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Abstract. Increasingly complex information systems operating in dy-
namic environments ask for management policies able to deal intelli-
gently and autonomously with problems and tasks. An attempt to deal
with these aspects can be found in the Service-Oriented Architecture
(SOA) paradigm that foresees the creation of business applications from
independently developed services, where services and applications build
up complex dependencies. Therefore the dependability of SOA systems
strongly depends on their ability to self-manage and adapt themselves to
cope with changes in the operating conditions and to meet the required
dependability with a minimum of resources. In this paper we propose a
model-based approach to the realization of self-adaptable SOA systems,
aimed at the fulfillment of dependability requirements. Specifically, we
provide a methodology driving the system adaptation and we discuss the
architectural issues related to its implementation. To bring this approach
to fruition, we developed a prototype tool and we show the results that
can be achieved with a simple example.

1 Introduction

The SOA paradigm emphasizes the construction of software systems through the
dynamic composition of network-accessible services offered by loosely coupled in-
dependent providers. As a consequence, such systems have to tackle problems
caused by component services becoming unreachable because of connection prob-
lems, or changing their delivered Quality of Service (QoS), or even being turned
off. These problems have a direct impact on the system dependability, both in
terms of its availability (ability to accept a service request, when a service offered
by the system is invoked) and of its reliability (ability to successfully complete
the requested service, once a request has been accepted) [1]. Thus, guarantee-
ing a high dependability level for SOA systems is a key factor for their success
in the envisioned ”service market”, where service providers compete by offering
services with different quality and cost attributes [2, 3].



Achieving this goal is a challenging task, as the system must face the high
variability of the execution environment, the dependability requirements of dif-
ferent classes of users, and the limits on the available resources, needed to keep
the system cost within a given budget.

A promising way to cope with these problems is to make the system able to
self-adapt to changes in its environment (available resources, type and amount of
user demand), by autonomously modifying at runtime its behavior or structure.
In this way, the system can timely react to (or even anticipate) environment
changes, trying to use at best the available resources, thus avoiding long service
disruptions due to off-line repairs [4, 5].

Some general proposals about how to architect a self-adaptable software sys-
tem have already appeared [6–9]. These proposals suggest architectural frame-
works which can be used to support the implementation of suitable adaptation
methodologies, possibly tailored to specific application domains.

In this respect, methodologies that can be implemented within these archi-
tectural frameworks to drive the adaptation of a SOA system have been already
presented. Some of them specifically focus on the fulfillment of dependability re-
quirements (e.g., [10]), while others consider multiple quality attributes includ-
ing dependability (see, for example, [11]). Most of these methodologies consider
exclusively a single kind of adaptation mechanism, based on service selection.
According to this mechanism, the set of component services used to build a
composite SOA system is dynamically selected and bound to the system, based
on the current operating environment conditions and system requirements. The
methodology presented in [10] considers instead a different kind of adaptation
mechanism, based on architecture selection. In this case, it is the (redundancy
based) architecture for the service composition which is dynamically selected, to
maintain the system ability to meet a dependability requirement.

The scenario these methodologies focus on generally consists of a single re-
quest addressed to a composite SOA system, considered independently of other
requests which could be addressed to the same system. The aim is to deter-
mine the adaptation action which is (possibly) optimal for that single request,
considering a given set of quality requirements and the current conditions of
the operating environment. A limit of these methodologies is that they consider
a single type of adaptation mechanism (either service selection or architecture
selection) when they try to determine the best possible adaptation action. In-
stead, considering simultaneously a broader range of adaptation mechanisms
could increase the system flexibility in adapting to different environments and
requirements.

Moreover, we point out that methodologies aimed at determining adaptation
actions for single service requests, independently of other concurrent requests,
could incur in problems under a sustained traffic of requests addressed to a
composite SOA system. Indeed, the “local” adaptation action they determine
could conflict with adaptation actions determined for other concurrent requests,
leading to instability and management problems.



Another potential limitation of these methodologies is that they generally
formulate the problem to be solved as a NP-hard problem, which could thus
result too complex for runtime decisions. This aspect is particularly critical in a
SOA environment, where adaptation actions are likely to be calculated relatively
often, due to its highly dynamic nature.

Based on these considerations, the main goal of our proposal is to provide
ideas towards the realization of an adaptable SOA system that can flexibly base
its adaptation actions on both kinds of adaptation mechanisms outlined above, to
meet its dependability objectives. Besides providing a suitable modeling method-
ology for this purpose, we also suggest a possible architectural framework for its
implementation. This architecture can be seen as an instantiation for the SOA
domain of the general architectural frameworks outlined above, with a focus on
the fulfillment of dependability requirements.

Moreover, differently from other approaches, we assume an operating sce-
nario where a quite sustained traffic of requests is addressed to a SOA system.
Hence, rather than trying to determine adaptation actions for each single re-
quest, our approach is aimed at determining adaptation actions for flows of
requests. A potential drawback of our approach is that we loose the possibility
of customizing the adaptation action for each request. However, in the scenario
we consider, performing a per-request rather than a per-flow adaptation could
cause an excessive computational burden. For example, the Amazon e-commerce
platform, described in [12], comprises hundreds of services and tens of millions
requests, which make the per-request approach hardly feasible. In addition, our
per-flow approach allows us to deal simultaneously with different flows of re-
quests, each with possibly different dependability requirements, thus possibly
allowing a better balancing among different flows in the use of the available
third-party services.

We present our approach from the perspective of a composite SOA system
provided by an intermediary broker. The broker composes, according to some
business logic, functionalities implemented by third-party services to offer a new
added-value service. In doing this, it wants to guarantee to its users a given
dependability level, maximizing at the same time an utility function (e.g. its
income).

To achieve these goals within a changing environment (as it is typically the
case for SOA systems), the broker adapts the system it manages in response
to detected events. To this end, the broker maintains a model of the composite
service it offers and of its environment, keeping it up to date thanks to a con-
tinuous monitoring activity. This model is used to determine adaptation actions
in response to detected changes.

The events that may trigger an adaptation include both “normal” events
like the arrival or departure of a user (with the related dependability require-
ments), and “abnormal” events like the unreachability of a component service
or a relevant change of its QoS attributes. The adaptation actions performed
by the broker are based on both the service selection and architecture selection
mechanisms. Indeed, the broker can adapt the composite service it offers by re-



defining the binding between incoming requests and component services (service
selection), and by restructuring the composite service architecture (architecture
selection).

We formulate the problem of determining the adaptation action triggered by
some event as a Linear Programming (LP) optimization problem, which can be
efficiently solved via standard techniques, and is therefore suitable for making
runtime decisions. We have presented a preliminary version of this LP-based
approach in [13]. However, in that paper we only considered service selection
as the adaptation mechanism, while the problem formulation proposed in this
paper considers also the modification of the service architecture.

The paper is organized as follows. In Sect. 2 we present a possible architec-
ture of a self-adaptable SOA system that implements our proposed adaptation
methodology. In Sect. 4 we present a mathematical formulation of the system
model used to determine the adaptation actions, and discuss how to calculate
the value of the dependability and cost attributes used in this model. In Sect. 5
we present the results of some numerical experiments. In Sect. 6 we discuss re-
lated work. Finally, we draw some conclusions and give hints for future work in
Sect. 7.

2 General Architecture

In this section, we define the composite service model we refer to, and the type of
contract used for the specification of the respective obligations and expectations
of the service users and providers. Then, we outline the architecture of the broker
that manages the composite service and its adaptation.

2.1 Composite Service

The system managed by the broker consists of a composite service, i.e., a com-
position of multiple services in one logical unit in order to accomplish a complex
task. The composition logic can be abstractly defined as an instance of the fol-
lowing grammar:

S ::= S1|S2|...|Sn|seq(S+)|loop(S)|sel(S+)|par and(S+)|par or(S+)

where Si denotes a single service, while S+ denotes a set of one or more services.
Hence, a composite service can be either a single service, or the composition of
other services according to the composition rules: seq, loop, sel, par and, par or.
Table 1 summarizes the intended meaning of these rules. We point out that the
above grammar is purposely abstract, as it intends to specify only the structure
of a composite service. Details such as how to express the terminating condition
for a loop are therefore omitted. The grammar does not capture all the possible
composition rules (a broader set of composition rules is presented, for exam-
ple, in [14]), but includes a significant subset. Table 1 also shows the mapping
between these rules and the constructs of two well known service workflows spec-
ification languages: BPEL [15] and OWL-S [16]. For BPEL, the mapping refers



to the structured style of composition (rather than to its graph-based one, using
control links). Figure 1 shows a composite service instance that can be derived

Table 1. Meaning of the grammar rules and mapping with the constructs of BPEL
and OWL-S

Rule Meaning BPEL OWL-S

seq sequential execution of activities sequence Sequence

loop repeated execution of activities while, Repeat-While,
in a loop repeatUntil, Repeat-Until

forEach

sel conditional selection of activities if-elseif- If-Then-

else Else

switch

par and concurrent execution of activities flow Split-Join

(with complete synchronization)

par or concurrent execution of activities pick, forEach Choice

(with 1 out of n synchronization)

from this grammar, and the corresponding graphical representation in form of
a syntax tree and activity diagram. From a semantic viewpoint, the instance

Fig. 1. An example of composite service instance derived form the proposed grammar,
and its graphical representations: the syntax tree (left); the activity diagram (right)

shown in Fig. 1 abstractly represents the business logic of a composite service,
where each Si denotes a functionality (abstract service) needed to carry out its
overall task. Each abstract service must then be bound to a concrete service that
actually implements it. The overall dependability and cost of the composite ser-
vice thus depend on the dependability and cost of the concrete services bound to
its abstract services. In our approach, we assume that the involved parties state



the required values for these attributes in a contract, whose schema is outlined
in the next subsection.

2.2 Contract Definition

As usual in the SOA environment, we assume that the interactions between
service requesters and service providers are regulated by a Service Level Agree-
ment (SLA), i.e., a contract which explicitly states the respective obligations
and expectations [17]. This contract specifies the conditions for service delivery,
including the quality and quantity levels (e.g., the load that the user can charge)
of the provided service, its cost, duration, and penalties for non-compliance.

According to what discussed in the introduction, we consider in our approach
SLAs stating conditions that should hold globally for a flow of requests generated
by a user.

In general, a SLA may include a large set of parameters, referring to different
kinds of functional and non-functional attributes of the service, and different
ways of measuring them (e.g., averaged over some time interval) [18, 17]. In
this paper, we restrict our attention to the average value of the dependability
attribute, globally experienced by all the requests belonging to the flow generated
by a user. Hence, the SLA model we consider includes the following quantities:

– amin: a lower bound on the service average dependability expected by a
service user;

– L: an upper bound on the load the user is allowed to submit to the service,
expressed in terms of average rate of service invocations (invocations/time
unit);

– c: the unitary service cost paid by the user for each submitted request.

The broker that manages the composite service acts as an intermediary be-
tween the users of the composite service and the providers of the used component
services, performing a role of service provider towards its users, and being in turn
a user for the providers of the concrete services it uses to implement the com-
posite service itself. Hence, it is involved in two types of SLAs, corresponding
to these two roles: we call them SLA-P (provider role) and SLA-R (requester
role). Both these SLAs are defined according to the triple described above, i.e.,
SLA-P = SLA-R= 〈amin, L, c〉.

In the case of the SLAs-P between the composite service users and the broker,
we assume in our approach that the value of their parameters is the result of an
individual negotiation between each prospective user and the broker. Hence, all
the SLAs-P that co-exist at a given time interval may have, in general, different
values for these parameters. However, it is possible that the broker proposes to its
users a predefined set of differentiated service levels, to drive the user indication
of a service level, but this does not change the formulation of our problem.

In any case, all the co-existing SLAs-P define the dependability objectives
that the broker must meet in that interval, provided that the flow of requests
generated by the users in that interval does not exceeds the limits stated by the
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L values in the SLAs-P. Moreover, they also define the expected income for the
broker.

To meet these objectives, we assume that the broker has already identified
for each abstract service Si a pool of corresponding concrete service, negotiating
with each of them a SLA-R concerning its dependability and cost, and the load
it is able to sustain.

Thus, the set of all these SLA-R defines the constraints within which the
broker can organize an adaptation policy.

2.3 Broker Architecture

To carry out its task, the broker architecture is structured around the following
components, as depicted in Fig. 2: the Composition Manager, the Workflow En-
gine, the Adaptation Manager, the Execution Monitor, the Admission Control
Manager and the SLA Monitor. Our general broker architecture is inspired to
existing implementation of frameworks for Web services QoS brokering, e.g., [19,
20, 17]. In what follows, we summarize the respective tasks of the broker archi-
tecture components.

Composition Manager. The main functions of the Composition Manager are
the service composition (i.e., the specification of the business process, whose
structure can be abstractly described by a labeled syntax tree generated by
the grammar in Sect. 2.1), the discovery of the component concrete services
and the negotiation and establishment of the SLAs with the providers of the
concrete services (SLA-R).

Workflow Engine. The Workflow Engine is the software platform executing
the business process (e.g., ActiveBPEL or ApacheODE). Once a user has
been admitted with an established SLA, the Workflow Engine acts as the
broker front-end to the user for the service provisioning. When the user in-
vokes the process, the Workflow Engine creates a new instance of the process



itself. Each generated instance can be different, according to the instructions
received by the Adaptation Manager (described below). For example, the
service request of users having different SLA-P could be bound to different
concrete services. Moreover, the workflow structure can also be modified.

Execution Monitor. The Execution monitor collects information about the
composite service usage, calculating estimates of the model parameters. In
our methodology, the only needed parameters are the invocation frequencies
of the functionalities (abstract services) used to build the composite service.

SLA Monitor. The SLA Monitor collects information about the dependability
level perceived by the users and offered by the providers of the used com-
ponent services, and about the mean volume of requests generated by the
users. Furthermore, the SLA Monitor signals whether there is some variation
in the pool of service instances available for a given abstract service (i.e., it
notifies if some service goes down/is unavailable). In literature, there are
examples of SLA Monitors managed/owned by the broker [19, 20, 17] as well
as of third party SLA monitors. In our specific case, we consider an SLA
monitor directly managed by the broker.

Admission Control Manager. The Admission Control Manager determines
whether a new user can be accepted, given the associated SLA-R, without
violating already existing SLA-Ps and SLA-Rs.

The latter three modules (i.e., Execution Monitor, SLA Monitor, and Admis-
sion Control Manager) collectively play a two-fold role. On the one hand, they
maintain up to date the parameters of the model of the composite service op-
erations and environment. These parameters include the invocation frequencies
of the abstract services, the rate of arrival of service requests, the dependability
and cost of the used concrete services.

On the other hand, when these modules observe significant variations in the
model parameters, they signal these events to the Adaptation Manager. Summa-
rizing, the Admission Control Manager signals events related to the fluctuation
of workload intensity parameters (the arrival or departure of users, with the
consequent variation in the incoming flow of requests, according to what stated
in their SLAs), while the Execution Monitor signals abnormal fluctuation in the
composite service usage, and the SLA Monitor signals abnormal events, such as
unreachability of a concrete service and variation of its dependability level.

Adaptation Manager. Upon receiving a notification of a significant variation
of the model parameters, the Adaptation Manager finds out whether an
adaptation action must be performed. To this end, it executes the adaptation
algorithm, passing to it the new instance of the system model with the new
values of the parameters. The calculated solution provides indications about
the adaptation actions that must be performed to optimize the use of the
available resources (i.e., the concrete services) with respect to the utility
criterion of the broker. Based on this solution, the Adaptation Manager
issues suitable directives to the Workflow Engine, so that future instances
of the business process will be generated according to these directives. The



possible adaptation actions, already outlined in the introduction, are detailed
in the following section.

2.4 Adaptation Actions

We recall from the introduction that in our approach the broker deals simul-
taneously with users having different requirements stated in the corresponding
SLAs-P. Each request for the composite service coming from a user generates a
corresponding set of one (or more) requests for each abstract service Si. These
latter requests must be bound to suitable concrete services Si.j , 1 ≤ j ≤ ni.

Fig. 3. Adaptation actions

A first action used by the broker to fulfill the SLAs negotiated with its users
is based on service selection, which leads to binding each request for Si to a
single Si.j . In most of the current literature on service selection, where single
service requests are considered in isolation (e.g.,[21, 11]), this action consists in
a 0-1 choice of one concrete service Si.j from the available ones. In our ap-
proach, instead, we consider simultaneously all the requests belonging to the
flow generated by each service user. Hence, the service selection action consists
in determining, for each abstract service Si, which is the fraction of the overall
set of requests generated for Si by a user that will be bound to a given concrete
service Si.j . Abstractly, this adaptation action can be represented by the intro-
duction of a probabilistic switch in the abstract service Si, which routes toward
the Si.j ’s requests arriving to Si according to a suitable set of probabolities, as
depicted in Fig. 3(a).

We point out that, as the broker deals simultaneously with several users
having different requirements, each user will have its own switch for each Si.
Hence, requests coming from different users will be likely routed differently. For
requests coming from the same user, it is possible as a special case that the
switch routes all the requests for Si to a single Si.j , but in general the service
selection allows to route subsets of these requests to different Si.j ’s.



As already outlined in the introduction, dynamic service selection is the pri-
mary adaptation actions considered in several papers on SOA systems. However,
it is possible that a user arrives with high dependability requirements, which can-
not be satisfied by any selection of the single concrete services already identified
by the broker. Rather than rejecting this user (which could cause an income loss
and/or a decrease in the broker reputation), the broker could try other possible
actions:

1. to identify additional concrete services, with higher dependability;
2. to “increase” the dependability which can be attained using the already

identified concrete services.

The former action has two drawbacks. It requires additional effort to discover
such services and negotiate with them suitable SLAs. Worse yet, such services
could not even exist.

The latter action does not suffer from these drawbacks. It is based on the idea
that the availability of multiple independent implementations Si.1, Si.2, . . . , Si.ni

of an abstract service Si naturally suggests the use of spatial redundancy tech-
niques to get a dependability increase [22]. According to these techniques, a
request for Si is logically bound to a set of two or more Si.j ’s, rather than to a
single Si.j . Different spatial redundancy techniques can be devised, which differ
in the way the members of the set are used and in the assumed underlying fail-
ure model. In this paper, we consider one of such techniques, which works under
the fail-stop failure model (i.e., either a service responds correctly when it is
invoked, or does not respond at all [1]). According to this technique, a request
for Si is sent in parallel to two or more Si.j ’s, taking as correct reply the first
one which arrives. This increases the likelihood that the functionality associated
with Si is correctly carried out with respect to the case where a single concrete
service is used, but at a higher cost, equal to the sum of the costs of all the
invoked services. We refer to [22, 14, 23] for a description of other spatial redun-
dancy techniques which works under the same or different failure models (e.g.,
Byzantine failures).

The use of this adaptation action represents a form of adaptation based on
architecture selection, as it basically corresponds to a modification of the work-
flow architecture, as depicted in Fig. 3(b). In this figure, we see that the simple
abstract service Si is substituted by a composite service paror(Si.a, Si.b, . . .),
where each Sia, Sib, . . . will be bound to a different concrete service Si.j .

In our approach, these two actions (service selection and architecture selec-
tion) can be used by the broker to dynamically adapt the SOA system it manages
to changes in its operating environment. We remark that these actions can co-
exist, being used by the broker not only for the requests of different users, but
also for different requests of the same user.

In the next section we define formally a mathematical model of the SOA sys-
tem, and the corresponding optimization problem that can be efficiently solved
by the Adaptation Manager component. The calculated solution allows driving
the selection of the appropriate adaptation actions.



3 Adaptation Model

Given the grammar proposed in Sect. 2.1, that specifies the structure of the
composite service, we can use it to define an instance of the composite service and
represent the instance through a labeled syntax tree. The tree leaves constitute
the set of abstract services Si that have been identified by the Composition
Manager to build the composite service; we denote by V this set. Given V , we
assume that it is known the usage profile of the composite service for each user k,
expressed by the quantities V k

i , i ∈ V . V k
i denotes the average number of times

the broker invokes Si to fulfill a request received from the user k ∈ K, where K

is the set of users which have a SLA-P with the broker. Therefore, we can label
each leaf of the syntax tree, that represents Si, with a proper vector Vi = (V 1

i ,

... , V
|K|
i ) (an example of a labeled syntax tree is shown in Fig. 1). For each

Si, the Composition Manager identifies (e.g., by using information from service
registries) a set Ii = {Si.1, . . . , Si.ni

} of concrete services that implement it.
Each concrete service Si.j is characterized by its own dependability levels

and cost. Hence, the SLA-R contracted by the broker with each Si.j is specified
by an instance of the general SLA template described in Sect. 2.2 and defined by
the tuple 〈aij , Lij , cij〉, where Lij is the average load that the broker has agreed
to generate towards Si.j . On the other hand, we denote by 〈Ak

min
, Lk, Ck〉 the

parameters of the SLA-P concerning a user k ∈ K, where Lk is the agreed
volume of requests the user will submit to the broker.

In our broker architecture, the Adaptation Manager is responsible for de-
termining the adaptation strategy which, for the given system model and the
current parameters values, optimizes a suitable broker utility function while
meeting the users dependability constraints.

For each user, the adaptation strategy consists in determining for each ab-
stract service Si:

1. the adaptation action (service selection, architecture selection or both) to be
used;

2. the fraction of each flow of requests for Si to be bound to the different
concrete services for each considered adaptation action.

We model a given strategy by associating with each user k a vector xk =
(xk

1
, . . . , xk

N ), where N = |V| and xk
i = [xk

iJ ], with J ∈ Pi = 2Ii \ ∅, i.e., J is
a non-empty subset of Ii. Hence, index i of xk

iJ ranges over the set of abstract
services, while J ranges over all the non-empty subsets of the concrete services
implementing Si.

For each abstract service Si, the entries xk
iJ of xk

i denote the fraction of
the user k requests which are bound to the set of concrete services J . We can
distinguish two cases:

– J = {Si.j}, i.e., J is a singleton: in this case, the entry xk
iJ denotes the

fraction of requests for Si to be bound to the single concrete service Si.j ∈ Ii,
thus using service selection as adaptation action;



– J = {Si.j1 , . . . , Si.jℓ
}, ℓ > 1, J ∈ Pi: in this case, the entry xk

iJ denote
the fraction of requests for Si to be bound to the set of concrete services
{Si.j1 , . . . , Si.jℓ

}, thus using architecture selection as adaptation action (in-
deed, this action corresponds to the replacement of Si by par or(Si.j1 , . . . , Si.jℓ

)).

As an example, consider the case of four concrete services Si.1, . . . , Si.4 for a
given service Si and assume that the strategy xk

i for a given user k specifies the
following values: xi.{Si.1} = 0.3, xi.{Si.3} = 0.3, xi.{Si.2,Si.4} = 0.4 and xi.J = 0
otherwise. This strategy implies that 30% of user k requests for service Si are
bound to service Si.1, 30% are bound to service Si.3 while the remaining 40%
are bound to the redundant pair {Si.2, Si.4} (see Fig. 4).

Fig. 4. Example of adaptation strategy

The Adaptation Manager determines the values of xk
iJ by solving a suitable

optimization problem which takes the following general form (the explicit form
of the problem we consider will be detailed in Sect. 4):

max F (x) (1)

subject to: Qα(x) ≤ Qα
max

Qβ(x) ≥ Q
β
min

S(x) ≤ L

x ∈ A

where x = (x1, ..., x|K|) is the decision vector, F (x) is a suitable broker objective
function, Qα(x) and Qβ(x) are, respectively, those QoS attributes whose SLA
values are settled as a maximum and a minimum, S(x) are the constraints on
the offered load determined by the SLAs with the service providers, and x ∈ A

is a set of functional constraints (e.g., this latter set includes the constraint
∑

J∈Pi
xk

iJ = 1).
A new solution of the optimization problem may be triggered when: a) the

Execution Monitor identifies some change in the average number of visits to the
abstract services; b) the service composition changes, because either an abstract
service or a concrete service is added or removed; c) the SLA Monitor detects



some violation in the negotiated SLA parameters; d) a new user, which does not
have yet a SLA with the broker, asks for the composite service.

The solution of the optimization problem is used by the Adaptation Manager
to determine for each invocation of an abstract service Si the adaptation action
to be used - service or architecture selection - and the actual service(es) to
implement it by using the vectors xk

i . To bind the requests to the concrete
services, the Workflow Engine uses the solution of this optimization problem as
follows. Given a user k request, the Workflow Engine considers only the elements
of the solution vector x that pertain to a given user k. If, for each abstract
service Si, there is more than one xk

iJ 6= 0, the Workflow Engine partitions the
flow of requests for Si among different (subsets of) concrete services, using the
xk

iJ values.

4 Optimization Problem

In this section we first present the QoS model for the composite service and
how to compute its QoS attributes. We then detail the instance of the general
optimization problem previously outlined. In the following, since dependability
measures of a composed service are given the product of the individual depend-
abilities, we will consider the logarithm of the expected dependability in order
to have all aggregate QoS a linear function of the component QoS.

4.1 Composite Service QoS metrics

For each user k ∈ K, the QoS attributes, namely, the expected logarithm of the
dependability Ek = log Ak, which is the logarithm of the probability Ak that
the composite service is either available or reliable for a user k request and the
expected execution cost Ck, which is the price to be paid by the broker to fulfill
a user k request, depend on: 1) the set of concrete services selected to perform
each service; and, 2) how the services are orchestrated to provide the composite
service.

To compute these quantities, we first compute the expected QoS metric of
an abstract service. Let Zk

i (x) denote the QoS attribute of the abstract service
i ∈ V , Z ∈ {E, C} for a strategy x. We have Zk

i (x) =
∑

J∈Pi
xk

iJzk
iJ where zk

iJ ,
z ∈ {e, c} is function of the QoS attributes of the concrete services in the set
J which are used to implement i. We can distinguish two cases, corresponding
to the two different adaptation actions that can be used (service selection or
architecture selection):

– J = {Si.j} i.e., service i is implemented by service Si.j , we simply have
eiJ = log aij and ciJ = cij , i.e., the QoS attribute coincides with that of the
selected concrete service Si.j ;

– J = {Si.j1, ..., Si.jℓ
}, ℓ > 1, service i is implemente by the set {Si.j1 , . . . , Si.jℓ

}
in spatial redudancy and we have:



eiJ = log

(

1 −
ℓ
∏

h=1

(1 − aijh
)

)

(2)

ciJ =

ℓ
∑

h=1

cijh
(3)

The expression for eiJ , which represents (the logarithm of) the probability that
the composite service par or(Si.j1 , . . . , Si.jℓ

) terminates successfully, is given by
(the logarithm of) the complement to one of the probability that all concrete
services in J fail. The cost ciJ is simply the sum of the cost of the invoked
services, since for each invocation of i all the concrete service in J are invoked.

The QoS attributes for the composed services can be computed by properly
aggregating the corresponding QoS attributes of the constituend services i [24].
Since the cost and (logarithm of the) dependability are additive [24] QoS metrics,
for their expected value we simply obtain

Ek(x) =
∑

i∈V

V k
i Ek

i (x) =
∑

i∈V

V k
i

∑

J∈Pi

xk
i.JeiJ (4)

Ck(x) =
∑

i∈V

V k
i Ck

i (x) =
∑

i∈V

V k
i

∑

J∈Pi

xk
iJci.J (5)

where V k
i is the expected number of times service i is invoked for a class k

request.

4.2 Optimization Model

In this section we detail the instance of the general optimization problem outlined
in Sect. 3. By solving this problem, the Adaptation Manager determines the
variables xk

iJ , i ∈ V , k ∈ K, J ∈ Pi which maximize a suitable objective function
given the user QoS and system constraints.

We assume that the broker wants, in general, to define an adaptation strat-
egy which optimize multiple - possibly conflicting - requirements; therefore,
the adaptation strategy results in a multi-objective optimization. We tackle
the multi-objective problem by transforming it into a single objective problem
through the weighted sum approach, which is the most widely used scalarization
method. To this end, we define as the broker utility function F (x) the weighted
sum of the (normalized) QoS attributes of all users which can be regarded as
an overall aggregate QoS measure for the offered service. More precisely, let
Z(x) = 1

P

k∈K
Lk

∑

k∈K LkZk(x), where Z ∈ {E, C} is the expected overall

dependability and cost, respectively. We define the broker utility function as
follows:

F (x) = we

E(x) − Emin

Emax − Emin

+ wc

Cmax − C(x)

Cmax − Cmin

(6)

where we and wc (we, wc ≥ 0, we + wc = 1) are weights for the different QoS at-
tributes. Here, Emax (Emin) and Cmax (Cmin) denote, respectively, the maximum



(minimum) value of the aggregated dependability (cost) (We will describe how
to determine these values shortly). F (x) takes values in the interval [0, 1]. As-
suming we, wc 6= 0, F (x) = 1 when E(x) = Emax and C(x) = Cmin, i.e., when
the aggregate dependability is maximized and the cost minimized; F (x) = 0
when E(x) = Emin and C(x) = Cmax, i.e., when the aggregate dependability is
minimized and the cost maximized.

The problem solved by the Adaptation Manager consists in finding the vari-
ables xk

iJ , i ∈ V , k ∈ K, J ∈ Pi, which maximizes the broker utility F (x). This
is accomplished by solving the following linear optimization problem:

max F (x)

subject to: Ck(x) ≤ Ck
max k ∈ K (7)

Ek(x) ≥ Ek
min

k ∈ K (8)
∑

k∈K

∑

J∈Pi

xk
iJV k

i Lk ≤ Lij i ∈ V , j ∈ Ii (9)

xk
iJ ≥ 0,J ∈ Pi(j),

∑

J∈Pi

xk
iJ = 1 i ∈ V , k ∈ K (10)

Equations (7)-(8) are the QoS constraints. Ek
min

= log Ak
min

is the logarithm of
user k minimum expected service dependability. Ck

max
is the maximum cost the

broker is willing to pay to fulfil a user k request. We assume Ck
max ≤ Ck, where

Ck is the cost the broker charge user k for each service request as defined by user
k SLA-P. Equations (9) are the SLA-R constraints and ensure that the broker
does not exceed the volume of invocations agreed with the service providers.
The left hand side in (9) is indeed the volume of requests which are bound to
service Si.j and Li.j the agreed upon value in the SLA-R. Finally, (10) are the
functional constraints.

We observe that the proposed optimization problem is a Linear Programming
problem which can be efficiently solved via standard techniques. The solution
thus lends itself to both on-line and off-line operations. The problem can be ex-
tended to account for other QoS attributes, e.g., the service time and reputation
(see [13] for details). Is it worth noting that also in these cases the optimization
problem can be cast as a Linear Programming problem.

We conclude describing on how to compute the maximum and minimum val-
ues of the QoS attributes in the objective function. Emin and Cmax are simply
expressed respectively in terms of Ek

min
and Ck

max
. For example, the maximum

cost is given by Cmax = 1
P

k∈K
Lk

∑

k∈K LkCk
max. Similar expression holds for

Emin. The values for Emax and Cmin are determined by solving a modified opti-
mization problem in which the objective function is the QoS attribute of interest,
subject to the constraints (9)-(10).

5 Numerical Experiments

In this section, we illustrate the behavior of the proposed adaptation strategy
scheme through the simple abstract workflow of Fig. 1.



For the sake of simplicity we assume that the broker has established just
two SLA-Rs for each service except for service S2 for which there are 4 estab-
lished SLA-Rs. The different SLA-Rs differ in terms of cost and dependability.
Tables 2 summarizes the parameters as defined by the SLA-R 〈aij , cij , Lij〉 for
each concrete service Si.j . They have been chosen so that for each abstract ser-
vice Si ∈ V , concrete service Si.1 represents the better service, which at a higher
cost guarantees higher dependability with respect to service Si.2, which costs
less but has lower dependability. For all services, we assume Lij = 10.

In Table 3 we also list the QoS parameters associated with sets of concrete
services Si.js used in spatial redundancy according to the fail stop failure model,
i.e., the QoS associated to the constrct paror(Si.1, . . . , Si.ℓ). The values are com-
puted from those of the constituent services using (2)-(3). We assume the broker

Table 2. Concrete services QoS attributes

Serv. cij aij

S1.1 6 0.999

S1.2 3 0.99

S2.1 4 0.999

S2.2 2 0.99

S2.3 4.5 0.99

S2.4 1 0.95

S3.1 2 0.999

Serv. cij aij

S3.2 1 0.99

S4.1 0.5 0.999

S4.2 0.3 0.99

S5.1 1 0.999

S5.2 0.7 0.99

S6.1 0.5 0.999

S6.2 0.2 0.99

has established SLA-Ps with 4 users which are characterized by a wide range
of dependability requirements as listed in Table 4. Users are ordered according
to the required minimum level of dependability, with User 1 having the high-
est requirement, A1

min
= 0.995, and User 4 the least requirement A4

min
= 0.9.

The SLA-Ps costs have been set accordingly with User 1 incurring the highest
cost per request, C1 = 25, and User 4 only C4 = 12. We consider the following
values for the the expected number of service invocations of the different users:
V k

1
= V k

2
= V k

3
= 1.5, V k

4
= 1, k ∈ K, V k

5
= 0.7, V k

6
= 0.3, k ∈ {1, 3, 4}, k 6= 2,

and V 2

5
= V 2

6
= 0.5. In other words, all users have the same average number of

service invocations except for user 2, which invokes the services 5 and 6 with dif-
ferent probabilities from the other users. We illustrate the adaptation strategies
under two different scenarios: 1) the broker minimizes the average cost (wc = 1);
and 2) the broker maximizes the average dependability (we = 1). The results
are summarised in Fig. 5 and 6 which shows the solutions for the two scenarios
for User 1 and User 4, respectively; in Table 5 we list the resulting QoS metrics
for all the users.



Table 3. QoS attributes for the fail stop redundant services

Redundant Serv. ciJ eiJ

paror(S1.1, S1.2) 9 log(0.99999)

paror(S1.1, S1.3) 6 log(0.99999)

paror(S2.1, S2.3) 8.5 log(0.99999)

paror(S2.1, S2.4) 5 log(0.99995)

paror(S2.2, S2.3) 6.5 log(0.9999)

paror(S2.2, S2.4) 3 log(0.9995)

paror(S2.3, S2.4) 5.5 log(0.9995)

paror(S2.1, S2.2, S2.3) 10.5 log(0.9999999)

paror(S2.1, S2.2, S2.4) 7 log(0.9999995)

paror(S2.1, S2.3, S2.4) 9.5 log(0.9999995)

paror(S2.2, S2.3, S2.4) 7.5 log(0.999995)

paror(S2.1, S2.2, S2.3, S2.4) 11.5 log(0.999999995)

paror(S3.1, S3.2) 3 log(0.99999)

paror(S4.1, S4.2) 0.8 log(0.99999)

paror(S5.1, S5.2) 1.7 log(0.99999)

paror(S6.1, S6.2) 0.7 log(0.99999)

Table 4. User SLA-P attributes

User Ak
min Ck Lk

max

1 0.995 25 1.5

2 0.99 20 1

3 0.95 15 3

4 0.9 12 1

In the first scenario, the broker goal is to minimize the expected cost (which
in turn maximizes the broker profit). In this setting the broker has no incentive
to guarantee to the user more than the minimum required. As a result the
solution provided by the Adaptation Manager guarantees only the minimum
required level of dependability, i.e., Ek(x) = Ek

min
= log Ak

min
(see Table 5

(left)) with increasing costs with the level of dependability. For user 4, this
results in a workflow with no form of redundancy (see Fig. 5) and where most
of the services are deterministically bound to the cheaper Si.2 services. Observe
that the solution still requires the use of the more expensive concrete service
S4.1 and a combination of S2.2 and S2.4 since otherwise the minimimum level of
dependability required by the SLA-P could not be met. The solution for user 1
differs substantially from the one just described. User 1 workflow is characterized
by spatial redundancy for most of the services. This comes at a significant higher



Table 5. User QoS metrics

User Ek Ck

1 log(0.995) 19.08

2 log(0.99) 17.28

3 log(0.95) 10.21

4 log(0.9) 8.85

Scenario 1 (wc = 1)

User Ek Ck

1 log(0.9991) 25

2 log(0.9976) 20

3 log(0.9828) 15

4 log(0.9684) 12

Scenario 2 (we = 1)

cost per request (19.08 more than twice the 8.85 needed to satisfy a user 4
request).

We now turn our attention to the second scenario, i.e., where the broker goal
is to maximize the users’ dependability. In this setting, the solution provided
by the Adaptation Manager is bounded by the resources available to implement
the services, i.e., the service providers, and by the maximum cost the broker is
will to pay for each user (which defines its profit margin). Here for the sake of
simplicity, we assume Ck

max
= Ck. From Table 5 (right) we see that the optimal

solution is achieved by maximizing the cost the broker pays per request since
Ck(x) = Ck

max
for all users. This in turn guarantees significantly higher level

of dependability than those requested by the users. From Fig. 6 we see that for
both users the dependability increase is achieved by using better services, e.g.,
in user 4 solution S5.2 and S6.2 are replaced by S5.1 and S6.1, respectively, and
redundancy, e.g., service S2 for user 1 and service S5 and S6 for user 4.

6 Related Work

As outlined in [5], the topic of self-adaptive systems has been studied in sev-
eral communities such as distributed systems, biologically-inspired computing,
robotics, machine learning, control theory, network-based systems, etc. and re-
cently also in the software engineering field [5, 25]. In particular, approaches
spanning software architecture [8], service-oriented applications [11, 9], perva-
sive applications [26] and autonomic systems [4] have been recently proposed.

In the area of autonomic computing, the original approach proposed by IBM
[7] was an architecture-level approach in which the generic architecture of an
autonomic system was defined as a system composed by managers and managed
resources. In this approach the manager communicates with the resource through
a sensor/actuator mechanism and the decision is elaborated using the so-called
MAPE-K (Monitor, Analyze, Plan, Execute and Knowledge) cycle. This loop
collects information from the system, makes decisions and then organizes the
actions needed to achieve goals and objectives, and controls the execution. All
the manager’s functions consume and generate knowledge, which is continuously



User 1

User 4

Fig. 5. Adaptation Manager solution: scenario 1 - cost minimization

shared leading to better-informed decisions. From this perspective, the architec-
ture we have outlined in section 2, and the adaptation methodology discussed
in sections 3 and 4 can be seen as an instantiation for the SOA environment
of an autonomic system, focused on the fulfillment of dependability require-
ments. In particular, the Execution Monitor, SLA Monitor and Admission Con-
trol Manager collectively implement the Monitor and Analyze functions, while
the Adaptation Manager and Workflow Engine implement the Plan and Execute
functions.

Hereafter, we focus on works appeared in the literature dealing with issues
concerning the dependability evaluation and the self-adaptation of SOA systems,
to guarantee the fulfillment of dependability requirements.

The dependability of a SOA system is difficult to achieve because in the SOA
environment the system components are autonomous, heterogeneous and usually
come from different providers. In traditional software engineering, many software
reliability and availability models have been presented to solve this problem (e.g.,
[27]). Unfortunately, these models cannot be directly applied to service-oriented



User 1

User 4

Fig. 6. Adaptation Manager solution: scenario 2 - dependability maximization

systems, where users and providers are distributed, and the processes of ser-
vice publication, search and invoking are separated [9, 10, 28]. Indeed, in these
systems, an execution failure can be observed for reasons related both to the
execution environment (e.g., variations in the execution environment configura-
tion, overloaded resource conditions, system running out of memory) or to the
non-availability of required services or software components [28, 29].

A basic problem to be solved when dealing with QoS issues of SOA systems,
is how to determine the QoS attributes of a composite system, given the QoS
delivered by its component services. Papers that provide some methods to derive
QoS related measures of workflow processes are, for example, [30–32].

Another problem, which is also the main focus of this paper, concerns the
dynamic adaptation of a SOA system to meet the QoS requirements in a volatile
operating environment. Two main classes of approaches have been proposed in
the literature to deal with this problem, as already discussed in the introduction.
The first one includes approaches mainly based on QoS-based service selection
methods as adaptation mechanism. In this case new service components are se-



lected to deal with changes in the operating scenarios. The second class includes
approaches based on architecture selection mechanisms, where the adaptation
to changes is performed defining new (redundancy based) architectures for the
service composition to meet the QoS (basically, dependability) requirements.

Early proposals for dynamic adaptation based on service selection considered
only local constraints (i.e., constraints which can pose restrictions only on the
execution of individual abstract services). In that case, the service selection is
very simple and can be performed at run time by a greedy approach that selects
the best candidate service suitable for the execution [33]. More recent solutions
support also global constraints [34, 21, 35, 11], adopting a per-request approach.
Zeng et al. [21], for example, present a global planning approach to select an
optimal execution plan by means of integer programming. They propose a sim-
ple QoS model using the attributes: price, availability, reliability, and reputation;
and then they apply linear programming for solving the optimization QoS matrix
formed by all of the possible execution plans to obtain the maximum QoS val-
ues. Ardagna and Pernici [11] model the service composition as a mixed integer
linear problem where both local and global constraints are taken into account.
Their approach is formulated as an optimization problem handling the whole
application instead of each execution path separately. Canfora et al. [35] adopt
a quite different strategy for optimal selection based on genetic algorithms. An
iterative procedure is defined to search for the best solution of a given problem
among a constant size population without the need for linearization required by
integer programming.

The approaches presented in [36, 13, 37] differ from previous works that have
tackled the service selection as an optimization problem in that the optimization
is performed on a per-flow rather than per-request basis. In these approaches
the solution of the optimization problem holds for all the requests in a flow, and
is recalculated only when some significant event occurs (e.g., a change in the
availability or the QoS values of the selected concrete services). Moreover, the
optimization problem is solved taking into account simultaneously the flows of
requests generated by multiple users, with possibly different QoS constraints.

Considering the architecture selection approaches, to the best of our knowl-
edge few methodologies have been proposed to dynamically determine the most
suitable (redundancy based) architecture in a given operating environment. The
paper by Guo and others [10] provides a methodology to select different redun-
dancy mechanisms to improve the dependability experienced by a single request
addressed to a composite service. The selection problem is formulated as a mixed
integer programming problem, and some heuristics are proposed to calculate in
an efficient way an approximate solution. An analogous problem is considered in
[38]. The proposed methodology is motivated by its application to component-
based systems, but it can be easily extended to a SOA environment.

With respect to these methodologies, the framework we propose intends to
consider the use of both service selection and architecture selection as adaptation
mechanisms, to increase the flexibility of the Adaptation Manager. Differently
from most of the papers cited above, we consider an adaptation scenario con-



cerning multiple concurrent flows of requests generated by different users, rather
than a single requests. We have discussed in the introduction pros and cons of the
per-flow rather than per-request approaches. In this respect, the methodology
presented in this paper is an extension of methodologies presented in [36, 13, 37]
as it also considers architecture selection besides service selection as adaptation
mechanism.

Differently from methodological papers on architecture selection as adapta-
tion mechanism, more papers exist dealing with issues concerning the implemen-
tation of this mechanism. Several approaches have been proposed in the area of
Grid applications (see [14] for a survey on approaches for building and execut-
ing workflows on Grids) and also applied in the area of service-based systems.
These methods are mainly based on retry and redundancy techniques. The retry
technique simply tries to execute the same task on the same resource after fail-
ure, while in the redundancy approaches it is assumed that there is more than
one implementation for a certain computation with different execution charac-
teristics. The problem of Web Service replication has been tackled by Salas et
al. in [39] by proposing an infrastructure for WAN replication of Web Services.
A different approach, based on a middleware that supports reliable Web Ser-
vices built on active replication has been proposed in [40]. Similarly, Erradi et
al. [41] propose a lightweight service-oriented middleware for transparently en-
acting recovery action in service-based processes; and Charfi et al. [42] use an
aspect-based container to provide middleware support for BPEL that plugs in
support for non-functional requirements. Chen et al. [43] construct composite
services resilient to various failure types using inherent redundancy and diver-
sity of Web Service components jointly with mediator approach. A different set
of works proposes language-based approaches dealing with workflow adaptabil-
ity through the introduction of additional language constructs. BPEL for Java
(BPELJ), for example, combines the capabilities of BPEL and the Java program-
ming language [44]; in [45], Ezenwoye et al. propose a language-based approach
to transparently adapt BPEL processes to address reliability at the business
process layer. Baresi et al. in [46] propose an approach where BPEL processes
are monitored at run-time through aspect-oriented techniques to check whether
individual services comply with their contracts.

With respect to our framework, these proposals can provide useful sugges-
tions about the implementation of the considered adaptation mechanisms.

7 Conclusions

We have presented an approach towards the realization of a SOA system able
to self-adapt in a dynamically changing environment, to meet the dependability
requirements of several classes of users. We have discussed a possible architecture
for this system, which can be seen as an instantiation for the SOA environment
of the general architectural framework for self-adapting systems proposed within
the autonomic computing initiative. Given this architecture, we have focused on
the problem of determining suitable adaptation actions in response to detected



environment changes. In this respect, the basic guideline we have followed has
been to give a high degree of flexibility to the Adaptation Manager, to meet a
broader range of dependability requirements in different operating environments.
For this purpose, our methodology allows to adopt simultaneously (for different
users, but also for different requests generated by the same user) adaptation
actions based on the two main approaches proposed in the literature, called in
this paper service selection and architecture selection, respectively.

The proposed approach represents a first step that needs refinements and
extensions in several directions. With regard to the adaptation mechanisms, we
have actually considered just one kind of adaptation based on the architecture
selection paradigm: the replacement of a single service with the ”parallel-or” of
different implementations of that service. Other kinds of adaptation mechanisms
could be considered, using in different ways the spatial redundancy concept: e.g.,
sequential retry or majority voting. Considering also these mechanisms would
increase the flexibility of the Adaptation Manager, as they allow to achieve
different cost/benefit tradeoffs, and/or to deal with different failure scenarios.
Moreover, a greater flexibility would also be achieved by broadening the scope
of the “dependability” concept: in this paper we have limited our attention to
the reliability and availability attributes, but we could consider a more general
definition of dependability as ability of fulfilling a given set of QoS requirements,
which could include other attributes like performance or reputation. We are
currently working towards an extension of our methodology along this direction.

With regard to the methodology we have proposed, we point out that a
potential problem could be caused by the high number of variables xk

iJ in the
optimization problem, for high numbers of abstract services and concrete services
implementing them. In this case, a possible way to alleviate the problem could
be to limit the number of considered subsets J to those having at most a given
cardinality (e.g., three), considering the diminishing dependability increase we
can achieve with higher redundancy levels.

Finally, we have not dealt in depth with issues concerning the implementation
of the adaptation methodology. As pointed out in the related work section,
several proposals exist in the literature, which provide useful contributions in
this direction. Based on them, we are working towards the implementation of a
prototype to validate our methodology through real experiments.
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