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Abstract. The Service-Oriented Architecture (SOA) paradigm supports
a collaborative business model, where business applications are built from
independently developed services, and services and applications build up
complex dependencies. Guaranteeing high dependability levels in such
complex environment is a key factor for the success of this model. In
this chapter we discuss issues concerning the design of such software sys-
tems, evidencing the limits of the proposed approaches, and suggesting
directions for advancements in this field. Moreover, we also discuss issues
concerning the case of self-adaptive SOA systems, whose goal is to self-
configure themselves, to cope with changes in the operating conditions
and to meet the required dependability with a minimum of resources.

1 Introduction

We are witnessing an increasing trend toward globalization and com-
petition, where enterprises retain only core competencies, and rely on
external partners for carrying out their business. Advances in Internet-
based communications have provided the technological support for this
collaboration process. As a result, today’s business processes are cross-
organizational in nature, involving extended partners of enterprises in-
cluding, for example, suppliers, partners, and dealers.
One of the key motivations for this trend is the need for enterprises
to achieve business agility, i.e., the capacity of responding in a timely
and effective way to changes in business models, business opportunities,
and market conditions. Enterprise thus interact according to Collabora-
tive Business Processes (CBPs) [25,1], that orchestrate their activities to
achieve some specific goal.

∗The original publication is available at http://www.springerlink.com/ in Business
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Generally, a CBP could include both fully automated and human ac-
tivities, e.g., a loan approval process typically includes human steps.
However, in this chapter we will focus on CBPs defined and executed
as an orchestration of fully automated software services. Similarly to
us, other chapters in this book consider only business processes realized
through fully-automated software services [3,28,36]. On the other hand,
the chapters by Badr et al. [7] and Dubois et al. [20] take into account
the incorporation of humans in service-based applications: the first in the
context of knowledge-intensive business service firms, the latter to cap-
ture business requirements. Friesen et al. [21] discuss the differences and
relationships between the business layer of a CBP, where the activities
mostly involve humans, and the ICT layer of a CBP, where the software
aspect is prevalent.
The Service Oriented Architecture (SOA) paradigm provides the archi-
tectural guidelines for software systems able to support a collaboration-
based business model, as it emphasizes the construction of software sys-
tems through the dynamic composition of network-accessible services
offered by loosely coupled providers. To be effective, a SOA-based im-
plementation of a CBP must be able to guarantee some overall Quality
of Service (QoS) level to the CBP users. In this chapter, we focus on the
QoS facet concerning the dependability of a software system implement-
ing a given CBP, expressed both in terms of its availability (probability
that the system is accessible to its users) and of its reliability (probability
to successfully carry out the task connected to a given request, within a
suitable maximum time frame) [6,47]. Guaranteeing a high dependabil-
ity level for a given SOA-based CBP implementation is a key factor for
its success in the envisioned competitive world, where different imple-
mentations may co-exist with different QoS and cost attributes [8,29].
Thus, in this chapter we discuss issues concerning the realization of a
SOA system that implements a collaborative business process, with the
goal of meeting some specified dependability requirements.
In this respect, we note that such a system will typically operate in an
evolving environment, where providers may modify the exported services,
new services may become available, existing services may be discontinued
by their providers. A promising way to cope with these issues is to make
the system able to self-configure in response to changes in its environment
(e.g., available resources, type and amount of user demand). In this way,
the system can timely react to (or even anticipate) environment changes,
trying to use at best the available resources, thus avoiding long service
disruptions due to off-line repairs [17]. Hence, we also include in our
discussion issues concerning the realization of a dependability-driven self-
configurable SOA system.
Methodologies to assess the QoS of a SOA system and to drive its self-
configuration have been already presented. Some of them specifically
focus on the fulfillment of dependability requirements (e.g., [22,49]),
while others consider multiple QoS attributes including dependability
(e.g., [5,10,12,15,14,35,46,47]). Most of these methodologies base the self-
configuration on the runtime selection for each CBP task of a single ser-
vice that implements it, to which that task will be dynamically bound.
The methodologies presented in [15,14,22,49] extend this idea consider-



ing the possibility of selecting at runtime redundant implementations
for each CBP task, based on existing functionally equivalent services, to
improve the system ability to meet a given dependability requirement.

However, these proposals are based on assumptions (often only implicitly
stated) that restrict the class of CBPs they can be applied to. For exam-
ple, they generally do not consider the case of long-running CBPs made
of multiple atomic transactions with possibly different dependability re-
quirements. Moreover, when redundancy-based implementations are con-
sidered for CBP tasks, they do not discuss the impact that different fail-
ure modes could have on the effectiveness of these implementations, thus
basically assuming a single failure mode.

Building upon these proposals, in this chapter we present a general mod-
eling framework to architect a dependability-driven SOA system that
implements a CBP with, possibly, self-configuration features. The frame-
work allows us to take into account in a unified way:

– CBPs consisting of multiple transactions;

– different CBP utilization scenarios (single user requests versus sus-
tained flow of requests generated by different users);

– different failure modes for the partners of a CBP;

– CBPs with stateless/stateful tasks.

– CBPs with centralized/distributed self-configuration management.

The chapter is organized as follows. In Sect. 2 we present a reference
model of CBP that we use as basis for our discussion on dependability-
driven CBP configuration. In Sect. 3 we discuss configuration actions
that can be performed to meet dependability goals of a CBP. In Sect. 4
we outline the mathematical formulation of a system model that can be
used to drive the configuration of the CBP and discuss related issues. In
Sect. 5 we discuss issues concerning the design of an architecture that
can support the self-configuration of a SOA system and describe some
decentralization issues regarding the architectural style of the system.
Finally, Sect. 6 concludes the chapter.

2 Model

In this section, we define the CBP model we refer to, the failure model
we consider in our discussion about dependability impairments, and the
contract model used for the specification of the respective obligations
and expectations of service users and providers.

2.1 Collaborative Business Process Model

An abstract CBP consists of:

– a set of tasks;

– a set of roles;

– a set of atomic transactions;

– a collaboration scheme.



In this definition, each role consists of one or more tasks that must be
performed to carry out the collaboration. In a SOA based implementa-
tion, we assume that a task corresponds to the execution of an operation
belonging to some service interface1. The roles define a partition of the
overall set of tasks. We assume that the partitioning of tasks into differ-
ent roles implies the existence of some kind of logical relationship among
tasks belonging to the same role, that actually corresponds to the shar-
ing of some state information. According to this model, a task that has
not any such relationship with other tasks of the CBP corresponds to a
role consisting of that task only.
Tasks are also partitioned into distinct atomic transactions, where all the
tasks belonging to the same transaction must be executed according to an
all-or-nothing rule. Typically, an atomic transaction consists of a subset
of the overall set of CBP tasks, possibly belonging to different roles, that
engage in a short-running collaboration. Thus, an overall short-running
CBP corresponds to a single atomic transaction, but, in general, we want
to consider long-running CBPs consisting of several atomic transactions,
that possibly need not to be all successfully completed, or completed
within a single time window, to consider the overall CBP successfully
completed [33].
Finally, the collaboration scheme specifies how the tasks are composed,
according to some composition rules. Typical composition rules are: (i)
sequence, (ii) conditional selection, (iii) loop, and (iv) parallel.
To make clearer the meaning of the different elements of this CBP model,
we propose in Tables 1 and 2 a mapping from these elements to the spe-
cific terminology of two well-known languages for CBP specifications, the
Web Service Choreography Description Language (WS-CDL, [41]) and
the OMG’s Business Process Modeling Notation (BPMN, [31]), which is
becoming the de-facto standard for modeling intra-organizational pro-
cesses. For a comprehensive overview of business process modeling lan-
guages, we refer the reader to [27], while we refer to [19] for an identifi-
cation of the key requirements of service choreography languages, along
with their assessment.
To be actually carried out, an abstract CBP must be mapped to a con-

crete CBP that implements it, consisting of:
– a set of participants
– a set of concrete tasks

– a task-to-implementation mapping

Each participant provides services (concrete tasks) that implement tasks
belonging to one (or possibly more) of the specified roles. The task-

to-implementation mapping maps each task of the abstract CBP to an
implementation based on the services offered by the CBP participants.
Given the meaning of a role in the CBP model we are considering, we
assume that any such mapping must satisfy the following constraint:
tasks belonging to the same CBP role must be bound to services offered

by the same participant.

1We note that the user (or client) of a given CBP can be considered as a special
case of role. Tasks belonging to this role could include starting the CBP, and collecting
some final result.



Table 1. Abstract model concepts and mapping with the constructs of WS-CDL and
BPMN

abstract model WS-CDL BPMN

task activity Activity

role roleType PartnerRole

atomic transaction workunita Transaction

a Transactions are not explicitly addressed
in WS-CDL, but some facility can be used
to satisfy some basic transaction proper-
ties [39].

Table 2. Composition rules of the abstract model and mapping with the constructs
of WS-CDL and BPMN

Rule WS-CDL BPMN

sequence sequence Sequence Flow

structured loop repeat and guard Activity Looping,
attributes of workunit Sequence Flow Looping

conditional selection choice Exclusive Gateway

parallel parallel Parallel Gateway (fork and join)

As an example of the rationale for this constraint, think for example of
a Provider role in some e-commerce CBP, that includes the orderFul-

fillment and the associated Shipping tasks. It would make little sense to
assign the former task to one participant, and the latter one to a different
one, which has received no order (and no money!) for the good it should
deliver.
The discussion of how to devise dependability-driven methodologies for
the definition, possibly in an automatic way, of mappings from an ab-
stract CBP to a suitable concrete CBP, is the main goal of this chap-
ter. Besides fulfilling some dependability (and cost) requirements, the
methodologies we consider aim also at maximizing some suitable utility
function. We also discuss issues related to the use of such methodologies
to support the self-configuration of the overall system implementing the
CBP. In this case, the system is intended to define by itself at runtime
the mapping between each task of the abstract CBP and some corre-
sponding implementation, dynamically modifying this mapping if some
change occurs that makes the previous mapping no longer suitable for
the new environment.

2.2 Failure Model

Software systems may fail according to different failure modes. These
failure modes can be characterized with respect to different viewpoints
(we refer to [6] for a thorough discussion of this issue). With respect to
the failure domain viewpoint, some relevant failure modes are:



– content failures, where the content of the service output deviates
from the correct one, given the input provided to the service;

– timing failures, where the delivery time of the service output deviates
from the correct one, given the time when input was provided to the
service;

– halt failures, where no response is received at all (they could be
considered as simultaneous content and timing failures).

Given these domain-based failure modes, a useful mode-dependent de-
pendability measure can be defined as follows:

– reliability : the probability that, when invoked, the service completes
its task correctly with respect to a given failure mode2.

On the other hand, a mode-independent dependability measure is defined
as follows:

– availability : the probability that the service is accessible and ready
to accept user requests.

We note that, according to these definitions, reliability implies availabil-
ity, in the sense that that to deliver a correct output the system must
be available and ready to accept the corresponding input. On the other
hand, availability does not necessarily imply reliability, as accepting an
input does not guarantee that the corresponding output will be correct.
With respect to the detectability viewpoint, relevant failure modes are:
– signaled failures, where some detection system is able to check the

correctness of the delivered service;
– unsignaled failures, where such a detection system does not exist.

Considering the detectability viewpoint, we assume that, in a SOA envi-
ronment, it mainly refers to the ability of an external observer (different
from the service provider: it could be, for example, the service user) to
detect the occurrence of a failure during the execution of a service. De-
tecting a timing or halt failure is straightforward for such an observer,
and hence we can assume that they are always signaled. More question-
able could be to assume that content failures are always signaled, as it
could not be simple for the external observer to devise some function able
to check the correctness of the delivered output (in that case, it can only
rely on the ability and willingness of the service provider to signal such a
failure). We further discuss this issue in the next subsection on contract
definition, from the viewpoint of the measurability of the dependability
measures defined above.
Finally, with respect to the consistency viewpoint, relevant failure modes
are:
– consistent failures, where all the service users perceive the same (cor-

rect or incorrect) output;
– inconsistent failures, also known as Byzantine failures, where differ-

ent users may perceive different kinds of output.

2This measure is called successful execution rate in [47].



2.3 Contract Definition

The overall dependability and cost of a particular concrete CBP depend
on the dependability and cost of the services provided by the CBP par-
ticipants. In our framework, we assume that the involved parties regulate
their interactions and state the required dependability and cost values in
a Service Level Agreement (SLA), i.e., a contract that explicitly states
the respective obligations and expectations [18]. This contract specifies
the conditions for service delivery, its cost, duration, and penalties for
non-compliance.
The SLA model we consider is related to the CBP model presented in
Sect. 2.1, where we have assumed that a CBP is partitioned into a set
of transactions. We may think that, in general, not all the transactions
within a CBP require the same type of dependability guarantees: some of
them could correspond, for example, to “optional” parts of a CBP that
are not strictly required for the overall CBP to be considered success-
fully completed. For example, this could be the case of a travel insurance
transaction within a travel planner CBP, which could be only option-
ally required by a user of this CBP. Hence, the SLA model we consider
consists of:

– a global SLA, stating requirements for the overall CBP implementa-
tion;

– a set of local SLAs, one for each transaction of the CBP, where each
SLA states requirements for the corresponding transaction.

In general, a SLA definition may include a large set of parameters, refer-
ring to different kinds of functional and non-functional attributes of the
service/process it refers to, and different ways of measuring them (e.g.,
averaged over some time interval) [18,40]. In this chapter, we focus on
dependability requirements, concerning reliability and availability, and
the corresponding cost the user is willing to pay for them. Hence, the
SLA definition we consider includes the following parameters (for both
the local and global SLAs):

– amin: a lower bound on the transaction/CBP availability expected
by its user;

– rmin: a set of lower bounds on the transaction/CBP reliability ex-
pected by its user (one bound for each different failure mode consid-
ered in the SLA);

– c: the unitary service cost paid by a transaction/CBP user for each
submitted request.

For a dependability parameter to be included in a SLA, it should neces-
sarily be measurable by all the parties involved in the SLA (or by some
trusted third party), to avoid disputes about non compliance. In this
perspective, we note that the act of submitting a request to a service
directly implies for the submitting entity (the service user) the possibil-
ity of detecting the occurrence of a timing or halt failure, and, provided
that a suitable checking function exists, also the occurrence of a con-
tent failure. This means that reliability with respect to halt and timing
failures (and content failures, with the indicated limitation) is a directly
measurable dependability attribute for both the provider and the user of
a service. Hence, it can be safely introduced in a SLA between service



user and provider. On the other hand, availability can be hardly de-
tected in the absence of an explicit request addressed to a service, or an
explicit notification from the service itself of its transitions between the
available/unavailable states. We should note that addressing requests to
a service just to check its availability, without any actual need of that
service, could be too costly for several reasons. Hence, the inclusion of
availability in a SLA should be carefully considered. We refer to [38] for
a thorough discussion about these issues.
The global SLA associated with an overall CBP also includes the follow-
ing item, besides the dependability attributes listed above:
– a logical predicate on the successful/unsuccessful completion of the

CBP transactions, stating transaction completion patterns that cor-
respond to the successful completion of the overall CBP.

The logical predicate is specified using some suitable logic notation, from
simple Boolean operators to more expressive notations, like some kind
of temporal logic (e.g., LTL [34]).
We have outlined in the introduction that two different utilization sce-
narios could be considered, corresponding to a single request addressed
by a user, or an entire flow of requests addressed by one or more users. In
the former case, the SLA parameters mentioned above refer to the single
request under consideration, irrespective of other requests concurrently
addressed to the same system. In the latter case, amin and rmin must be
intended as calculated over the entire flow of requests, while c still refers
to the cost for each request in the flow3.
For the “flow of requests” utilization scenario, it seems quite unreason-
able to state in a SLA dependability and cost requirements irrespective
of the load generated by the user. Hence, for this scenario, we assume
that the SLA also includes the following additional parameter:
– L: an upper bound on the load the user is allowed to submit, ex-

pressed in terms of average rate of requests (requests/time unit).
We assume that the parameters of a SLA defined according to this model
are the result of a negotiation between each prospective user of the CBP
or of some of its parts (i.e., some specific transaction of that CBP) and
the configuration entity that manages it. Hence, several SLAs of this
kind can co-exist at a given time interval and may have, in general,
different values for these parameters. However, it is possible that the
managing entity proposes to the CBP/transaction4 user(s) a predefined
set of differentiated service levels, to drive the user indication of a service
level.
All these co-existing SLAs define the dependability objectives that the
CBP managing entity must meet in that interval, provided that (in case
of the “flow of requests” scenario) the flow of requests generated by the
users in that interval does not exceed the limits stated by the L values in
the existing SLAs. Moreover, they also define the expected cost for the

3Alternatively, c can also correspond to the flat price for the overall flow of requests.
4To simplify the notation, in the following we will write CBP rather then

CBP/transaction, when we discuss issues that applies to CBPs as well as to single
transactions of a CBP. However, unless explicitly specified, it should be intended that
our discussion concerns both of them.



the CBP use (and, correspondingly, the expected income for some CBP
“owner”).
To meet these objectives, the CBP managing entity must try to exploit
at best the services provided by the CBP participants. To this end, we
assume that a SLA has been negotiated with each of these participants,
stating the QoS and cost parameters of each service they offer to im-
plement some CBP task. As, in general, these services are opaque (their
internal organization is not known), they can be considered equivalent
to a single transaction. Hence, the SLAs negotiated with their providers
are defined according to the local SLA model presented above.
The set of all these SLAs defines the constraints within which the CBP
managing entity can organize a suitable (self-)configuration policy able
to meet the SLA negotiated with the CBP users.

3 Configuration Actions

We discuss in this section the configuration actions that can be performed
by the managing entity of a SOA system implementing a given CBP, to
make it able to meet the dependability requirements of its users, stated
in their SLAs.
Each request addressed by a user generates a corresponding set of one (or
more) request(s) for each CBP task. To configure a SOA system means to
bind these latter requests to suitable concrete implementations, based on
services provided by the CBP participants. Hence, to devise an effective
configuration policy we have to consider the following two issues: (a)
identification of a set of possible concrete implementations for each CBP
task; and (b) selection within this set of the implementation better suited
to meet a given dependability requirement. We discuss these two issues
in the following two subsections, respectively.

3.1 Task Implementation

Several existing methodologies only consider implementations consisting
of a single service provided by some CBP participant ([5,10,12,35,46,47]).
In this case, the set of possible implementations for a given task corre-
sponds to the set of functionally equivalent services implementing that
task, provided by the (candidate) CBP participants.
However, it is possible that a user arrives with high dependability re-
quirements, which cannot be satisfied by any single service. Rather than
rejecting this user (which could cause an income loss and/or a reputation
decrease), other possible actions could be tried:

1. to identify additional participants, implementing the same task with
higher dependability;

2. to “increase” the dependability which can be attained exploiting the
services provided by the already identified participants.

The former action has two drawbacks. It requires additional effort to
discover such participants and negotiate with them suitable SLAs. Worse
yet, such participants could not even exist.



The latter action does not suffer from these drawbacks. It is based on
the idea of using redundancy schemes to get a dependability level higher
than that guaranteed by each single service, at the expense of a higher
cost (basically equal to the sum of the costs of all the invoked services).
According to these schemes, a request for a task is logically bound to
a set of two or more services implementing it (coordinated according
to some redundancy pattern), rather than to a single one. The full po-
tential of this approach can be exploited in a SOA environment where
more participants are available, providing different implementations for
the same task [16]. However, it can also be exploited in a more limited
form when only one participant is available, that offers an implementa-
tion for a specific task. In this respect, we point out that, according to a
service-oriented perspective, we are talking here of redundancy schemes
implemented and managed by some entity external to each service, to
get a dependability level higher than that guaranteed by the provider of
that service. The provider of each service could use as well redundancy
schemes for its internal implementation of that service, to get that de-
pendability level, but their use is hidden to an external observer (that
hence cannot control their configuration).
In this chapter, we consider the following redundancy schemes for the
implementation of CBP tasks, assuming that they are sufficiently repre-
sentative for a discussion of some relevant issues (we refer to [45,16,49]
for a more thorough description of redundancy schemes in a SOA envi-
ronment):
– local retry : sequentially repeated execution of a task by the same

participant (up to a pre-defined maximum), until correct service is
delivered, or the maximum number of executions is reached5;

– non-local retry : sequentially repeated execution of a task by differ-
ent participants, until correct service is delivered, or the number of
different participants is reached;

– parallel-or : parallel execution of a task by different participants, tak-
ing as result the first delivered correct output;

– majority voting : parallel execution of a task by different participants,
taking as result the output delivered by the majority of the partici-
pants.

Given these redundancy schemes, we can formalize as follows the set
of implementations we can potentially consider for a task Ti belonging
to a given CBP. Let us denote by Ki = {ki1, ki2, . . . , kini

} the set of
functionally equivalent services implementing Ti, provided by the CBP
participants. The overall set of all the possible implementations for Ti

can be described as the union of the following sets:
– local retry : the set k+

i of all the sequences kn
ij (kij ∈ Ki, n ≥ 1);

a given sequence kn
ij means that service kij is tried sequentially at

most n times;
– non-local retry : the set K+

i of all the ordered lists of elements be-
longing to Ki, where each element appears at most once (excluded
the empty list); a given sequence means that the listed services are
tried sequentially starting from the first one;

5This technique is the only one that can be meaningfully used when only one
participant is providing the implementation of a given task.



– parallel-or : the set Kpar
i of all the subsets of elements belonging to

Ki (excluded the empty set); a given subset means that services in
it are activated in parallel;

– majority voting : the set Kvot
i of all the subsets of elements belong-

ing to Ki with odd cardinality (greater than or equal to three); a
given subset means that services in it are activated in parallel, with
majority voting on the delivered results.

Existing methodologies for the dependability-oriented self-configuration
of SOA systems (e.g., [15,14,16,22,24,49]) consider the whole union of
these sets (or some variant of it, depending on the considered redun-
dancy schemes) as the set from which an implementation of a given task
should be selected. They basically drive the selection process by identify-
ing within this set the subset of those implementations able to guarantee
the required dependability level, and then discriminating among differ-
ent dependability-equivalent implementations only on the basis of the
respective cost (and possibly performance penalty). As an example, for
the same dependability level, a non-local retry implementation costs less
than a parallel-or implementation, as it involves on the average the use
of less services, but causes on the average a higher task completion time.

However, the union of the sets listed above only describe potential im-
plementations of a CBP task. Existing methodologies do not take into
account some relevant issues, that can actually lead to a restriction of the
set of possible implementations to be considered for a given task. They
concern the effectiveness of the considered redundancy schemes with re-
spect to different failure modes, and their utilization in the presence of
stateful tasks (that, in our CBP model, correspond to tasks belonging to
the same multi-task role). We discuss below these two issues.

Redundancy Schemes under Different Failure Modes As
discussed in Sect. 2.2, failures that occur in a system and affect its de-
pendability can be classified according to several modes. Different re-
dundancy schemes may have different effectiveness, depending on the
failure mode they have to cope with. Table 3 summarizes the effective-
ness of the considered redundancy schemes with respect to the failure
domain viewpoint. In this respect, we point out that both the retry and
parallel-or schemes are based on the ability of explicitly detecting the
occurrence of a failure. As discussed in Sect. 2.2, this ability could not
be guaranteed in a SOA environment for content failures, contrarily to
timing and halt failures. As a consequence, we have remarked in Table
3 the possibly limited effectiveness of these two redundancy schemes for
content failures.

Besides this, we also remark that the local-retry scheme is actually ef-
fective only in case of short transient failures of a service (in case of long
service disruption, it makes no sense to try again with that same service).
Hence, unless there is only one participant implementing that task (in
that case no other scheme can be used), it could be better to prefer the
other schemes, that exploit the design/implementation diversity offered
by different participants.



Finally, we point out that none of the redundancy schemes considered
here is able to cope with inconsistent failures in a SOA distributed en-
vironment. In this case, other, Byzantine-tolerant techniques should be
used (e.g., [48]).

Table 3. Redundancy schemes with respect to some failure domains

content failure timing failure halt failure

local retry effective only if sig-
naled; ineffective if
unsignaled

ineffective (as it adds
additional delays)

effective provided
that it does not
violate timing re-
quirements

non-local retry effective only if sig-
naled; ineffective if
unsignaled;

ineffective (as it adds
additional delays)

effective provided
that it does not
violate timing re-
quirements

parallel or effective only if sig-
naled; ineffective if
unsignaled

effective effective

majority voting effective effective (but more
costly than parallel-
or)

effective (but more
costly than parallel-
or)

Redundancy Schemes with Stateful Tasks We recall from Sect. 2.1
that we have assumed that all the tasks belonging to the same role form
a set of related stateful tasks, sharing some state information. Let us
consider a set of tasks belonging to the same role, to be sequentially exe-
cuted, and let us assume that for one of these tasks an implementation is
selected based on the non-local retry scheme. If the j-th invoked service
implementing the task succeeds, we are forced to use one implementation
provided by the same participant for the next task of that role, accord-
ing to the stateful assumption. Hence, it is infeasible to adopt also for
that next task a non-local retry scheme, to get a higher dependability
level. Analogous considerations hold for the other considered redundancy
schemes, except for local retry.
To the best of our knowledge, only the methodologies proposed in [5,14,50]
consider explicitly this issue. In [14] we deal with it by simply excluding
at all the possibilities of using redundancy schemes involving multiple
providers to improve the dependability of related stateful tasks.
If we want instead to exploit such schemes also for stateful tasks, we
should probably adopt a “per role” viewpoint, instead of the “per task”
viewpoint adopted by all the existing methodologies we are aware of. This
means that we should select different participants, asking each of them
(in sequence or in parallel, depending on the redundancy scheme) to ex-
ecute the whole set of tasks of a given role. To pursue this approach, it is
necessary: (a) at the methodological level, to extend existing methodolo-
gies based on the “per task” viewpoint, to compositionally calculate the



whole dependability of a CBP implementation, based on the dependabil-
ity of each whole role implementation; and (b) at the architectural level,
to coordinate the interactions of different participants implementing the
same role with other tasks involved in the same transaction.

3.2 Task Implementation Selection

Based on the considerations discussed above, the CBP managing entity
identifies the actual set of possible implementations to be considered for
each task Ti of a given CBP. Once these sets have been identified, the
managing entity configures the CBP by determining a suitable task-to-

implementation mapping. This corresponds to selecting within these sets
the implementation of each Ti, taking into account the SLA negotiated
with the CBP user(s), and the SLA negotiated with the CBP participants
providing the kij ’s services. According to the SLA model outlined in
Sect. 2.3, the SLA negotiated with the provider of a service kij can
be denoted by the tuple 〈aij , [rij ]

∗, cij , (Lij)〉, as it corresponds to a
single transaction. In this tuple, aij is the agreed on bound on the kij
availability, [rij ]

∗ is a list of agreed on bounds on its reliability with
respect to a given list of different failure modes, cij is the service cost,
and Lij is the bound on the load the user is allowed to submit to the
service.
Analogously, the SLA negotiated with a user u can be denoted by a
set of tuples 〈au

t , [r
u
t ]

∗, cut , (L
u
t )〉, defining the local SLAs (one per each

transaction t belonging to the CBP), plus a tuple 〈au, [ru]∗, cu, (Lu), P 〉
defining the global SLA, where P is the predicate on the transactions
completion introduced in Sect. 2.36.
For the sake of generality, we are assuming in these schemes that each
CBP participant could manifest different failure modes, and provide pos-
sibly different dependability guarantees for each of them. Correspond-
ingly, a user could have different dependability requirements with respect
to different failure modes. If this information is missing, the managing
entity could make, for example, more or less conservative assumptions
about the failure mode it should cope with, depending on the depend-
ability level it is willing to achieve.
The implementation selection performed by the CBP managing entity ac-
tually corresponds to two different actions, depending on the envisioned
utilization scenario.
In a single request scenario, where the dependability requirements of a
single request addressed to the CBP must be fulfilled, the implementation
selection corresponds to a 0-1 choice of one implementation for each task,
from the available ones.
In a flow of requests scenario, instead, we have to consider simultane-
ously all the requests belonging to the flow generated by each CBP user.
Hence, the implementation selection action corresponds in this case to
determining, for each CBP task, which is the fraction of the overall set

6In the SLA templates, we put in parentheses Lij , L
u
t and Lu as these parameters

could be absent in a SLA concerning a single request.



of requests generated for that task by a user that will be bound to a
given concrete implementation.
For this scenario, we point out that, as the CBP managing entity could
deal simultaneously with several users having different requirements, re-
quests coming from different users are likely to be routed differently to
the available implementations. For requests coming from the same user,
it is possible as a special case that all the requests for a task are routed
to a single implementation, but in general it may happen that subsets of
these requests are routed to different implementations.
In the next section we outline how a mathematical model can be formu-
lated to determine a suitable selection of implementations for the CBP
tasks.

4 A Model to Drive CBP Configuration

We call a configuration policy a decision taken by the CBP managing
entity about the implementation(s) to be bound to each CBP task for
the request (flow of requests) generated by a given user u ∈ U . We can
model this policy by a vector x

u = [xu
1 , . . . , x

u
m], where xu

i = [xu
iJi

]. In
this definition, index i of xu

iJi
ranges over the set of all the CBP tasks

Ti, while index Ji ranges over all the possible implementations of Ti,
determined according to what discussed in Sect. 3.1.
The xu

iJi
variables are defined in two different ways, depending on the

considered utilization scenario:
– single request scenario: each xu

iJi
takes only the 0 or 1 value, where

xu
iJi

=1 means that implementation Ji is selected for Ti;
– flow of requests scenario: each xu

iJi
takes any value in the [0, 1] inter-

val, and denotes the fraction of the user u requests for task Ti which
are bound to implementation Ji.

In both cases, it holds the constraint:
∑

Ji
xu
iJi

= 1.
As an example of the meaning of the xu

iJi
variables in the flow of requests

scenario, consider the case of four concrete services Si.1, . . . , Si.4 offered
by different participants implementing a given task Ti and assume that
the policy x

k
i for a given user u specifies the following values: xi.{Si.1} =

0.3, xi.{Si.3} = 0.3, xi.{Si.2,Si.4}
par = 0.4 and xi.Ji

= 0 otherwise. This
policy implies that 30% of user u requests for task Ti are bound to service
Si.1, 30% are bound to service Si.3, while the remaining 40% are bound
to a parallel-or implementation based on the pair of services {Si.2, Si.4}
(see Fig. 1).
Determining a suitable value for the xu

iJi
variables can be formalized

as the solution of an optimization problem, which takes the following
general form:

max F (x) (1)

subject to: Q
α(x) ≤ Q

α
max

Q
β(x) ≥ Q

β
min

S(x) ≤ L

x ∈ A



Fig. 1. Example of adaptation policy

In this model, x = (x1, ...,x|U|) is the decision vector defined above,
F (x) is a suitable utility function, Qα(x) and Qβ(x) correspond, respec-
tively, to SLA parameters whose values are settled as a maximum and a
minimum (typically, they correspond to cost and dependability parame-
ters, respectively), S(x) is the constraints on the offered load determined
by the SLAs with the service providers (in case of flow-based SLAs), and
x ∈ A is a set of functional constraints.

The latter set of constraints includes the constraints
∑

Ji
xu
iJi

= 1. It
in general includes other constraints on the xu

iJi
values, that could be

used, for example, to take into consideration the stateful nature of tasks
belonging to the same role, according to the CBP model of Sect. 2.1.
Example of this kind of constraints can be found in [5,14].

Depending on the considered utilization scenario, we point out that solv-
ing this model corresponds to solving an integer programming optimiza-
tion problem (for the single request scenario), or a linear programming

optimization problem (for the flow of requests scenario). This model (or
variants of it) underlies most of the proposed methodologies for the self-
configuration of SOA systems [5,12,15,14,24,46,47,50]. These method-
ologies differ in the proposed solution techniques (in particular for the
single request scenario, where heuristics are often proposed to cope with
the NP-hard nature of integer programming), and in the way the model
parameters (e.g., Qα and Qβ matrices) are calculated, that basically de-
pends on the considered QoS metrics, composition rules for the CBP
tasks, and redundancy schemes.

Self-configuring at runtime a SOA system corresponds to building at
runtime a new instance of this optimization problem, and solving it, to
determine the x value that describes the new system configuration. The
construction and solution of this new instance is triggered, in general,
when the managing entity detects some relevant event for which the
current configuration is no longer suitable. For example, such events
could include: a) a change in the utilization profile of the CBP tasks;
b) a change in the CBP definition, because tasks and/or participants
are added or removed; c) a detected violation in the negotiated SLA
parameters; d) the arrival of a new user who submit requests for the
business process. Existing methodologies consider this model as a single
global model of the overall CBP, and hence implicitly assume some kind



of centralized managing entity, that maintains this model (for example
keeping up to date its parameters) and solves it to drive the system
self-configuration.

Indeed, most methodologies for the self-configuration of SOA systems are
based on an underlying orchestration model, in which the execution of
a target composite service requires the selection and runtime binding of
a number of concrete implementations for realizing the functionalities of
the business process, but these selected implementations do not interact
with each other, e.g., [5,15,24,46,47]. On the other hand, in a choreo-
graphic environment the participants may be or not willing to rely on a
centralized managing entity that may have a global view and therefore
chooses the collaborators of each participant. When the choreography
participants want to maintain a decisional autonomy without delegating
the configuration decisions to a centralized entity, for example because
they do not prefer to disclose their collaborators/partners, they can rely
on a more limited information regarding only the collaborating partic-
ipants with whom each participant directly interacts. To the best of
our knowledge, only the service selection methodology in [23] explicitly
addresses a choreography environment that supports local autonomy re-
quirements of the CBP participants with the aim to maximize the CBP
reliability. However, this approach suffers from the partial versus global
tradeoff, because each participant takes its decision only on the basis
of some local knowledge; therefore, QoS properties regarding the overall
CBP can be hardly satisfied. On the other hand, a single centralized en-
tity owns detailed information about all implementations and therefore
can meet at best the global QoS requirements of the CBP.

Another limitation of self-configuration methodologies for business pro-
cesses regards the type of failure modes taken into account, because only
a single failure mode (either timing or halt mode) is typically supported
by the proposed methodologies.

Finally, most methodologies for the self-configuration of SOA systems
consider a CBP with only a single transaction. However, as discussed
in Sect. 2.1, a CBP could consist of multiple transactions, with possibly
different dependability requirements. Moreover, the SLA model we have
introduced in Sect. 2.3 suggests that different CBP users could have dif-
ferent views of the same CBP, corresponding to different definitions of
the logical predicate on the transactions completion stated in their global
SLA. This implies that multiple instances of the optimization problem
should be probably simultaneously considered to determine the config-
uration of a given CBP, corresponding to different transactions and/or
to different views. Each of these different instances of the optimization
problem could refer to a subset of the xu

iJi
variables (for example, only

those referring to the tasks of a specific transaction of the overall CBP).
These instances can be considered as partially uncoupled. They could
be still managed by a single centralized entity, but considering the pos-
sibility of distributing their management among more entities would be
probably closer to the principles of the SOA paradigm.



5 Architectural Issues

In the previous sections we discussed the main issues that should be tack-
led to guarantee a given dependability level for a SOA-based CBP im-
plementation. Here we discuss the architectural issues involved in the de-
sign of the managing entity that implements the CBP self-configuration
methodology presented in Sects. 3 and 4. The main task of this archi-
tecture is to drive the adaptation of the CBP it manages to fulfill the
QoS goals stated in the SLAs with the CBP users, given the SLAs it has
negotiated with each of the CBP participants that provide implemen-
tations of the used concrete tasks. Moreover, the CBP managing entity
also aims at optimizing a global utility goal.

A key design issue regards the self-adaptation capabilities of the CBP
managing entity. To this end, we organize its architecture according
to the MAPE (Monitor, Analyze, Plan, and Execute) feedback control
loop [37]. The components of the CBP managing entity - namely, the Col-
laboration Manager, the Execution Engines, the Configuration Manager,
the Coordination Manager, the Execution Monitor, the Admission Con-

trol Manager, and the SLA Monitor - are therefore organized according
to the MAPE stages. We first present the managing entity components
from a functional point of view and then briefly discuss in Sect. 5.1 the
alternatives for their topological organization considering the trade-off
between centralized and decentralized architectural style of the system.

The Execute subsystem of the MAPE loop, which comprises the compo-
nents in charge of executing the business logic, includes the Collaboration
Manager, the Execution Engines, and the Coordination Manager.

The main functions of the Collaboration Manager are the specification
of the collaboration scheme (i.e., the choreography) with a suitable no-
tation (e.g., BPMN or WS-CDL), the discovery of the set of functionally
equivalent services implementing the CBP tasks, and the negotiation
and establishment of the SLAs with the corresponding set of partici-
pants. In this context, the Collaboration Manager should also specify
different types of transactional behavior, e.g., atomic or long-running
transactions.

The Execution Engines are the software platforms (e.g., Activiti BPM
Platform [2] and Bonita Execution Engine [11] for BPMN, Apache ODE [4]
and Oraclw BPEL Service Engine [32] for BPEL) managed by the CBP
participants where the tasks of the collaborative process are executed.
Since the CBP execution is typically distributed across different orga-
nizations, the global specification defined by the abstract business pro-
cess needs to be implemented by the participants in a distributed way.
Therefore, the global specification is usually decomposed into a set of
local specifications, that are implemented and deployed by each involved
participant (each participant implements its local specification typically
using BPEL, but not necessarily so). When the user invokes the collabo-
rative business process, the Execution Engines manage altogether a new
executable instance of the process itself. Each generated instance can
be different, according to the configuration instructions received by the
Configuration Manager (described below).



The Coordination Manager provides the foundation for implementing
transactional service interactions by defining the coordination context
of a transaction and the protocols for registering services therein. To
this end, the Coordination Manager implementation can exploit the WS-
Coordination specification [30], which is a general transaction framework
that describes the protocols for participant registration and defines a
transaction context.

The Configuration Manager is the core component of the Plan subsys-
tem of the MAPE loop, since it decides for the runtime configuration of
the collaborative business process. Upon receiving a notification of a sig-
nificant variation of the system model parameters, it finds out whether
new configuration actions must be performed. To this end, it determines
the configuration policy (i.e., it solves a new instance of the optimization
problem sketched in Sect. 4), passing to it the new instance of the sys-
tem model with the new values of the system parameters. The calculated
configuration policy provides indications about the configuration actions
that must be performed to optimize the use of the available concrete
tasks with respect to the global utility criterion. Based on this solution,
the Configuration Manager transmits suitable directives to the partic-
ipants, that implement them through their Execution Engines, so that
future instances of the collaborative business process will be generated
according to these directives. In the CBP management we envision, the
selection of participants is done at runtime; therefore, it must be ensured
that the participants are made aware dynamically of the selection. To
this end, we note that a drawback of WS-CDL and BPMN is that ser-
vice selection is not fully supported [19] and is often left to engine-specific
deployment configurations; BPEL4Chor, which is a BPEL extension for
modeling service choreographies [19], includes a selects attribute for
participant that can turn out useful in our case to implement the run-
time binding, since it allows to specify which service selects which other
services.

The latter three components of the managing entity (i.e., Execution
Monitor, SLA Monitor, and Admission Control Manager) form collec-
tively the Monitor and Analyze subsystem of the MAPE control loop,
which checks the system execution and senses the environment and, when
something is not proceeding as planned, triggers the Plan subsystem to
fix the detected anomaly. Specifically, the Execution Monitor collects
information about the CBP usage, calculating estimates of the model
parameters. The SLA Monitor collects information about the depend-
ability level perceived by the CBP users and offered by the participants
that provide implementations of the used concrete tasks, and about the
requests generated by the users. Both the Execution Monitor and the
SLA Monitor rely on a hierarchical organization, according to which
monitoring agents located at the participants collect local information
and transmit it to the respective global component which is responsible
for aggregating the monitored data on the managing entity. The Ad-

mission Control Manager determines whether a new CBP user can be
accepted, given the associated SLA, without violating existing SLAs for
already present users.



On the one hand, the Execution Monitor, SLA Monitor, and Admission
Control Manager components play the Monitor role of the MAPE loop,
because they check and maintain up to date the parameters of the model
of the CBP operations and environment. These parameters include the
invocation frequencies of the concrete tasks, the rate of arrival of service
requests (in case of the flow of requests scenario), the dependability and
cost of the used concrete tasks. On the other hand, the three components
also play the Analyze role: when they observe significant variations in the
model parameters, they signal these events to the Configuration Man-
ager. Summing up, the Admission Control Manager (in case of the flow
of requests scenario) signals events related to the fluctuation of workload
intensity parameters, while the Execution Monitor signals abnormal fluc-
tuation in the CPB usage, and the SLA Monitor signals abnormal events,
such as unreachability of a concrete task and/or variation of its depend-
ability level.
We observe that the monitoring subsystem plays a crucial role to keep
track of the CBP behavior and find out whether anomalies have occurred
and a new configuration plan is needed. While business process monitor-
ing can be more easily achieved in a service orchestration context, where
there is a centralized entity in charge of the synchronization of the com-
ponent services (e.g., [9] for monitoring of BPEL processes), the mon-
itoring of CBPs in a multiple organizational setting present additional
challenges, because it may require that different participants interchange
monitoring data. A recent research effort toward this direction can be
found in [42], that proposes an event-based monitoring approach based
on BPEL4Chor.

5.1 Centralized vs Decentralized Architecture

We currently devise the CBP managing entity as a single centralized bro-
ker (except the Execution Engines and the local monitoring agents, that
are both located on the participants), which has a complete knowledge
of the system model and therefore can identify the best configuration
policy. Such a centralized approach may suffer from the single point of
failure and scalability issues that can be addressed by distributing and
replicating the components of the managing entity so to not impact on
the managed CBP dependability and scalability. A similar architecture in
the context of a broker providing a single composite service is described
in [13].
More generally, we can envision a CBP managing entity architected as a
decentralized system consisting of a set of federated brokers, where the
distribution and replication of the components take place at the level of
the MAPE subsystems rather than at the level of the single components.
In this architecture, the brokers coordinate themselves according to a
master-slave scheme. The slave brokers implement only the Monitor and
Execute functions of the MAPE loop, while the master broker (which
can be replicated for improving the system scalability and dependabil-
ity) aggregates and analyzes monitored data from slaves, and uses them
to build and solve an overall optimization problem (through its Config-
uration Manager component). As in the centralized approach, the cal-



culated configuration policy is then transmitted to slave brokers that
implement it through their respective Execution Engine components. To
enable an efficient exchange of large volumes of messages among the
system components placed at geographically distributed locations, the
overall system can rely on a publish/subscribe messaging system simi-
larly to the distributed architectures for business process execution and
service choreography proposed in [26] and [44], respectively.
However, this decentralized architecture still presents a single coordina-
tor which needs to transmit and receive messages from the other sys-
tem components; therefore, its location in the distributed environment
may affect the performance of the overall system. Furthermore, the cen-
tralized coordination might be difficult to enforce administratively in a
cross-organizational setting. To address these issues, a more scalable and
decentralized solution would consist in devising a distributed solution of
the overall optimization problem, that would mainly require a change
in the CBP self-configuration policy presented in Sect. 4. This latter
solution is in the direction of investigating decentralized self-adaptive
systems, that present a number of challenges to be addressed in future
research [43].

6 Conclusions

A SOA-based implementation of a CBP should be able to guarantee in
an effective way the dependability levels that have been negotiated be-
tween the CBP providers and users. Based on the premise that to achieve
this goal we must introduce in the system automated self-configuration
features, we have discussed some issues to be considered. We have based
our discussion on a quite general model of CBP, and have focused our
attention mainly on methodological aspects, touching also some archi-
tectural issues. We have evidenced that existing approaches only address
a limited part of the general CBP model, thus suggesting open problems
to be addressed.
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