
Towards Hierarchical Autonomous Control for
Elastic Data Stream Processing in the Fog

Valeria Cardellini �, Francesco Lo Presti,
Matteo Nardelli, and Gabriele Russo Russo

Department of Civil Engineering and Computer Science Engineering
University of Rome Tor Vergata, Italy

{cardellini,nardelli}@ing.uniroma2.it, lopresti@info.uniroma2.it,
gab.russorusso@gmail.com

Abstract In the Big Data era, Data Stream Processing (DSP) appli-
cations should be capable to seamlessly process huge amount of data.
Hence, they need to dynamically scale their execution on multiple com-
puting nodes so to adjust to unpredictable data source rate. In this pa-
per, we present a hierarchical and distributed architecture for the au-
tonomous control of elastic DSP applications. It revolves around a two
layered approach. At the lower level, distributed components issue re-
quests for adapting the deployment of DSP operations as to adjust to
changing workload conditions. At the higher level, a per-application cen-
tralized component works on a broader time scale; it oversees the ap-
plication behavior and grants reconfigurations to control the application
performance while limiting the negative effect of their enactment, i.e.,
application downtime. We have implemented the proposed solution in
our distributed Storm prototype and evaluated its behavior adopting
simple policies. The experimental results are promising and show that,
even with simple policies, it is possible to limit the number of recon-
figurations while at the same time guaranteeing an adequate level of
application performance.

Keywords: Data stream processing, Self adaptive, Hierarchical control, MAPE
loop

1 Introduction

Data Stream Processing (DSP) applications can continuously collect and process
data generated by an increasing number of sensing devices, to timely extract
valuable information in many application domains, including health-care, energy
management, logistic, and transportation. These scenarios pose new challenges
to DSP systems in terms of strict latency requirements in face of variable and
high data volumes to process. To deal with operator overloading, a commonly
adopted stream processing optimization is data parallelism, which consists in
scaling-out or scaling-in the number of parallel instances for the operators, so
that each instance can process a subset of the incoming data flow in parallel.

banto
The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-75178-8_9

Recently, since data sources are in general geographically distributed (e.g.,
in IoT scenarios), we also have witnessed a paradigm shift with the deployment
and execution of DSP applications over distributed Cloud and Fog computing
resources, which de facto bring applications closer to the data, rather than the
other way around, to improve application latency and make better use of the
ever increasing amount of resources at the network periphery. Nevertheless, this
very idea makes it difficult to control DSP application performance. Most of the
approaches proposed in the literature (as detailed below) have been designed
for cluster environments with a centralized control component overlooking the
DSP operations. These solutions typically do not scale well in a distributed en-
vironment given the spatial distribution, heterogeneity, and sheer size of the
infrastructure itself. While scalable decentralized solutions have been proposed,
e.g., [12], their inherent lack of coordination might result in frequent reconfig-
urations which negatively affect the application performance due to continuous
system downtime.

In this paper, to take the best of the two worlds, we propose a hierarchical
distributed approach to the autonomous control of elastic DSP applications in
Fog-based environment. Our contributions are as follows. We present in Section 2
a hierarchical distributed architecture for the autonomous control of elasticity,
named Elastic and Distributed DSP Framework (EDF). The control is organized
according to the Monitor, Analyze, Plan and Execute (MAPE) reference model
for self-adapting systems. Specifically, the proposed architecture relies on a high-
level centralized MAPE-based Application Manager that coordinates the run-
time adaptation of subordinated MAPE-based Operators Managers, which, in
turn, locally control the adaptation of single DSP operators.

As a second contribution, we present in Section 3 a simple reference control
strategy for each component, we name the local (for the Operator Managers)
and global policy (for the Application Manager), respectively. The first moni-
tors and analyzes the operator performance to determine whether it needs to
be reconfigured by scaling the number of replicas or by migrating a replica. The
global policy identifies the most effective reconfigurations proposed by the Op-
erator Managers, accepting or declining the proposed reconfigurations in order
to control their number, and hence the application downtime.

As a third contribution, we have implemented EDF on our extension [1,2] of
Apache Storm and evaluated the proposed solution on our prototype. We im-
plemented two simple policies: the local policy employs a threshold approach to
request operator reconfigurations to the Application Manager; the global policy
adopts a token bucket scheme to control the number of allowed reconfigurations
in any control interval. As shown in Section 4, our results are promising and show
the effectiveness of the proposed solution in achieving a good trade-off between
application performance and reconfiguration cost.

Related work Run-time adaptation of DSP applications achieved through elas-
tic data parallelism is attracting many research and industrial efforts. Most ap-
proaches that enable elasticity are often implicitly organized as self-adaptive
systems based on the MAPE model. Some works, e.g., [4,6,7], exploit best-effort

threshold-based policies based on the utilization of either the system nodes or
the operator instances. The basic idea is that when the utilization exceeds the
threshold, the replication degree of the involved operators is modified accord-
ingly. Other works, e.g., [5,10,11,16], use more complex centralized policies to
plan the scaling decisions. Lohrmann et al. [10] propose a strategy that enforces
latency constraints by relying on a predictive latency model based on queueing
theory. Stela [16] relies on throughput-based metric to identify those operators
that need to be scaled-out/in. Heinze et al. [8] estimate latency spikes caused by
operator reallocations through a model and use it to define a heuristic placement
algorithm. In [1] we present a centralized optimization problem for the runtime
elasticity management of DSP applications that minimizes migration costs while
satisfying the application QoS requirements. Differently from the above works
that present reactive scaling strategies, De Matteis and Mencagli [3] propose a
proactive strategy that takes into account a limited future time horizon to choose
the reconfigurations. However, all these works rely on a centralized planner for
the run-time adaptation of DSP applications, that may suffer from network
latencies in a geo-distributed operating environment. Mencagli [11] presents a
game-theoretic approach where the control logic is distributed on each operator,
but it is not integrated in a DSP system.

As regards the deployment of DSP applications in geo-distributed environ-
ments, we extended Apache Storm [2] with a self-adaptive and distributed place-
ment heuristics [12], but it suffers from frequent and uncoordinated reconfigura-
tions. SpanEdge [13] is implemented in Apache Storm, but it does not support
operator migrations. Saurez et al. [14] propose a new Fog-specific programming
model supporting the migration of application components.

2 System Architecture

2.1 Problem Definition

A DSP application can be regarded as directed acyclic graph (DAG), where data
sources, operators, and sinks are connected by streams. An operator is a self-
contained processing element that carries out a specific operation (e.g., filtering,
POS-tagging), whereas a stream is an unbounded sequence of data (e.g., tuple).
We distinguish between stateless and stateful operator whether the operator
computes the output data using only the incoming data or also some internal
state information, respectively. For the execution, multiple replicas can be used
to run an operator, where each replica processes a subset of the incoming data
flow. By partitioning the stream over multiple replicas, running on one or more
computing nodes, the load per replica is reduced, which yields lower application
latency. Since the load can vary over time, the number of replicas can change at
run-time as to optimize some non-functional requirements. As infrastructure on
which DSP applications are executed, we consider computing resources that are
scattered in a geo-distributed environment as Fog computing.

For the execution, a DSP application needs to be deployed on computing
resources, which will host and execute the operators. Since DSP applications are

usually long-running, the operators can experience changing working conditions
(e.g., fluctuations of the incoming workload, variations in the execution environ-
ment). To preserve the application performance within acceptable bounds, their
deployment should be adapted at run-time, through migration and scaling op-
erations. A migration moves an operator replica to another computing resource,
so to balance resource utilization. A scaling operation changes the replication
degree of an operator: a scale-out decision increases the number of replicas when
the operator needs more computing resources, whereas a scale-in decreases the
number of replicas when the operator under-uses its resources. The drawback of
reconfigurations is that they cause application downtime; hence, if applied too
often, they negatively impact the application performance.

Being in charge of the application execution, the DSP system (e.g., Storm)
can control the application performance. To agree on satisfying execution condi-
tions, the user and the DSP system provider stipulate a Service Level Agreement
(SLA). We consider that the SLA specifies as Service Level Objective (SLO) the
maximum acceptable response time Rmax, that is the worst end-to-end delay
from a data source to a data sink, and the maximum tolerable downtime during
normal execution conditions. The latter indicates how often the application can
be reconfigured when its response time is far from the critical value Rmax.

2.2 Hierarchical Architecture

The MAPE loop represents a prominent and well-know reference model to or-
ganize the autonomous control of a software system, where four components
(Monitor, Analyze, Plan, and Execute) are responsible for the primary func-
tions of self-adaptation. When the controlled system is geo-distributed as in Fog
computing, a MAPE loop where analysis and planning decisions are central-
ized on a single component may not be sufficient for effectively managing the
adaptation, because of the network latencies among the system components. As
described by Weyns et al. in [15], different patterns to design multiple MAPE
loops have been used in practice by decentralizing the functions of self-adaption.

When studying the strategies for placing DSP applications in a geo-distributed
environment, we observed that a fully decentralized approach as in [2], where a
multiplicity of peer MAPE loops autonomously manages the operator placement,
may negatively affect the application performance, because of too frequent and
uncoordinated decisions. This situation can be exacerbated when scaling opera-
tor decisions are involved besides those regarding the operator placement.

To address such lack of coordination in the multiple MAPE loops, in this
paper we present a hierarchical distributed architecture, named Elastic and Dis-
tributed DSP Framework (EDF), for the autonomous control of elastic DSP
applications in a Fog environment. The proposed solution is organized accord-
ing to the hierarchical pattern for decentralized control described in [15], where
higher-level MAPE components control subordinate MAPE components. Specif-
ically, our proposal revolves around a two layered approach with separation of
concerns and time scale between layers. Figure 1a illustrates the conceptual ar-

Application
Monitor

Monitor

Global
Recon!guration

Manager

Analyze + Plan

Global
Actuator

Execute

ApplicationManager

OperatorManager

Analyze + Plan

Local
Recon!guration

Manager

Execute

Recon!guration
Actuator

Monitor

Operator
Monitor

Resource
Monitor

(a) The EDF conceptual architec-
ture: hierarchical MAPE loops

Supervisor

w
o

rk
e

r
p

ro
ce

ss

w
o

rk
e

r
p

ro
ce

ss

w
o

rk
e

r
sl

o
t

Supervisor

w
o

rk
e

r
p

ro
ce

ss

w
o

rk
e

r
p

ro
ce

ss

w
o

rk
e

r
sl

o
t

Network

Nimbus
Application Manager

Operator Manager Operator Manager
...

ZooKeeper

(b) Implementation of the system
architecture in Storm

Figure 1: System architecture

chitecture of EDF, highlighting the hierarchy of the multiple MAPE loops and
the system components in charge of the MAPE loop phases.

At the lower level (i.e., at the per-operator grain) and a faster time scale, the
Operator Manager is the distributed entity in charge of controlling the adapta-
tion of a single DSP application operator/subset of the DSP application oper-
ators through a local MAPE loop. It monitors the system logical and physical
components used by the operator(s) through the Operator Monitor and the
Resource Monitor, and then, through the Local Reconfiguration Manager, it an-
alyzes the monitored data and determines if and which local reconfiguration
action (among operator scale-in, scale-out, or migration) is needed. When the
Operator Manager determines that some adaptation should occur, it issues an
operator adaptation request to the higher layer.

At the higher level (i.e., at the per-application grain) and a slower time
scale, the Application Manager is the centralized entity that coordinates the
adaptation of the overall DSP application through a global MAPE loop. By
means of the Application Monitor it oversees the global application behavior.
Then, through the Global Reconfiguration Manager it analyzes the monitored
data and the reconfiguration requests received by the multiple Operator Man-
agers, and decides which reconfigurations should be granted. These decisions are
then communicated by the Global Actuator to each Operator Manager, which
can, finally, execute the operator adaptation actions by means of the its local
Reconfiguration Actuator.

The EDF architecture is general enough to not limit the specific internal
policies and goals that can be designed for each component in the two layers.
For example, the planning components can be either activated periodically or
on event-basis, can rely on optimization problem formulation or heuristics with
the goal to minimize the application response time, maximize its availability or
a combination of the two. As a proof-of-concept of the proposed architecture, we

present, in Section 3, simple heuristic adaptation policies whose overall adapta-
tion goal is to preserve the application performance, avoiding unnecessary or too
frequent reconfigurations which might result in excessive application downtime.

We have implemented the proposed EDF architecture in Apache Storm, an
open source, real-time, and scalable DSP system. Figure 1b shows the high-level
instantiation of the EDF components on the Storm architecture. Due to space
limitations, we omit a description of the basic Storm architecture and refer the
reader to Section 6 in [1], where we also describe how to support in Storm elastic-
ity mechanisms, including the migration of stateful operators. To obtain monitor-
ing information (including network latencies) we rely on Distributed Storm [2].

3 Multi-level Elasticity Policy

The proposed two-layered architecture for self-adaptive DSP elasticity control
identifies the different macro-components (i.e., Application Manager and Oper-
ator Managers) that, by means of abstraction layers and separation of concerns,
cooperate to adapt the deployment of DSP applications at run-time. By prop-
erly selecting each component internal policy, the proposed solution can address
the needs of different execution contexts, which can comprise applications with
different requirements, infrastructures with different computing resources, and
different user preferences. For example, specific policies can execute the appli-
cation by minimizing its response time, maximizing its availability, or limiting
the adaptation efforts (i.e., executing the application in a best-effort manner).
The Operator Manager works at the granularity of a single DSP operator and
implements what we called a local policy. By monitoring and analyzing the per-
formance of each operator replica, the local policy can plan a reconfiguration of
number and location of the operator replicas. Specifically, by scaling the num-
ber of replicas, the operator exploits parallelism to quickly process its incoming
data, whereas by migrating some of the operator replicas, the operator better
distributes the incoming load among computing resources. The Operator Man-
ager sends the planned reconfiguration to the Application Manager, which runs
periodically and decides, according to its so called global policy, which reconfigu-
ration should be enacted. The global policy works at the granularity of the whole
application, thus it coordinates the reconfigurations so to limit them and avoid
deployment oscillations, if needed. On the basis of the monitored application
performance and the stipulated SLA, the global policy identifies the most effec-
tive reconfigurations proposed by the Operator Managers: it accepts or declines
each reconfiguration with the aim to adapt the DSP application to changing
working conditions while meeting the SLA.

3.1 Local Policy

The Operator Manager local policy implements the Analyze and Plan phases
of the decentralized MAPE loop, which controls the execution of a single DSP
operator. Running on a decentralized component, this policy has only a local

view of the system, which results from the monitoring components (i.e., Opera-
tor Monitor and Resource Monitor). The local view consists of the status (i.e.,
resource utilization) of each operator replica and of a restricted suitable set of
computing nodes (i.e., located in the neighborhood). By analyzing this informa-
tion, the policy can plan a reconfiguration of the operator deployment, either by
changing the number of replicas, or by migrating some of them. The proposed
reconfiguration plan is then communicated to the centralized Application Man-
ager which, based on all the Operator Manager’s reconfiguration plans and the
global policy, determines which plan can be executed and which not.

Reconfiguration Plan. A reconfiguration plan is expressed through the
following information: adaptation actions, reconfiguration gain, and reconfigura-
tion cost1. We consider two types of adaptation actions: replica migration and
operator scaling. Actions can be of the form: “move replica α of op from ri to
rj”, “add a new replica to op on ri”, or “remove replica α of op from ri”, where op
and ri denote an operator and a computing resource, respectively. The reconfig-
uration gain is a function, adopted by every Operator Manager, which captures
the benefits of the planned adaptation action. It can express, for instance, the
reduction of the operator’s processing latency, the reduction of monetary cost
for running the operator, or the improvement of some utility function. In this
paper, we assume a simple gain function that induces an order relation among
the reconfiguration actions, namely scale-out > migration > scale-in. The
reconfiguration cost expresses the cost of reconfiguring the system. In this paper,
we express it in terms of application downtime. It results from the time required
to add/remove an operator replica, to relocate the operator code, and to migrate
its internal state (if any). We now discuss the two types of adaptation action.

Replica Migration. A computing resource can host replicas of one or more
operators, which, in turn, are controlled by dedicated Operator Managers. When
the computing resource becomes overloaded, the hosted replicas can experience a
performance degradation. To overcome this issue, an Operator Manager proposes
to move some of the operator replicas away from the resource.

We adopt a reactive and threshold-based policy in order to decide when and
how to perform the migration. The local policy analyzes the monitoring data
coming from the computing resources that host at least one operator replica.
We denote with Ur the overall CPU utilization of the resource r. When Ur is
above a critical value Umax, the policy plans to migrate at most one operator
replica to a new location. The latter is identified in two steps. First, the policy
sorts the known neighbor resources according to their distance, measured in
terms of network delay. Then, it selects the new location using a randomized
approach: the closer the resource, the higher the probability of being selected.
The policy checks if the new selected location has room to run the migrating
replica; in negative case, a new resource is selected from the sorted list.

Reconfiguration Cost. If the operator is stateless, the migration of a replica
can be easily performed by terminating the replica on the old location, moving

1 For the sake of simplicity, we assume that the local policy proposes, for an operator,
a single reconfiguration decision (i.e., migration, scaling) at a time.

its code to the new location, and restarting it. On the other hand, if the operator
is stateful, we also need to efficiently migrate its internal state, so to preserve
the integrity and consistency of the outputted streams. Our migration protocol
follows a pause-and-resume approach with the help of a data store as staging
area for the replica internal state (details on our migration protocol in [1]).

Operator Scaling. When an operator replica receives an increasing work-
load, it can saturate the capacity of the hosting computing resource. To pre-
vent the performance penalty associated to overloading, the Operator Manager
proposes to add an additional replica and redistribute the incoming workload
accordingly. Conversely, when the incoming workload decreases, the Operator
Manager can reduce the number of replicas in order to decrease the number of
allocated resources, and redistribute the workload among the remaining ones.
Let us denote by Sα the resource utilization of the hosting resource by replica
α, which measures the fraction of CPU time used by α. We adopt a simple
threshold-based scale-out policy to each replica. When the utilization of α ex-
ceeds a usage threshold Ss-out ∈ [0, 1] (i.e., Sα > Ss-out), the Operator Manager
proposes to add a new replica. Its placement is computed relying on the same
strategy used for the replica migration. Conversely, the Operator Manager pro-
poses a scale-in operation, which removes one of the running n replicas, when the
sum of their utilization divided by n−1 is significantly below the usage threshold,
i.e., when

∑n
α=1 Sα/(n− 1) < cSs-out, being c < 1. The replica to be removed is

randomly chosen between the two replicas with the highest utilization.
Reconfiguration Cost: If the operator is stateless, a scaling operation implies

only to start or stop a replica. Conversely, if the operator is stateful, we also need
to reallocate its internal state among the new set of replicas. We assume that
each replica can work on a well-defined state partition [5]. A scale-out operation
redistributes equally the partitions among replicas, whereas a scale-in operation
aggregates the partitions from the merged replicas.

3.2 Global Policy

The Application Manager global policy implements the Analyze and Plan steps
of the centralized MAPE loop. Its main goal is to satisfy the DSP application
SLA, while minimizing the allocated resources (or their cost). To this end, it
monitors the application response time and analyzes its behavior with respect
to the SLO specified in the SLA. In the planning phase, the policy determines
which reconfiguration plans, proposed by the decentralized Operator Managers,
should be enacted as to improve performance while controlling the number of
application reconfigurations (which cause application downtime). In this paper,
we consider a simple global policy scheme which is exemplified in Figure 2.
Time is divided in control intervals of fixed length T . During each interval, the
global policy collects reconfiguration requests from the Operator Managers: these
requests can take different forms, e.g., replica migrations (the continuous arrows
in the figure), operator scale-out (the dotted arrow) and operator scale-in (the
dashed arrow). At the end of each interval, the policy determines how many and
which reconfigurations should be enacted by the Operators Managers. In order

Token	Bucket	

Control	Interval	

Reconfigura4on	
Requests	

Granted	
Reconfigura4on	

Time	

Down4me	 Down4me	

Token	Genera4on	

Figure 2: Global policy behavior

to control the number of reconfigurations, and hence the downtime, we adopt
a simple token bucket scheme whereby each reconfiguration consumes a token.
Tokens are generated at the end of each control interval T and are accumulated
in a token bucket, which has a finite capacity (i.e., when the bucket is full, it
cannot store any other token). The number of reconfigurations allowed at the
end of each control interval is thus limited by the number of available tokens. If
the number of requests is higher than the number of available tokens, the global
policy has to identify the most valuable reconfigurations to accept. As simple
scheme, the policy uses a greedy approach by prioritizing the requests according
to the gain to cost ratio; the higher this index, the better the reconfiguration.

In the proposed scheme, a key role is played by the token generation rate.
Ideally, when the application response time is well within the SLO (defined
by Rmax), reconfigurations should be limited since performance is guaranteed
and the possibly sub-optimal behavior is preferable to the downtime caused
by reconfigurations. On the other hand, should the performance degrades, the
system should be more prone to reconfigure itself. As such, the token generation
frequency depends on how far is the response time from Rmax, with increasing
token generation rates as performance gets close to Rmax.

4 Evaluation

We evaluate EDF equipped with the proposed proof-of-concept policies, using
Apache Storm 0.9.3 on a cluster with 5 worker nodes and one further node to
host Nimbus and ZooKeeper (details in [1]). Each node has a dual CPU Intel
Xeon E5504 (8 cores at 2 GHz) with 16 GB of RAM.

The reference application solves a query of DEBS 2015 Grand Challenge [9],
where data streams originated from the New York City taxis are processed to
find the top-10 most frequent routes during the last 30 min. Figure 3 shows
the application DAG. Data source reads the dataset from Redis; parser filters
out irrelevant and invalid data. Then, filterByCoordinates forwards only the
events related to a specific area to computeRouteID, which identifies the routes
covered by taxis. So, countByWindow computes the route frequency in the last
30 minutes, supported by metronome that defines the passing of time. Finally,
partialRank and globalRank compute the top-10 most frequent routes.

sinkoperatorsource

RabbitMQRedis
computeRouteID

metronome

lterByCoordinates countByWindow globalRankdatasource parser partialRank

Figure 3: Reference DSP application

We feed the application with a sample dataset provided by DEBS, and pro-
cess real data collected during 2 days. The taxi service utilization significantly
changes during the day, thus the application input rate is variable as well. As
regards the Operator Manager local policy, we set the scale-out and migration
thresholds, Umax and Ss-out, to 0.7 and the scale-in parameter c to 0.75. Both
OperatorManager and ApplicationManager run once every 30 s, respectively
proposing and accepting/rejecting reconfigurations. We compare the baseline
approach in which all reconfiguration requests are always accepted by the Ap-
plicationManager to one in which the global policy in Section 3.2 is employed
in order to determine which reconfigurations will be enacted. In particular, the
token bucket stores at most 1 token at any time and the token generation rate
is 1 per min only if the achieved application response time is above βRmax,
where β ∈ [0, 1], otherwise no token is generated. In these experiments we set
Rmax = 200 ms and vary β.

Figure 4a shows the application response time and number of replicas during
the experiment when using the baseline approach. Since every reconfiguration
proposed by any OperatorManager is accepted (like in a fully decentralized pol-
icy), the application is frequently reconfigured. As a consequence, the application
is available only for 93.7% of the time. The measured response time shows many
spikes, which are caused by tuples buffering during reconfiguration.

Figure 4b shows the application response time and number of operator repli-
cas during the experiment using the full reconfiguration policy, with β = 0.5.
As the response time frequently rises above βRmax = 100 ms, the number of
granted reconfigurations is not significantly reduced with respect to the baseline
approach in Figure 4a (and so the application downtime). Nevertheless, we can
observe that, by performing less reconfigurations, the total number of replicas is
never reduced to 8, due to the lack of tokens and the low priority of the scale-in
action.

Figure 4c shows the results when β = 0.75. As tokens are now generated in a
more conservative manner (being βRmax = 150 ms), the number of reconfigura-
tions is significantly reduced. In the initial part of the experiment, the input rate
grows up to 300 tuples/s, resulting in high response time; therefore, EDF gen-
erates tokens for performing a migration and for increasing the total number of
replicas to 10. Then, the application is stable until a new input peak (at around
4000 s), when a scale-in followed by a scale-out of the bottleneck operator are
accepted. The application downtime is limited (only 1.7%), which is beneficial
for response time, but it might lead to higher cost, having more active replicas.

 0

 100

 200

 300

S
o

u
rc

e
 d

a
ta

 r
a

te
 (

tu
p

le
s
/s

)

 0

 100

 200

 300

 400

R
e

s
p

o
n

s
e

ti
m

e
 (

m
s
)

 6

 8

 10

 0 1000 2000 3000 4000 5000T
o

ta
l
n

u
m

b
e

r
o

f
re

p
lic

a
s

Time (s)

Scaling Migration

(a) All reconfigurations

 0

 100

 200

 300

S
o

u
rc

e
 d

a
ta

 r
a

te
 (

tu
p

le
s
/s

)

 0

 100

 200

 300

 400

R
e

s
p

o
n

s
e

ti
m

e
 (

m
s
)

 6

 8

 10

 0 1000 2000 3000 4000 5000

T
o

ta
l
n

u
m

b
e

r
o

f
re

p
lic

a
s

Time (s)

Scaling Migration

(b) β = 0.50

 0

 100

 200

 300

S
o

u
rc

e
 d

a
ta

 r
a

te
 (

tu
p

le
s
/s

)

 0

 100

 200

 300

 400

R
e

s
p

o
n

s
e

ti
m

e
 (

m
s
)

 6

 8

 10

 0 1000 2000 3000 4000 5000

T
o

ta
l
n

u
m

b
e

r
o

f
re

p
lic

a
s

Time (s)

Scaling Migration

(c) β = 0.75

Figure 4: Response time and number of replicas using different policies for Appli-
cationManager: in (a) accepting all the reconfiguration requests, in (b) and (c)
generating a token only when response time is greater than βRmax

5 Conclusions

In this paper, we presented Elastic and Distributed DSP Framework (EDF), a
hierarchical autonomous control for elastic DSP applications. Designed accord-
ing to the decentralized MAPE control pattern, our proposal revolves around a
two layered approach with separation of concerns and time scale between lay-
ers. At the lower level, distributed components control the adaptation of DSP
operators, so to improve their performance by means of scaling and migration
actions. At the higher level, a per-application centralized component oversees
the overall DSP application performance and coordinates its deployment by ac-
cepting or declining the proposed reconfiguration actions. Then, relying on an
application that processes real-time data generated by taxis, we conducted an
experimental evaluation. The results showed the effectiveness of our solution in
achieving good trade-off in terms of application performance and number of ap-
plication reconfigurations even adopting simple control policies. As future work,

we will further investigate the hierarchical approach for adapting DSP applica-
tions over geo-distributed infrastructures. We plan to extend some of the existing
distributed policies to make them more robust to oscillations, and to design hi-
erarchical multi-time scale policies relying on optimization frameworks such as
Markov Decision Processes and reinforcement learning.

References

1. Cardellini, V., Lo Presti, F., Nardelli, M., Russo Russo, G.: Optimal operator
deployment and replication for elastic distributed data stream processing. Concurr.
Comput.: Pract. Exper. (2017), to appear

2. Cardellini, V., Grassi, V., Lo Presti, F., Nardelli, M.: Distributed QoS-aware
scheduling in Storm. In: Proc. of ACM DEBS ’15. pp. 344–347 (2015)

3. De Matteis, T., Mencagli, G.: Elastic scaling for distributed latency-sensitive data
stream operators. In: Proc. of PDP ’17. pp. 61–68 (2017)

4. Fernandez, R.C., Migliavacca, M., Kalyvianaki, E., Pietzuch, P.: Integrating scale
out and fault tolerance in stream processing using operator state management. In:
Proc. of ACM SIGMOD ’13. pp. 725–736 (2013)

5. Gedik, B., Schneider, S., Hirzel, M., Wu, K.L.: Elastic scaling for data stream
processing. IEEE Trans. Parallel Distrib. Syst. 25(6), 1447–1463 (2014)

6. Gulisano, V., Jiménez-Peris, R., Patiño Martínez, M., Soriente, C., Valduriez, P.:
StreamCloud: An elastic and scalable data streaming system. IEEE Trans. Parallel
Distrib. Syst. 23(12), 2351–2365 (2012)

7. Heinze, T., Pappalardo, V., Jerzak, Z., Fetzer, C.: Auto-scaling techniques for
elastic data stream processing. In: Proc. of IEEE ICDEW ’14. pp. 296–302 (2014)

8. Heinze, T., Roediger, L., Meister, A., Ji, Y., et al.: Online parameter optimization
for elastic data stream processing. In: Proc. of ACM SoCC ’15. pp. 276–287 (2015)

9. Jerzak, Z., Ziekow, H.: The DEBS 2015 grand challenge. In: Proc. of ACM DEBS
’15. pp. 266–268 (2015)

10. Lohrmann, B., Janacik, P., Kao, O.: Elastic stream processing with latency guar-
antees. In: Proc. of IEEE ICDCS ’15. pp. 399–410 (2015)

11. Mencagli, G.: A game-theoretic approach for elastic distributed data stream pro-
cessing. ACM Trans. Auton. Adapt. Syst. 11(2) (2016)

12. Pietzuch, P., Ledlie, J., Shneidman, J., Roussopoulos, M., et al.: Network-aware
operator placement for stream-processing systems. In: Proc. IEEE ICDE ’06 (2006)

13. Sajjad, H.P., Danniswara, K., Al-Shishtawy, A., Vlassov, V.: Spanedge: Towards
unifying stream processing over central and near-the-edge data centers. In: Proc.
of 2016 IEEE/ACM Symp. on Edge Computing. pp. 168–178 (2016)

14. Saurez, E., Hong, K., Lillethun, D., Ramachandran, U., et al.: Incremental deploy-
ment and migration of geo-distributed situation awareness applications in the fog.
In: Proc. of ACM DEBS ’16. pp. 258–269 (2016)

15. Weyns, D., Schmerl, B., Grassi, V., Malek, S., et al.: On patterns for decentral-
ized control in self-adaptive systems. In: Software Engineering for Self-Adaptive
Systems II, LNCS, vol. 7475, pp. 76–107. Springer (2013)

16. Xu, L., Peng, B., Gupta, I.: Stela: Enabling stream processing systems to scale-in
and scale-out on-demand. In: Proc. of IEEE IC2E ’16. pp. 22–31 (2016)

