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Abstract—In the last years, we have seen the increasing
adoption of the microservice architectural style where applica-
tions satisfy user requests by invoking a set of independently
deployable services. Software containers and orchestration tools,
such as Kubernetes, have simplified the development and man-
agement of microservices. To manage containers’ horizontal
elasticity, Kubernetes uses a decentralized threshold-based policy
that requires to set thresholds on system-oriented metrics (i.e.,
CPU utilization). This might not be well-suited to scale latency-
sensitive applications, which need to express requirements in
terms of response time. Moreover, being a fully decentralized
solution, it may lead to frequent and uncoordinated application
reconfigurations.

In this paper, we present me-kube (Multi-level Elastic Ku-
bernetes), a Kubernetes extension that introduces a hierarchi-
cal architecture for controlling the elasticity of microservice-
based applications. At higher level, a centralized per-application
component coordinates the run-time adaptation of subordinated
distributed components, which, in turn, locally control the adap-
tation of each microservice. Then, we propose novel proactive and
reactive hierarchical control policies, based on queuing theory.
To show that me-kube provides general mechanisms, we also
integrate reinforcement learning-based scaling policies. Using me-
kube, we perform a large set of experiments, aimed to show the
advantages of a hierarchical control over the default Kubernetes
autoscaler.

Index Terms—Container; Elasticity; Hierarchical control; Ku-
bernetes; Microservices; Self-adaptation.

I. INTRODUCTION

Microservices is an architectural style for developing an ap-
plication as a suite of autonomous and decoupled services, that
communicate using synchronous or asynchronous techniques.
Thanks to microservices, a monolithic application can be split
into small independent units, each providing a single and well-
defined functionality. Most IT companies (e.g., Amazon, Net-
flix, Spotify, Uber) are switching to microservices to increase
their applications’ efficiency and scalability in a distributed
cloud environment [1]. To effectively process varying work-
loads and satisfy Quality of Service (QoS), applications are
equipped with adaptation capabilities. Exploiting horizontal
elasticity, multiple microservice replicas can be dynamically
provisioned to process the incoming load in parallel.

Software containers well fit in the landscape of microser-
vices and promise to simplify their deployment and run-time
management. A container orchestration tool can automate con-
tainer provisioning, management, communication, and fault-
tolerance. It can be especially useful for deploying and man-
aging complex microservice-based applications during their
whole life cycle. Although several orchestration tools exist [2],
Kubernetes is the most popular solution in the academic and

industrial scenario. However, Kubernetes (like the others) does
not provide effective policies for driving the elasticity of
latency-sensitive applications. It includes the Horizontal Pod
Autoscaler1, which uses a threshold-based policy that relies on
system-oriented metrics to horizontally scale applications. As
such, determining a good scaling threshold is cumbersome, be-
cause it requires to identify the relation between a system met-
ric (i.e., utilization) and an application metric (i.e., response
time), as well as to know the application bottleneck (e.g., in
terms of CPU or memory). To manage a microservice-based
application, Kubernetes allows to create multiple Horizontal
Pod Autoscaler instances, each carrying out the adaptation of
a single microservice deployment. Although this decentralized
approach can improve scalability, it can also negatively affect
the application stability and performance due to frequent and
uncoordinated reconfigurations.

In this paper, we propose me-kube (Multi-level Elastic Ku-
bernetes), a Kubernetes extension that introduces a hierarchical
architecture for controlling the elasticity of microservice-
based applications. Me-kube aims to exploit the strengths of
centralized and fully decentralized approaches and avoid their
drawbacks. The main contributions are as follows.
• We propose a hierarchical architecture, where a high-level

Application Manager coordinates the run-time adaptation
of subordinated Microservice Managers, which locally
control the elasticity of microservices.

• We design and implement me-kube, an extension of
Kubernetes that introduces self-adaptation deployment
capabilities through the newly designed Application and
Microservice Managers components (Section IV).

• We design novel proactive and reactive hierarchical con-
trol policies based on queuing theory for scaling out/in
microservice-based applications (Section V).

• Using me-kube, we experimentally compare our hierar-
chical control policies against fully decentralized ones,
also including approaches based on reinforcement learn-
ing (Sections VI and VII). The experimental results show
the advantages of our hierarchical approach with respect
to the default threshold-based policy in Kubernetes. Our
control policies can efficiently scale the application, so
to satisfy its maximum target response time.

II. RELATED WORK

In this section, we analyze existing policies and architec-
tures that deal with the elasticity management of microservice-

1https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
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based applications on cloud resources. We also consider ap-
proaches for scaling single containers, because, so far, only
few works have specifically targeted the elasticity issues of
complex microservice applications.

Elasticity Policies. We can classify the existing deployment
policies in reactive and proactive. A reactive approach deter-
mines the adaptation actions relying on the current system
state. Conversely, a proactive approach defines reconfigura-
tions relying on a prediction of the future system evolution.
So far, only few existing solutions are proactive (e.g., [3],
[4]). To adapt the application deployment, existing approaches
mainly apply one of the following methodologies: threshold-
based heuristics (e.g., [3], [5], [6]) queuing theory (e.g., [7]–
[9]), and machine learning solutions (e.g., [10], [11]).

Threshold-based policies are the most popular approaches
for elastically scaling containers (e.g., [3], [5], [6], [10]),
also in frameworks (e.g., Kubernenets). Usually, static thresh-
olds are exploited for planning adaptation (e.g., [3], [5]).
To proactively scale microservices, Bauer et al. [3] propose
Chamulteon: it predicts the CPU utilization of each application
microservice and then it takes adaptation actions using a static
threshold-based policy. Although policies with static thresh-
olds are simple to design, they require a manual threshold
tuning that, in general, is not a trivial task. To overcome
this issue, Horovitz et al. [10] use reinforcement learning to
dynamically adapt the scaling thresholds.

Queuing theory allows to predict the application perfor-
mance under different conditions of load and number of
replicas. So, it is often applied to drive scaling operations
(e.g., [8]), also in combination with other techniques (e.g., [3],
[9]). The key idea is to model the application as a queuing
network system with inter-arrival times and service times
having general statistical distributions (e.g., M/M/k, G/G/k).
To simplify the analytical investigation, the application is
considered to satisfy the Markovian property, thus leading to
approximated system behavior. For example, Mao et al. [7]
model a four-tier application using queuing theory. Modeling
a microservice-based application through a Layered Queuing
Network, Gias et al. [9] solve an optimization problem to
dynamically control the number of microservice replicas and
the relative container CPU share. Bauer et al. [3] and Tesauro
et al. [12] combine M/M/k queuing model with threshold-
based and machine learning approaches, respectively. An
M/M/k model can give inaccurate estimates of response time
when the inter-arrival or service time deviate significantly from
the exponential distribution. However, as shown in [13] for
multi-components application in the context of data stream
processing, for most cases, the G/G/k model shows similar
capability to the M/M/k one in estimating application perfor-
mance and identifying the components to scale. To the best of
our knowledge, existing solutions propose a centralized control
component that takes scaling decisions using the application
queuing model. Therefore, these solutions typically do not
scale well in a highly distributed environment.

In the field of machine learning, reinforcement learning
(RL) is a special technique by which an agent can learn how

to make good decisions through a sequence of interactions
with the environment. Most of the works consider the clas-
sic model-free RL algorithms (e.g., [12], [14], [15]), which
however suffer from slow convergence rate. To tackle this
issue, in [11] we proposed a model-based RL solution that
exploits what is known (or can be estimated) about the system
dynamics to control the elasticity of containers. Recently, RL
policies have been exploited to manage complex systems also
in a fully decentralized manner [15].

Control Architectures. Most of the existing solutions
adopt centralized controllers to carry out the application adap-
tation, e.g., [5], [8], [9]. As described in [16] and elaborated
in Section III, different architectural patterns can be used
in practice to decentralize the self-adaptation functionalities.
The most common one is the master-worker decentralization
pattern, where decentralized workers only deal with monitor-
ing and reconfiguration enactment (e.g., [4], [11], [17], [18]).
Although a centralized master can more easily find better
adaptation strategies, it can suffer from limited scalability,
especially when applications are deployed in a large-scale
environment. To improve scalability and reliability, several
fully decentralized architectures have been proposed, e.g., [6],
[15]. In such a case, the lack of coordination among the
decentralized control components can cause frequent recon-
figurations, which can cause instability and adversely affect
the application performance. Moreover, designing efficient
decentralized control policies is not trivial.

Differently from the above approaches and our previous
work [18], we propose me-kube, which relies on a hierarchical
control architecture to adapt the elasticity of microservice
applications. It aims to take the best of centralized and
fully decentralized solutions, thus improving performance and
scalability without compromising stability. A hierarchical ar-
chitecture to control the elasticity was first proposed in [19] but
in the different field of distributed data stream processing ap-
plications. However, in that work the hierarchical policy relies
on a simple token-bucket global policy to limit the number of
reconfigurations, which shows some hindrance to effectively
control the overall application response time. Within me-
kube, we design novel proactive and reactive hierarchical
policies based on queuing theory. Exploiting the application
performance model, they estimate the microservices response
time and accordingly take scaling decisions. Using me-kube,
we can also integrate fully decentralized control policies and
compare the performance with that obtained by Kubernetes’
Horizontal Pod Autoscaler.

III. SYSTEM ARCHITECTURE

A. Problem Definition

The microservice architecture is an architectural style that
structures the application as a collection of loosely coupled and
distributed services. Since the application workload usually
changes over time, the number of microservices replicas
should be accordingly scaled at run-time so to obtain desirable
performance avoiding resource wastage. Multiple microservice
replicas can process a subset of the incoming requests in



parallel, thus reducing the load per replica and, in turn, the
processing latency. In this work, we consider latency-sensitive
applications that expose requirements on a target average
response time that should not be exceeded (i.e., Rmax).

To manage and adapt the application deployment, we need
an external controller that provides self-adaptation mecha-
nisms and coordinates the microservices scaling actions. The
adaptation control loop can be organized following the well es-
tablished principles of the Monitor, Analyze, Plan and Execute
(MAPE) architectural style. In the following, we describe some
patterns for decentralizing the MAPE control loop, aiming to
identify the most suitable approach to control microservice
applications in large-scale environments.

B. Architectural Options for Decentralized Control

The MAPE control loop is composed by four main compo-
nents: Monitor, Analyze, Plan, and Execute. The Monitor com-
ponent collects data about the application and the execution
environment. By analyzing monitoring data, the Analyze com-
ponent determines whether the application deployment should
be changed. If an updated is needed, using a specific control
policy, the Plan component identifies the adaptation action to
perform. Ultimately, the Execution component implements the
deployment changes. A single centralized MAPE control loop
may introduces a single point of failure and a bottleneck for
scalability, especially when the control system is in charge of
a large number of dynamic entities scattered in a distributed
environment. To motivate our choice, we briefly review the
main features of the most relevant patterns used to decentralize
the self-adaptation functions [16].

The coordinated control pattern is a fully decentralized
solution where multiple peer MAPE loops operate in parallel
to manage the system adaptation. Each MAPE component
coordinates its operations with the corresponding component
of the other peer loops. This pattern improves scalability
when the peer coupling is reduced. However, the lack of
logically centralized coordination may introduce too frequent
and uncoordinated decisions and it is not easy to design a
fully decentralized policy that rapidly converges to a globally
optimal solution.

The master-worker control pattern decentralizes only the
execution of the Monitor and Execute components, relieving
the burden from the centralized master. In a single loop
iteration, the master component collects the monitoring data
from the workers, analyzes them, and dispatches the adaptation
actions to the decentralized executors. The centralized master
allows to more easily design the self-adaptation policies and
computes globally optimal reconfiguration strategies. Never-
theless, it may easily become the system bottleneck when it
has to manage and plan scaling actions in a large-scale system.

The hierarchical control pattern structures the adaptation
logic as a hierarchy of (usually complete) MAPE control loops.
Each layer works at a different abstraction level, improving
scalability without compromising stability. At the lower levels,
the MAPE control loops adapt parts of the system under their
direct control. The higher-level coordinator takes advantage
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of a broader system view of the system to meet global
performance requirements.

We believe that this latter pattern is well suited for adapting
the deployment of microservice-based applications. It allows
to rule the complexity by decentralizing the low-level adap-
tation policy, while, at the same time, exploiting the benefit
of lightweight higher-level coordination elements. Moreover,
a hierarchical architecture can scale well in the face of a high
number of microservices, because of the distribution and clear
separation of concerns.

IV. HIERARCHICAL CONTROL IN KUBERNETES

A. Kubernetes

Kubernetes is an open-source orchestration tool that simpli-
fies the deployment, management, and execution of container-
ized applications. It allows to replicate containers encapsulated
in a pod for improving resource usage, load distribution,
and fault-tolerance. A pod is the smallest deployment unit in
Kubernetes; containers within a pod are co-located and scaled
as an atomic entity. Kubernetes can run multiple instances
(or replicas) of a pod using a ReplicaSet. A ReplicaSet
ensures that a given number of pods are up and running. To
simplify the deployment of applications, Kubernetes includes
the Deployment controller. Exposing a higher level abstraction,
it simplifies the ReplicaSets update. To expose pods as network
services, i.e., to make them accessible from external nodes,
Kubernetes uses a Service, an abstraction that defines a logical
set of pods and a policy by which to access them. The
Deployment and Service objects are an easy way to design
microservices in Kubernetes. Kubernetes includes a Horizontal
Pod Autoscaler to automatically scale pods in a Deployment;
nevertheless, it does not provide an approach to coordinate the
scaling operations of multi-components application (further
details are analyzed in Section VI-B). To fill this gap, we
introduce a two-layered MAPE control loop in Kubernetes.

B. Hierarchical Architecture

Figure 1 illustrates the hierarchical architecture of me-kube,
which includes multiple decentralized components that imple-
ment local MAPE loops. At the lower level, the Microservice



Manager is a per-service distributed entity that runs a MAPE
control loop equipped with a local policy. At the higher
level, the Application Manager is a centralized MAPE control
loop, that coordinates the adaptation of the whole application
through a global reconfiguration policy.

Each Microservice Manager exploits its limited local view
of the system and proposes scaling actions for the controlled
microservice . The Microservice Monitor represents the MAPE
Monitor components; it collects metrics for the controlled
microservice (i.e., response time and input data rate) and also
publishes metrics related to any microservice communicating
with the controlled one; to exchange such information, a
message queue system is used (i.e., RabbitMQ). The Local
Reconfiguration Manager analyzes the monitoring information
as well as the Application Manager requests to determine
if any local reconfiguration action is needed. The available
actions are scale-in and scale-out, which reduce and increase
the number of microservice replicas, respectively. When the
Microservice Manager defines the adaptation actions, it sends a
microservice adaptation proposal to the higher layer manager.
To reduce communication overhead, the proposal can include a
list of multiple scaling actions, each enriched with a cost and a
gain. At the higher level, the Application Manager coordinates
the adaptation of the overall microservice-based application.
First, it monitors the application performance. Then, the
Global Reconfiguration Manager analyzes this information and
can issue reconfiguration requests to the lower level Microser-
vice Managers, which operate in parallel. As soon as it receives
the deployment adaptation proposals, the Application Manager
uses its global reconfiguration policy to determine the scaling
actions to perform. Then the Global Actuator communicates
these decisions to the Microservice Local Actuators, which
execute them using the standard Kubernetes APIs.

Being loosely coupled with the Kubernetes architecture, our
components are general enough and can be easily integrated in
other orchestration tools. The modularity of the control loops
also allows us to equip them with different scaling policies.

V. HIERARCHICAL SCALING POLICY

To scale microservice-based applications at run-time, we
model them using open queuing network systems. We consider
arbitrary application topologies that do not include the fork-
join pattern, which, however, is not commonly adopted in
microservice architectures [1]. Anyway, the proposed solution
can be easily extended to include it.

A. Performance Model

Given the incoming data rate, our goal is to estimate the
microservice-based application response time as we change
the replication degree of each microservice.

We model a microservice i as a M/M/ki queue, where ki
is the number microservice replicas (as also done, e.g., in [3],
[12]). We also denote the microservice input data rate as λi
and its service rate as µi. With such variables, we can use
well-established results from queuing theory to characterize
the microservice and plan reconfiguration actions. We assume

each microservice to operate in a stationary condition while
determining its scaling.

We use the random variable Ti to denote the response
time of a request to microservice i; it represents the time
interval between the request arrival and its full processing. In
a steady state, the average response time E[Ti] is a decreasing
and convex function in ki. It includes two contributions: the
expected queuing delay E[Qi](M/M/ki) and the expected
processing time 1

µi
:

E[Ti](ki) = E[Qi](M/M/ki) +
1

µi
(1)

By applying the Erlang’s delay formula, we can compute
E[Qi](M/M/ki) as:

E[Qi](M/M/ki) =

{
π0(kiρi)

ki

ki!(1−ρi)2µiki
ρi < 1

∞ otherwise
(2)

where ρi = λi

kiµi
is the resource utilization of microservice i

and π0 is a normalization term defined as follows:

π0 =

[
ki−1∑
l=0

(kiρi)
l

l!
+

(kiρi)
ki

ki!(1− ρi)

]−1

(3)

The average response time of the entire application, E[T ],
can be computed as the weighted sum of its microservices’
response time E[Ti]:

E[T ](k) =
1

λ0

N∑
i=1

λiE[Ti](ki) (4)

where λ0 is the request arrival rate to the application and k is
a deployment configuration vector (k1, k2, . . . , kN ) containing
the number of replicas ki for each application microservice
i = {1, 2, . . . , N}, with N the total number of microservices.

Resorting on this performance model, we design a scaling
policy to adapt the application deployment at run-time.

B. Hierarchical Policy

Our goal is to adapt the application deployment so to
not exceed the target application response time Rmax (i.e.,
E[T ] < Rmax). To this end, we conveniently change the
number of replicas for each application microservice. When
the application response time exceeds its target value, i.e.,
E[T ] ≥ Rmax, we need to identify and scale-out the bottleneck
microservices. On the other hand, if the application response
time is below the target value, we want to decrease the
number of replicas in order to reduce resource wastage (thus
improving resource utilization). We formalize the microservice
deployment problem as follows:

min
k

N∑
i=1

ki

s.t. E[T ](k) < Rmax

(5)

We design a hierarchical policy to solve the deployment
problem (5) in a decentralized manner. At the higher level, the
Application Manager (i) monitors and analyzes the application
performance, (ii) may request reconfiguration proposals to



the Microservice Managers, and (iii) accordingly updates the
application deployment using a global policy. The global
policy takes into account the reconfiguration actions proposed
by the decentralized local policies. Each proposal includes
the reconfiguration action as well as a score, representing
the benefit of applying the adaptation action according to
local policy perspective. At the lower level, the Microservice
Manager local policy uses the performance model to determine
the number of microservice replicas; for each new configura-
tion, it computes the reconfiguration score representing the
microservice response time variation resulting by enacting
the proposed deployment for the microservice. Since the
Application Manager drives the deployment reconfiguration, it
explicitly requests to the Microservice Manager either scale-
out or scale-in reconfiguration proposal. In turn, to optimize
the interaction between the two managers, the Microservice
Manager returns a set of different reconfiguration proposals.

Microservice Manager Policy. The Microservice Man-
ager local policy implements the Analyze and Plan steps of
the decentralized MAPE loop. Its main goal is to propose
microservice reconfigurations for the centralized Application
Manager. The local policy of each Microservice Manager
uses the monitored information to estimate the microservice
response time as its replication degree ki changes. Equation (1)
is used to compute response time as a function of ki, λi and µi.
The microservice input data rate λi and its service rate µi are
provided by the monitoring component of the Microservice
Manager. The local policy can be executed in a reactive
or proactive mode, according to the provided λi value. To
proactively change the microservice deployment, we consider
the integration of a time series forecasting tool, as discussed
later. The local policy computes the scaling reconfiguration
proposal as reported in Algorithm 1.

When the Application Manager requires scale-out proposals,
the local policy first evaluates the feasibility of any reconfigu-
ration. An unfeasible reconfiguration is thrown if the Applica-
tion Manager limits the maximum number of replicas below
those guaranteeing the microservice utilization λi/µi < 1
(lines 7-10). According to Equation (2), if ki < bλi

µi
c + 1,

E[Ti](ki) becomes infinitely large, leading E[T ] to infinity
as well. If feasible reconfigurations are requested (denoted
by Sfeas

i ), the policy estimates the microservice response time
with the minimum number of replicas preserving feasibility.
Equation (1) is used to this end (line 11). Afterwards, it starts
collecting the reconfiguration proposals, by iteratively adding
one replica at a time up to the maximum value Kmax (lines 12-
16). Adding a replica decreases the microservice response
time E[Ti] by a factor denoted by δi, which represents the
reconfiguration score. The reconfiguration proposal, denoted
by Sprops

i in Algorithm 1 and containing the list of {ki, δki}
pairs, is sent to the Application Manager for evaluation.

When a scale-in operation is requested, the policy starts
from the current number of microservice replicas, ki = k̄i, and
defines the reconfiguration proposals by reducing ki by one
as long as possible (i.e., ki > bλi

µi
c+ 1). Removing a replica

increases the microservice response time E[Ti] by δi; also in

this case, it represents the reconfiguration score (lines 28-32).

Algorithm 1 Microservice Manager i Local Policy
1: function COMPUTESCALEOUTPROPOSAL(Kmax)
2: Input: Kmax, max replicas
3: Monitor: k̄i, current microservice replicas
4: Monitor: λi, input data rate
5: Monitor: µi, service rate
6: Output: Si = {Sfeas

i , Sprops
i }

7: ki ← max(k̄i, bλi
µi
c+ 1)

8: if ki > Kmax then
9: return UNFEASIBLE

10: end if
11: Sfeas

i ← {ki, λiE[Ti](ki)} . Computed using (1)
12: while ki < Kmax do
13: ki ← ki + 1
14: δki ← λi · [E[Ti](ki − 1)− E[Ti](ki)]
15: Sprops

i .push({ki, δki})
16: end while
17: return {Sfeas

i , Sprops
i }

18: end function
19:
20: function COMPUTESCALEINPROPOSAL( )
21: Monitor: k̄i, current microservice replicas
22: Monitor: λi, input data rate
23: Monitor: µi, service rate
24: Output: Si = {Scurr

i , Sprops
i }

25: Scurr
i ← {k̄i, λiE[Ti](k̄i)} . Computed using (1)

26: ki ← k̄i
27: ki,min ← bλi

µi
c+ 1

28: while ki > ki,min do
29: ki ← ki − 1
30: δki ← λi · [E[Ti](ki)− E[Ti](ki + 1)]
31: Sprops

i .push({ki, δki})
32: end while
33: return {Scurr

i , Sprops
i }

34: end function

Application Manager Policy. The Application Manager
global policy implements the Analyze and Plan steps of
the centralized MAPE loop. Its main goal is to satisfy the
application performance by conveniently accepting the recon-
figuration actions proposed by the decentralized Microservice
Managers. Intuitively, if the application response time exceeds
the target value, i.e., E[T ] > Rmax, the Application Manager
scales out the bottleneck microservices until the performance
requirement is satisfied. On the other hand, when the applica-
tion response time is below the target value, the Application
Manager evaluates whether resources can be reclaimed (i.e.,
it evaluates scale-in operations).

Relying on a complete view of the system, the global policy
drives the application adaptation at run-time as reported in
Algorithm 2. First, it evaluates scale-out operations; then, if
no scaling action is required, it evaluates scale-in operations.

To evaluate scale-out actions, the global policies retrieves
the reconfiguration proposal from each microservice. Using
the microservice response time, it estimates the average appli-
cation response time as a weighted sum of the microservice
response time. If the application response time exceeds Rmax, it
increases the replication degree of the microservice that leads
to the largest estimated reduction of E[T ] (i.e., with the highest



score). This process continues until either E[T ] < Rmax or all
reconfigurations are evaluated (lines 18-23).

Conversely, if the current application deployment satisfies
the target response time, no scale-out operation is performed
and scale-in actions are evaluated. The scale-in algorithm starts
from the current configuration and evaluates reconfigurations
only if E[T ] is below a scale-in bound referred as Rs-in. In such
a case, the global policy reduces the number of used resources
as much as possible. First, it identifies the microservice with
the lowest score, i.e., that leads to the smallest increment of
E[T ]. This process continues until E[T ] is below Rs-in or all
reconfiguration proposals are evaluated (lines 36-41).

Algorithm 2 Application Manager Global Policy
1: function GLOBALPOLICY( )
2: Monitor: λ0, application input data rate
3: k← EvaluateScaleOut(λ0)
4: if deploymentNotUpdated(k) then
5: EvaluateScaleIn(λ0)
6: end if
7: end function
8:
9: function EVALUATESCALEOUT(λ0)

10: Output: k = (k1, k2, . . . , kN ), application deployment
11: S ← [ ],k← [ ]
12: E[T ](k)← 0 . Estimated application response time
13: for all i← 1, · · · , N do
14: {Sfeas

i , S[i]} ← computeScaleOutProposal(Kmax)
15: (k[i], ti)← Sfeas

i

16: E[T ](k)← E[T ](k) + ti
λ0

17: end for
18: while E[T ](k) ≥ Rmax and (S is not empty) do
19: j ← arg maxi S[i].fetch() . find i with max δi
20: (kj , δj)← S[j].pop()
21: E[T ](k)← E[T ](k)− δj

λ0

22: k[j]← kj
23: end while
24: return k
25: end function
26:
27: function EVALUATESCALEIN(λ0)
28: Output: k = (k1, k2, · · · , kN ), application deployment
29: S ← [ ],k← [ ]
30: E[T ](k)← 0 . Estimated application response time
31: for all i← 1, · · · , N do
32: {Scurr

i , S[i]} ← computeScaleInProposal()
33: (k[i], ti)← Scurr

i

34: E[T ](k)← E[T ](k) + ti
λ0

35: end for
36: while E[T ](k) < Rs-in and (S is not empty) do
37: j ← arg mini S[i].fetch() . find i with min δi
38: (kj , δj)← S[j].pop()
39: E[T ](k)← E[T ](k) +

δj
λ0

40: k[j]← kj
41: end while
42: return k
43: end function

Reactive and Proactive Decision Making. The proposed
solution can be used to change the application deployment
in a reactive or proactive manner. The two approaches can
be obtained by changing the way the monitoring component

provides the application and microservice input data rate
(i.e., λ0 and λi, respectively). In the reactive approach, the
Application and Microservice Managers monitor the incoming
data rates, which are then used in Algorithms 1 and 2.

In the proactive approach, each Microservice Manager fore-
casts the data rate values using an AutoRegressive Integrated
Moving Average (ARIMA) model. We select ARIMA as it
is able to estimate the trend even from a few points. In
ARIMA, the future value of a variable is assumed to be a linear
function of several past observations and random errors [20].
The AR-part of ARIMA indicates that the evolving variable of
interest is regressed on its own prior observations. The MA-
part indicates that the regression error is a linear combination
of the error terms that occurred in the past. The I-part indicates
that the data values have been replaced with the difference
between their values and the previous values. The purpose
of these features is to create a model that fits the data as
well as possible. Non-seasonal ARIMA models are generally
denoted ARIMA(p,d,q), where parameters p, d, and q are non-
negative integers: p is the order of the autoregressive model, d
is the degree of differencing, and q is the order of the moving-
average model. The ARIMA parameters should be determined
considering the workload characteristics.

VI. FULLY DECENTRALIZED SCALING POLICIES

In this section, we present fully decentralized elasticity
policies against which we will compare our hierarchical solu-
tion. First, we consider our model-free and model-based RL
solutions [11]. Then, we describe the default threshold-based
scaling solution implemented in Kubernetes.

A. Reinforcement Learning-based Policies

A RL agent learns at run-time how to make good adaptation
actions through a sequence of interactions with the environ-
ment. One of the main challenges in RL is to find a good
trade-off between the exploration and exploitation phases. To
minimize the obtained cost, a RL agent must prefer actions that
it found to be effective in the past (exploitation). However, to
discover such actions, it has to explore new actions (explo-
ration). Differently from model-free RL solutions such as Q-
learning, a model-based approach exploits what is known (or
can be estimated) about the system dynamics to take decisions
and speed-up the learning phase. In [11], we proposed a
model-based RL policy that uses an empirical model of the
system dynamics to control the elasticity of single containers.

To drive the microservice application elasticity, we define
multiple, decentralized, and autonomous RL agents, each
controlling a single microservice i. In a single control loop
iteration, first, the RL agent determines the microservice state
and selects the adaptation action to be performed. Then,
according to the monitored application and cluster-oriented
metrics (i.e., response time and resource utilization), the RL
agent updates the Q-function. The Q-function consists of
Q(s, a) terms, which represent the expected long-term cost
that follows the execution of action a in state s. The execution
of a in s leads to the transition in a new state (i.e., s′) and to the
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Fig. 2: Workload used for the reference application.

payment of an immediate cost. We define the immediate cost
c(s, a, s′) as c(s, a, s′) = wperf ·cperf +wres ·cres+wadp ·cadp,
where wadp, wperf and wres, with wadp + wperf + wres = 1,
are non-negative weights that represent the relative importance
of each cost term. The performance penalty cperf is paid
whenever the average response time of microservice i exceeds
its target value Rmax,i. The resource cost cres is proportional to
the number of microservice replicas. The adaptation cost cadp
captures the cost to perform a scaling operation. The imme-
diate cost c(s, a, s′) contributes to update the Q-function. Q-
learning updates it using a simple weighted average, while the
model-based approach directly applies the Bellman equation.
Further details on our RL policies can be found in [11].

B. Horizontal Pod Autoscaler

Kubernetes includes the Horizontal Pod Autoscaler (HPA),
which employs a threshold-based policy that relies on CPU uti-
lization to horizontally scale applications. Since an application
runs in Kubernetes through multiple deployment controllers,
one for each microservice, to obtain elasticity we should
create multiple HPA instances, each one carrying out the
adaptation of a single microservice deployment. First, HPA
monitors the CPU utilization of the microservice pods and then
scales the number of pods according to the ratio between the
target value and the observed value of CPU utilization. Each
autoscaler takes scaling decisions in a fully decentralized and
uncoordinated manner.

Differently from all the policies we have so far presented,
HPA relies on cluster-oriented metrics. Therefore, it might not
be well suited to scale latency-sensitive applications, because
its usage requires the application administrator to identify the
relation between a system-oriented metric (i.e., CPU utiliza-
tion) and an application-oriented metric (i.e., response time).

VII. EXPERIMENTAL RESULTS

In this section, we use me-kube, our extension of Kuber-
netes, to evaluate the proposed elasticity policies in a real
distributed environment.

A. Experimental Setting

We deploy me-kube on a cluster of 5 virtual machines of
the Google Cloud Platform; each virtual machine has 2 vCPUs
and 7.5 GB of RAM (type: n1-standard-2). We consider an
application that consists of a pipeline of 5 microservices: an
API gateway, 3 asynchronous workers (i.e., service1, service2,

service3), and a publisher that sends the request response
to a message queuing system (i.e., RabbitMQ). As observed
in [21], applications with a sequential dependency graph,
as the one we consider, are the most common case. HTTP
requests from users arrive to the application API gateway,
which timestamps and forwards them to the next service1
microservice. Service1 asynchronously processes the incom-
ing request; the processing result is then forwarded to the
next service2 microservice. After processing, service2 invokes
service3. In turn, service3 sends the response back to the
API gateway, which computes the request response time and
forwards it to the publisher. The three workers have different
processing time per request. To estimate their service rate,
we considered each service in isolation: while keeping its
parallelism fixed to one, we increased its incoming request
rate and monitored the number of requests processed per unit
of time. In such a way, we identified their service rate µi,
with i = {1, 2, 3}, as 35, 20, and 30 requests/s, respectively.
Service2 is the application bottleneck. The application receives
a varying number of requests, represented in Figure 2; it
follows the workload of a real distributed application [22],
accordingly amplified and accelerated so to further stress the
application resource demand. The application exposes a target
response time Rmax = 550 ms, with the scale-in threshold
Rs-in = 400 ms. The maximum parallelism degree Kmax is
set equal to 10 for each worker, and to 3 for the API gateway
and the publisher, being the latter lightweight components that
only forward data.

To dynamically scale the microservice-based application at
run-time and highlight the benefits of a hierarchical policy, we
equip me-kube with our novel queuing-based elasticity policy.
To forecast the input rate without relying on a a-priori training
set, each manager uses an ARIMA(0,1,1) model, so it is a
basic exponential smoothing model. In general, exponential
functions are used to assign exponentially decreasing weights
over time. We also present the results achieved by the fully
decentralized policies described in Section VI by disabling the
Application Manager. For the RL policies, each Microservice
Manager runs a RL agent that performs scaling actions in
isolated manner. We parametrize the RL-based approaches
as in [11]. We consider the set of weights wperf = 0.90,
wres = 0.09, wadp = 0.01 which correspond to weigh most
the microservice response time and to consider adaptation
costs as negligible. To set the target response time Rmax,i with
i = {1, 2, 3}, we performed some preliminary experiments.
First, we feed the application with a number of requests so
that no service was overloaded (i.e., utilization below 70%).
Keeping the parallelism fixed, we monitored the response time
of the single services and the whole application. With this
information, we observed how much time was spent at service
i when the application response time was close to Rmax and
accordingly set Rmax,i to that value, specifically 150 ms for
service1 and service3, and 200 ms for service2. The Appli-
cation Manager and the fully decentralized policies evaluate
scaling decisions every 60 seconds. For sake of comparison,
we evaluate also the default HPA of Kubernetes, adding as



many autoscaler instances as application microservices.

B. Elasticity Policies Evaluation

We summarize the experimental results in Figures 3-5. We
can readily observe that the application deployment signif-
icantly varies under the different policies. During the first
minutes, all scaling policies violate the target response time; as
we can see from Figure 2, this can be explained by observing
that the workload starts right away with a peak of requests
that progressively then decreases around the 20th minute.

Figure 3 shows the application performance when the hierar-
chical policy drives the application elasticity in proactive and
reactive manner. Although the two approaches have similar
performance, the proactive policy results in slightly better
application response time. As soon as the data forecasting
module can predict the incoming workload, the hierarchical
policy can successfully scale the application microservices.
Differently from the reactive approach, the proactive policy
almost halves the response time violations in the first part
of the experiment. The benefit of forecasting is also clear
around minute 100, where the hierarchical policy can antic-
ipate the steep load increment and scale-out the bottleneck
microservice, i.e., service2. As a consequence, the proactive
hierarchical policy meets the application response time re-
quirement during almost all the experiment duration: Rmax
is exceeded only 5.56% of time (and registers 286.81 ms
as median response time). The reactive policy takes scaling
decision by analyzing the current value of incoming data
rate, so it cannot anticipate future dynamics. Furthermore,
to perform scale-out operations, Kubernetes gradually creates
new instances that are not immediately up and running. As a
consequence, the reactive hierarchical scaling policy registers
a slightly higher number of Rmax violations (i.e., 11.11%).
In general, the proactive and reactive hierarchical policies
deploy a rather high number of microservices’ replicas (on
average, 7.75 and 7.93, respectively) with an average pods
CPU utilization of about 40%. This depends on the estimate
of the microservice service rate µi, ∀i ∈ {1 . . . N} and
on Equation (2), which conservatively approximates the real
application behavior. Nevertheless, we can readily see that the
scaling policy deploys a number of replicas that follows the
application workload (see Figure 2).

To show the accuracy of the prediction algorithm, Figure 6
reports the difference between the real value and the predicted
value of the application data rate as well as the absolute error
(defined as |x − x′|, where x′ is the prediction and x the
real value). As shown in Figure 6, the absolute error is rather
small except when the data rate changes very quickly; in this
experiment, the median prediction error is 7 requests/s with
an average error of 8.56 requests/s.

Exploiting the modular architecture of me-kube, we can
easily run fully decentralized policies. RL solutions are general
and flexible, requiring only to specify the desired deployment
objectives. They allow to indicate what the user aims to obtain
(through the cost function weights), instead of how it should
be obtained. The RL agent learns the scaling policy in an

automatic manner. Figure 4 shows the application performance
when the model-free and model-based RL solutions are used.
In particular, due to the application complexity, the model-free
RL policy cannot learn a good adaptation policy within the
time interval of the experiment (i.e., 160 minutes). Figure 4a
clearly shows that the lack of a system model and of a coor-
dinator leads the different RL agents to take scaling decisions
that are often in contrast with one another. As a consequence,
when Q-learning is used, the application response time exceeds
Rmax for 46.20% of the time. Conversely, taking advantage of
the system knowledge, the model-based solution drastically
reduces the number of Rmax violations (from 46.20% to
12.03%), as shown in Figure 4b. On average, the number of
application instances is higher than in Q-learning (6.37 and
5.12, respectively), and, as a consequence, resource utilization
is lower (43.80% and 58.92%, respectively). This strictly
follows from the weights cost configuration, for which opti-
mizing the microservice response time is more important than
saving resources. We observe that, in a multi-agent setting,
the agents indirectly interfere with one another, because the
reconfiguration of a microservice impacts on its communi-
cating microservices. As a consequence, the median response
time is higher than 50 ms compared to that of the proposed
hierarchical policy. The lack of a central coordinator leads
to unnecessary application deployment reconfigurations, e.g.,
as can be seen in the time interval from 40 to 60 minutes
(see Figure 4b): service3 is reconfigured several times before
the RL agent correctly identifies service2 as the application
bottleneck that should be scaled out. This setting shows
the complexity of managing microservice application in a
fully decentralized manner and the challenges of mapping
application requirements onto microservices requirements.

Now, we compare our deployment policies against the Ku-
bernetes autoscaler. Its default threshold-based scaling policy
is application-unaware and requires to set a threshold on
the average pods CPU utilization. This is a not trivial task,
especially for non-CPU intensive applications. We change the
scaling threshold of HPA from 50% to 80% of pods CPU
utilization. We can observe that small changes in the threshold
setting does not lead to significant performance improvements.
Due to space limitations, in Figure 5 we report only 50% and
80% threshold setting. Differently from the previous policies,
HPA does not correctly detect the application bottleneck.
Moreover, we observe that it does not immediately react
to load variations; therefore, the microservices’ pod CPU
utilization can exceed the scaling threshold for a limited time
interval, as clearly shown in Figure 5a. Changing the scaling
threshold of HPA affects the average pods utilization, which
decreases from 58% to 38% when setting the threshold from
80% to 50%. The average number of microservices replicas
increases from 4.96 to 8.37. The number of Rmax violations is
around 14% for all the configurations. We observe that some
violations are caused by the delayed scaling policy of HPA.

Discussion. We can conclude that the hierarchical policy
overcomes the limitation of fully decentralized approaches, by
coordinating the adaptation actions among the application mi-
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(a) Predictive Decision Making
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(b) Reactive Decision Making

Fig. 3: Application performance using the hierarchical scaling policy.
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(a) Q-learning
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(b) Model-based

Fig. 4: Application performance using the fully decentralized RL-based scaling policies.
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(a) Scaling threshold set to 50% of pod utilization
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(b) Scaling threshold set to 80% of pod utilization

Fig. 5: Application performance using Kubernetes’ Horizontal Pod Autoscaler.
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Fig. 6: Run-time prediction error using the ARIMA algorithm.

croservices. During the experiment, the proposed hierarchical
scaling policy obtained better performance in terms of reduced
application response time. By forecasting the incoming data
rate, the hierarchical control policy also drastically reduced
the number of Rmax violations by anticipating the system
dynamics. It is well known that parameterizing correctly a
queuing model requires preliminary application profiling. Nev-
ertheless, the experiments have demonstrated that an effective
hierarchical policy can improve the overall performance of
the system, with respect to a fully decentralized solution. We
have also shown how the proposed architecture of me-kube can
easily host other policies. In particular, we have evaluated the
behavior of two fully decentralized RL-based scaling policies.
Differently from Kubernetes’ Horizontal Pod Autoscaler, the
hierarchical policy and the decentralized RL-based ones take
into account application-oriented metrics, thus simplifying the
definition of deployment goals.

VIII. CONCLUSIONS

In this paper, we have presented me-kube, a Kubernetes
extension that introduces a two-layered hierarchical control
architecture for adapting microservice-based applications. At
the lower level, distributed components control the adaptation
of single microservices. At the higher level, a per-application
component oversees the overall application reconfiguration
and performance. Then, we have designed a novel hierarchical
control policy, based on queuing theory, that combines load
forecasting and response time estimation to proactively adapt
the application deployment. Moreover, we have integrated our
fully decentralized RL-based policies in me-kube. Differently
from the default Kubernetes scaling solution, the proposed
heuristics consider user-oriented metrics (i.e., response time).
The presented prototype-based evaluation shows the benefits of
the proposed heuristics as well as the importance of using the
hierarchical architecture to adapt microservices deployment.

As future work, we plan to design hierarchical policies that
jointly control the scaling and placement of microservice ap-
plications in a geo-distributed deployment scenario. Moreover,
we want to investigate other forecasting algorithms as well
as to design solutions for efficiently combining reactive and
proactive policies, e.g., along different time scales.
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