4th International Workshop on Autonomic Solutions for Parallel and Distributed Data Stream Processing

(Auto-DaSP 2021).

Published in: Companion of the ACM/SPEC International Conference on Performance Engineering
(ICPE '21), pp. 9-16, ACM. https://doi.org/10.1145/3447545.3451901

Elastic Pulsar Functions for Distributed Stream Processing

Gabriele Russo Russo
russo.russo@ing.uniromaz2.it
University of Rome Tor Vergata
Rome, Italy

ABSTRACT

An increasing number of data-driven applications rely on the ability
of processing data flows in a timely manner, exploiting for this pur-
pose Data Stream Processing (DSP) systems. Elasticity is an essential
feature for DSP systems, as workload variability calls for automatic
scaling of the application processing capacity, to avoid both over-
load and resource wastage. In this work, we implement auto-scaling
in Pulsar Functions, a function-based streaming framework built on
top of Apache Pulsar. The latter is is a distributed publish-subscribe
messaging platform that natively supports serverless functions.
Considering various state-of-the-art policies, we show that the pro-
posed solution is able to scale application parallelism with minimal
overhead.

CCS CONCEPTS

« Information systems — Stream management; - Computer
systems organization — Distributed architectures.

KEYWORDS
Data Stream Processing, Auto-Scaling, Self-Adaptation

ACM Reference Format:

Gabriele Russo Russo, Antonio Schiazza, and Valeria Cardellini. 2021. Elastic
Pulsar Functions for Distributed Stream Processing. In Companion of the
2021 ACM/SPEC International Conference on Performance Engineering (ICPE
’21 Companion), April 19-23, 2021, Virtual Event, France. ACM, New York,
NY, USA, 8 pages. https://doi.org/10.1145/3447545.3451901

1 INTRODUCTION

The increasing, ubiquitous presence of sensors in our houses, of-
fices and cities has contributed for years to a unending growth in
the volume of daily produced data. In turn, such data availability
has fostered the development of new data-driven applications and
services, which pervade and assist our everyday life, by extracting
valuable insight from raw data sets. In particular, many of these
applications deal with continuous data flows, also called streams,
which must be analyzed in a timely manner.

In this context, Data Stream Processing (DSP) systems have
emerged as a de facto standard for near real-time processing of
high-volume data streams [5]. DSP applications are usually defined

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICPE 21 Companion, April 19-23, 2021, Virtual Event, France

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8331-8/21/04...$15.00
https://doi.org/10.1145/3447545.3451901

Antonio Schiazza
antonio.schiazza@gmail.com
University of Rome Tor Vergata
Rome, Italy

Valeria Cardellini
cardellini@ing.uniromaz2.it
University of Rome Tor Vergata
Rome, Italy

as directed acyclic graphs (DAG) whose vertices are named oper-
ators and edges are streams, that is unbounded sequences of data
units, which connect operators. Operators are processing elements
that take one or more streams as input, apply transformations or
functions to the data, and possibly output a new data stream. Letting
data flow through multiple operators, complex processing functions
can be realized. Among the set of vertices in the application DAG,
we distinguish special vertices: sources and consumers. Vertices
with no input edges represent data sources, which generate the in-
put streams. Vertices with no outgoing edges represent consumers,
such as dashboards or files, which receive the application results.

To keep up with fast and high-volume input streams, DSP applica-
tions often exploit distributed computing infrastructures. By doing
so, operators can be executed concurrently as independent threads
or processes on multiple computing nodes. Furthermore, multiple
parallel replicas of each operator can be launched to increase the
overall processing capacity. On the one hand, such parallelization al-
lows the input stream to be distributed among the parallel instances,
reducing the load imposed to each one and, thus, improving the
resulting performance. On the other hand, since DSP workloads
are highly variable over time, dynamically adjusting operator paral-
lelism at run-time is necessary to avoid both overload and resource
wastage. As such, elasticity (or, operator auto-scaling) has been
identified as an essential feature for modern DSP systems and a lot
of effort has been spent by researchers on this topic [6, 25].

Besides several open-source frameworks for the development
and execution of distributed DSP applications (e.g., Flink, Heron,
Storm), recently, systems originally designed for data ingestion
and distributed messaging, such as Kafka and Pulsar, have been
extended to enable computation on the incoming data streams.
By doing so, it becomes easier to deploy DSP applications, remov-
ing the need of configuring and managing different systems for
data ingestion and processing. In particular, in this work we focus
our attention on Pulsar, which is a framework for distributed and
scalable messaging. Pulsar enables the development of DSP appli-
cations through a function-based computing framework, named
Pulsar Functions. This project allows developers to implement com-
plex processing pipelines by combining simple functions, possibly
written using different languages.

Pulsar Functions can be executed over distributed nodes and
support parallelization for increased throughput. Unfortunately,
Pulsar lacks built-in support for seamless function auto-scaling.
In this paper, we integrate elasticity mechanisms and policies in
Pulsar Functions, so that the parallelism level of each function is
be effectively and efficiently self-adjusted at run-time in response
to workload variations. The key contributions of our work are as
follows:

https://doi.org/10.1145/3447545.3451901
https://doi.org/10.1145/3447545.3451901

e We design and implement an auto-scaling framework for
Pulsar Functions, based on the Monitor, Analyze, Plan and
Execute (MAPE) pattern for self-adaptive systems;

e We extend Pulsar Functions to allow function parallelism to
be modified at run-time without interrupting the operation
of the existing instances, hence enabling seamless adapta-
tion;

e We integrate and evaluate different auto-scaling policies
in our solution, including a widely used threshold-based
approach, a policy based on queueing theory, and a policy
derived from the literature [13].

The remainder of this paper is organized as follows. We provide
background information about Pulsar in Sec. 2. We describe our
auto-scaling solution and its integration in Pulsar in Sec. 3. We
present the policies integrated in our solution in Sec. 4. An exper-
imental evaluation of our work is described in Sec. 5. We review
related work in Sec. 6 and conclude in Sec. 7.

2 OVERVIEW OF APACHE PULSAR

Apache Pulsar ! is a cloud-native, distributed messaging and stream-
ing platform, originally developed at Yahoo and now within the
Apache Software Foundation. Pulsar aims at enabling scalable, low-
latency and durable messaging based on the publish-subscribe para-
digm, with support for multi-tenancy and geographical replication.
Being able to ingest millions of messages with very low latency,
Pulsar well suits use cases involving streaming data. Furthermore,
Pulsar Functions, a lightweight computing framework, adds support
for stream-native data processing on top of Pulsar. As such, Pulsar
provides a comprehensive platform to build streaming applications,
able to both ingest and process high-volume and fast data flows in
a distributed environment.

Messaging in Pulsar is built on top of the publish-subscribe pat-
tern, where producers publish messages to topics, and consumers
subscribe to these topics to read, process and acknowledge the mes-
sages. Topics are named channels that allow exchange of messages
between producers and consumers. Pulsar supports both persistent
and non-persistent topics: messages sent to persistent topics are
durably persisted on disks, whereas data sent to non-persistent
topics are not durably stored on disk.

Consumers can choose from various subscription modes when
subscribing to topics, each supporting a class of communication
use cases. For instance, in the failover subscription mode all the
messages are delivered to a single consumer, denoted as master con-
sumer. If the master consumer disconnects, it is replaced by another
consumer. Conversely, the behavior of a message queue is obtained
with the shared subscription mode, where multiple consumers can
attach to the same subscription, and messages are delivered in a
round robin distribution across consumers. The shared subscrip-
tion provides at-least-once semantics: any given message is initially
delivered to a single consumer and, if it is not acknowledged, it
will be re-transmitted to a different consumer. Furthermore, the
key-shared mode extends the shared subscription mode causing
messages with the same key to be sent to the same consumer.

Uhttps://pulsar.apache.org/

r Client

(Pulsar Cluster ¢ \

Broker | eee | Broker F\wg(r; igrn
L]
[]
Bookie | eee | Bookie ¢
- g - g Function
ottt : 19=c==- : \wgrﬁer I
. Storage ' \ Storage :

NIy S J

Figure 1: High-level Pulsar architecture.

2.1 Architecture

Pulsar has an elegant architecture, which was designed with the
goals to provide scalability and flexibility so to support applications
needing any combination of queuing, messaging, streaming and
lightweight compute for events [23]. The high-level architecture of
Pulsar is shown in Fig. 1. An instance of Pulsar comprises one or
more clusters. Clusters may be geographically distributed and data
can be replicated among different clusters. Each cluster is populated
by three groups of components: brokers, bookies, and ZooKeeper
instances. Brokers are the fundamental components for messaging
and build the serving layer of Pulsar. Brokers handle the incoming
messages, dispatch them to consumers and store them in the so-
called bookies. Pulsar message brokers are stateless components
that primarily run two other components: an HTTP server and a
dispatcher. The HTTP server exposes a REST API for both admin-
istrative tasks and topic lookup for producers and consumers; the
dispatcher is a TCP server that handles all the data transfers over a
custom binary protocol. For the sake of performance, messages are
dispatched out of a managed ledger cache, which avoids unneces-
sary reads from the storage layer. When the backlog exceeds the
cache size, the broker starts reading entries from the bookies.

Bookies represent the storage layer of Pulsar, which must guar-
antee message durability. Bookies are instances of Apache Book-
Keeper?, a distributed write-ahead log that well suits the needs of
Pulsar. Indeed, BookKeeper provides efficient storage for sequential
data over distributed nodes. BookKeeper automatically handles
data replication among its instances and is horizontally scalable,
as new bookies can be seamlessly added to a cluster. It is worth
noting that, by decoupling the serving and storage layers, Pulsar
allows them to be scaled independently as needed. Besides message
data, bookies also persist cursors, i.e., the subscription positions for
consumers.

To coordinate the various components and store cluster-level
configuration, each Pulsar cluster is also equipped with an Apache
ZooKeeper> ensemble, an open-source service for distributed coor-
dination.

2https://bookkeeper.apache.org/
3https://zookeeper.apach.org/

https://pulsar.apache.org/
https://bookkeeper.apache.org/
https://zookeeper.apach.org/

2.2 Pulsar Functions

On top of the core messaging architecture of Pulsar, a data process-
ing layer has been introduced by means of the Pulsar Functions®.
Pulsar Functions are processing entities that (i) consume messages
from one or more topics, (ii) apply a user-defined processing logic
to each message, and (iii) publish the results of the computation
to another topic. As such, a Pulsar Function can be regarded as an
operator, in the terminology of DSP systems. Moreover, by defining
multiple functions, each consuming messages produced by another
function, it is possible to develop complex stream processing appli-
cations, without the need for a separate data processing system (e.g.,
Apache Flink). This can significantly simplify the operations related
to deploying and managing DSP applications, while enjoying the
features of a highly scalable ingestion platform.

Inspired by the increasingly popular Function-as-a-Service (FaaS)
paradigm, Pulsar Functions are Lambda-style functions specifically
designed to use Pulsar as a message bus and serves as a means to
support analytics on real-time data streams in a serverless fashion.
The programmer needs only implement the processing logic to be
applied to each incoming message, possibly producing new mes-
sages to be published to other topics (including a special “log” topic
for logging purposes). Pulsar currently allows developers to write
the function logic in Java, Python or Go. For all these languages,
Pulsar provides specific SDK libraries for function development; for
Java and Python, developers are also allowed to use language-native
interfaces (e.g., the java.util.function.Function interface in
Java), with no specific dependency on Pulsar. Pulsar Functions en-
able the definition of both stateless and stateful operators. For state
management, Pulsar Functions rely on the table service provided
by BookKeeper, which is a key-value data store. In order to use the
table service, functions must be defined using the Pulsar SDK.

Internally, a Pulsar Function comprises three core components:
consumer, executor, and producer. The consumer is responsible for
the subscriptions to the input topics and, thus, for message retrieval.
The executor is in charge of applying the user-defined logic to each
message, passing its output to the producer. The producer publishes
the processing results to the output topics.

Each Pulsar Function can be associated with one or more parallel
instances at run-time. These function instances are executed within
Function Workers, additional components that enrich the core Pul-
sar architecture described above. Function Workers can be either
activated alongside brokers or as standalone nodes in the cluster.
Within Workers, each function instance can be executed either
as a thread or process, depending on the selected configuration.
Alternatively, if a Kubernetes cluster is available, functions can be
spawned as StatefulSets within Kubernetes. In this work, we focus
on the case of functions running as threads, and Function Workers
deployed in standalone nodes.

3 AUTO-SCALING OF PULSAR FUNCTIONS

Pulsar Function introduce a stream processing layer on top of
Pulsar messaging system. A fundamental requirement of modern
stream processing systems is elasticity, that is the ability of ad-
justing the allocated processing capacity to respond to workload
variations [6, 25]. While changing the parallelism level of Pulsar

“https:/pulsar.apache.org/docs/en/functions- overview/

(Pulsar Cluster \

Broker | eee | Broker F\W&? 'gr”
WA E

Leader o

L]

Bookie | eee | Bookie °
Function
1°s=c=- : 1s= === T ' \wgr er

, Storage : , Storage : ‘

\ e Y,

Figure 2: Extended Pulsar architecture.

Functions at run-time is possible, reconfiguration decisions are
under the responsibility of the system administrator and must be
manually triggered. Therefore, in this work we aim at integrat-
ing mechanisms and policies for automatic scaling of the Pulsar
Functions.

The solution we present is organized according to the well-
known Monitor, Analyze, Plan and Execute (MAPE) pattern for
self-adaptive systems [14]. Application adaptation (i.e., function
parallelism adaptation) consequently relies on four key adaptation
components: Monitor, Analyzer, Planner and Executor. The Monitor
component is in charge of monitoring data arrivals and function
executions. Based on this information, the Analyzer component is
able to characterize the current system state at any time. The out-
put of the system analysis phase is used by the Planner component
to make adaptation decisions and, thus, plan possible parallelism
reconfigurations. Finally, planned reconfigurations are enacted by
the Executor component.

Our auto-scaling components are integrated in the existing Pul-
sar architecture and, specifically, they extend the control function-
ality of the Function Workers, as depicted in Fig. 2. In particular,
auto-scaling control is delegated to the leader Function Worker,
which is identified by means of a leader election among all the
Workers in the cluster.

The Monitor component is built on top of the metrics sub-system
of Pulsar, which provides information about existing topics and
functions. To support auto-scaling, we introduce further metrics
and collect them for analysis. Moreover, the Monitor also constructs
a graph representation of the DSP application based on the gathered
information, as Pulsar does not provide any higher-level abstraction
on top of topics and functions. Specifically, we model the application
as a DAG G = (V, E), where V is the set of vertices (i.e., functions),
and E the set of edges (i.e., streams flowing between functions
through a topic). The Analyzer and Planner components use this
information to make scaling decisions, which depend on the specific
auto-scaling policy in use (details about the policies will be given
in the next section).

The Executor component is responsible for changing function
parallelism based on the planned scaling operations. For this pur-
pose, we rely on the update mechanism provided by Pulsar Func-
tions, which allows users to modify various parameters related to
function execution. Unfortunately, we observed that every paral-
lelism update (and, in general, every configuration update) forces

https://pulsar.apache.org/docs/en/functions-overview/

the termination of all the current function instances and the creation
of new instances. This represents a major limitation, as every paral-
lelism reconfiguration interrupts application processing. Although
such reconfiguration overhead exists in most the DSP frameworks
(see, e.g., [3, 4]), given the lightweight nature of Pulsar Functions,
we aim to obtain seamless elasticity. Therefore, we extend the up-
date functionality and avoid the replacement of all the function
instances when only the parallelism is affected. By doing so, scaling
actions do not cause noticeable interruptions in the normal data
processing. Our extended version of Pulsar is publicly available.’

4 AUTO-SCALING POLICIES

To control function auto-scaling, we consider different policies.
First, we consider a simple-yet-popular threshold-based scaling
policy, which triggers reconfigurations based on the monitored
queue length. As this policy is unaware of the perceived application
performance (e.g., processing latency), we also present a scaling
policy based on queueing theory, which estimates function response
time to make decisions. For comparison, we also consider the auto-
scaling policy for DSP operators presented by Kalavri et al. [13]. In
the next section, we introduce each policy.

4.1 Threshold-based policy

A widely adopted approach for the definition of auto-scaling poli-
cies consists in triggering reconfigurations whenever the observed
value of a key metric (e.g., resource utilization, queue length) is
beyond (or, below) a pre-defined threshold. The main advantage
of such threshold-based heuristic policies is their implementation
simplicity, as they do not require any system modeling effort or
significant computation.

In this work we consider the topic backlog size Qf, that is the
amount of data ready to be processed by each function f, as the
reference metric for scaling. Values for Q¢ range in the interval
[0,), under the modeling assumption of an infinite amount of
memory available for the topic. We define two threshold values T;;,
and Tyy, which partition the value space of the metric into three
intervals, as follows:

e [0, Tj,]: low-load interval
® (Tin, Tout]: in-range interval
o (Toyt,): overload interval

At run-time, based on the measured value for Qf, we identify the
system state among the possible load conditions defined by the
intervals above. The function parallelism is updated according to
the system state, as follows:

e low-load — scale-in (terminate 1 instance)
e in-range — do nothing
e overload — scale-out (add 1 instance)

As exceptions to these rules, no scale-in is clearly allowed when
a single instance is active, in order to keep at least one running
replica; no scale-out is allowed when the maximum number of
instances has been reached.

Shttps://bitbucket.org/aschiazza/pulsar-fork-master/src/aschi-fork-2.4.1/

On the one hand, this approach is very easy to implement, as
mentioned above. On the other hand, its adaptation behavior di-
rectly depends on the choice of the threshold values to use. Identi-
fying the best thresholds to be used to satisfy users’ performance
requirements is not always obvious, and the thresholds must often
be tuned by means of a trial-and-error approach.

4.2 Queueing theory-based auto-scaling

We also consider model-based auto-scaling policies, based on queue-
ing theory. The core idea is exploiting queueing networks to model
DSP applications and estimate performance at run-time (e.g., pro-
cessing latency or throughput). The availability of these perfor-
mance estimates allows us to identify the minimum amount of
allocated resources (i.e., function parallelism) able to satisfy users’
requirements. In particular, in this work we consider performance
requirements expressed in terms of maximum processing latency
along each path in the application DAG, which usually corresponds
to a single query computed by the application.

To apply queueing theory to the considered problem, we first
need to model DSP applications running on top of Pulsar as queue-
ing networks. In particular, we model applications as open queueing
networks, where external arrivals model data arrivals to the ap-
plication input topic, and each station represents a function (i.e.,
an operator). As multiple instances can be associated with each
function, all fetching data from the same topic, we model each
function as a GI/G/k queueing system. We are clearly interested in
estimating the response time of the different stations and, thus, the
total response time along end-to-end paths.

Unfortunately, the GI/G/k model is a general model for which no
exact analytical results are available. Instead, we need to resort to ap-
proximations and, specifically, to the Allen-Cunneen approximate
formula [2]. The Allen-Cunnen formula provides an approximation
of the waiting time Ty of GI/G/k queues:

, cg + cg Py

7 2% p(1-p)
where ¢, and ¢ are coefficients of variation of, respectively, arrival
times and service times; k is the parallelism level of the function
and, hence, the number of servers; p is the average service rate
of the function; p is the average utilization of the function; and,
Py is the probability for a data unit to wait in the queue because
all the function instances are busy. The latter term can be in turn
approximated as follows:

(1)

k
+
Lrp p =07
Pp=y 2)
P VicH1 p <07

By means of the equations above, we directly obtain an estimate
for the response time T of each function:

1
T=-+T4 (3)
i

Moreover, we can evaluate the total latency along every path 7 in
the application DAG as the sum of the response times T* of each
function i appearing on the path:

T7 = Z T 4)

iemr

https://bitbucket.org/aschiazza/pulsar-fork-master/src/aschi-fork-2.4.1/

In our solution, all the parameters involved in the equations
above are estimated online exploiting information collected in the
monitoring phase. To this end, we introduced new metrics in Pulsar
(e.g., the function processing time, the inter-completion time). The
idea behind our auto-scaling policy is searching the minimum num-
ber of servers k that is necessary to keep the response time below
a maximum value Ry4x specified by users. In the following, we
will consider cases where the maximum response time is specified
either at level of single functions or whole application paths.

4.2.1 Function response time requirements. If a maximum response
time requirement is expressed for each function, scaling decisions
can be made independently for each of them by the auto-scaling
controller. In particular, applying (3) the policy identifies the mini-
mum parallelism level which prevents performance violations. It
proceeds in a greedy fashion: the policy first evaluates the response
time for the minimum parallelism configuration and, then, increases
the parallelism level until the estimated performance is within Ry 4x
(or the maximum allowed parallelism is reached).

This approach is quite simple to analyze and implement. How-
ever, setting a proper performance constraint on each function may
not be straightforward, as users’ requirements are usually specified
at level of whole processing pipelines.

4.2.2 Application response time requirements. If the maximum re-
sponse time requirements are specified at level of whole paths in
the application DAG (hence, queries), we need to use (4) to evaluate
the total average response time, given a parallelism configuration.
The planning algorithm we use again relies on a heuristic approach.
The algorithm, when executed, classifies paths in the application
graph into different groups, based on the estimated response time
along them. Paths along which the response time will exceed Rpax
are considered for scale-out. In this case, the function with largest
estimated response time in the path is selected for the scale-out.
Paths along which the response time is between Ry, 4x and a fraction
a € (0,1) of it are not considered for scaling. Paths with response
time smaller than aRyqx are considered for scaling in. In particular,
the function with lowest estimated response time among those
running more than a single instance (if any) is selected for the
scale-in.

4.3 DS2 Approach

We also consider and implement the auto-scaling policy named
DS2 that is presented in [13] and has been successfully integrated
in different DSP frameworks, including Heron and Flink. DS2 aims
at overcoming the limitations of simple threshold-based scaling
policies, as well as other methodologies based on coarse-grained
monitoring information. Conversely, DS2 relies on accurate char-
acterizations of the operator processing rates to ensure adequate
resource provisioning to sustain the incoming data flows.

In particular, DS2 tries to measure the true processing rate of each
operator, observing that actual operator throughput is influenced
by external factors, such as the maximum output rate of upstream
operators. To do so, DS2 relies on fixed-length observation windows
W. Within each window, DS2 measures the useful time of each
operator W, that is the amount of time the operator spends de-
serializing input data, processing them, and serializing output data.

S ZX PULSAR
I YR

n o -
ResizeFn 60% @ B Object
V - Class
\ ("] TensorFlow
! . > RecognitionFn
(.

v ResizeFn 20%

Figure 3: Reference application, which processes a stream of
images.

Based on this and other measurements, DS2 computes the op-
timal parallelism level for the i-th operator 7; as the ratio of the
aggregated true output rate of its upstream operators (assuming
that they keep up with their inputs) to the average true processing
rate per instance of operator i. Overall, DS2 requires a single visit of
the application DAG to compute the parallelism of every operator.

5 EVALUATION

In this section, we present the experiments we performed to evalu-
ate the auto-scaling mechanisms we implemented and the consid-
ered policies.

5.1 Experimental Setup

We deploy Pulsar on top of a Kubernetes cluster running in the
Cloud, relying on the Elastic Kubernetes Service provided by AWS.
The cluster we use is made of 4 computing nodes, corresponding to
t3.xlarge EC2 instances. One node hosts the services associated
to ZooKeeper, BookKeeper and the brokers, along with Grafana
and Prometheus, which are used for monitoring. The remaining
three nodes host the Function Workers.

For the experiments we consider a reference application that
processes streams of images. Input images are published to a Pulsar
topic. The application, whose topology is depicted in Fig. 3, creates
two resized copies of each image, by means of two functions. While
one copy is stored to disk, the other one is the input for an object
recognition function, which relies on a pre-trained TensorFlow
model.

The inter-arrival times for the input data units are generated
randomly according to Exponential distributions. In each experi-
ment, we consider a sequence of 10-minute intervals in which the
average arrival rate is kept constant. The arrival rate is changed
across different intervals, to evaluate how the system self-adapts to
the workload variations — as illustrated in Fig. 4.

We use the following parameters for the auto-scaling policies.
The invocation period for the analysis and planning phases of
the MAPE loop, as well as the observation window W of the DS2
approach, is set to 30 seconds. For the threshold-based policy, we
set the queue length threshold values as T;,=50 tuples and Ty =
150 tuples. For the queueing-based policy, we require the response
time along both the paths in the application DAG to be kept within
1s. The maximum parallelism level for each function is set to 15.

Input Data Rate
(tuple/min)

0 20 40 60 80 100
Time (min)

Figure 4: Workload used in the experiments.

250

Resize2 mmm
Thresholds

Resize1
| Recognition

200

150

100 |

50

Topic Backlog Size

0

0 20 40 60 80 100
Time (min)

Figure 5: Input queue length for the different functions
when using the threshold-based policy.

5.2 Results

We first consider the threshold-based auto-scaling policy. This pol-
icy keeps the amount of queued data for each function within the
given thresholds values. Figure 5 shows the backlog size of the input
topic of each function in the application throughout the experiment
(the only function showing a significant amount of queued data is
the object recognition one though). We can see that every time the
queue length grows beyond the upper limit value, the system reacts
and brings it back under control. In Fig. 6, we report the measured
application response time and the total number of active function
instances. As regards the response time, we only show the results
related to the application path involving the object recognition
function, as the computational load along the other path was much
lower.

The total number of active function instances varies between
3 (one per operator) and 7 in this experiment, with an average of
3.5 running instances. The threshold-based policy manages to keep
the backlog size within the specified thresholds. However, as most
rule-based scaling policies, it does not provide guarantees on the
perceived response time, which is 23s on average, with a peak value
of 74s. Clearly, the used thresholds can be tuned to obtain different
scaling behaviors, if the observed response time is not acceptable
for the users. Nonetheless, such manual tuning process is far from
ideal for systems hosting multiple applications, each likely subject
to different performance requirements.

80

D
5 60"
€
40 |
o)
@ 20!
o
0
0 20 40 60 80 100
15 f
7]
S 10}
IS
2 5 e A .
0
0 20 40 60 80 100

Time (min)

Figure 6: Results with the threshold-based policy.

3
©
(0]
g 2
'_
%’1
(0]
o

0

20 40 60 80 100

o

Instances
o o o o
O

N
o

40 60 80 100
Time (min)

Figure 7: Results with the queueing-based policy.

Differently from the threshold-based approach, the queueing-
based policy takes users’ requirements as input and, specifically, the
maximum desired response time. We verify what happens using a
strict average response time requirement and, specifically, 1 second.
The results of this experiment are reported in Fig. 7. We can note
that the policy manages to satisfy the performance requirement,
with the average measured response time being 1.03s. In general,
the response time never exceeded 3s. Increased performance comes
at the price of higher resource usage, as the policy keeps 5 active
instances for most the experiment duration.

We also evaluate the presented auto-scaling solution using the
DS2 policy from [13]. Similarly to the threshold-based policy, this
approach is unaware of users’ response time requirements. How-
ever, differently from the rule-based policy, DS2 does not require
the specification of threshold values, which can be difficult to tune.
Figure 8 shows the results of this experiment.

30
e
.‘é’ 20 1
|_
S 10]
o
e |
0 T =
0 20 40 60 80 100
15]
)
2 10 1
8
2 s |
0
0 20 40 60 80 100
Time (min)

Figure 8: Results with the DS2 policy.

DS2 runs 4.5 function instances on average, slightly less than
the queueing-based policy. The measured average response time
in this case is 2.7s, much better than the simple threshold-based
approach. However, we also observe response time peaks up to 26s.
Therefore, this policy provides very good performance on average.
Unfortunately, it does not allow response time requirements to be
specified and taken into account when planning scaling actions.

Independently from the policies, it is worth noting that the im-
plemented scaling solution allows parallelism adjustments to be
enacted with negligible overhead and, in particular, with not sig-
nificant interruption of the ongoing processing. This is a major
advantage compared to the often large overhead required by opera-
tor scaling in distributed DSP frameworks (see, e.g., [3, 4]).

6 RELATED WORK

Processing unbounded data sets, once deployed DSP applications
usually execute for an indefinite amount of time. As such, applica-
tions likely face different working conditions and workloads over
time, which require self-adaptation capabilities in order to keep a
consistent service level over time. For this reason, it is not surprising
that researchers have spent a lot of effort studying the integration of
adaptation mechanisms in DSP systems [22], especially as regards
run-time resource and deployment management [16].

Because of the workload variability that often characterizes DSP
applications, among the available adaptation mechanisms, special
attention has been reserved so far to operator auto-scaling [6, 25],
which allows DSP systems to elastically acquire and release comput-
ing resources as needed. In particular, operators can be scaled either
horizontally (i.e., changing their parallelism level) or vertically (i.e.,
adjusting resource allocation to operator instances, without altering
their number).

The majority of the existing approaches focus on horizontal oper-
ator scaling, as we also do in this work. Horizontal operator scaling
allows application to exploit the parallelism offered by modern
distributed infrastructures. However, operator scaling implementa-
tion also poses a few challenges, especially in presence of stateful

operators. Indeed, in order to preserve stream and state integrity,
parallelism adjustments require specific reconfiguration protocols,
which often cause significant overhead (see, e.g., [3]). For this rea-
son, researchers have studied enhanced mechanisms to reduce
scaling overhead and enable seamless elasticity (e.g., [27, 28]), as
we also do in Pulsar.

As surveyed in [25], a variety of techniques have been used to
devise operator scaling policies, including heuristics [10, 13, 24],
control theory [3, 7, 12], queueing theory [17], reinforcement learn-
ing [4, 11]. As regards the architecture adopted for auto-scaling
control, most of the existing approaches rely on centralized con-
trollers (e.g., [10, 12, 17]). A few works consider hierarchical control
schemes, trying to enjoy both the scalability benefits provided by
multiple controllers and the coordination ability of centralized con-
trollers (e.g., [4, 24]). Fully decentralized schemes are the most dif-
ficult to handle because of their potential lack of stability. Nonethe-
less, they have been applied in a few works for auto-scaling (e.g.,
[1, 20]).

A limited number of works have adopted vertical operator scal-
ing so far (e.g., [8, 12, 21]), where the amount of resources allo-
cated to operator instances is adjusted at run-time, rather than
the parallelism level. For this purpose, existing works leverage
various mechanisms, such as CPU frequency scaling [8], OS-level
resource limitation [12] and application-level adaptive thread sched-
uling [21].

A few works (e.g., [18, 19, 26]) have explored multi-level auto-
scaling solutions, aiming to adapt operator parallelism along with
the number of computing nodes in the infrastructure, so as to
reduce operational costs. In Pulsar, it is possible to independently
scale each component (i.e., brokers, bookies and function workers).
Therefore, we will consider multi-level elasticity for future work.

Pulsar as a message queuing system has been analyzed and com-
pared to other competitors in [9], where the authors have put in
evidence Pulsar’s flexibility and the availability of a larger num-
ber of functionalities with respect to the other message queuing
systems. In [15] Khandelwal et al. describe how Apache Pulsar can
be used in tandem with Jiffy, a virtual memory layer for server-
less applications, to enable stateful computation in the serverless
context.

7 CONCLUSION

In this paper we have presented a solution for elastic DSP using
Pulsar Functions, which provide a stream processing framework
on top of Apache Pulsar, a scalable and distributed messaging sys-
tem. We organized our auto-scaling solution according to the MAPE
pattern for self-adaptive systems and extended Pulsar to enable low-
overhead function parallelism adaptation, targeting both stateless
and stateful functions. We integrated different auto-scaling policies
in our solution, exploiting a threshold-based heuristic, queueing the-
ory and an approach from the literature, which had been previously
implemented on top of other DSP frameworks. Our experiments
demonstrate the effectiveness of our solution, which enables elastic
execution of Pulsar Functions.

As all the considered approaches rely on reactive policies, we
plan to extend this work devising proactive auto-scaling policies by
means of workload forecasting. Furthermore, we plan to extend the

auto-scaling functionalities implemented in Pulsar to realize a multi-
level elasticity solution. By integrating mechanisms and policies
for infrastructure-level scaling, we would be able to dynamically
provision function workers as needed.

REFERENCES

(1]

[12]

[13

[14]

[15]

[16

[17]

[18]

[19]

[20]

[21]

[22

M. M. Belkhiria and C. Tedeschi. 2019. A Fully Decentralized Autoscaling Algo-
rithm for Stream Processing Applications. In Euro-Par 2019: Parallel Processing
Workshops - Euro-Par 2019 International Workshops (LNCS, Vol. 11997). Springer,
42-53. https://doi.org/10.1007/978-3-030-48340-1_4

G. Bolch, S. Greiner, H. de Meer, and K. S. Trivedi. 2006. Queueing Networks and
Markov Chains - Modeling and Performance Evaluation with Computer Science
Applications, Second Edition. Wiley.

M. Borkowski, C. Hochreiner, and S. Schulte. 2019. Minimizing Cost by Reducing
Scaling Operations in Distributed Stream Processing. Proc. VLDB Endowment 12,
7 (March 2019), 724-737. https://doi.org/10.14778/3317315.3317316

V. Cardellini, F. Lo Presti, M. Nardelli, and G. Russo Russo. 2018. Decentralized
Self-adaptation for Elastic Data Stream Processing. Future Gener. Comput. Syst.
87 (2018), 171-185. https://doi.org/10.1016/j.future.2018.05.025

G. Cugola and A. Margara. 2012. Processing Flows of Information: From Data
Stream to Complex Event Processing. ACM Comput. Surveys 44, 3 (2012), 15:1-
15:62. https://doi.org/10.1145/2187671.2187677

M. D. de Assungéo, A. Da Silva Veith, and R. Buyya. 2018. Distributed Data
Stream Processing and Edge Computing: A Survey on Resource Elasticity and
Future Directions. 7 Netw. Comput. Appl. 103 (2018), 1-17. https://doi.org/10.
1016/j.jnca.2017.12.001

T. De Matteis and G. Mencagli. 2017. Elastic Scaling for Distributed Latency-
Sensitive Data Stream Operators. In Proc. PDP °17. IEEE Computer Society, 61-68.
https://doi.org/10.1109/PDP.2017.31

T. De Matteis and G. Mencagli. 2017. Proactive Elasticity and Energy Awareness
in Data Stream Processing. 7. Syst. Software 127 (2017), 302-319. https://doi.org/
10.1016/j.jss.2016.08.037

G.Fu, Y. Zhang, and G. Yu. 2021. A Fair Comparison of Message Queuing Systems.
IEEE Access 9 (2021), 421-432. https://doi.org/10.1109/ACCESS.2020.3046503

B. Gedik, S. Schneider, M. Hirzel, and K. Wu. 2014. Elastic Scaling for Data
Stream Processing. IEEE Trans. Parallel Distrib. Syst. 25, 6 (2014), 1447-1463.
https://doi.org/10.1109/TPDS.2013.295

T. Heinze, V. Pappalardo, Z. Jerzak, and C. Fetzer. 2014. Auto-Scaling Techniques
for Elastic Data Stream Processing. In Proc. ICDE ’14. IEEE Computer Society,
296-302. https://doi.org/10.1109/ICDEW.2014.6818344

M. R. Hoseiny Farahabady, A. Jannesari, J. Taheri, W. Bao, A. Y. Zomaya, and Z.
Tari. 2020. Q-Flink: A QoS-Aware Controller for Apache Flink. In Proc. CCGRID
’20. IEEE, 629-638. https://doi.org/10.1109/CCGrid49817.2020.00-30

V. Kalavri, J. Liagouris, M. Hoffmann, D. C. Dimitrova, M. Forshaw, and T. Roscoe.
2018. Three Steps is All you Need: Fast, Accurate, Automatic Scaling Decisions
for Distributed Streaming Dataflows. In Proc. OSDI ’18. USENIX Association,
783-798. https://www.usenix.org/conference/osdi18/presentation/kalavri

J. O. Kephart and D. M. Chess. 2003. The Vision of Autonomic Computing. IEEE
Computer 36, 1 (2003), 41-50. https://doi.org/10.1109/MC.2003.1160055
Anurag Khandelwal, Arun Kejariwal, and Karthikeyan Ramasamy. 2020. Le
Taureau: Deconstructing the Serverless Landscape & A Look Forward. In Proc.
ACM SIGMOD °20. 2641-2650. https://doi.org/10.1145/3318464.3383130

X. Liu and R. Buyya. 2020. Resource Management and Scheduling in Distributed
Stream Processing Systems: A Taxonomy, Review, and Future Directions. ACM
Comput. Surveys 53, 3 (2020), 50:1-50:41. https://doi.org/10.1145/3355399

B. Lohrmann, P. Janacik, and O. Kao. 2015. Elastic Stream Processing with
Latency Guarantees. In Proc. ICDCS ’15. IEEE Computer Society, 399-410. https:
//doi.org/10.1109/ICDCS.2015.48

F. Lombardi, L. Aniello, S. Bonomi, and L. Querzoni. 2018. Elastic Symbiotic
Scaling of Operators and Resources in Stream Processing Systems. IEEE Trans.
Parallel Distrib. Syst. 29, 3 (2018), 572-585. https://doi.org/10.1109/TPDS.2017.
2762683

V. Marangozova-Martin, N. De Palma, and A. El-Rheddane. 2019. Multi-Level
Elasticity for Data Stream Processing. IEEE Trans. Parallel Distrib. Syst. 30, 10
(2019), 2326-2337. https://doi.org/10.1109/TPDS.2019.2907950

G. Mencagli. 2016. A Game-Theoretic Approach for Elastic Distributed Data
Stream Processing. ACM Trans. Auton. Adapt. Syst. 11, 2, Article 13 (2016),
34 pages. https://doi.org/10.1145/2903146

D. Palyvos-Giannas, V. Gulisano, and M. Papatriantafilou. 2019. Haren: A Frame-
work for Ad-Hoc Thread Scheduling Policies for Data Streaming Applications.
In Proc. DEBS ’19. ACM, 19-30. https://doi.org/10.1145/3328905.3329505

C. Qin, H. Eichelberger, and K. Schmid. 2019. Enactment of Adaptation in Data
Stream Processing with Latency Implications—A Systematic Literature Review.
Inf. Softw. Technol. 111 (2019), 1-21. https://doi.org/10.1016/j.infsof.2019.03.006

(23]

[24]

[25]

Karthik Ramasamy. 2019. Unifying Messaging, Queuing, Streaming and Light
Weight Compute for Online Event Processing. In Proc. ACM DEBS ’19. https:
//doi.org/10.1145/3328905.3338224

H. Réger, S. Bhowmik, and K. Rothermel. 2019. Combining it all: Cost minimal and
low-latency stream processing across distributed heterogeneous infrastructures.
In Proc. Middleware ’19. ACM, 255-267.

H. Roger and R. Mayer. 2019. A Comprehensive Survey on Parallelization and
Elasticity in Stream Processing. Comput. Surveys 52, 2, Article 36 (2019), 37 pages.
https://doi.org/10.1145/3303849

G. Russo Russo, M. Nardelli, V. Cardellini, and F. Lo Presti. 2018. Multi-Level
Elasticity for Wide-Area Data Streaming Systems: A Reinforcement Learning
Approach. Algorithms 11, 9 (2018), 134. https://doi.org/10.3390/a11090134

A. Shukla and Y. Simmhan. 2018. Toward Reliable and Rapid Elasticity for
Streaming Dataflows on Clouds. In Proc. ICDCS °18. 1096-1106. https://doi.org/
10.1109/ICDCS.2018.00109

L. Wang, T. Z. J. Fu, R. T. B. Ma, M. Winslett, and Z. Zhang. 2019. Elasticutor:
Rapid Elasticity for Realtime Stateful Stream Processing. In Proc. SIGMOD ’19.
ACM, 573-588. https://doi.org/10.1145/3299869.3319868

https://doi.org/10.1007/978-3-030-48340-1_4
https://doi.org/10.14778/3317315.3317316
https://doi.org/10.1016/j.future.2018.05.025
https://doi.org/10.1145/2187671.2187677
https://doi.org/10.1016/j.jnca.2017.12.001
https://doi.org/10.1016/j.jnca.2017.12.001
https://doi.org/10.1109/PDP.2017.31
https://doi.org/10.1016/j.jss.2016.08.037
https://doi.org/10.1016/j.jss.2016.08.037
https://doi.org/10.1109/ACCESS.2020.3046503
https://doi.org/10.1109/TPDS.2013.295
https://doi.org/10.1109/ICDEW.2014.6818344
https://doi.org/10.1109/CCGrid49817.2020.00-30
https://www.usenix.org/conference/osdi18/presentation/kalavri
https://doi.org/10.1109/MC.2003.1160055
https://doi.org/10.1145/3318464.3383130
https://doi.org/10.1145/3355399
https://doi.org/10.1109/ICDCS.2015.48
https://doi.org/10.1109/ICDCS.2015.48
https://doi.org/10.1109/TPDS.2017.2762683
https://doi.org/10.1109/TPDS.2017.2762683
https://doi.org/10.1109/TPDS.2019.2907950
https://doi.org/10.1145/2903146
https://doi.org/10.1145/3328905.3329505
https://doi.org/10.1016/j.infsof.2019.03.006
https://doi.org/10.1145/3328905.3338224
https://doi.org/10.1145/3328905.3338224
https://doi.org/10.1145/3303849
https://doi.org/10.3390/a11090134
https://doi.org/10.1109/ICDCS.2018.00109
https://doi.org/10.1109/ICDCS.2018.00109
https://doi.org/10.1145/3299869.3319868

	Abstract
	1 Introduction
	2 Overview of Apache Pulsar
	2.1 Architecture
	2.2 Pulsar Functions

	3 Auto-Scaling of Pulsar Functions
	4 Auto-Scaling Policies
	4.1 Threshold-based policy
	4.2 Queueing theory-based auto-scaling
	4.3 DS2 Approach

	5 Evaluation
	5.1 Experimental Setup
	5.2 Results

	6 Related Work
	7 Conclusion
	References

