
A Multi-level Elasticity Framework for
Distributed Data Stream Processing

Matteo Nardelli �, Gabriele Russo Russo,
Valeria Cardellini, and Francesco Lo Presti

Department of Civil Engineering and Computer Science Engineering
University of Rome Tor Vergata, Italy

{nardelli,russo.russo,cardellini}@ing.uniroma2.it,
lopresti@info.uniroma2.it

Abstract Data Stream Processing (DSP) applications should be capa-
ble to efficiently process high-velocity continuous data streams by elas-
tically scaling the parallelism degree of their operators so to deal with
high variability in the workload. Moreover, to efficiently use computing
resources, modern DSP frameworks should seamlessly support infrastruc-
ture elasticity, which allows to exploit resources available on-demand in
geo-distributed Cloud and Fog systems. In this paper we propose E2DF,
a framework to autonomously control the multi-level elasticity of DSP
applications and the underlying computing infrastructure. E2DF revolves
around a hierarchical approach, with two control layers that work at dif-
ferent granularity and time scale. At the lower level, fully decentralized
Operator and Region managers control the reconfiguration of distributed
DSP operators and resources. At the higher level, centralized managers
oversee the overall application and infrastructure adaptation. We have
integrated the proposed solution into Apache Storm, relying on a previ-
ous extension we developed, and conducted an experimental evaluation.
It shows that, even with simple control policies, E2DF can improve re-
source utilization without application performance degradation.

Keywords: Data Stream Processing, Elasticity, Hierarchical Control

1 Introduction

Exploiting on-the-fly computation, Data Stream Processing (DSP) applications
can elaborate unbounded data flows so to extract high-value information as soon
as new data are available. A DSP application is represented as a directed (acyclic)
graph, with data sources, operators, and final consumers as vertices, and streams
as edges. Importantly, these applications are usually long running and often
subject to strict latency requirements that should be met in face of variable and
high data volumes to process. To deal with operator overloading, a commonly
adopted stream processing optimization is data parallelism, which consists in
scaling-out or scaling-in the number of parallel instances for the operators, so
that each instance can process a subset of the incoming data flow in parallel [7].

banto
The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-030-10549-5_5



To execute the application, its operators are deployed on computing re-
sources, which host the operator instances. We consider the emerging environ-
ment, where distributed Cloud and Fog computing resources can be acquired and
released on demand. Specifically, Fog computing enriches powerful but distant
Cloud data centers with micro-data centers located at the network periphery,
closer to the users/devices that produce and consume data. Therefore, the abun-
dant presence of geo-distributed computing nodes can be exploited so to decen-
tralize the application execution as well, thus reducing the application latency
and the movement of high data volume. In this environment, DSP frameworks
should be able to scale their applications, by changing the operators parallelism
(application elasticity), as well as to accordingly provision computing resources
(infrastructure elasticity) [1]. While the application elasticity allows to better
distribute computing capacity among DSP operators, the infrastructure elastic-
ity allows to avoid resource wastage while guaranteeing that enough computing
capacity is available when needed.

In this paper, we present Multi-level Elastic and Distributed DSP Framework
(E2DF), which extends our hierarchical architecture for application-level elas-
ticity [2] so to introduce infrastructure management capabilities. In E2DF, the
application control system and the infrastructure control system are organized
according to the Monitor, Analyze, Plan and Execute (MAPE) architectural
pattern for self-adaptive systems. Differently from existing works [10,12] that
consider multi-level elasticity in a clustered environment, our solution is de-
signed for a geo-distributed operating environment. To manage a high number
of geo-distributed nodes in a scalable manner, our infrastructure and application
control systems are realized through a two-level hierarchical pattern.

Our main contributions are as follows:

– we present the infrastructure control system of E2DF. It relies on a high-level
MAPE-based Infrastructure Manager that coordinates the run-time adapta-
tion of subordinated MAPE-based Region Managers, which locally control
the elasticity of computing resources within a single micro-data center;

– we present simple control strategies for each component of E2DF, namely a
local policy for the Region Managers, and a global policy for the Infrastruc-
ture Manager;

– we implement and evaluate E2DF on top of our extension [2,4] of Apache
Storm. Our results are promising and show the effectiveness of the proposed
E2DF framework, which allows to reduce the amount of used computing
resources, while keeping an acceptable level of application performance.

This paper is organized as follows. We review related work in Section 2. In
Section 3, we present the hierarchical distributed architecture of E2DF for the
autonomous control of application and infrastructure elasticity. In Section 4, we
present simple control policies for each component of E2DF. In Section 5, we
evaluate the ability of E2DF to dynamically manage applications and computing
resources. We conclude in Section 6.



2 Related Work

Run-time adaptation of DSP applications has attracted attention in recent years [1],
mainly focusing on the application elasticity and the adaptation policies and
mechanisms that support it. Some works, e.g., [6,8], exploit best-effort threshold-
based policies based on the utilization of either the system nodes or the operator
instances. Other works, e.g., [3,9,11,16], use more complex centralized policies
to plan the scaling decisions. Heinze et al. [9] estimate latency spikes caused by
operator reallocations through a model and use it to define a heuristic place-
ment algorithm. Lohrmann et al. [11] propose a scaling strategy that enforces
latency constraints by relying on a predictive queueing theory model. Stela [16]
relies on throughput-based metric to identify the operators that need scaling.
In [3] we formulate a centralized optimization problem for the run-time elas-
ticity management of DSP applications that takes into account reconfiguration
costs.

Current open-source DSP frameworks (e.g., Flink, Heron, Samza, Storm,
Spark Streaming) manage the DSP application distribution, execution, and adap-
tation. However, as regards the application elasticity, most of them (except Heron
and Spark Streaming) only support the manual scaling of operators, which can
lead to sub-optimal application performance and operating costs. Dhalion, a
framework on top of Heron, provides application elasticity by scaling out/in op-
erators so to satisfy their throughput; Spark Streaming supports elastic scaling
of the number of executors. As regards the infrastructure elasticity, the above
frameworks can take advantage of the elasticity support of Cloud infrastruc-
tures [5]. However, in most cases the reconfiguration is enacted by restarting
the DSP application, thus causing downtime and possible state loss. Moreover,
elasticity decisions at the two different levels are, when available, independent
and uncoordinated, which could led to sub-optimal adaptation.

Only few solutions explicitly consider the reconfiguration of DSP applica-
tions in Fog and Cloud geo-distributed environments. SpanEdge [14] uses Cloud
and Fog data centers and follows a master-worker architecture implemented in
Storm, but it does not support operator migrations. Firework [17] provides only
elasticity of computing resources. Decentralized solutions for the elasticity of
DSP applications do not suffer as their centralized counterpart from network la-
tencies in geo-distributed environments. Among them, Mencagli [13] presents a
game-theoretic strategy where the control logic is distributed on each operator.
In [2] we propose a hierarchical distributed architecture for the autonomous con-
trol of elastic DSP applications and present distributed self-adaptation policies
also based on reinforcement learning; in this paper, we extend that architecture
to support elasticity also at the infrastructure level.

The works most closely related to our own have been presented in [10,12],
which consider multi-level elasticity both at the application and infrastructure
level. Liu et al. [10] propose a stepwise profiling framework that evaluates the
efficiency of possible configurations of parallelism. Similarly to us, their goal is
to avoid resource wastage; however, they do not propose auto-scaling policies.
Lombardi et al [12] consider at the same time the elasticity at the operator



and resource levels, where scaling actions can be executed either in a reactive
or proactive fashion, and implement their proposal in Storm. Differently from
us, all these works are designed for a traditional clustered system and therefore
could suffer from scalability issues in a geo-distributed environment. The E2DF
framework we propose is a first step towards coordinated multi-level elasticity
in geo-distributed Cloud and Fog systems.

3 System Architecture

The MAPE loop represents a well-know architectural pattern to organize the
autonomous control of a software system, where four components (Monitor,
Analyze, Plan, and Execute) are responsible for the primary functions of self-
adaptation. When the controlled system is geo-distributed, as in Fog computing,
a centralized MAPE loop, where analysis and planning are carried on by a single
component, may suffer from scalability issues. As described in [15], different pat-
terns to decentralize the MAPE components have been used in practice. Among
them, the hierarchical control pattern is of particular interest. It revolves around
the idea of a layered architecture, where each layer works at a different level of
abstraction. In this pattern, multiple MAPE control loops work with time scales
and concerns separation. Lower levels operate on a shorter time scale and deal
with local adaptation. Exploiting a broader view on the system, higher levels
steer the overall adaptation by providing guidelines to the lower levels.

Multi-level Elastic and Distributed DSP Framework (E2DF) includes two
management systems that are organized according to a two-level hierarchical
pattern: the Application Control System, which adapts the DSP operators de-
ployment, and the Infrastructure Control System, which realizes resource elas-
ticity. Figure 1a illustrates the conceptual architecture of E2DF, highlighting the
hierarchy of the multiple MAPE loops and the system components in charge of
the MAPE loop phases. The Infrastructure Control System includes a central-
ized Infrastructure Manager (IM), which cooperates with multiple decentralized
Region Managers (RM). Similarly, the Application Control System comprises
a centralized Application Manager (AM) and decentralized Operator Managers
(OM). Besides controlling the applications and computing resources in E2DF,
the IM and AM can interact to adapt their behavior at run-time. Specifically, the
IM can expose different views of the computing resources upon which the AM can
run the application. In such a way, the IM can dynamically partition resources
among applications. Differently from the approaches where the infrastructure is
adapted without considering the application needs, the IM-AM interaction en-
ables to realize cross-level optimizations. For example, when the IM detects that
computing resources are underutilized, it can propose the AM to consolidate the
managed applications on a reduced number of resources. Similarly, the AM can
prevent the IM from terminating underutilized nodes when the latter execute
critical DSP operators.

Infrastructure Control System. The Region Manager (RM) realizes the
lower level MAPE loop of the Infrastructure Control System. It is a distributed



(a) E2DF hierarchical MAPE loops (b) Extended Storm architecture

Figure 1: System architecture

entity that oversees resource elasticity within a single region (i.e., data center,
micro-data center). To this end, it monitors the computing nodes used by E2DF
within the region through the Resource Monitor. Then, through the Local Re-
configuration Manager, it analyzes the monitored data and determines if new
resources should be acquired or leased ones should be released. When the RM
determines that some adaptation should occur, it issues an adaptation request
to the higher layer.

At the higher level, the Infrastructure Manager (IM) coordinates the resource
adaptation among the different computing regions through a global MAPE
loop. By means of the Infrastructure Monitor it collects aggregated monitoring
data from the different available regions. Then, through the Global Reconfigura-
tion Manager, it analyzes the monitored data and the reconfiguration requests
received by the multiple RMs, and decides which reconfigurations should be
granted. For example, the Global Reconfiguration Manager can decide that it
is more convenient to acquire resources from a specific region, so it will inhibit
scaling operations proposed for other regions. According to its internal policy,
the Global Reconfiguration Manager can interact with the AM and adapt its
behavior accordingly. For example, it may suggest the AM to consolidate the
managed DSP operators on fewer computing nodes (the AM can accordingly
accept or deny the request). Using the Global Actuator, the IM communicates
its reconfiguration decisions to each RM, which can, finally, scale the computing
infrastructure by means of the their local Reconfiguration Actuators.

Application Control System. The Application Control System manages the
run-time adaptation of a DSP application. Similarly to the Infrastructure Control
System, it implements a hierarchical MAPE loop where an Application Manager
oversees subordinate Operator Managers. At the lower level, the Operator Man-
ager (OM) controls the reconfiguration of a single DSP operator and proposes
reconfiguration requests to the higher level. At the higher level, the Application



Manager (AM) is the centralized entity that coordinates the adaptation request
aiming to obtain good overall DSP application performance. We refer the reader
to [2] for further details.

Integration of E2DF in Storm. We have implemented the proposed E2DF
architecture in EDF [2], our extension of Apache Storm. EDF, by relying on
Distributed Storm [4], enhances the official Storm release by introducing an
infrastructure-level and application-level monitoring system and by supporting
run-time stateful operator scaling and migration (i.e., it enables the application
elasticity while preserving its integrity). Due to space limitations, we omit a de-
tailed description of EDF and Distributed Storm and refer the reader to [2,4].
As represented in Fig. 1b, we introduce the E2DF components into the Storm
architecture. More precisely, the AM, IM, and OM are implemented within ex-
isting Storm components, whereas the RM constitutes a new component to be
deployed in every region along with Storm Supervisors.

The IM runs within Nimbus, i.e., Storm’s master node. As soon as it is cre-
ated, it runs its MAPE control loop and waits for requests by the RMs and
AMs. The RMs are statically defined, one per region; each RM executes its lo-
cal policy and operates autonomously with one another. To acquire and release
resources, the Reconfiguration Actuator of the RM can be implemented to man-
age virtual machines or software containers. In our current implementation, it
uses software containers, managed through Docker. In such a way, each Storm
worker node runs within a container that can be quickly spawn and terminated
at run-time. The RM first retrieves monitoring information about CPU utiliza-
tion of the computing resources used by Distributed Storm within the region.
Then, it uses the local policy to determine whether a resource scaling operation
should be performed, and possibly forwards the request to the IM. Should the
reconfiguration be performed, the Reconfiguration Actuator of the RM scales
the computing resources using the Docker APIs.

When a new application is submitted to Storm, Nimbus creates one AM
and multiple OMs (one per operator). While the AM runs in Nimbus, the OMs
are assigned to the available worker nodes by the Storm scheduler. As soon as
the AM is created, it determines the initial application placement on the set of
worker nodes. At run-time, Nimbus executes periodically the AM, which analyzes
the monitored application response time, acquired from Distributed Storm, and
collects the reconfiguration requests coming from the decentralized OMs. Then,
the global policy is executed so to coordinate and grant the reconfiguration
actions. To enact the deployment changes, the Global Actuator of the AM relies
on the rebalance command of Storm and on the stateful migration mechanisms
of Distributed Storm, which allow to preserve the operators internal state while
reconfiguring. Each OM collects information about the managed operator (e.g.,
resource usage) and relies on its local policy to identify beneficial reconfigurations
and to propose them to the AM. Should a reconfiguration be performed, the OM
Reconfiguration Actuator adapts the operator deployment (e.g., by changing its
replication degree), while preserving the operator internal state.



4 Multi-level Elasticity Policy

The proposed two-layered architecture identifies different macro-components
(i.e., AM-OM, IM-RM) that cooperate to adapt the deployment of DSP ap-
plications and infrastructures at run-time. The E2DF architecture is general
enough to not limit the specific internal policies and goals for these components.
By properly selecting the internal policy for each component, the proposed so-
lution can address the needs of different execution contexts, thus encompassing
applications with different requirements, infrastructures with different kind of
computing resources, and different user preferences. For example, the planning
components can be either activated periodically or on event-basis, can rely on
optimization problem formulation or heuristics that minimize the application
response time, maximize its availability, or a combination thereof.

Since the control components (i.e., AM, OM, IM, RM) work at different
abstraction layers, we need two-layered control policies as well. Specifically, we
will consider local policies, associated with RM and OM, which are concerned
with low-level adaptation actions and exploit a fine grained view on a subset of
the controlled entities (i.e., the replicas of a single operator and the computing
resources in a given region, respectively). The local policy does not directly enact
planned adaptation actions, which instead are communicated to the higher level
components, i.e., AM and IM. These components are each equipped with a global
policy that works at the granularity of the whole application/infrastructure. On
the basis of the overall monitored performance and the application performance
requirements (e.g., coming from a SLA), the global policies identify the most
effective reconfigurations proposed by the decentralized agents, providing an
implicit coordination mechanism among the independent local policies.

As a proof-of-concept of the proposed architecture, we present simple heuris-
tic elasticity policies whose overall adaptation goal is to preserve the application
performance in face of varying workloads, avoiding computing resources wastage.

4.1 Infrastructure Control Policy

The Infrastructure Control System manages the computing resources (e.g., con-
tainers, VM) allocated for the execution of DSP applications. As a proof-of-
concept policy, we consider a simple threshold-based approach, which is the
most commonly used one in Cloud auto-scaling systems [5]. The local policy
executed by the RM in each region r considers: (i) Cn, the capacity of each
node n, defined as the maximum number of application operators’ instances it
can host (e.g., proportional to the number of CPU cores); (ii) An, the number
of operators instances currently assigned to each node; and (iii) Un, the CPU
utilization of each node.1 For each region r, we consider a target capacity Cr,
which should always be available for deploying new operator replicas. Hence, we
require that

∑
n∈Nodes(r) (Cn −An) ≥ Cr. Whenever this constraint is violated,

1 The policy can be easily extended to consider other load metrics (e.g., related to
memory or network bandwidth utilization).



the RM proposes to add one or more computing resources to satisfy the capacity
requirement. For simplicity, we assume that, if the RM can pick different kinds
of resources, it will choose the one with minimum capacity Cn, in order to have
a fine-grained control over the resource allocation. On the other hand, when the
available capacity in the region exceeds the minimum required amount, the RM
searches for computing resources to turn off. Specifically, the RM searches for
nodes that do not host application operators’ instances, and, if any, issues a
request to the IM for terminating them.

Moreover, the local policy searches for nodes that host one or more appli-
cation operators’ instances, but seem to be under-loaded. Specifically, the RM
looks for nodes whose CPU utilization does not exceed a predefined threshold
Ūlow,r (i.e., Un ≤ Ūlow,r). The replicas running on those nodes might be easily
migrated elsewhere, in order to consolidate the active computing nodes. The RM
issues a request to the IM for freeing and terminating these nodes.

Finally, the local policy communicates to the IM its proposed actions. The
IM global policy can accept/reject adaptation requests based on functional and
non-functional requirements. For the sake of simplicity, to evaluate the proposed
framework, we rely on a simple global policy, which accepts all the actions pro-
posed by the RM, except for those requiring the termination of a computing
resource currently occupied by one or more DSP applications, which require
special attention. When the RM proposes to turn off such a node, the IM will
in turn issue a request to the involved AMs for migrating their operators to dif-
ferent nodes. The IM also removes the node from the list of available resources,
to avoid that other operators are assigned to it by any AM. After a configurable
time interval, if the AM has not moved away the operators from the under-loaded
node, the scale-in procedure is canceled and the node considered available again.

4.2 Application Control Policy

Relying on a local policy executed by the OMs, and on a global policy executed
by the AM, the Application Control System manages the DSP applications elas-
ticity and placement. The OM local policy implements the Analyze and Plan
phases of the decentralized MAPE loop, which controls the execution of a single
DSP operator. Running on a decentralized component, this policy has only a
local view of the system, which consists of the status (i.e., resource utilization)
of each operator replica and of a restricted suitable set of computing nodes (i.e.,
located in the same region). By analyzing this information, the policy can plan a
reconfiguration of the operator deployment, by changing the number of its repli-
cas. We adopt a simple threshold-based policy for planning scaling actions [2].
Let us denote by Sα the resource utilization of replica α, which measures the frac-
tion of CPU time used by α. When the utilization of α exceeds a usage threshold
Ss-out ∈ [0, 1] (i.e., Sα > Ss-out), the OM proposes to add a new replica. The new
replica is allocated on the least utilized computing resource within the same
region of the other operator replicas. Conversely, the OM proposes a scale-in
operation, which removes one of the running n replicas, when the sum of their
utilization divided by n− 1 is significantly below the usage threshold, i.e., when



∑n
α=1 Sα/(n− 1) < cSs-out, being c < 1. The replica to be removed is randomly

chosen between the two replicas with the highest utilization. Similarly to the
RM local policy, the OM proposes reconfiguration actions to the high-level AM,
which can accept or reject them, based on its global policy.

The AM determines the initial application deployment. To this end, it uses
a placement policy that assigns the operators on an initial number of Rinit com-
puting nodes, aiming to balance the number of operator per node. To perform
run-time adaptation, the AM adopts a global policy that implements the Analyze
and Plan steps of the centralized MAPE loop. Its main goal is to coordinate the
actions of the decentralized OMs, so to satisfy the DSP application performance
requirements, while minimizing the allocated resources (or their cost). In particu-
lar, it monitors the application response time and analyzes its behavior, possibly
by comparing it against a user-defined target performance. It can leverage this
information to decide whether, e.g., a higher parallelism could be beneficial for
the application, or the resource usage costs should be reduced. To this end, the
policy determines which reconfiguration plans, proposed by the decentralized
OMs, should be accepted. For the sake of simplicity, in this work we consider a
very simple global policy, which only rejects reconfigurations when they try to
acquire an already used resource (e.g., just assigned to another operator). More
sophisticated approaches (e.g., based on a token bucket to limit the number of
performed reconfigurations) can be proposed as well [2].

5 Evaluation

We evaluate the ability of E2DF to realize the multi-level elasticity. To more
easily investigate the proposed architecture, we equip E2DF with the proposed
proof-of-concept policies, and consider a single deployment region, where Storm
worker nodes are allocated as Docker containers. Each container allows the
worker node to run on a single CPU core, for no more than 50% of the time.
Each worker node has capacity Cn = 1, thus can host a single operator instance.
The Docker containers are executed on a single host machine, equipped with an
Intel i7-4710HQ CPU and 16 GB of RAM.

As a reference application, we consider a simple Word Count topology, de-
fined as a sequence of a source and 3 operators. The datasource emits random
sentences at a variable rate; the split emits a tuple for each word in the received
sentences; the counter traces how many times each word has appeared; the final
consumer publishes statistics to a RabbitMQ queue. Specifically, as shown in
Fig. 2a, the source emits data at a rate that grows from 5 to 550 tuples/s and
then decreases back to the initial value.

To show the potentialities of E2DF, we evaluate three different execution
scenarios. In the baseline one, neither the infrastructure nor the application
parallelism is adapted at run-time. We provisioned both the infrastructure and
the application so to handle the peak load; we run 16 worker nodes and 15 total
operator replicas for the reference application (namely, 2 replicas for split, 6 for
counter and 6 for consumer). As a second scenario, we consider the case where



the worker nodes are statically provisioned, but the operators parallelism can
be adapted at run-time (i.e., only application-level elasticity). Finally, in the
third scenario, we evaluate E2DF with all the self-adaptation features enabled,
exploiting infrastructure-level elasticity as well. For the experiments, we let the
IM and RM run once per minute, and the AM and OM twice per minute. For
the RM policy, we set Cr = Rinit = 5, and Ūlow,r = 0.1. As regards the OM
policy, we set Ss−out = 0.7, and c = 0.75.

 0

 100

 200

 300

 400

 500

 600

 500  1000  1500  2000  2500  3000  3500

S
o
u
rc

e
 d

a
ta

 r
a
te

 (
tu

p
le

/s
)

Time (s)

(a) Workload

0

10

20

30

40

50

A
p
p
lic

a
ti
o
n
 l
a
te

n
c
y

(m
s
)

3

6

9

12

15

18

 500  1000  1500  2000  2500  3000  3500

A
c
ti
v
e
 r

e
p
lic

a
s

a
n
d
 n

o
d
e
s

Time (s)

Replicas
Nodes

(b) No adaptation

0

10

20

30

40

50

A
p
p
lic

a
ti
o
n
 l
a
te

n
c
y

(m
s
)

3

6

9

12

15

18

 500  1000  1500  2000  2500  3000  3500

A
c
ti
v
e
 r

e
p
lic

a
s

a
n
d
 n

o
d
e
s

Time (s)

Replicas
Nodes

(c) E2DF with IM disabled

0

10

20

30

40

50

A
p
p
lic

a
ti
o
n
 l
a
te

n
c
y

(m
s
)

3

6

9

12

15

18

 500  1000  1500  2000  2500  3000  3500

A
c
ti
v
e
 r

e
p
lic

a
s

a
n
d
 n

o
d
e
s

Time (s)

Replicas
Nodes

(d) E2DF

Figure 2: Application latency and allocated resources with different self-
adaptation capabilities (b-d), when the application is subject to a linearly grow-
ing and decreasing input rate (a).

Results. Figure 2 reports the application latency, the application paral-
lelism, and the number of active worker nodes throughout our experiments.
Figure 2b illustrates the baseline scenario, when both the worker nodes and the
operator replicas are statically provisioned. In this case, the average application
latency throughout the experiment is 11.4 ms. Such a configuration is likely to
waste resources by using the same computational power in face of different levels
of incoming load. Our second experiment confirms this observation: indeed, the
Application Control System, starting with a single replica per operator, adapts



the number of operator replicas used by the DSP application at run-time (see
Fig. 2c). Application elasticity allows to use, on average, 55% less replicas during
the experiment, with only limited performance degradation: the average appli-
cation latency in this setting is 19.3 ms.2 Nonetheless, in this experiment we
are likely to still over-provision the infrastructure resources, keeping 16 active
worker nodes all the time.

The third scenario allows to evaluate the benefits of exploiting the full self-
adapting capabilities of E2DF, i.e., when it can adapt the application and the
infrastructure. The application performance is almost identical to that observed
in the previous experiment, while the number of active worker nodes (and so
the resource usage cost, in a real scenario) is reduced on average by 24%. As
shown in Fig. 2d, the number of running worker nodes is readily adjusted as the
application acquires or releases worker slots. These results demonstrate that our
simple policies are effective in limiting the resource wastage, at the same time
avoiding significant performance degradation.

6 Conclusions

In this paper, we presented Multi-level Elastic and Distributed DSP Framework
(E2DF), a hierarchical approach for controlling DSP application elasticity and
infrastructure elasticity. Designed according to the decentralized MAPE control
pattern, our solution relies on a two layered approach with separation of concerns
and time scale between layers. At the lower level, distributed components control
the adaptation of DSP operators and computing resources within a deployment
region. At the higher level, a per-application manager oversees and coordinates
the DSP application adaptation, while a global IM supervises the management of
computing resources across different regions. We prototyped the proposed solu-
tion within Distributed Storm and proposed proof-of-concept policies to evaluate
the benefits of the proposed hierarchical and distributed architecture. The results
show that our simple yet effective policies allow to significantly reduce resource
wastage with respect to statically provisioned applications and infrastructures.

As future work, we will further investigate the presented hierarchical ap-
proach. We plan to design more complex decentralized policies, considering dif-
ferent (stringent and possibly conflicting) optimization objectives, and a larger
set of constraints (e.g., related to network bandwidth). We will also investigate
the interaction between the application-level and infrastructure-level elasticity.
In particular, we will study the multi-agent optimization problem that arises
from the interaction of the ACS and ICS, recurring to techniques specifically
targeted to this class of systems (e.g., Multi-Agent Reinforcement Learning).

2 We can observe evident spikes in the measured application latency after each recon-
figuration; they are due to the pause-and-resume stateful reconfiguration protocol
adopted by Distributed Storm. Therefore, we compute our statistics excluding the
first 2 minutes after each reconfiguration.



References

1. de Assunção, M.D., da Silva Veith, A., Buyya, R.: Distributed data stream pro-
cessing and edge computing: A survey on resource elasticity and future directions.
J. Netw. Comput. Appl. 103 (2018)

2. Cardellini, V., Lo Presti, F., Nardelli, M., Russo Russo, G.: Decentralized self-
adaptation for elastic data stream processing. Future Gener. Comput. Syst. (2018)

3. Cardellini, V., Lo Presti, F., Nardelli, M., Russo Russo, G.: Optimal operator
deployment and replication for elastic distributed data stream processing. Concurr.
Comput.: Pract. Exper. 30(9) (2018)

4. Cardellini, V., Grassi, V., Lo Presti, F., Nardelli, M.: Distributed QoS-aware
scheduling in Storm. In: Proc. of ACM DEBS ’15. pp. 344–347 (2015)

5. Chen, T., Bahsoon, R., Yao, X.: A survey and taxonomy of self-aware and self-
adaptive cloud autoscaling systems. ACM Comput. Surv. (2018)

6. Fernandez, R.C., Migliavacca, M., Kalyvianaki, E., Pietzuch, P.: Integrating scale
out and fault tolerance in stream processing using operator state management. In:
Proc. of ACM SIGMOD ’13. pp. 725–736 (2013)

7. Gedik, B., Schneider, S., Hirzel, M., Wu, K.L.: Elastic scaling for data stream
processing. IEEE Trans. Parallel Distrib. Syst. 25(6), 1447–1463 (2014)

8. Gulisano, V., Jiménez-Peris, R., Patiño Martínez, M., Soriente, C., Valduriez, P.:
StreamCloud: An elastic and scalable data streaming system. IEEE Trans. Parallel
Distrib. Syst. 23(12), 2351–2365 (2012)

9. Heinze, T., Roediger, L., Meister, A., Ji, Y., et al.: Online parameter optimization
for elastic data stream processing. In: Proc. of ACM SoCC ’15. pp. 276–287 (2015)

10. Liu, X., Dastjerdi, A.V., Calheiros, R.N., Qu, C., Buyya, R.: A stepwise auto-
profiling method for performance optimization of streaming applications. ACM
Trans. Auton. Adapt. Syst. 12(4) (2018)

11. Lohrmann, B., Janacik, P., Kao, O.: Elastic stream processing with latency guar-
antees. In: Proc. of IEEE ICDCS ’15. pp. 399–410 (2015)

12. Lombardi, F., Aniello, L., Bonomi, S., Querzoni, L.: Elastic symbiotic scaling of
operators and resources in stream processing systems. IEEE Trans. Parallel Distrib.
Syst. 29(3), 572–585 (2018)

13. Mencagli, G.: A game-theoretic approach for elastic distributed data stream pro-
cessing. ACM Trans. Auton. Adapt. Syst. 11(2) (2016)

14. Sajjad, H.P., Danniswara, K., Al-Shishtawy, A., Vlassov, V.: Spanedge: Towards
unifying stream processing over central and near-the-edge data centers. In: Proc.
of 2016 IEEE/ACM Symp. on Edge Computing. pp. 168–178 (2016)

15. Weyns, D., Schmerl, B., Grassi, V., Malek, S., et al.: On patterns for decentral-
ized control in self-adaptive systems. In: Software Engineering for Self-Adaptive
Systems II, LNCS, vol. 7475, pp. 76–107. Springer (2013)

16. Xu, L., Peng, B., Gupta, I.: Stela: Enabling stream processing systems to scale-in
and scale-out on-demand. In: Proc. of IEEE IC2E ’16. pp. 22–31 (2016)

17. Zhang, Q., Zhang, Q., Shi, W., Zhong, H.: Firework: Data processing and sharing
for hybrid cloud-edge analytics. IEEE Trans. Parallel Distrib. Syst. (2018)


