposed gossiping scheme. We
performed a simulation with T = 50 different service
types, each service having D = 10 dependencies. 25%
of the instances of each type have maximum utility 1.
At each iteration, each node exchanges state information
with K = 20 other nodes.

Figure 12 shows the average number of iterations that
are required to resolve all dependencies and achieve a
compound utility greater than 0.99 (out of the maximum
value 1), for each service in the system. As it can be
expected, more iterations are required to achieve the
desired maximum utility for increasing system size.
However, the number of iterations increases quite slowly,
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Fig. 13. Mean number of iterations required to produce
fully resolved assemblies with N = 5000 services and
variable number of instances per type C. Lower is better.

suggesting the logarithmic growth typical of gossip pro-
tocols [8].

Besides the number of iterations to fulfill the sys-
tem requirements, another important factor that can
affect scalability is the amount of exchanged information
among nodes in the network. From line 8 of Algorithm
1, we see that each node sends a message whose size
is proportional to K ⇥ (1 + |S.Deps|)  K ⇥ (1 + T ),
independent of the system size N . Hence, the overall
amount of information exchanged at each round grows
linearly with the system size.

The ability of GOPRIME to resolve dependencies
quickly depends on the number of instances of the
service types in the system: if there are only a few in-
stances of each service type, the gossip protocol requires
more iterations to build fully resolved assemblies. This
is shown in Figure 13 where we consider a system with
N = 5000 services and a variable number of instances
C for each type, C 2 {2, 5, 10, 50, 100}. The number of
iterations required to produce a (not necessarily optimal)
fully resolved assembly steeply increase as the number
of instances of each type decreases. This can be improved
by tuning the value of parameter K (number of peers of
each node) as described next.

Number of Neighbours: We now examine the
impact of the value of K (number of neighbour peers
returned by the GETPEERS() function) on Rt and Ut;
specifically we consider K 2 {10, 20, 50}. We consider
N = 1000 services of T = 50 different types; each service
has D = 10 randomly chosen dependencies. For each
type t 2 T, there is a single service with maximum utility
(Nopt = 1).

Figure 14 shows the average utility (top part) and
fraction of resolved services (bottom part) after each
simulation step, for the different values of K. If each
peer communicates with K = 10 peers, we observe
that all dependencies are resolved in about 10 inter-
actions (bottom part of the figure). The average utility
grows monotonically, as expected (recall the discussion
in Section 3.3); however, the growth is slow, and the
utility tends to stabilise around a value that is below
the maximum, which, by construction, is 1. This can
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Fig. 14. Average utility (top) and fraction of resolved
services (bottom) for different values of the number of
peers K; N = 1000, D = 10, Nopt = 1. Higher is better.
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Fig. 15. Average utility (top) and fraction of resolved
services (bottom) for different values of the number of
services with maximum utility Nopt; N = 1000, T = 50,
K = 10. Higher is better.

be explained by observing that, in order to build an
assembly with maximum utility, the algorithm needs to
locate the (unique) service of each needed type with
utility set to 1. Since only interactions with peers are
allowed, this process is very slow over networks with
limited degree. The situation improves by increasing
the number K of peers to communicate with at each
iteration, or if multiple services with maximum utility
are available. To prove the latter point, we examine again
the scenario with K = 10 with increasing values of Nopt.

Larger values of Nopt imply that there exist multiple
different ways to build an assembly with maximum
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Fig. 16. Average utility (top) and fraction of resolved
services (bottom) for N = 1000, T = 50, K = 20, Nopt = 1
and different values of the number of dependencies D.
Higher is better.

utility. Figure 15 shows the results with Nopt 2 {1, 10, 20}.
Increasing Nopt values allow the algorithm to produce
service assemblies more quickly with higher utility; on
the other hand, note that the value of Nopt has basically
no impact on the speed at which fully resolved services
are produced (bottom part of Figure 15).

Number of Dependencies: In this experiment we
study how the number of dependencies D influences the
algorithm convergence speed. We set N = 1000, T = 50,
K = 20 and Nopt = 1. We set D 2 {5, 10, 20} random
dependencies on each service.

The results are shown in Figure 16. We observe that,
as the number of dependencies increase, so does the
convergence speed towards the maximum utility of the
service assembly. This may appear counterintuitive at
first, but can be explained by considering that each peer
sends its list of resolved (immediate) dependencies to
its peer set during interactions. Since the goal of each
peer is to maximise its compound utility, it will likely
bind to services with high utilities as well. Therefore, if
peers have larger lists of dependencies to exchange, then
the gossip protocol has a better chance to faster locate
dependencies with higher utility.

Handling Failures: Every large collection of dis-
tributed services is necessarily prone to failures: individ-
ual peers may crash at any time, and new peers may join
the system. Many gossip-based algorithms exhibit the
ability to handle massive failures gracefully [8]. We study
the resilience of Algorithm 1 by considering again a set of
N = 1000 services of T = 50 different types. Each service
has D = 10 random dependencies. For each service type,
we assign utility 1 to Nopt = 10 different peers. Every
ten simulation steps we remove 40 randomly selected
services.
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Fig. 17. Average utility (top) and fraction of resolved
services (bottom) when 40 random services are removed
every 10 simulation steps; Nopt = 10. Higher is better.

Figure 17 shows the average utility and fraction of
fully resolved services for different values of K, the num-
ber of neighbours of each peer returned by GETPEERS()
function. After each failure, we clearly see a sharp
reduction of both the average utility and the fraction
of resolved services. However, the algorithm quickly
works around failed nodes and stabilises itself near a
new optimal configuration within a few steps. This gives
rise to a piecewise monotonic non-decreasing behaviour,
as discussed in Section 3.3. Again, we see that for the
smallest considered value of K (K = 10) the algorithm
provides assembly with utility below the maximum,
within the considered time window. As we discussed
above, when each node has a limited number of peers
to talk with, then information diffusion slows down
and the system tends to stabilise around a suboptimal
configuration (with respect to the maximum achievable
utility). Despite that, almost all services become quickly
fully resolved, as shown in the bottom part of Figure 17.

6 RELATED WORK

6.1 Architectures for self-adaptation
It has been widely recognised that the architecture of
self-adaptive software systems should include one or
more control loops to perform self-adaptation tasks [4].
A notable example of a general approach based on
this idea is the autonomic computing framework and the
related MAPE-K (Monitor, Analyse, Plan, Execute, and
Knowledge) reference model of an autonomic system [2],
[3]. The MAPE-K architecture proposed in [2] adopts
a centralised hierarchical organisation. However, the
work in [5] clearly contrasts decentralised self-adaptive
systems with their centralised counterparts, and high-
lights the importance of decentralised control to achieve

quality requirements such as resilience, robustness and
scalability in large distributed systems. That work also
discusses some key research challenges for the realisa-
tion of decentralised self-adaptation. A deep investiga-
tion of possible architectural patterns for decentralised
management of MAPE-K loops in self-adaptive systems
has been presented in [23]. In this respect, GOPRIME
follows the information sharing pattern presented in [23],
where the MAPE-K loops executed at each node interact
through their Monitor components for information shar-
ing, while the Analyse, Plan and Execute components
operate independently of corresponding components at
other peers, for local analysis, planning, and execution
of adaptations. In particular, Algorithm 1, which imple-
ments the gossip-based information dissemination, cor-
responds to a decentralised implementation of the Moni-
tor operations, while functions SELECTFROMBESTd() and
UPDATEBESTS,d() locally implement the operations of
the Analyse and Plan components (see Algorithms 2, 3
and 4).

Another general reference model for the architecture
of a self-adaptive software system has been presented
in [24]. This paper suggests to architect the system along
three different layers, which interact with each other by
reporting status information to the above layer and issu-
ing adaptation directives to the layer below. The bottom
layer (component control) is concerned with adaptation
at the level of single components (i.e., services in the
SOA domain). The middle layer (change management) re-
actively uses a pre-specified set of plans to adapt the sys-
tem consisting of components at the lower layer. When
these plans are no longer able to meet the system goals,
or when new goals are introduced, the upper layer (goal
management) determines new adaptation plans. From the
viewpoint of this three-layer reference model, GOPRIME
basically corresponds to a decentralised implementation
of the middle layer, which interacts on the one side
with the bottom layer consisting of the managed services
and on the other side with the upper layer that, in
the GOPRIME architecture described in Section 3.1, is
implemented by the Goal Manager component.

6.2 Dynamic service assembly
The problem of managing a dynamic service compo-
sition has been dealt with in literature by proposing
approaches mainly based on dynamic service assembly
(e.g., [25], [26]) or on dynamic service planning (e.g., [27],
[28]). In this section we briefly review papers based on
dynamic service assembly, which are the ones closest to
our approach. In particular, since our focus is on the
development of a fully decentralised solution, we only
consider papers adopting a similar approach.

The work in [25] presents an approach where a dy-
namic set of agents cooperate to preserve some architec-
tural constraints. All agents rely on a group membership
service and reliable broadcast to achieve a consistent
view of the accumulated knowledge. Moreover, adap-
tation actions are globally coordinated by means of a
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totally ordered broadcast that implements a distributed
locking scheme. This global coordination mechanism
requires explicit interaction among all agents. The result-
ing overhead thus limits the scalability of the proposed
control architecture.

FlashMob [26] overcomes some of the limits of [25].
This work is also the closest to GOPRIME as it adopts a
gossip-based adaptive decentralised self-assembly pro-
cedure. However, FlashMob requires that each peer
maintains and disseminates global state information con-
sisting of the whole assembly of offered and required
services. FlashMob also does not explicitly deal with
global QoS goals, and requires a backtracking phase to
explore alternative solutions in case the assembly does
not fulfill some requirement. Differently from [26], our
decentralised self-assembly procedure does not maintain
an explicit knowledge of the whole assembly at each
peer. This reduces the size of messages and of local state.
Moreover, the achievement of global QoS goals is one of
the drivers of the procedure we propose.

While FlashMob employs a top-down approach to re-
solve dependencies, GOPRIME uses a bottom-up strategy
to build fully resolved assemblies satisfying structural
and QoS requirements. To do so, some extra work is
done by each peer, also those that will not be part of the
final “best” assembly. This extra work is, however, paid
back by the ability to operate without global knowledge,
and the robustness properties that can be obtained.

Some works [1], [7], [29], [30] deal with the problem
of managing dynamic organisations of agents in a de-
centralised way, i.e., agents that may dynamically form
specific subsets (organisations) to cooperate towards
some common goal. The problem considered in these
papers has thus a wider scope than managing a dynamic
assembly of services. However, this latter problem is
part of the more general problem they consider. The
MACODO organisation model and the related mid-
dleware for the management of dynamic organisations
of agents adopts an architecture that is only partially
decentralised [29], [30]. Indeed, each agent organisation
is based on a master-slave schema, where the master
has complete knowledge of the organisation state and
controls the organisation dynamics in a centralised way.
The masters of different organisations can then cooperate
to achieve some common goal (for example by merging
their respective set of agents into a single organisation),
exchanging to this end some reduced state information.
[7] presents a decentralised approach where each agent
periodically contacts a subset of its peers to determine
the composition of the organisation it should refer to for
the accomplishment of some specific task. In principle,
the subset to be contacted could include the whole
set of peers but, for scalability reasons, [7] suggests
to randomly select a limited subset. This guarantees
that, eventually, all peers will be contacted. [1] deals
with distributed pervasive applications and proposes
configuration algorithms for homogeneous and hetero-
geneous environments. The goal of these algorithms is

to choose the most efficient configuration method for a
given environment while minimising the configuration
latency.

7 CONCLUSIONS

In this paper we have presented GOPRIME, a fully
decentralised middleware solution for the adaptive self-
assembly of distributed services. The core element of
GOPRIME is a gossip-based protocol for information dis-
semination and decision making. Thanks to this, the sys-
tem is able to build and maintain in a fully decentralised
way an assembly of services that, besides functional re-
quirements, is able to fulfill global quality of service and
structural requirements. The system operations require
a bounded amount of information to be exchanged and
maintained at each peer, independently of the overall
number of peers in the system, thus guaranteeing the
scalability of the proposed approach.

GOPRIME relies on a suitably defined, application-
specific utility function to steer the system towards a state
where all dependencies are resolved, and the utility of
the whole assembly (compound utility) is maximised. The
utility function must be defined recursively: the utility
of a non-leaf instance depends on its local utility, and the
utilities of its dependencies. We therefore do not allow
a service instance to be part of a cycle, since in that case
the assembly would never be resolved. Note that we
do allow different instances of the same service type to
appear in a fully resolved assembly; we do not, however,
support the possibility for the same service instance to
be part of a cycle. How this limitation can be relaxed is
subject of ongoing research.

We have shown the validity of our approach pre-
senting results from the experimentation of a prototype
implementation of GOPRIME in a real world e-health
application, and an extensive set of simulation experi-
ments that assess the effectiveness of GOPRIME in terms
of scalability, robustness and convergence speed towards
the optimal assembly.

Future work includes a validation of the approach in a
real industrial setting. We plan also to extend GOPRIME
with the introduction of load balancing mechanisms
to make it able to deal with load-dependent utility.
Another direction of research includes the extension of
GOPRIME with the context-aware adaptation capabili-
ties, e.g., based on physical proximity of nodes used in
the assembly.
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