
Self-adaptive Container Deployment in the Fog:
A Survey

Valeria Cardellini �1[0000−0002−6870−7083], Francesco
Lo Presti1[0000−0002−7461−6276], Matteo Nardelli1[0000−0002−9519−9387], and

Fabiana Rossi1[0000−0002−5263−2208]

Department of Civil Engineering and Computer Science Engineering
University of Rome Tor Vergata, Italy

{cardellini,nardelli,f.rossi}@ing.uniroma2.it, lopresti@info.uniroma2.it

Abstract The fast increasing presence of Internet-of-Things and fog
computing resources exposes new challenges due to heterogeneity and
non-negligible network delays among resources as well as the dynamism
of operating conditions. Such a variable computing environment leads
the applications to adopt an elastic and decentralized execution. To sim-
plify the application deployment and run-time management, containers
are widely used nowadays. The deployment of a container-based appli-
cation over a geo-distributed computing infrastructure is a key task that
has a significant impact on the application non-functional requirements
(e.g., performance, security, cost). In this survey, we first develop a tax-
onomy based on the goals, the scope, the actions, and the methodologies
considered to adapt at run-time the application deployment. Then, we
use it to classify some of the existing research results. Finally, we iden-
tify some open challenges that arise for the application deployment in the
fog. In literature, we can find many different approaches for adapting the
containers deployment, each tailored for optimizing a specific objective,
such as the application response time, its deployment cost, or the efficient
utilization of the available computing resources. However, although sev-
eral solutions for deploying containers exist, those explicitly considering
the distinctive features of fog computing are at the early stages: indeed,
existing solutions scale containers without considering their placement,
or do not consider the heterogeneity, the geographic distribution, and
mobility of fog resources.

Keywords: Containers · Elasticity · Fog computing · Placement · Self-
adaptive systems.

1 Introduction

Fog computing promises to extend cloud computing exploiting the ever increas-
ing presence of resources located at the edges of the network (e.g., single-board
computers, wearable devices, smartphones). However, it introduces new chal-
lenges that mainly result from the heterogeneity of computing and networking

banto
Published in: ALGOCLOUD 2019: Algorithmic Aspects of Cloud Computing, pp. 77-102, 2020.
The final authenticated version is available online at https://doi.org/10.1007/978-3-030-58628-7_6



2 V. Cardellini, F. Lo Presti, M. Nardelli, F. Rossi

resources as well as from their decentralized distribution. Differently from cloud
resources, fog resources typically offer a constrained environment, where changes
in resource availability, efficiency, and energy consumption play a critical role in
determining a successful computing platform. The presence of different Internet
connectivity and bandwidth, as well as the dispersed resource distribution, calls
for the study of deployment strategies that explicitly take into account at least
the presence of heterogeneous resources and non-negligible network delays.

Extending cloud computing towards network edges, fog computing is well
suited to manage Internet-of-Things (IoT) applications, whose data are gener-
ated and consumed at the network periphery. When interacting with IoT appli-
cations, the user requires the application to run with strict quality requirements
(e.g., low latency response requirements), often expressed by means of Service
Level Agreements (SLAs). In particular, IoT applications usually require re-
duced response time and high throughput, that should be obtained even in face
of highly changing operating conditions. To satisfy these performance goals, the
application deployment should be promptly adapted at run-time by conveniently
acting according to two control directions: the placement and elasticity of the
application. The application placement addresses the mapping of each applica-
tion instance to a specific computing resource, while the elasticity feature aims
at scaling at run-time the number of application instances and/or the amount of
computing resources assigned to each of them. To simplify the deployment and
run-time adaptation of applications, we can use software containers. Exploit-
ing a lightweight operating system-level virtualization, software containers (e.g.,
Docker) have rapidly become a popular technology to run applications on any
machine, physical or virtual. Containers enable to bundle together applications
and their dependencies (i.e., libraries, code). Differently from virtual machines
(VMs), they allow a faster start-up time and a reduced computational overhead.

In this paper, we survey existing solutions to adapt the deployment of container-
based applications on fog and cloud computing resources, focusing on the algo-
rithms used to control the adaptation. Different surveys (e.g., [16,26,46,60,77])
have recently investigated the challenges that arise in fog computing environ-
ments. Mahmud et al. [46] analyze the challenges in fog computing and discuss
its differences with respect to other computing paradigms. Yi et al. [77] iden-
tify security and privacy as critical points that should be considered in every
stage of fog computing platform design. Specifically, the authors believe that,
in a fog environment, general application programming interfaces (APIs) should
be provided to cope with existing protocols and APIs. Puliafito et al. [60] ana-
lyze the applicability of existing technologies in the fog computing environment
in order to support IoT devices and services. Gedeon et al. [26] focus on the
application perspective and present a classification and analysis of use cases of
edge/fog computing. The survey by Brogi et al. [16] is the one most related
to our work since they explore the existing methodologies and algorithms to
place applications on fog resources. Differently from these works and in particu-
lar from [16], we focus on the runtime execution of fog applications, since their
deployment should also efficiently self-adapt with respect to workload changes



Self-adaptive Container Deployment in the Fog: A Survey 3

and dynamism of the fog computing environment (e.g., fog resource constraints,
network constraints in term of latency and bandwidth, fog resources that join or
leave the system). Therefore, not only an effective application placement should
be enacted as initial deployment, but it should be also conveniently modified
at run-time so to be dynamism-aware and deal with the heterogeneity of the
underlying fog resources. To this end, the application elasticity plays a key role.
Indeed, fog-native applications should be able to adapt to workload changes by
provisioning and de-provisioning resources in an autonomic manner, thus cop-
ing with the environment dynamism. While the elasticity issue has been well
investigated in the cloud environment, as surveyed in [4], as well as in specific
domains such as data stream processing [62], to the best of our knowledge it
has not yet been analyzed and categorized in the fog context, especially from an
algorithmic perspective. Moreover, in this work we aim to identify fully-fledged
deployment solutions that can jointly address the elasticity and placement of ap-
plications in fog computing environments. When the managed applications are
geo-distributed, a fully centralized controller introduces a single point of failure
and a bottleneck for scalability. Indeed, a centralized controller may be able to
efficiently control the adaptation of only a limited number of entities, and its
efficacy may be negatively affected by the presence of network latencies among
the application components. Considering the new emerging environment, in this
work we want to identify the existing solutions that can be used in practice to
decentralize the self-adaptation functionalities.

The rest of the paper is organized as follows. First, we discuss the specific
challenges of fog computing environments and their fundamental differences with
cloud computing environments (Sect. 2). Second, we present a taxonomy on the
existing approaches and deployment controllers used to adapt at run-time the
deployment of applications on fog and cloud resources (Sect. 3). Then, in Sects. 4
and 5, we describe some container orchestration tools used to simplify the de-
ployment and management of container-based applications, as well as some sim-
ulation tools proposed and used by the research community to perform experi-
ments. We conclude by identifying open research challenges that can be explored
to improve the deployment effectiveness in fog environments (Sect. 6).

2 Fog Environment Challenges

Fog computing extends the cloud computing paradigm by expanding compu-
tational and storage resources at the edge of the network, in a close prox-
imity to where data are generated. As such, fog environment exposes many
old and new challenges. In accordance with previous surveys on fog comput-
ing [16,26,46,60,77], we can identify the following most relevant challenges: het-
erogeneity, scale and complexity, dynamism and mobility, fault tolerance, and
security.

Fog and cloud computing infrastructures provide computing resources with
different characteristics. Cloud computing offers powerful and general purpose
computing (and storage) resources on-demand. Conversely, fog computing usu-



4 V. Cardellini, F. Lo Presti, M. Nardelli, F. Rossi

ally exposes heterogeneous resources, with reduced computing and energy capac-
ity, that can also change location at run-time. Also, fog computing can provide
storage resources, usually of reduced capacity, that can be used to collect and
distribute data from/to edge devices (e.g., AWS Snowball Edge). Being of lim-
ited capacity, fog computing resources are cheaper and more constrained than
traditional cloud computing resources (e.g., Raspberry Pi); therefore, we assist
to a large proliferation of devices standing at the network periphery [17]. As re-
gards the connectivity among resources, we observe that cloud resources reside
in a single data center or can be distributed among multiple data centers; either
way, they rely on very a fast inter-connectivity that results in negligible com-
munication delays. Conversely, fog resources can communicate using different
(and mixed) technologies (e.g., wired, wireless, Bluetooth) that may introduce
non-negligible network latency. Such a delay can impact on performance, and be
detrimental for latency-sensitive applications.

To rule the complexity of the emerging fog computing environment, efficient
algorithms to drive the application deployment are needed. They should explic-
itly address its heterogeneity and dynamism, which also include the presence of
mobile resources (e.g., smartphones). Due to these features and the increased
number of constraints, deploying application in a fog computing environment is
challenging. As such, many fog computing architectures and platforms have been
proposed in literature, aiming to simplify the application distribution and execu-
tion (e.g., [30,41]). Most of them resort on lightweight virtualization technologies,
i.e., software containers, to simplify the application management (e.g., [12,81]).

Similarly to cloud applications, the user wants to obtain specified levels of
Quality of Service (QoS), e.g., in terms of response time, or Quality of Experience
(QoE). In cloud computing, the user and the service provider often stipulate
a contract referred as SLA. It represents an agreement between the customer
and service provider, and is characterized by quantified objectives and metrics
(Service Level Objectives, SLOs) which the provider undertakes to respect during
service delivery. Defining such kind of agreement is particularly challenging in the
fog computing environment, because the SLOs satisfaction is often affected by
many factors, which might also be out of the provider’s control (e.g., connectivity,
mobility).

In the past few years, cloud applications stressed the importance of fault
tolerance, and the key role it plays when the application requires a distributed
execution. Although many mechanisms can be used to increase fault tolerance
(e.g., check-pointing, replication), their implementation in a fog environment is
not trivial due to the increased scale, heterogeneity, and complexity with respect
to a cloud scenario. However, fault tolerance is a key enabler for the deployment
of applications in the fog environment. So far, only a limited number of works
explore fault tolerance in the emerging scenario, resulting in an important open
challenge to be addressed in the near future [13]. For example, Javed et al. [33]
propose a fault-tolerant architecture for IoT applications in edge and cloud in-
frastructure. Specifically, the proposed solution replicates the processing instanc-
ing using the fault-tolerance functionality by Kubernetes; to transfer data with



Self-adaptive Container Deployment in the Fog: A Survey 5

no loss, the architecture includes a fault-tolerant message broker, implemented
using Apache Kafka.

When distributed applications, possibly with IoT sensors and actuators, are
deployed on fog resources, the overall system may expose a large number of
vulnerabilities, which can represent security threats. Geographically distributed
computing and storage resources, that communicate through Internet, might
not be easily controlled by a single provider. This further exposes the system to
attacks, data leaks, impersonations, and hijacking. So far, many fog platforms
and their deployment algorithms have been designed without considering secu-
rity as a first-class pillar. Moreover, the limited capabilities of fog resources may
compromise the applicability of widely adopted security mechanisms [67].

Considering the dynamism and heterogeneity of the fog environment, the
discussed challenges and the (unpredictable) changes in the application workload
make of primary importance the run-time self-adaption of the deployment of
container-based applications. In the next section, we therefore survey existing
models and algorithms that explore, possibly in a joint manner, the placement
and elasticity control dimensions in a fog computing environment.

3 Approaches for Container-based Application
Deployment

In this section, we analyze existing approaches that deal with the deployment of
container-based applications on cloud and fog computing resources. We broaden
the view also to the cloud environment because, so far, only few research works
have specifically targeted the fog environment, especially with regards to the elas-
ticity issue. As we will see, the different research efforts address a wide range of
challenges that arise when applications with stringent QoS requirements run in a
dynamic and geo-distributed environment. We can classify the existing research
works according to: (1) the deployment goals, (2) the scope, (3) the deployment
actions, (4) the methodologies used to adapt the deployment, and (5) the de-
ployment controllers. Figure 1 illustrates a taxonomy of the design choices to
control the container deployment, whereas Table 1 classifies with respect to the
taxonomy the application deployment approaches in literature.

3.1 Deployment Goals

The deployment adaptation of applications is carried out in order to satisfy a va-
riety of QoS requirements. To quantify the deployment objective, several metrics
have been adopted in literature; we can broadly distinguish them in user-oriented
and system-oriented metrics. A user-oriented metric models a specific aspect of
the application performance, as can be perceived by the user: e.g., through-
put, response time, cost. A system-oriented metric aims to quantify a specific
aspect of the system, following the service provider’s viewpoint who wants to
efficiently use the available resources. Considering the Cloud service stack, an
IaaS provider wants to maximize profits, minimize resource utilization, while



6 V. Cardellini, F. Lo Presti, M. Nardelli, F. Rossi

Application Deployment

Deployment Goals

Objective

Multiple [M]

Single [S]

Metric

User-oriented [UO]

Cost

Response time

Throughput

System-oriented [SO]

Load Balancing

Resource Utilization

Availability

Controlled Entities

Scope

Infrastructure level [Infr]

Application level [Appl]

Resources

Homogeneous [Hom]

Heterogeneous [Het]

Mobile [Mob]

Adaptation Actions

Scaling

Horizontal [H]

Vertical [V]

Placement

Migration

Methodologies

Mathematical Progr. [MP]

Control Theory [CT]

Queuing Theory [QT]

Machine Learning [ML]

Heuristic [H]

Greedy

Fuzzy Logic

Threshold-based

Meta-heuristic

Local-search

Simulated annealing

Genetic Algorithm

Game Theory [GT]

Deployment Controllers

Embedded

External

Figure 1: Taxonomy of existing container deployment solutions

fulfilling the SLA agreed with its customers. A PaaS provider can be interested
in minimizing the cost associated to the infrastructure utilization. A SaaS cus-
tomer aims at minimizing the service costs, while achieving a satisfactory QoE
level. Deployment policies in literature aim to reduce the application response
time (e.g., [64,10,31]), its deployment costs (e.g., [3,11,27,53,54,16]), and/or to
save energy consumption (e.g., [9,27,36,37]). To better exploit the on-demand re-
source allocation, several approaches aim to optimize load balance and resource
utilization (e.g., [1,35,47,28]), or to improve system availability (e.g., [39,47,40]).
In the context of fog computing, most works consider user-oriented metrics. On
the other hand, few works (e.g., [19,23,27,51,63,79]) consider a combination of
deployment goals. Casalicchio et al. [19] aim to improve the resource allocation
and fulfill application response time constraints. Zhao et al. [79] aim to improve
data locality and load balance. Mseddi et al. [51] goal is to optimize the number
of served end-users and resource utilization taking into account storage demands.
Rossi et al. [63] propose a container-based application deployment strategy to



Self-adaptive Container Deployment in the Fog: A Survey 7

jointly optimize the 95th percentile of application response time and resource
utilization. De Maio et al. [23] propose a hybrid approach for task offloading in
mobile edge computing scenarios which jointly maximize user-oriented (i.e., user
QoE) and system-oriented (i.e., provider profit) metrics.

Table 1: Classification of existing solutions for deploying applications in geo-
distributed computing environments according to the taxonomy in Figure 1.

Ref. Depl. goals Controlled entity Adaptation Actions Methodologies
Objective Metric Scope Resources Scaling Placement Migration

Abdelbaky et al. [1] M UO + SO Appl. Het. No Yes No MP
Addya et al. [2] M SO Infr. Hom. No Yes No H

AlDhuraibi et al. [3] M UO + SO Appl. Hom. V No Yes H
Ali-Eldin et al. [6] S SO Infr. Hom. H No No CT + QT
Arabnejad et al. [7] M UO + SO Infr. Hom. H No No ML + H
Arkian et al. [8] M UO Infr. Het.. No Yes No MP
Asnaghi et al. [9] S SO Appl. Hom. V No No CT + H
Baresi et al. [10] S UO Appl. Hom. H+V No No CT
Barna et al. [11] S SO Infr. + Appl. Hom. H No No QT + H
Brogi et al. [15] M UO + SO Appl. Het. No Yes No ML + H

Casalicchio et al. [19] M UO + SO Appl. Hom. H No No H
Garefalakis et al. [25] M SO Appl. Hom. No Yes No MP

Guan et al. [27] M SO Appl. Hom. H Yes No MP
Guerrero et al. [28] M SO Appl. Het. H Yes No H
Horovitz et al. [31] S UO Appl. Hom. H No No ML + H
Huang et al. [32] S SO Appl. Hom. No Yes No MP

Kaewkasi et al. [35] S SO Appl. Hom. No Yes No H
Kaur et al. [36] M SO Appl. Hom. No Yes Yes H + GT
Kayal et al. [37] M SO Appl. Het. No Yes No MP
Khazaei et al. [39] M SO Appl. Hom. H No No H
Khazaei et al. [40] M SO Appl. Hom. H No No H
Mahmud et al. [45] M UO Appl. Het. No Yes No H
Mao et al. [47] M SO Appl. Het. No Yes Yes QT + H

Mennes et al. [49] S SO Appl. Het. No Yes No H
Mouradian et al. [50] M UO Appl. Het. + Mob. No Yes No MP + H
Mseddi et al. [51] M UO + SO Appl. Het. + Mob. No Yes Yes H
Naas et al. [52] M UO Appl. Het. No Yes No MP + H

Nardelli et al. [53] M UO + SO Infr. + Appl. Het. H Yes No MP
Nardelli et al. [54] M UO Infr. + Appl. Het. H Yes No MP
Nouri et al. [56] M SO Appl. Hom. H No No ML
Rossi et al. [63] M UO + SO Appl. Het. H + V Yes No MP + ML
Rossi et al. [64] M UO + SO Appl. Hom. H + V No No ML
Santos et al. [65] S UO Appl. Het. No Yes No H
Souza et al. [66] S UO Appl. Hom. No Yes No H
Tan et al. [69] S SO Infr. + Appl. Hom. No Yes No H
Tang et al. [70] M SO Appl. Het. + Mob. No No Yes MP + ML

Tesauro et al. [71] S UO Infr. Hom. No Yes No QT + ML
Townend et al. [72] S SO Appl. Hom. No Yes No H

Wu et al. [75] S SO Appl. Hom. H No No H
Yigitoglu et al. [78] M UO + SO Appl. Het. + Mob. No Yes No H
Zhao et al. [79] M UO + SO Appl. Het. No Yes No H
Zhu et al. [82] M UO + SO Infr. Hom. V No No CT + ML



8 V. Cardellini, F. Lo Presti, M. Nardelli, F. Rossi

3.2 Controlled Entities

To identify the scope, we observe that adaptation actions can be applied either at
the infrastructure level [4] or at the application level [44]. At the infrastructure
level, the elasticity controller changes the number of computing resources, usually
by acquiring and releasing VMs, e.g., [6,54,71]. At the application level, the
controller adjusts the computing resources directly assigned to the application
(e.g., changing their parallelism degree [3,27,64]).

Fog environments can include resources with different computing and storage
capacity as well as network connectivity. Therefore, some deployment solutions
explicitly consider resource heterogeneity, i.e., they take into account specific
features of computing and networking resources, such as processing or storage
capacity of resources, available resources, or network delay (e.g., [28,53,63,70]).
Nonetheless, a large number of solutions model only a homogeneous computing
infrastructure (e.g., [6,7,9,64,66,82]). Moreover, user devices and/or fog resources
(e.g., smart cars, drones) can be mobile. Most works consider only user mobility
and address the application migration among multiple resources (e.g. [58]) or
the placement of static edge nodes in a cellular network [23] with the goal to
satisfy the application SLOs. To the best of our knowledge, only the work by
Mouradian et al. tackles the mobility of fog nodes [50], while there are more
efforts in the research area of vehicle cloud computing (e.g., [80]).

Software containers offer a lightweight virtualization solution, which is often
adopted in the context of fog computing (e.g., [30]), even in extremely con-
strained nodes as fog gateways [12]. Souza et al. [66] analyze the challenges
of fog computing environments and propose containers as a possible solution to
smoothly deploy application across geo-distributed fog nodes. When applications
are containerized, a single-level deployment regards the container placement on
the underlying (physical or virtual) resources. In addition, depending on the
virtualization layering, a double-level deployment can involve the placement of
virtual resources (i.e., VMs) onto physical computing resources. Most works con-
sider a single level of deployment (e.g., [3,27,79,2,64]), while only a few solve a
multi-level deployment problem [11,53,69].

3.3 Adaptation Actions

The adaptation actions to control at run-time the deployment of container-based
applications include the application placement, the application elasticity accord-
ing to two possible directions (i.e., horizontal and vertical scaling), and the
migration of some application components. The elasticity problem determines
how and when to perform scaling operations, thus enabling elastic applications
that can dynamically adapt in face of workload variations. Horizontal scaling
allows to increase (scale-out) and decrease (scale-in) the number of application
instances (e.g., containers or VMs). Vertical scaling allows to increase (scale-up)
and decrease (scale-down) the amount of computing resources assigned to each
application instance. A fine-grained vertical scaling is preferred to more quickly



Self-adaptive Container Deployment in the Fog: A Survey 9

react to small workload changes, while a horizontal scaling operation makes eas-
ier to react to sudden workload peaks. However, most of the existing solutions
consider either horizontal or vertical scaling operations to change at run-time
the application deployment (e.g., [3,31,7,9,11,54,53]).

Differently from cloud computing environment, the presence of heterogeneous
fog resources emphasizes the importance of the application placement problem.
Its goal is to define the computing resources that will host and execute each
application instance. Most of the existing solutions consider the two problems
separately and focus either on the placement or on the elasticity of application
instances (e.g., [8,10,71]). So far, only a limited number of works have studied
how to jointly solve the two problems (e.g., [53,27,28,63]).

When the application placement is updated at run-time, it results in (state-
less or stateful) migrations of virtualized resources (i.e., containers or VMs), that
can be moved from one location to another. Migration is used to improve sys-
tem performance, seeking to balance load or to maximize resource utilization. In
addition, it allows to cope with user and/or resource movement across different
geographical locations. For example, Kaur et al. [36] propose a technique that
allows task scheduling on lightweight containers and supports container migra-
tion within or between the VMs. Elliott et al. [24] present a novel approach that
enables the rapid live migration of stateful containers between hosts belonging
to different cloud infrastructures. However, migration has a cost, because the
application downtime during migration, although minimal, cannot be avoided.
Therefore, a trade-off between migration benefits and cost should be considered.

3.4 Methodologies

The methodology identifies the class of algorithms used to plan how the appli-
cation deployment should be changed so to achieve the deployment goals. Elas-
ticity and placement are often considered as two orthogonal problems [9,32,66].
Nonetheless, few research efforts propose policies that jointly address the two
problems (e.g., [27,63]). Considering that scaling in the fog environment take
place in a geo-distributed context, where network latencies among computing
resources cannot be neglected as when scaling inside a data center, we believe
that the two issues cannot be separately solved.

We classify the methodologies in the following categories: mathematical pro-
gramming, control theory, queuing theory, machine learning, and heuristics.

Mathematical Programming. Mathematical programming approaches ex-
ploit methods from operational research in order to determine or adapt at run-
time the placement of application instances, to change the application paral-
lelism, or a combination thereof (e.g., [8,27,47,52]). The formulation and resolu-
tion of Integer Programming (IP) problems belongs to this category.

When the deployment problem is formulated as an IP optimization problem,
its most general definition can be described as follows. Given an application
with n instances, a deployment strategy can be modeled by associating to each



10 V. Cardellini, F. Lo Presti, M. Nardelli, F. Rossi

application instance i = 1, . . . , n a vector xi = (xi1, . . . , x
i
R), with R the set of fog

resources, where xir = 1 if an application instance is placed on the fog resource
r ∈ R, 0 otherwise. The deployment problem can be expressed as:

min F (x) (1)
subject to: Qα(x) ≤ Qα

max

Qβ(x) ≥ Qβ
min

x ∈ D

where x = (x1, . . . ,xn) is the vector of the application instances deployment vari-
ables. F (x) is a suitable deployment objective function to be optimized. Qα(x)
and Qβ(x) are, respectively, those QoS attributes whose values are bounded
by a maximum and a minimum, respectively, and x ∈ D is a set of functional
constraints.

Most of the existing solutions use IP formulations to solve (only) the place-
ment problem of application instances. Mao et al. [47] present an IP formulation
of the initial container placement aiming to maximize the available resources
in each hosting machine. Garefalakis et al. [25] propose Medea, a new cluster
scheduler based on Apache Hadoop YARN. Medea solves an Integer Linear Pro-
gramming (ILP) placement problem to meet global cluster objectives, such as to
minimize the number of application constraint violations, reduce resource frag-
mentation, balance node load, and minimize number of active computing nodes.
However, fog-based deployment goals are not considered. Arkian et al. [8] solve a
Mixed-ILP (MILP) problem to deploy application components (i.e., VMs) on fog
nodes to satisfy end-to-end delay constraints. Huang et al. [32] model the map-
ping of IoT services to edge/fog devices as a quadratic programming problem,
that, although simplified into an ILP formulation, may suffer from scalability
issues. To reduce the resolution time that limits the system size scalability, Naas
et al. [52] exploit the geographic distribution of fog resources so to identify sub-
problems that are then solved separately. Zhao et al. [79] deal with the scheduling
of containerized cloud applications with the goal to make them more aware of
their data locality. To address the limited scalability of the proposed mathemat-
ical optimization problem (which is a variant of the Multiple Knapsack Problem
and therefore NP-hard), they devise heuristic algorithms, tackling the problem
in a bottom-up fashion. Such a resolution approach is well rooted in the fog envi-
ronment, characterized by a hierarchical architecture. Kayal et al. [37] present an
autonomic service placement strategy based on Markov approximation to map
microservices to fog resources without any central coordination.

In literature there are some works that consider mathematical approaches
not only to address the application placement problem but also to jointly solve
the elasticity problem (e.g., [27,53,63]). For example, Guan et al. [27] present a
LP formulation to determine the number of containers and their placement on
a static pool of physical resources; nevertheless, vertical scaling operations are
not considered. Nardelli et al. [53] propose an optimization problem formulation
of the elastic provisioning of VMs for container deployment taking into account



Self-adaptive Container Deployment in the Fog: A Survey 11

the time needed for the deployment reconfiguration. A multi-level optimization
problem is defined: at the first level, it deals with the elastic adaptation of the
number and type of application instances (i.e., containers); at the second level, it
defines the container placement on a set of VMs that can be elastically acquired
and released on demand. Rossi et al. [63] propose a two-step approach that
manages the run-time adaptation of container-based applications deployed over
geo-distributed VMs. An ILP problem is formulated to place containers on VM,
with the aim of minimizing adaptation time and VM cost.

Some works have addressed the problem of offloading computation in a fog
environment, For example, Liu et al. [42] formulate a multi-objective optimiza-
tion problem, which involves minimizing the energy consumption, delay, and
payment cost. Chang et al. [21] propose an energy-efficient optimization prob-
lem to find the optimal offloading probability and transmission power. By using
the method of multipliers [14], they allow to deal with it in a distributed manner.

The main drawback of the mathematical programming approaches is scal-
ability. Indeed, the deployment problem is NP-hard and resolving the exact
formulation may require prohibitive time when the problem size grows.

Control Theory. A deployment policy based on control theory usually identifies
three main entities: decision variables, disturbance, system configuration. Then,
it adapts consolidate theory to determine the next system configuration that
satisfies the deployment objectives. The decision variables identify the place-
ment or replication of each application instance. The disturbances represent the
events that cannot be controlled, e.g., incoming data rate, load distribution,
and processing time; nevertheless, it is usually assumed that their future value
can be predicted, at least in the short term. By combining the decision vari-
ables, alternative configurations of the application deployment can be obtained,
which result in different performance, e.g., in terms of application latency or
throughput. There are three types of control systems: open-loop, feedback and
feed-forward. Open-loop controllers (without feedback) are based exclusively on
system input, not being able to analyze the output. Feedback controllers, on the
other hand, monitor the output of the system in order to correct any deviations
from the final goal. Feed-forward controllers can be used to implement a proac-
tive approach as they predict, using a model, the behavior of the system and
react before the error is produced.

Baresi et al. [10] model a control system for horizontal and vertical scaling
of applications. They combine infrastructure and application adaptation using a
novel deployment planner that consists of a discrete-time feedback controller. In
their work, a nonlinear, time-invariant dynamic system controls the application
response time as a function of the assigned CPU cores (decision variables) and
the request rate (disturbance). Zhu et al. [82] use control theory combined with
reinforcement learning techniques to adapt the applications deployment in cloud
computing environments. To dynamically add or remove VMs of cloud services,
Ali-Eldin et al. [6] propose two adaptive reactive/proactive controllers. They
model a cloud service and estimate the future load using queuing theory.



12 V. Cardellini, F. Lo Presti, M. Nardelli, F. Rossi

Queuing Theory. Queuing theory is often used to estimate the application
response time. The key idea is to model the application as a queuing network
with inter-arrival times and service times having general statistical distributions
(e.g., M/M/1, M/M/k, Gi/G/k). To simplify the analytical investigation, the
application is considered to satisfy the Markovian property, thus leading to ap-
proximated system behavior (and performance metrics).

Since queuing theory allows to predict the application performance under dif-
ferent conditions of load and number of replicas, it is often used to drive scaling
operations (e.g., [11,47]), also in combination with other techniques (e.g., [6,66,71]).
Mao et al. [47] model a four-tier application using queuing theory. A centralized
deployment controller takes scaling decisions using the queuing model of each
application layer. Using a Layered Queuing Network, Barna et al. [11] use the
number of user requests and the application topology to estimate the resource
utilization and application response time. Ali-Eldin et al. [6] and Tesauro et
al. [71] combine queuing theory with control theory and machine learning, re-
spectively.

Machine Learning. In the field of machine learning, reinforcement learning
(RL) is a special technique that has been used to adapt the application deploy-
ment at run-time. RL refers to a collection of trial-and-error methods by which
an agent can learn to make good decisions through a sequence of interactions
with a system or environment. As such, the agent learns from experience the
adaptation policy, i.e., the best adaptation action to take with respect to the
current system state. The system state can consider the amount of incoming
workload, the current application deployment, or its performance (e.g., [64]).
When the agent applies an action, the system transits in a new state and the
agent receives a reward, that indicates the action goodness. The received reward
and the next state transition usually depend on external unknown factors. One
of the challenges that arise in RL is the trade-off between exploration and ex-
ploitation. To maximize the obtained reward, the RL agent must prefer actions
known to provide high reward (exploitation). However, in order to discover such
actions, it has to try actions not selected before (exploration). The dilemma is
that neither exploration nor exploitation can be pursued exclusively without fail-
ing at the task. To maximize the expected long-term reward, the agent estimates
the so-called Q-function. It represents the expected long-term reward that fol-
lows the execution of an action in a specific system state. Different strategies can
be used to estimate the Q-function, ranging from model-free (e.g., Q-learning,
SARSA) to model-based solutions; these solutions exploit different degrees of
system knowledge to approximate its behavior [68].

RL has mostly been applied to devise policies for VM allocation and provi-
sioning (e.g., [7,71]) and, in a limited way, to manage containers (e.g., [31,64]).
Horovitz et al. [31] propose a threshold-based policy for horizontal container elas-
ticity using Q-learning to adapt the thresholds. Nouri et al. [56] describe a de-
centralized RL-based controller to scale a web application running on cloud com-
puting resources. Interestingly, they design a decentralized architecture, where



Self-adaptive Container Deployment in the Fog: A Survey 13

each server is responsible for maintaining the performance of its own-hosted
applications, while fulfilling the requirements of the whole system. This decen-
tralized approach is well suited to rule complexity of nowadays fog computing
environments.

Being model-free solutions, Q-learning and SARSA may suffer from slow
convergence rate. To overcome this issue, Tesauro et al. [71] propose a hybrid RL
method to dynamically allocate homogeneous servers to multiple applications.
They combine the advantages of both explicit model-based methods and tabula
rasa RL. Instead of training a RL module online, they propose to train offline
the RL agent using collected data, while an initial policy (based on a queuing
model) drives management decisions in the system. Arabnejad et al. [7] combine
Q-learning and SARSA RL algorithms with a fuzzy inference system that drives
VM auto-scaling. Rossi et al. [64] present RL policies to control (horizontal and
vertical) elasticity of containers so to satisfy the average application response
time. To speed-up the learning phase, they propose a model-based RL approach
that exploits the (known or estimate) system dynamics.

Another approach to solve the slow convergence rate of RL consists in ap-
proximating the system state or the action-value function; as such, the agent can
explore a reduced number of system configurations [68]. Tang et al. [70] propose
a RL algorithm that controls the migration of containers in a fog environment.
In particular, they define a multi-dimensional Markov Decision Process aimed
to minimize communication delay, power consumption and migration costs; in-
terestingly, to deal with the large number of system states, the authors integrate
a deep neural network within the Q-learning algorithm.

Recently, RL approaches have also been used to drive the decision of offload-
ing computation from mobile devices to cloud resources (e.g., [5,76]). Alam et
al. [5] propose a deep Q-learning based offloading policy suited for mobile fog
environments. To minimize the service latency, offloading decisions are taken by
considering resource demand and availability as well as the geographical distri-
bution of mobile devices. Xu et al. [76] present a post-decision state solution
for managing computing resources, which learns on-the-fly the optimal policy of
dynamic workload offloading and edge resource provisioning.

Heuristics. Different heuristics have been proposed to solve the placement
and elasticity of container-based applications. The most popular heuristics in-
clude: greedy heuristics (e.g., [66,78]), fuzzy logic (e.g., [7,46]), threshold-based
heuristics (e.g., [11,40]), meta-heuristics (e.g., [28,35]), and specifically designed
solutions (e.g., [55]).

Due to their design simplicity, greedy heuristics are often adopted to allocate
containers. Yigitoglu et al. [78] propose to place the application containers on
the available fog resources in a greedy first-fit manner. Souza et al. [66] propose
a greedy best-fit heuristic that first sorts the applications according to their
processing demand, and then allocates them on the available fog resources; if
there is not enough processing capacity available, cloud computing resources are
used. Along with the simple best-fit solution, the authors also propose a “best-



14 V. Cardellini, F. Lo Presti, M. Nardelli, F. Rossi

fit with queue” heuristic that offloads applications to the cloud, exploiting the
estimated application response time.

The purpose of fuzzy logic is to model human knowledge; it allows to con-
vert knowledge in rules, that can be applied to the system to identify suitable
deployment actions. The fuzzy logic usually includes three phases: fuzzification,
fuzzy inference, and defuzzification. In fuzzification, system states or metrics
are converted into equivalent fuzzy dimensions by using a membership function.
During fuzzy inference, fuzzy inputs are mutually compared to determine the
corresponding fuzzy output. A set of fuzzy rules assists in this case. Fuzzy rules
are collections of if-then rules that represent how to take decisions and control
a system according to human knowledge. In a fuzzy inference, any number of
fuzzy rules can be triggered. Then, the fuzzy outputs are combined through a de-
fuzzification function so to derive a metric related to the application placement
request. Mahmud et al. [45] propose a QoE-aware placement policy based on
fuzzy logic, which prioritizes different application placement requests and clas-
sifies fog computing resources. Arabnejad et al. [7] combine the fuzzy controller
with a model-free RL algorithm to horizontally scale VMs at run-time.

Many solutions exploit best-effort threshold-based policies to change the ap-
plication replication degree or to recompute the application instance placement
at run-time. Threshold-based policies represent the most popular approach to
scale at run-time application instances (i.e., containers) also for the cloud infras-
tructure layer. Orchestration frameworks that support container scaling (e.g.,
Kubernetes, Docker Swarm, Amazon ECS) usually rely on best-effort threshold-
based policies based on some load metrics (e.g., CPU utilization). The main
idea is to increase (or reduce) the application parallelism degree or to change
the application instance placement as soon as a QoS metric is above (or below)
a critical value. Several works use as QoS metric the utilization of either the
system nodes or the application replicas. Most of works use policies based on
the definition of static thresholds. Barna et al. [11] propose a static threshold-
based algorithm which determines the scaling action taking into account the
average CPU utilization of the containers in a cluster. Static thresholds are also
used for planning the adaptation of container deployment (e.g., [39,40,3,36]).
Khazaei et al. [39,40] take into account CPU, memory, network utilization to de-
termine the scaling action of container-based application. Al-Dhuraibi et al. [3]
propose Elasticdocker, which employs a threshold-based policy to vertically
scale CPU and memory resources assigned to each container. Kaur et al. [36] use
a static threshold-based approach to enable container migration. The migration
would be initiated whenever the utilization of the computing nodes exceeds or
falls behind the predefined upper and lower threshold limits, respectively. All
these approaches require a manual tuning of the thresholds, which can be cum-
bersome and application-dependent. To overcome this limitation, Horovitz et
al. [31], for example, propose a threshold-based policy for horizontal container
elasticity that uses Q-learning to dynamically adapt the thresholds at run-time.

Among meta-heuristics, we can include local search, simulated annealing,
and genetic algorithms. Greedy approaches or local search solutions that greedily



Self-adaptive Container Deployment in the Fog: A Survey 15

explore local changes may get stuck in local optima and miss the identification
of global optimum configurations. Conversely, simulated annealing is a popular
meta-heuristic that first aims to find the region containing the global optimum
configuration, and then moves with small steps towards the optimum. To the
best of our knowledge, simulated annealing has not been yet used in the context
of fog computing. Starting from initial configuration, this technique randomly
generates a new neighbouring configuration, aiming to find a better deployment
solution. If the best computed solution does not improve the previous one, it can
be accepted with a certain probability (referred as temperature), which decreases
over time (e.g., [2]).

A genetic algorithm generates a random population of chromosomes, which
represent deployment configurations. Then, it performs genetic operations, such
as crossover and mutations, to obtain successive generations of these chromo-
somes. A crossover operator takes a pair of parent chromosomes and generates
an offspring chromosome by crossing over individual genes from each parent.
A mutation operator randomly alters some parts of a given chromosome so to
avoid to get stuck in a local optimum. Afterwards, the genetic algorithm picks
the best chromosomes from the entire population based on their fitness values
and eliminates the rest. This process is repeated until a stopping criterion is met.
Guerrero et al. [28] present a genetic algorithm for container horizontal scaling
and allocation on physical machines; however, this solution does not take ex-
plicitly into account the characteristics of a geo-distributed environment (i.e.,
network delay between fog resources). To solve the fog placement problem, Tan
et al. [69], Wen et al. [73], and Mennes et al. [49] propose service placement
solutions based on genetic algorithms. Tan et al. [69] provide a novel problem
definition of the two-level container allocation problem. Specifically, they de-
sign a genetic algorithm to automatically generate rules for allocating VMs to
physical nodes. Even though genetic algorithms considerably reduce the need of
systematically exploring large solution space (thus reducing the resolution time),
they are not well suited to quickly react to the dynamism of a fog computing
environment. To overcome this issue, recent approaches combine genetic algo-
rithms with Monte Carlo simulations (e.g., [23,15]). De Maio et al. [23] focus on
offloading application tasks in a mobile edge computing scenario, whereas Brogi
et al. [15] target the multi-service application placement in the Fog.

Kaur et al. [36] consider a multi-layer computing infrastructure that allows
to process tasks on fog and cloud computing resources. The scheduling problem
maps tasks to broker and, then, from broker to containers across VMs. To solve
the task scheduling problem, the authors propose a game theoretical solution.
The primary objective of the cooperative game is to schedule the set of task
requests to containers so that the overall energy utilization of VMs and response
time of tasks are minimized. In the game, each player (i.e., broker) attempts to
reduce the overall communication cost based on its current bandwidth and load
status. The utility function of brokers is formulated using weighted contributions
of these two metrics (i.e., bandwidth and load).



16 V. Cardellini, F. Lo Presti, M. Nardelli, F. Rossi

3.5 Deployment Controllers

The deployment controller is the software component in charge of controlling the
deployment of applications or computing resources. In the context of fog com-
puting, deployment controllers usually manage the execution of (containerized)
applications on heterogeneous and geo-distributed computing resources. Besides
determining the initial deployment, this controller can be used to adapt the ap-
plication deployment at run-time so to respond to system or workload changes.
The deployment controller usually provides deployment mechanism, so it can be
equipped with centralized or decentralized deployment policies. Few solutions
integrate the deployment controller within the application code (e.g., embedded
elasticity [4]). Having no separation of concerns, the application itself should also
implement mechanisms and policies steering the adaptation. Although this ap-
proach enables optimized scaling policies, it complicates the application design.

Conversely, most research efforts use an external deployment controller to
carry out the adaptation actions (e.g., [22,11,31,40,9,30,41,64]). Such approach
improves software modularity and flexibility. Kimoviski et al. [41], for example,
propose SmartFog, a nature-inspired fog architecture. Modeling the fog environ-
ment as the human brain, SmartFog is capable of providing low-latency deci-
sion making and adaptive resource management. The fog nodes are modeled as
neurons, while the communication channels as synapses. Fog nodes are capa-
ble of self-clustering into multiple functional areas. IoT devices and sensors are
represented as the sensory nervous system. Cloud computing resources support
communication between the different functional areas.

Extending the existing orchestration tools (see Section 4), the external con-
trollers usually implement a MAPE control loop [38]. The latter includes four
main components (Monitor, Analyze, Plan and Execute) that manage the self-
adaptation functions. The Monitor collects data about the application and the
execution environment. The Analyze component uses the collected data to deter-
mine whether an adaptation is beneficial. If so, the Plan component determines
an adaptation plan for the application, which is enacted through the Execute
component. Different patterns to design multiple MAPE loops have been used in
practice by decentralizing the self-adaptation components [74], being the master-
worker the most used one. In the master-worker decentralization pattern, the
system includes a single master, which runs the centralized Analyze and Plan
phases, and multiple independent workers, which run the decentralized Mon-
itor and Execute phases. To manage services in a fog environment, De Brito
et al. [22] propose an architecture that includes a multitude of decentralized
agents, coordinated by a single orchestrator (which could be elected among the
agents). For container deployment in a fog computing environment, Hoque et
al. [30] extend an existing orchestration tool (i.e., Docker Swarm) according
to a master-worker decentralization pattern. No fog-aware orchestration policy
is provided. A centralized master component allows to more easily design the
self-adaptation policies and compute globally optimal reconfiguration strategies.
However, it may easily become the system bottleneck when it has to control a
great number of entities in a large-scale geo-distributed system.



Self-adaptive Container Deployment in the Fog: A Survey 17

4 Container Orchestration Tools

To simplify the deployment and management of applications over fog and cloud
computing resources, most of the existing solutions exploit software containers. A
software container allows to tie an application with all the dependencies required
for its execution, such as libraries, configurations, and data. Docker is the most
popular container management system, which allows to create, distribute, and
run applications inside containers. Although it is easy to manually deploy a single
container, managing a complex application (or multiple applications) during its
whole lifetime requires a container orchestration tool. The latter automatizes
the container provisioning, management, communication, and fault-tolerance.
Although several container orchestration tools exist [20,61], nowadays the most
used ones in the academic and industrial scenarios are Docker Swarm, Apache
Mesos, and Kubernetes.

Docker Swarm is an open-source platform that enables to simplify the exe-
cution and management of containers across multiple computing nodes1. There
are two types of nodes: managers and workers. The manager nodes perform the
orchestration and management functions required to maintain the desired cluster
state; they elect a single leader to conduct orchestration and scheduling tasks.
The worker nodes execute tasks received from the leader node; they do not par-
ticipate in taking scheduling decisions and in maintaining the cluster state. To
manage the global cluster state, the manager nodes implement the Raft algo-
rithm for distributed consensus [57]. Let n be the number of managers, Raft
tolerates up to (n− 1)/2 failures and requires a quorum of (n/2) + 1 managers
to agree on the cluster state. Having the same consistent state across the cluster
means that, in case of unexpectedly leader failure, any other manager can restore
the services to a stable state.

Apache Mesos allows to share resources in a cluster between multiple frame-
works ensuring resource isolation2. Mesos can be considered as a kernel for the
data center: it provides a unified view of all node resources and shares the avail-
able capacity among heterogeneous frameworks. The main components of Mesos
are the master, the workers and the (external) frameworks. The master is respon-
sible for mediating between the worker resources and the frameworks. At any
point, Mesos has only one active master, which is elected through distributed
consensus using Zookeper. The master offers worker resources to frameworks,
and launches tasks on workers for the accepted offers. The workers manage vari-
ous resources (e.g., CPU, memory, storage), and can execute tasks submitted by
the frameworks. A framework is an application to run on Mesos and consists of,
at least, a scheduler and an executor. The framework scheduler is responsible for
accepting or rejecting resources offered by Mesos, while the executors consume
resources to run application-specific tasks.

1 https://docs.docker.com/engine/swarm/
2 http://mesos.apache.org

https://docs.docker.com/engine/swarm/
http://mesos.apache.org


18 V. Cardellini, F. Lo Presti, M. Nardelli, F. Rossi

Kubernetes3 is an open-source platform developed and released by Google
to manage container-based applications in an autonomic manner. Kubernetes
architecture also follows the master-worker decentralization pattern, where the
master uses worker nodes to manage resources and orchestrate applications (us-
ing pods). Multiple master nodes provide a highly-available replicated cluster
state through the Raft consensus algorithm. A worker node is a physical or
virtual machine that offers its computational capability for executing pods in a
distributed manner. A pod is the smallest deployment unit in Kubernetes, which
consists of a single container or a reduced number of tightly coupled contain-
ers. When multiple containers run within a pod, they are co-located and scaled
as an atomic entity. To provide a specific service, Kubernetes can ensure that a
given number of pods are up and running using a ReplicaSet. To further simplify
the deployment of applications, Kubernetes exposes DeploymentControllers, a
higher-level abstraction built upon the ReplicaSet concept. Kubernetes includes
Horizontal Pod Autoscaler, which automatically scales the number of pods in a
DeploymentController by monitoring, as default metric, CPU utilization. Exper-
imental results in [34] demonstrate that, for complex application deployments,
Kubernetes performs better than other orchestration tools.

We observe that all the above-mentioned orchestration tools have been specif-
ically designed for clustered environments, so they are not well-suited for man-
aging applications in a geographically distributed environment. Indeed, their
placement policies do not take into account the heterogeneity and geographic
distribution of the available computing resources. For example, Kubernetes’ de-
fault scheduler spreads containers on cluster’s worker nodes, while Docker Swarm
distributes containers so to optimize for the node with the least number of con-
tainers. We also note that, as regards elasticity, these orchestration tools are
usually equipped with basic policies, such as static threshold-based policies on
system-oriented metrics. As discussed in Sect. 3.4, setting such thresholds is a
cumbersome and error-prone task and may require knowledge of the applica-
tion’s resource usage to be effective. To address these limitations, some research
works aim to improve existing orchestration tools (e.g., [55,65,72,75]). Wu et
al. [75] modify Kubernetes Horizontal Pod Autoscaler to adapt at run-time the
deployment of containerized data stream processing applications according to
the predicted load arrival rate. Netto et al. [55] propose a state machine ap-
proach to scale Docker containers in Kubernetes. Santos et al. [65] extend the
default Kubernetes scheduler so to select nodes using a policy that minimizes
the round trip time between the node and a target location (labels are used to
statically assign the round trip time to each node).

5 Simulation Tools

A large number of research works resort on simulation to evaluate application
performance in distributed computing environments (e.g., [2,27,32,45,66,69]). On
the one hand, simulators enable to more easily evaluate deployment policies
3 https://kubernetes.io



Self-adaptive Container Deployment in the Fog: A Survey 19

under different configurations and workload conditions. On the other hand, it
is not often clear how accurately they capture the dynamism of distributed
computing environments. Fog simulators allow to model the heterogeneity of
computing resources, which can be geographically distributed. Fog resources are
often organized as a graph; some simulators allow to further aggregate resources
in groups (also called cloudlets or micro-data centers). Although most recent
simulators model both cloud and fog computing resources, few existing solutions
offer the possibility to simulate mobility.

ContainerCloudSim [59] is a discrete-event-based simulator that supports
the evaluation of different container placement policies in cloud environments.
Extending CloudSim [18], ContainerCloudSim allows to model hosts, VMs, con-
tainers, and tasks. For each host, its processing, memory, and storage capacity,
as well as the belonging data center should be specified. Each host can run one
or more VMs where containers can be deployed. For each container, it should be
specified the required CPU and memory resources, needed to execute tasks.

EmuFog [48] is a framework for emulating a fog environment. In EmuFog,
a network is modeled as an undirected graph of devices (switches and routers)
connected together through communication channels (links). To create a fog
environment, the first step is to translate the network topology (generated or
imported) in a network topology supported by EmuFog. The second step consists
in defining the type and location of nodes. Although EmuFog allows to easily
create fog environments, it does not support application modeling.

iFogSim [29] provides a platform to simulate a fog environment and to de-
ploy applications. Based on CloudSim, it supports elasticity and migration of
VMs. The fog network topology structure should be tree-like: the deployment
of application instances starts from tree leaves (fog nodes) and proceeds up to
the tree root (usually, the cloud). iFogSim allows to monitor latency, network
congestion, energy consumption and resource utilization of the application in-
stances. The application is modeled as a directed graph: vertices represent the
processing units (i.e., modules), whereas edges are the data flow between the
modules. The communication between the different application modules occurs
by sequentially sending tuples. With respect to the other simulators, iFogSim
allows to model realistic multi-component applications. Nevertheless, it is not
possible to express network topologies different from tree-like. Furthermore, it
does not support node mobility. To overcome this limitation, Lopes et al. [43]
proposed MyiFogSim, an extension that supports mobility.

6 Open Challenges and Research Directions

Extending cloud computing, fog computing promises to improve scalability of
distributed applications and to reduce their response time. Nevertheless, the fog
environment presents several key features (e.g., large-scale distribution, resource
heterogeneity) that introduce new challenges. The research community has been
dealing with these challenges in the last years; however, we are still at the first
stages, and there are several open issues and research directions to investigate.



20 V. Cardellini, F. Lo Presti, M. Nardelli, F. Rossi

Among all the interesting challenges, we identify a few of them that we con-
sider to be of utmost importance: elasticity and placement of multi-component
applications, mobility, scalability, fault-tolerance, security, and SLA definition.

The existing deployment algorithms usually consider single-component ap-
plications. However, modern applications often result by composing multiple
micro-services, where the adaptation of an application component is likely to
affect other components. In a fog environment, the limitation of computing
resources further stresses the need of optimized adaptation actions that pro-
actively change the multi-component application deployment.

Today’s applications exploit elasticity to efficiently use resources and react
to dynamic working conditions. The fog environment comes with a high num-
ber of heterogeneous resources, which often rely on a poor Internet connection.
These features call for efficient solutions for determining an application place-
ment, which should efficiently deal with the uncertainty of computing resources
and incoming workloads. So far, there is only a limited number of fog-specific
and mobility-aware solutions (e.g., [50]); most of the existing approaches solve
the application deployment problem in a centralized manner. Moreover, mobility
of fog resources have been so far scarcely studied, notwithstanding that it can
lead to new applications and research directions, where mobile resources are op-
portunistically exploited to reduce the dependence over geographically bounded
fixed fog resources.

Nowadays, orchestration tools present only a partially decentralized architec-
ture, which could not be suitable to manage complex applications in a geograph-
ically distributed environment. In a master-worker architecture, collecting mon-
itoring data on the master and dispatching the subsequent adaptation actions to
the decentralized executors may introduce significant communication overhead.
Furthermore, the master may easily become the system bottleneck when it has to
control a multitude of entities scattered in a large-scale geo-distributed environ-
ment. To increase scalability, a hierarchical architecture could be investigated:
exploiting the benefits of both centralized and decentralized architectures and
policies, it could be well suited for controlling applications in a fog environment.
The hierarchical control pattern revolves around the idea of a layered architec-
ture, where each layer works with time scales and concerns separation. Given
the great amount of interconnected devices and the system dynamism, also the
deployment algorithms should be as scalable as possible.

The definition of multi-component applications that run on edge devices also
exposes new security risks and trustiness issues, which should be addressed to
boost the utilization of fog computing. Most of the existing deployment solu-
tions neglect security-related issues. However, security is a first-class citizen in
the fog environment: while allocating containers on fog resources, privacy con-
straints should be taken into account, as well as the security of the commu-
nication channels among the fog resources. The limited energy, network, and
computing capacity of fog resources also requires to investigate whether exist-
ing fault-tolerance mechanisms can be adopted in the fog. Processing data at
the network periphery, device (or connectivity) failures can easily compromise



Self-adaptive Container Deployment in the Fog: A Survey 21

the application availability and integrity. Considerations should be also made
observing that nearby fog resources are more likely to fail simultaneously (e.g.,
due to connectivity outage).

Also monitoring and enforcing the QoS of multi-component applications is
challenging in a fog environment. SLAs as defined today do not fit well in the
emerging environment, where applications can exchange data across multiple
service providers and, most importantly, can run on resources under different
administrative domains. In a fog environment, it could be also difficult to collect
application and service provisioning metrics, needed to evaluate the SLA ful-
fillment. The dynamism and heterogeneity of fog resources further increase the
difficulty of controlling the application performance.

To conclude, we can observe that deployment solutions for fog environments
are at their early stages; therefore, novel solutions that account for the distinctive
fog computing features are needed. Methodologies that have been successfully
adopted for cloud resources can be considered for the fog environments. For
example, it would be interesting to further investigate the applicability of evo-
lutionary algorithms, e.g., deep learning, genetic algorithms, and game theory,
for adapting the deployment of microservice-based applications.

References

1. Abdelbaky, M., Diaz-Montes, J., Parashar, M., Unuvar, M., Steinder, M.: Docker
containers across multiple clouds and data centers. In: Proc. of IEEE/ACM UCC
2015. pp. 368–371 (2015). https://doi.org/10.1109/UCC.2015.58

2. Addya, S.K., Turuk, A.K., Sahoo, B., Sarkar, M., Biswash, S.K.: Simulated an-
nealing based VM placement strategy to maximize the profit for cloud service
providers. Eng. Sci. Technol. Int J. 20(4), 1249–1259 (2017)

3. Al-Dhuraibi, Y., Paraiso, F., Djarallah, N., Merle, P.: Autonomic vertical elasticity
of Docker containers with ElasticDocker. In: Proc. of IEEE CLOUD ’17. pp. 472–
479 (2017). https://doi.org/10.1109/CLOUD.2017.67

4. Al-Dhuraibi, Y., Paraiso, F., Djarallah, N., Merle, P.: Elasticity in cloud computing:
State of the art and research challenges. IEEE Trans. Serv. Comput. 11, 430–447
(2018). https://doi.org/10.1109/TSC.2017.2711009

5. Alam, M.G.R., Hassan, M.M., Uddin, M.Z., Almogren, A., Fortino, G.: Autonomic
computation offloading in mobile edge for IoT applications. Future Gener. Comput.
Syst. 90, 149–157 (2019). https://doi.org/10.1016/j.future.2018.07.050

6. Ali-Eldin, A., Tordsson, J., Elmroth, E.: An adaptive hybrid elasticity controller
for cloud infrastructures. In: Proc. of IEEE NOMS ’12. pp. 204–212 (2012)

7. Arabnejad, H., Pahl, C., Jamshidi, P., Estrada, G.: A comparison of reinforcement
learning techniques for fuzzy cloud auto-scaling. In: Proc. of IEEE/ACM CCGrid
’17. pp. 64–73 (2017). https://doi.org/10.1109/CCGRID.2017.15

8. Arkian, H.R., Diyanat, A., Pourkhalili, A.: MIST: Fog-based data analytics scheme
with cost-efficient resource provisioning for IoT crowdsensing applications. J. Netw.
Comput. Appl. 82, 152–165 (2017). https://doi.org/10.1016/j.jnca.2017.01.012

9. Asnaghi, A., Ferroni, M., Santambrogio, M.D.: DockerCap: A software-level power
capping orchestrator for Docker containers. In: Proc. of IEEE EUC ’16 (2016)

https://doi.org/10.1109/UCC.2015.58
https://doi.org/10.1109/CLOUD.2017.67
https://doi.org/10.1109/TSC.2017.2711009
https://doi.org/10.1016/j.future.2018.07.050
https://doi.org/10.1109/CCGRID.2017.15
https://doi.org/10.1016/j.jnca.2017.01.012


22 V. Cardellini, F. Lo Presti, M. Nardelli, F. Rossi

10. Baresi, L., Guinea, S., Leva, A., Quattrocchi, G.: A discrete-time feedback con-
troller for containerized cloud applications. In: Proc. of ACM SIGSOFT FSE ’16.
pp. 217–228 (2016). https://doi.org/10.1145/2950290.2950328

11. Barna, C., Khazaei, H., Fokaefs, M., Litoiu, M.: Delivering elastic containerized
cloud applications to enable DevOps. In: Proc. of SEAMS ’17. pp. 65–75 (2017)

12. Bellavista, P., Zanni, A.: Feasibility of fog computing deployment based on Docker
containerization over RaspberryPi. In: Proc. of ICDCN ’17. ACM (2017)

13. Bermbach, D., Pallas, F., Pérez, D.G., Plebani, P., Anderson, M., Kat,
R., Tai, S.: A research perspective on fog computing. In: Service-Oriented
Computing – ICSOC 2017 Workshops. pp. 198–210. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-91764-1_16

14. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization
and statistical learning via the alternating direction method of multipliers. Found.
Trends Mach. Learn. 3(1), 1–122 (2011)

15. Brogi, A., Forti, S., Guerrero, C., Lera, I.: Meet genetic algorithms in Monte Carlo:
Optimised placement of multi-service applications in the fog. In: Proc. of IEEE
EDGE ’19. pp. 13–17 (2019). https://doi.org/10.1109/EDGE.2019.00016

16. Brogi, A., Forti, S., Guerrero, C., Lera, I.: How to place your apps in
the fog: State of the art and open challenges. Softw. Pract. Exp. (2019).
https://doi.org/10.1002/spe.2766

17. Buyya, R., Srirama, S.N., Casale, G., Calheiros, R., Simmhan, Y., Varghese, B.,
et al.: A manifesto for future generation cloud computing: Research directions for
the next decade. ACM Comput. Surv. 51(5), 105:1–105:38 (2019)

18. Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C., Buyya, R.: CloudSim: a
toolkit for modeling and simulation of cloud computing environments and evalua-
tion of resource provisioning algorithms. Softw. Pract. Exp. 41(1), 23–50 (2011)

19. Casalicchio, E., Perciballi, V.: Auto-scaling of containers: The impact of relative
and absolute metrics. In: Proc. of IEEE FAS*W ’17. pp. 207–214 (2017)

20. Casalicchio, E.: Container orchestration: A survey. In: Systems Modeling: Method-
ologies and Tools, pp. 221–235. Springer International Publishing, Cham (2019)

21. Chang, Z., Zhou, Z., Ristaniemi, T., Niu, Z.: Energy efficient optimization for
computation offloading in fog computing system. In: Proc. of IEEE GLOBECOM
’17 (2017). https://doi.org/10.1109/GLOCOM.2017.8254207

22. de Brito, M.S., Hoque, S., Magedanz, T., Steinke, R., Willner, A., Nehls, D., Keils,
O., Schreiner, F.: A service orchestration architecture for fog-enabled infrastruc-
tures. In: Proc. of FMEC ’17. pp. 127–132. IEEE (2017)

23. De Maio, V., Brandic, I.: Multi-objective mobile edge provisioning in small cell
clouds. In: Proc. of ACM/SPEC ICPE ’19. pp. 127–138. ACM (2019)

24. Elliott, D., Otero, C., Ridley, M., Merino, X.: A cloud-agnostic container orches-
trator for improving interoperability. In: Proc of IEEE CLOUD ’18. pp. 958–961
(2018). https://doi.org/10.1109/CLOUD.2018.00145

25. Garefalakis, P., Karanasos, K., Pietzuch, P., Suresh, A., Rao, S.: Medea: Scheduling
of long running applications in shared production clusters. In: Proc. of EuroSys
’18. pp. 4:1–4:13. ACM (2018). https://doi.org/10.1145/3190508.3190549

26. Gedeon, J., Brandherm, F., Egert, R., Grube, T., Mühlhäuser, M.: What the fog?
edge computing revisited: Promises, applications and future challenges. IEEE Ac-
cess 7, 152847–152878 (2019). https://doi.org/10.1109/ACCESS.2019.2948399

27. Guan, X., Wan, X., Choi, B.Y., Song, S., Zhu, J.: Application oriented dynamic
resource allocation for data centers using Docker containers. IEEE Commun. Lett.
21(3), 504–507 (2017). https://doi.org/10.1109/LCOMM.2016.2644658

https://doi.org/10.1145/2950290.2950328
https://doi.org/10.1007/978-3-319-91764-1_16
https://doi.org/10.1109/EDGE.2019.00016
https://doi.org/10.1002/spe.2766
https://doi.org/10.1109/GLOCOM.2017.8254207
https://doi.org/10.1109/CLOUD.2018.00145
https://doi.org/10.1145/3190508.3190549
https://doi.org/10.1109/ACCESS.2019.2948399
https://doi.org/10.1109/LCOMM.2016.2644658


Self-adaptive Container Deployment in the Fog: A Survey 23

28. Guerrero, C., Lera, I., Juiz, C.: Genetic algorithm for multi-objective optimiza-
tion of container allocation in cloud architecture. J. Grid Comput. 16(1), 113–135
(2018). https://doi.org/10.1007/s10723-017-9419-x

29. Gupta, H., Vahid Dastjerdi, A., Ghosh, S.K., Buyya, R.: iFogSim: A toolkit for
modeling and simulation of resource management techniques in the internet of
things, edge and fog computing environments. Softw. Pract. Exp. 47(9), 1275–
1296 (2017). https://doi.org/10.1002/spe.2509

30. Hoque, S., d. Brito, M.S., Willner, A., Keil, O., Magedanz, T.: Towards container
orchestration in fog computing infrastructures. In: Proc. of IEEE COMPSAC 2017.
vol. 2, pp. 294–299 (2017). https://doi.org/10.1109/COMPSAC.2017.248

31. Horovitz, S., Arian, Y.: Efficient cloud auto-scaling with SLA objective using Q-
learning. In: Proc. of IEEE FiCloud ’18. pp. 85–92 (2018)

32. Huang, Z., Lin, K.J., Yu, S.Y., Hsu, J.Y.j.: Co-locating services in IoT systems
to minimize the communication energy cost. J. Innovation Digital Ecosyst. 1(1),
47–57 (2014). https://doi.org/10.1016/j.jides.2015.02.005

33. Javed, A., Heljanko, K., Buda, A., Främling, K.: Cefiot: A fault-tolerant iot archi-
tecture for edge and cloud. In: Proc. of IEEE WF-IoT ’18. pp. 813–818 (2018)

34. Jawarneh, I.M.A., Bellavista, P., Bosi, F., Foschini, L., Martuscelli, G., Monta-
nari, R., Palopoli, A.: Container orchestration engines: A thorough functional and
performance comparison. In: Proc. of IEEE ICC ’19. pp. 1–6 (2019)

35. Kaewkasi, C., Chuenmuneewong, K.: Improvement of container scheduling for
Docker using ant colony optimization. In: Proc. of KST ’17. IEEE (2017)

36. Kaur, K., Dhand, T., Kumar, N., Zeadally, S.: Container-as-a-service at the edge:
Trade-off between energy efficiency and service availability at fog nano data centers.
IEEE Wireless Commun. 24(3), 48–56 (2017)

37. Kayal, P., Liebeherr, J.: Autonomic service placement in fog computing. In: Proc.
of IEEE WoWMoM ’19. pp. 1–9 (2019)

38. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. IEEE Computer
36(1), 41–50 (2003). https://doi.org/10.1109/MC.2003.1160055

39. Khazaei, H., Bannazadeh, H., Leon-Garcia, A.: SAVI-IoT: A self-managing con-
tainerized IoT platform. In: Proc. of IEEE FiCloud ’17. pp. 227–234 (2017)

40. Khazaei, H., Ravichandiran, R., Park, B., Bannazadeh, H., Tizghadam, A., Leon-
Garcia, A.: Elascale: Autoscaling and monitoring as a service. In: Proc. of CASCON
’17. pp. 234–240 (2017)

41. Kimovski, D., Ijaz, H., Saurabh, N., Prodan, R.: Adaptive nature-inspired fog
architecture. In: Proc. of IEEE ICFEC ’18. pp. 1–8 (2018)

42. Liu, L., Chang, Z., Guo, X., Mao, S., Ristaniemi, T.: Multiobjective optimization
for computation offloading in fog computing. IEEE Internet Things J. 5(1), 283–
294 (2018). https://doi.org/10.1109/JIOT.2017.2780236

43. Lopes, M.M., Higashino, W.A., Capretz, M.A., Bittencourt, L.F.: Myifogsim: A
simulator for virtual machine migration in fog computing. In: Proc. of IEEE/ACM
UCC’17 Companion. pp. 47–52. ACM (2017)

44. Lorido-Botran, T., Miguel-Alonso, J., Lozano, J.A.: A review of auto-scaling tech-
niques for elastic applications in cloud environments. J. Grid Comput. 12(4), 559–
592 (2014). https://doi.org/10.1007/s10723-014-9314-7

45. Mahmud, M., Srirama, S., Ramamohanarao, K., Buyya, R.: Quality of experience
(QoE)-aware placement of applications in fog computing environments. J. Parallel
Distrib. Comput. 123, 190–203 (2018)

46. Mahmud, R., Kotagiri, R., Buyya, R.: Fog computing: a taxonomy, sur-
vey and future directions, pp. 103–130. Springer Singapore, Singapore (2018).
https://doi.org/10.1007/978-981-10-5861-5_5

https://doi.org/10.1007/s10723-017-9419-x
https://doi.org/10.1002/spe.2509
https://doi.org/10.1109/COMPSAC.2017.248
https://doi.org/10.1016/j.jides.2015.02.005
https://doi.org/10.1109/MC.2003.1160055
https://doi.org/10.1109/JIOT.2017.2780236
https://doi.org/10.1007/s10723-014-9314-7
https://doi.org/10.1007/978-981-10-5861-5_5


24 V. Cardellini, F. Lo Presti, M. Nardelli, F. Rossi

47. Mao, Y., Oak, J., Pompili, A., Beer, D., Han, T., Hu, P.: DRAPS: dynamic and
resource-aware placement scheme for Docker containers in a heterogeneous cluster.
In: Proc. of IEEE IPCCC ’17 (2017). https://doi.org/10.1109/PCCC.2017.8280474

48. Mayer, R., Graser, L., Gupta, H., Saurez, E., Ramachandran, U.: Emufog: Exten-
sible and scalable emulation of large-scale fog computing infrastructures. In: Proc.
of IEEE FWC ’17. pp. 1–6 (2017). https://doi.org/10.1109/FWC.2017.8368525

49. Mennes, R., Spinnewyn, B., Latré, S., Botero, J.F.: GRECO: A distributed genetic
algorithm for reliable application placement in hybrid clouds. In: Proc. of IEEE
CloudNet ’16. pp. 14–20 (2016). https://doi.org/10.1109/CloudNet.2016.45

50. Mouradian, C., Kianpisheh, S., Abu-Lebdeh, M., Ebrahimnezhad, F., Jahromi,
N.T., Glitho, R.H.: Application component placement in NFV-based hybrid
cloud/fog systems with mobile fog nodes. IEEE J. Sel. Areas in Commun. 37(5),
1130–1143 (2019). https://doi.org/10.1109/JSAC.2019.2906790

51. Mseddi, A., Jaafar, W., Elbiaze, H., Ajib, W.: Joint container placement and task
provisioning in dynamic fog computing. IEEE Internet Things J. (2019)

52. Naas, M.I., Parvedy, P.R., Boukhobza, J., Lemarchand, L.: iFogStor: An IoT data
placement strategy for fog infrastructure. In: Proc. of IEEE ICFEC ’17. pp. 97–104
(2017). https://doi.org/10.1109/ICFEC.2017.15

53. Nardelli, M., Cardellini, V., Casalicchio, E.: Multi-level elastic deployment of con-
tainerized applications in geo-distributed environments. In: Proc. of IEEE FiCloud
’18. pp. 1–8 (2018). https://doi.org/10.1109/FiCloud.2018.00009

54. Nardelli, M., Hochreiner, C., Schulte, S.: Elastic provisioning of virtual machines
for container deployment. In: Proc. of ACM/SPEC ICPE ’17 Companion. pp. 5–10
(2017). https://doi.org/10.1145/3053600.3053602

55. Netto, H.V., Luiz, A.F., Correia, M., de Oliveira Rech, L., Oliveira, C.P.: Koor-
dinator: A service approach for replicating Docker containers in Kubernetes. In:
Proc. of IEEE ISCC ’18. pp. 58–63 (2018)

56. Nouri, S.M.R., Li, H., Venugopal, S., Guo, W., He, M., Tian, W.: Autonomic
decentralized elasticity based on a reinforcement learning controller for cloud ap-
plications. Future Gener. Comput. Syst. 94, 765–780 (2019)

57. Ongaro, D., Ousterhout, J.: In search of an understandable consensus algorithm.
In: Proc. of USENIX ATC ’14. pp. 305–319 (2014)

58. Ouyang, T., Zhou, Z., Chen, X.: Follow me at the edge: Mobility-aware dynamic
service placement for mobile edge computing. IEEE J. Sel. Area Comm. 36(10),
2333–2345 (2018). https://doi.org/10.1109/JSAC.2018.2869954

59. Piraghaj, S.F., Dastjerdi, A.V., Calheiros, R.N., Buyya, R.: ContainerCloudSim:
An environment for modeling and simulation of containers in cloud data centers.
Softw. Pract. Exp. 47(4), 505–521 (2017)

60. Puliafito, C., Mingozzi, E., Longo, F., Puliafito, A., Rana, O.: Fog computing for
the Internet of Things: A survey. ACM Trans. Internet Technol. 19(2), 18:1–18:41
(2019). https://doi.org/10.1145/3301443

61. Rodriguez, M.A., Buyya, R.: Container-based cluster orchestration systems: A tax-
onomy and future directions. Softw. Pract. Exp. 49(5), 698–719 (2019)

62. Röger, H., Mayer, R.: A comprehensive survey on parallelization and elasticity in
stream processing. ACM Comput. Surv. 52(2), 36:1–36:37 (2019)

63. Rossi, F., Cardellini, V., Lo Presti, F.: Elastic deployment of software containers
in geo-distributed computing environments. In: Proc. of IEEE ISCC ’19 (2019).
https://doi.org/10.1109/ISCC47284.2019.8969607

64. Rossi, F., Nardelli, M., Cardellini, V.: Horizontal and vertical scaling of container-
based applications using Reinforcement Learning. In: Proc. of IEEE CLOUD ’19.
pp. 329–338 (2019). https://doi.org/10.1109/CLOUD.2019.00061

https://doi.org/10.1109/PCCC.2017.8280474
https://doi.org/10.1109/FWC.2017.8368525
https://doi.org/10.1109/CloudNet.2016.45
https://doi.org/10.1109/JSAC.2019.2906790
https://doi.org/10.1109/ICFEC.2017.15
https://doi.org/10.1109/FiCloud.2018.00009
https://doi.org/10.1145/3053600.3053602
https://doi.org/10.1109/JSAC.2018.2869954
https://doi.org/10.1145/3301443
https://doi.org/10.1109/ISCC47284.2019.8969607
https://doi.org/10.1109/CLOUD.2019.00061


Self-adaptive Container Deployment in the Fog: A Survey 25

65. Santos, J., Wauters, T., Volckaert, B., De Turck, F.: Towards network-aware re-
source provisioning in Kubernetes for fog computing applications. In: Proc. of IEEE
NetSoft ’19. pp. 351–359 (2019). https://doi.org/10.1109/NETSOFT.2019.8806671

66. Souza, V., Masip-Bruin, X., Marín-Tordera, E., Sànchez-López, S., Garcia, J., Ren,
G., Jukan, A., Ferrer, A.J.: Towards a proper service placement in combined fog-
to-cloud (F2C) architectures. Future Gener. Comput. Syst. 87, 1–15 (2018)

67. Subashini, S., Kavitha, V.: A survey on security issues in service delivery models
of cloud computing. J. Netw. Comput. Appl. 34(1), 1–11 (2011)

68. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge, MA, 2 edn. (2018)

69. Tan, B., Ma, H., Mei, Y.: A hybrid genetic programming hyper-heuristic approach
for online two-level resource allocation in container-based clouds. In: Proc. of IEEE
CEC ’19. pp. 2681–2688 (2019). https://doi.org/10.1109/CEC.2019.8790220

70. Tang, Z., Zhou, X., Zhang, F., Jia, W., Zhao, W.: Migration modeling and learning
algorithms for containers in fog computing. IEEE Trans. Serv. Comput. 12(5),
712–725 (2019). https://doi.org/10.1109/TSC.2018.2827070

71. Tesauro, G., Jong, N.K., Das, R., Bennani, M.N.: A hybrid Reinforcement Learning
approach to autonomic resource allocation. In: Proc. of IEEE ICAC ’06. pp. 65–73
(2006). https://doi.org/10.1109/ICAC.2006.1662383

72. Townend, P., Clement, S., Burdett, D., Yang, R., Shaw, J., Slater, B., Xu, J.:
Improving data center efficiency through holistic scheduling in Kubernetes. In:
Proc. of IEEE SOSE ’19. pp. 156–166 (2019)

73. Wen, Z., Yang, R., Garraghan, P., Lin, T., Xu, J., Rovatsos, M.: Fog orchestration
for Internet of Things services. IEEE Internet Comput. 21(2), 16–24 (2017)

74. Weyns, D., Schmerl, B., Grassi, V., Malek, S., Mirandola, R., Prehofer, C., Wut-
tke, J., Andersson, J., Giese, H., Göschka, K.M.: On patterns for decentral-
ized control in self-adaptive systems. In: Software Engineering for Self-Adaptive
Systems II, LNCS, vol. 7475, pp. 76–107. Springer, Berlin, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-35813-5_4

75. Wu, Y., Rao, R., Hong, P., Ma, J.: FAS: A flow aware scaling mechanism for stream
processing platform service based on LMS. In: Proc. of ICMSS ’17. pp. 280–284.
ACM (2017). https://doi.org/10.1145/3034950.3034965

76. Xu, J., Chen, L., Ren, S.: Online learning for offloading and autoscaling in energy
harvesting mobile edge computing. IEEE Trans. Cogn. Commun. Netw. 3(3), 361–
373 (2017). https://doi.org/10.1109/TCCN.2017.2725277

77. Yi, S., Hao, Z., Qin, Z., Li, Q.: Fog computing: Platform and applications. In: Proc.
of HotWeb ’15. pp. 73–78. IEEE (2015). https://doi.org/10.1109/HotWeb.2015.22

78. Yigitoglu, E., Mohamed, M., Liu, L., Ludwig, H.: Foggy: A framework for contin-
uous automated IoT application deployment in fog computing. In: Proc. of IEEE
AIMS ’17. pp. 38–45 (2017). https://doi.org/10.1109/AIMS.2017.14

79. Zhao, D., Mohamed, M., Ludwig, H.: Locality-aware scheduling for containers in
cloud computing. IEEE Trans. Cloud Comput. (2018)

80. Zhou, Z., Liu, P., Feng, J., Zhang, Y., Mumtaz, S., Rodriguez, J.: Computation
resource allocation and task assignment optimization in vehicular fog computing: A
contract-matching approach. IEEE Trans. Veh. Technol. 68(4), 3113–3125 (2019)

81. Zhu, J., Chan, D.S., Prabhu, M.S., Natarajan, P., Hu, H., Bonomi, F.: Improving
web sites performance using edge servers in fog computing architecture. In: Proc.
of IEEE SOSE ’13. pp. 320–323 (2013)

82. Zhu, Q., Agrawal, G.: Resource provisioning with budget constraints for adaptive
applications in cloud environments. IEEE Trans. Serv. Comput. 5(4), 497–511
(2012). https://doi.org/10.1109/TSC.2011.61

https://doi.org/10.1109/NETSOFT.2019.8806671
https://doi.org/10.1109/CEC.2019.8790220
https://doi.org/10.1109/TSC.2018.2827070
https://doi.org/10.1109/ICAC.2006.1662383
https://doi.org/10.1007/978-3-642-35813-5_4
https://doi.org/10.1145/3034950.3034965
https://doi.org/10.1109/TCCN.2017.2725277
https://doi.org/10.1109/HotWeb.2015.22
https://doi.org/10.1109/AIMS.2017.14
https://doi.org/10.1109/TSC.2011.61

