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Abstract—The unpredictable variability of Data Stream Pro-
cessing (DSP) application workloads calls for advanced mecha-
nisms and policies for elastically scaling the processing capacity
of DSP operators. Whilst many different approaches have been
used to devise policies, most of the solutions have focused on data
arrival rate and operator resource utilization as key metrics for
auto-scaling. We here show that, under burstiness in the data
flows, overly simple characterizations of the input stream can
yet lead to very inaccurate performance estimations that affect
such policies, resulting in sub-optimal resource allocation.

We then present MEAD, a vertical auto-scaling solution
that relies on online state-based representation of burstiness
to drive resource allocation. We use in particular Markovian
Arrival Processes (MAPs), which are composable with analytical
queueing models, allowing us to efficiently predict performance
at run-time under burstiness. We integrate MEAD in Apache
Flink, and evaluate its benefits over simpler yet popular auto-
scaling solutions, using both synthetic and real-world workloads.
Differently from existing approaches, MEAD satisfies response
time requirements under burstiness, while saving up to 50% CPU
resources with respect to a static allocation.

Index Terms—data stream processing, auto-scaling, workload
characterization, Markovian Arrival Processes

I. INTRODUCTION

Nowadays, almost every aspect of our life is captured by
sensors and one way or the other translated into continuous
data flows, ranging from Internet-of-Things sensor measure-
ments to high-resolution images recorded by surveillance
cameras, and just recently, contact-tracing systems tied to
our smartphones. The availability of such “big” data sets has
fostered the development of efficient tools for data analytics.
Among them, Data Stream Processing (DSP) systems have
emerged as a de facto standard for low-latency processing
of fast data streams. Streams are unbounded, ordered se-
quences of data units, usually indicated as tuples, emitted by
one or more sources. DSP applications are directed acyclic
graphs (DAGs), whose vertices are operators, and the edges
represent streams flowing between them. Operators are pro-
cessing elements that receive one or more streams as input, and
output a new stream after applying data transformations (e.g.,
filtering). Executing operators in parallel across multiple CPU
cores and possibly multiple distributed nodes, DSP systems
can handle high-volume data streams in near real-time.

DSP application workloads are often highly variable, not
allowing static resource allocation without the risk of re-

source under- or over-provisioning. For this reason, a lot of
effort has been spent by researchers investigating solutions
to elastically scale the computing capacity of DSP appli-
cations at run-time [1], by means of horizontal or vertical
auto-scaling. Horizontal scaling entails adding or removing
parallel instances of operators as needed, while vertical scaling
instead adjusts resource allocation to operator instances (e.g.,
CPU, memory), without altering the parallelism. A major
drawback of horizontal scaling is the significant overhead due
to reconfiguration protocols, which are necessary to preserve
integrity of data streams and internal state in the process.
Vertical scaling instead is often implemented without pausing
application execution, e.g., at hardware-level by scaling CPU
core frequency, or at OS-level by setting the share of CPU
time available to the operators. Therefore, whilst horizontal
scaling is a fundamental mechanism to exploit infrastructure
parallelism, vertical scaling is more suitable for seamless
adaptation on short time-scales.

So far, operator auto-scaling policies have been devised
leveraging, e.g., threshold-based heuristics [2], queuing the-
ory [3], reinforcement learning [4]. However, most of the
existing works rely on simple characterizations of the appli-
cation workload (e.g., average input data rate). We show in
this paper that overly simple models lead to very inaccurate
performance predictions, hence poor scaling decisions, in
presence of burstiness. As DSP applications are long-running
and face varying conditions over time, including burstiness,
accurate workload characterizations are necessary to derive
good auto-scaling policies.

Few works have considered the effects of burstiness on
DSP application performance so far (e.g., [5], [6]), but they
either limit the analysis to application throughput or rely
on aggregate burstiness indicators. The vertical auto-scaling
solution we present, called MEAD (Model-based vErtical
Auto-scaling for DSP), addresses the limitations of current
methods by exploiting Markovian Arrival Processes (MAPs)
for accurate online workload characterization. MAPs can
model non-exponential inter-arrival times, and capture several
statistical properties of the application input stream, including,
e.g., correlation between consecutive tuples. MEAD lever-
ages MAP-based queueing models to drive auto-scaling and
satisfy performance requirements. In particular, since DSP
applications are often latency-sensitive, we focus on maximum
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Fig. 1: Reference DSP application.

response time requirements, expressed in terms of mean value
or percentiles. The choice of focusing on vertical scaling is
motivated by various considerations. First, when horizontal
scaling is used, input streams are partitioned among parallel
instances, potentially mitigating the burstiness effects due to
correlation between consecutive arrivals. Therefore, vertical
scaling is the setting where accurate workload characterization
is most needed. Furthermore, for DSP applications deployed in
resource-constrained environments (e.g., Fog/Edge), acquiring
additional CPU cores may be not trivial, whereas resource
savings due to vertical scaling are attractive. As a final
consideration, we remark that horizontal operator scaling has
been investigated much more extensively than vertical scaling
so far [1], despite its potential benefits in terms of reduced
overhead, and we aim to contribute in filling this gap.

We show the need for accurate workload characterizations
through a motivating example in Sec. II. Then, we present our
contributions, which can be summarized as follows:
• We design a vertical auto-scaling framework for DSP,

which - to the best of our knowledge - is the first solution
where DSP application performance is evaluated through
MAP-based models (Sec. III).

• We propose an online workload characterization solution
that fits MAPs from monitoring data, which involves new
challenges compared to traditional offline trace fitting
(Sec. IV); the resulting MAP models are used to derive
a model-based scaling policy (Sec. V).

• We integrate MEAD in Apache Flink (Sec. VI), and
assess its benefits through experiments with synthetic and
real world workloads (Sec. VII).

We review related work in Sec. VIII and conclude in Sec. IX.

II. MOTIVATING EXAMPLE

In this section, we show that operator auto-scaling strategies
that rely on simple yet popular performance models (e.g.,
M/G/1 queues) can be far from optimal when dealing with
bursty workloads. We consider a DSP application that an-
alyzes logs, computing statistics and matching lines against
patterns (e.g., to detect malicious requests). The application
is composed of a data source, which reads data from a
message queue, and three processing operators (see Fig. 1).
The first operator (parser) parses the input lines, discarding
any malformed tuple, and forwards a copy of each parsed
entry to two stateful operators, named counter and matcher.
The former counts the events logged by different system
components; the latter tries to match log entries against a set
of user-defined patterns, keeping a count of matched events.
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Fig. 2: Data arrival rate in the traces.

We run this application on top of vanilla Apache Flink, us-
ing two real traces for the workload. The first trace is extracted
from a data set about taxi trips in New York City1, which is
representative of typical edge-generated events processed by
DSP applications (see, e.g., [7]). The second trace, extracted
from the Microsoft Production Server - Live Maps Back End
traces2, contains requests logs of a distributed storage system.
We consider 30-minute segments of each trace. In order to
have similar arrival rates for both the traces, we replay the
NYC Taxi trace with a 10x speedup factor, without altering
other statistical properties of the trace. Nonetheless, except
for the similar average rate, the two traces are significantly
different. As shown in Fig. 2, while the Taxi trace shows
low variability in the arrival rate, the Live Maps trace is
characterized by noticeable bursts.

We ask ourselves the fundamental question as of whether
queueing models can accurately estimate operator performance
under these workloads. As baseline approaches, we consider
the M/G/1 queueing model and Kingman’s approximation for
GI/G/1 queues [8], which have been frequently used in the
context of DSP systems (e.g., [3], [9]). As an alternative, we
consider a queuing model where the arrival process is modeled
as a Markovian Arrival Process [10]. To instantiate these
models, we approximate the operator service process with
phase type (PH), and specifically Erlang-2, distributions, and
use linear regression to estimate the mean service time [11].

Hereafter, we focus on the performance of the matcher
operator, as preliminary experiments showed that its resource
demand is much higher than the other operators in the applica-
tion. By varying the number of patterns the operator searches
for, we evaluate the mean operator response time for different
values of CPU utilization. As shown in Fig. 3, under the Taxi
workload, the estimates provided by the different models are
almost indistinguishable, matching well the measured operator
response time. In the Live Maps scenario, we note instead that
the M/PH/1 model, which assumes independent, exponentially
distributed inter-arrival times (IATs), leads to very inaccurate
performance predictions. Indeed, its mean response time es-
timates are almost two orders of magnitude lower than the
measured one. When using Kingman’s formula, the prediction
error is only slightly reduced, and the results are still far from

1Data set provided by the New York City Taxi & Limousine Commission
at https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page

2http://iotta.snia.org/traces/158
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Fig. 3: Comparison of queueing models for operator response
time evaluation for both the considered workloads.

satisfactory. Conversely, the MAP/PH/1 model, which captures
IATs correlation, is able to match the mean operator response
time, both at low and high utilization values.

These results clearly suggest that (i) burstiness has an
evident impact on application response time, which cannot
be captured looking at the arrival rate only or the average uti-
lization; (ii) simple yet popular models provide good accuracy
under uncorrelated workloads, but in order to cater for bursts,
more general models are necessary for auto-scaling control.
As DSP systems likely face burstiness at run-time (see, e.g.,
[5], [12, Chapter 5]), these experiments motivate our work.

III. OVERVIEW OF MEAD
In this section, we introduce MEAD, a model-based frame-

work for operator vertical auto-scaling. In the scenario we
consider, each operator during execution is associated with
a resource configuration x, selected from a finite set X =
{1, 2, . . . , Nres}, where 1 and Nres represent, respectively, the
minimum- and maximum-capacity configurations. In particu-
lar, the resource we consider for vertical scaling in this work is
CPU. Each configuration x has a cost c(x), which may capture
different aspects, e.g., energy consumption, or monetary cost
due to resource acquisition in a pay-as-you-go scenario. At
run-time, we aim to pick appropriate resource configurations
for the operators, so as to minimize the overall resource cost
while satisfying the application performance requirements.

MEAD associates DSP applications with new components
to support run-time adaptation. In particular, MEAD is or-
ganized according to the well-known MAPE-K (Monitor,
Analyze, Plan and Execute with Knowledge) pattern for self-
adaptive systems, and comprises five main components: Work-
load Monitor, Workload Analyzer, Performance Analyzer,
Auto-Scaling Manager, and Resource Manager (see Fig. 4).
The Workload Monitor collects information about the applica-
tion workload, monitoring the data stream that the application
ingests from external sources. The Workload Analyzer uses this
information to build a model of the current workload, which
is used by the Performance Analyzer to evaluate application
performance. Based on the resulting performance estimates,
the Auto-Scaling Manager plans scaling actions for each
operator, which are executed by the Resource Manager.

Fig. 4: Architecture of MEAD.

The analysis and planning components rely on a shared
knowledge, which comprises a description of the application
topology, including the estimated service demand of each
operator, and a specification of the performance requirements
(e.g., mean application response time). In this work, we have
assumed that this information is collected offline and provided
to the system when the application is deployed. We plan to
extend the framework to automatically gather the required
information online in the future. The functionality of each
component and their interaction will be described in greater
detail in the next sections.

IV. WORKLOAD CHARACTERIZATION USING MAPS

In this section, we look at the Workload Analyzer compo-
nent, which characterizes the application workload at run-time
using MAPs. We briefly introduce MAPs, before illustrating
our solution for online MAP fitting.

A. Overview of Markovian Arrival Processes

Consider a stream of tuples, with a timestamp Tk associated
with the arrival time of the k-th tuple. In this paper, we
characterize such a stream by modeling the tuple IATs time
series Xk = Tk − Tk−1, k = 1, 2, . . . as a MAP [10].
MAPs can be regarded as generalizations of continuous-time
Markov chains (CTMC) where transitions are either hidden or
observable. Hidden transitions denote a change in the state of
the process but do not result in arrivals, whereas observable
transitions correspond to actual arrivals (and possibly to a
state change). Formally, a MAP with N states, denoted as
a MAP(N ), is defined by a pair of N ×N matrices, D0 and
D1, which, respectively, specify the hidden and observable
transitions, such that Q = D0 + D1 is the infinitesimal
generator of the underlying CTMC.

A sequence of IATs Xk is generated from a MAP con-
sidering the time elapsed between successive activations of
any two observable transitions. Because each sample Xk

is generated according to the target state of the observable
transition that generated Xk−1, statistical correlation may exist
between consecutive MAP samples. This marks a fundamental
difference with respect to, e.g., phase-type renewal processes,
where arrivals are independent. Moreover, MAPs provide a key



advantage with respect to non-Markovian workload models
(e.g., ARIMA) in that analytical tools are available for solving
MAP/MAP/1 queuing models efficiently [13].

B. Fitting MAPs from data

Fitting a suitable MAP to the observed workload means de-
termining a pair (D0,D1) such that model generated samples
have the same statistical properties of the original data stream.
Specifically, this entails matching the moments and the auto-
correlation coefficients of the trace to those of a MAP(N ),
which are characterized by the following expressions:

E[Xn] = n!πe(−D0)−ne, n = 1, 2, . . . (1)

ρn =
πe(−D0)−1Pn(−D0)−1e− E[X2]

E[X2]− E[X]2
, n = 0, 1, . . .

(2)
where P = (−D0)−1D1 is the transition probability matrix
of the embedded discrete-time Markov chain associated with
Q, πe the equilibrium probabilities vector for P, and e is the
vector (1, 1, . . . , 1) of length N . Given the inherent complexity
of the resulting problem, fitting algorithms focus on matching
a limited number of moments and autocorrelation coefficients
so as to approximate as accurately as possible the measured
arrival process. To date, it is still an open problem how to
select the best set of descriptors to be matched [14].

MEAD relies on the divide-and-conquer approach presented
in [14], which, instead of directly fitting a large MAP, searches
for J simpler MAP(2) models; leveraging the Kronecker Prod-
uct Composition (KPC), the resulting J MAPs are composed
into the desired MAP(2J ). KPC enjoys several nice properties
that ease MAP fitting, most notably that: (i) moments and
autocorrelation coefficients of a MAP obtained using KPC
can be computed in closed form from the parameters of the
constituent MAPs; (ii) the matrices D0 and D1 of a MAP(2)
can be directly computed from their statistics.

MEAD leverages the KPC-based algorithm provided by
KPC-TOOLBOX3, which comprises three main steps: order
selection, nonlinear fitting, and KPC composition. In the
first step, KPC-TOOLBOX picks the number J of MAP(2)
models to be fitted, hence the number of states of the final
MAP, balancing model complexity and accuracy. Then, the
J MAP(2) are determined through nonlinear least-squares
fitting, so as to match the first three moments and a set of
autocorrelation coefficients of the trace. In the last step, the
final MAP is computed applying KPC.

C. Online MAP fitting with KPC-Toolbox

MAPs have been often applied so far for offline trace
fitting. In MEAD, we need to tackle the harder task of fitting
MAPs online from monitoring data. Our approach for online
workload characterization relies on the Workload Monitor and
the Workload Analyzer components. The former monitors the
application input stream, recording the IATs of consecutive
tuples and storing them in a monitoring buffer. Since DSP

3http://www.cs.wm.edu/MAPQN/kpctoolbox.html

applications are typically long-running, to limit memory usage,
the monitoring buffer has a fixed capacity of Ne events. When
new event timestamps must be added to the monitoring buffer,
the least recent ones are discarded, on a first-in first-out basis.

The Workload Analyzer is in charge of MAP fitting. When
activated, either periodically or on request, this component first
retrieves a snapshot of the monitored IATs from the Workload
Monitor. Online MAP fitting involves a few challenges that
are not encountered in traditional offline trace fitting. First
of all, when searching for a workload model offline, the
highest possible accuracy is usually desired. This is what
KPC-TOOLBOX does by returning the MAP that minimizes
a suitable loss function. Conversely, since we aim to use the
fitted MAPs online to predict performance and drive auto-
scaling, we would rather settle for a slightly less accurate trace
matching, as long as we err on the safe side, avoiding resource
under-provisioning and performance degradation.

To address this issue, we extend KPC-TOOLBOX so that,
instead of returning a single MAP, it returns the best n MAPs
identified during the least-squares fitting. The Workload An-
alyzer hence outputs multiple workload models, which can
all be used for performance evaluation. Among the resulting
estimates, adopting a conservative approach, we pick the
worst-case prediction.

Another challenge arises from the fixed-size monitoring
buffer that stores IATs. While in general a long trace is helpful
to achieve higher fitting accuracy, online we also need to
keep the trace short enough to quickly capture changes in
the workload. To overcome this issue, the Workload Analyzer
exploits multiple monitoring windows, i.e., traces of observed
IATs. Given a snapshot of the monitoring buffer containing
Ne observed arrivals, the base fitting window comprises the
whole sequence of observed IATs. From the base window,
multiple sub-windows are constructed by considering shorter
observation intervals, e.g., picking the most recent Ne

2 events
only, or the most recent Ne

4 events. By executing the fitting
algorithm against each window, multiple workload models
are obtained. By doing so, we enjoy the benefits of both
small monitoring windows, which allow us to quickly detect
recent workload changes, and larger windows, which provide
more information for fitting. Combining the two mechanisms
described above, at the end of the workload analysis phase
multiple sets of MAPs, each associated with a specific fitting
window, are made available to the Performance Analyzer
component.

V. MODEL-BASED AUTO-SCALING

We now explain how MEAD exploits online workload
characterization to drive operator auto-scaling.

A. Performance Analysis

The Performance Analyzer aims at identifying resource
configurations that allow the application to satisfy its perfor-
mance requirements. To this end, it leverages the workload
models produced by the Workload Analayzer, along with a
specification of the performance requirements and a model



of the application. The application model is a DAG Gdsp =
(Vdsp, Edsp), where Vdsp is a set of vertices (i.e., operators),
and Edsp is a set of edges (i.e., data streams flowing between
operators). Each vertex is also associated with an estimate of
the operator service demand.

When the Performance Analyzer is activated, Gdsp is used
to define an open queueing network that models the DSP appli-
cation. To this end, each operator in Vdsp is mapped to a single-
server queue in the network, where the service process is
specified according to (i) the estimated parameters provided in
the shared knowledge, and (ii) the CPU configuration assigned
to the operator. The edges in the application graph Gdsp are
used to define the routing of jobs (i.e., tuples) between queues
in the network. External arrivals to the system are assumed to
be generated according to the MAP computed by the Workload
Analyzer. The resulting queueing model is used to evaluate
the application performance under different configurations. To
do so, the Performance Analyzer exploits the matrix-analytic
method (MAM) [13], an effective technique for the resolution
of MAP-based queueing models.

As regards the performance requirements, we assume them
to be expressed in terms of maximum response time, since
DSP applications are often latency-sensitive. Specifically, for
every path π in the application DAG, which usually corre-
sponds to a specific query solved by the application, we define
the response time as the time it takes for a tuple entering
the system to be processed by all the operators along the
path. Hence, given a path π, a maximum value Rmax

π can be
specified for the response time along the path. MEAD accepts
requirements specified either in terms of mean response time,
or in terms of its percentiles.

B. Auto-Scaling Algorithm

The auto-scaling problem considered in MEAD consists
in satisfying application response time requirements while
minimizing the cost due to resource allocation. It is formulated
as follows:

minimize
∑

i∈Vdsp

c(xi)

subject to Rπ(x) ≤ Rmax
π , π ∈ Πdsp

xi ∈ X , i ∈ Vdsp
where xi is the resource configuration assigned to operator i ∈
Vdsp; c(x) the resource cost in configuration x; and Rπ(x) the
response time along path π with the configuration vector x;
Πdsp the set of the source-to-sink paths in Gdsp.

To solve the problem defined above, we use the heuristic
algorithm shown in Fig. 5, which works as follows. At
the beginning, each operator is assigned the minimum cost
configuration (line 1). Then, the algorithm iteratively updates
the resource allocation until the response time requirements
are satisfied. Specifically, for each application path π, we
first evaluate the performance with the current configuration
x (lines 2-3). Then, as long as the response time requirement
is violated and there is at least one operator to which more
resources can be allocated (line 4), we scale up the operator

Input: MAP M , queueing model Q, max. RT Rmax

Output: configuration x, estimated RT R
1: xi ← 1 ∀i ∈ Vdsp
2: for all paths π in Gdsp do
3: Rπ ← solve(Q,x,π)
4: while Rπ > Rmax

π and ∃i ∈ π : xi < Nres do
5: i← findOperatorToScale(π,x, Rπ)
6: xi ← xi + 1 . scale-up i
7: R′π ← solve(Q,x,π)
8: if R′π > Rmax

π and Rπ −R′π < δRmax
π then

9: xi ← xi − 1 . keep previous conf.
10: break
11: end if
12: Rπ ← R′π . update estimated RT
13: end while
14: end for

Fig. 5: Auto-Scaling Algorithm

i with the highest response time (lines 5-6). After scaling, we
solve the queueing model with the new resource configuration
(line 7). If the obtained response time improvement is not
enough to satisfy the requirement and smaller than a fraction
δ of the target value, we revert the scaling action and skip
to the next path to be optimized (lines 8-10). This avoids
unnecessarily scaling up lightly loaded operators when the
performance requirement cannot be satisfied.

The algorithm returns the chosen resource configuration x
along with the predicted response time. Based on this informa-
tion, the Auto-Scaling Manager plans the auto-scaling actions
to be performed. It translates the identified configuration x
to concrete CPU configurations to be set. In this planning
phase, additional policies may be enforced. For example, the
Auto-Scaling Manager can be configured to avoid scale-down
operations that reduce the resource allocation by more than a
single level, to achieve a more conservative behavior.

The actions planned by the Auto-Scaling Manager are
eventually communicated to the Resource Manager, which ex-
ecutes them. The actual functionality of the Resource Manager
depends on the specific vertical scaling mechanism in use. For
example, the Resource Manager may re-configure the CPU
frequency, or the amount of CPU shares assigned to a certain
process, thread, or software container. We will describe our
vertical scaling implementation in the next section.

VI. INTEGRATION IN APACHE FLINK

We integrate MEAD in Flink [15], an open-source dis-
tributed streaming engine. Flink provides an expressive API to
define DSP applications, along with higher-level libraries for
common analytics use cases. For execution, Flink leverages
a distributed architecture, which comprises two main compo-
nents, namely JobManagers and TaskManagers. JobManagers
coordinate the distributed execution and are responsible for
state checkpointing and recovery in case of failure. TaskMan-
agers execute the application tasks (i.e., the operators) and
take care of data transfers between them.



To support vertical auto-scaling, we integrate MEAD com-
ponents in Flink. The Workload Monitor is implemented as
a new standalone component, which monitors the streams
entering the data ingestion queue. In particular, the message
queue we use is RabbitMQ4, which is also used to let MEAD
components communicate with each other. In particular, we
rely on the fanout exchange of RabbitMQ, which broadcasts
incoming messages to multiple associated queues, to let the
incoming stream be consumed by the application indepen-
dently from the Workload Monitor. New components are also
introduced for the Workload Analyzer and the Performance
Analyzer, which are implemented in MATLAB and leverage,
respectively, KPC-TOOLBOX and the LINE solver5.

Within the JobManager, we associate an instance of the
Auto-Scaling Manager with each running application. Besides
planning, the Auto-Scaling Manager is also responsible for
the periodic activation of the analysis components, every TA
seconds.

The Resource Manager is responsible for the execution of
the scaling actions. For this purpose, we rely on the cgroup6

subsystem of Linux. In particular, we use the cpu controller
to dynamically adjust the share of CPU time assigned to each
operator thread. When applications are deployed, a new cgroup
is associated with each operator, receiving the default CPU
share. At run-time, according to scaling decisions, cgroup
parameters are updated as needed, with no overhead from the
operator point of view.

VII. EVALUATION

For evaluation, we compare MEAD equipped with the
MAP-based performance model to two alternative approaches,
where (i) each operator is modeled as a M/G/1 queue, and (ii)
Kingman’s formula for GI/G/1 queues is used to estimate the
operator response time. We also include in the comparison a
popular threshold-based auto-scaling policy. According to this
policy, when the monitored operator CPU utilization exceeds a
scale-up threshold UH , the CPU share assigned to the operator
is increased by one level; analogously, when the utilization is
lower than a scale-down threshold UL, the assigned CPU share
is decreased by one level.

Experimental setup. We use a cluster composed of three
nodes: a server equipped with a 8-core Intel Xeon E5504
processor is used for hosting Flink; an identical server runs
RabbitMQ and the data producer; a third machine equipped
with a 4-core Intel 4710-HQ processor hosts the workload and
performance analysis components.

Application and workloads. For the experiments, we
consider the log analysis application described in Sec. II. As
regards the workload, we consider a synthetic trace and 2 real
traces. The synthetic trace (SYNT, for short) is generated from
MAPs with different variability and allows us to experiment
with abrupt workload changes (Fig. 6a). For the real traces,
in addition to the already mentioned Live Maps Back End

4https://www.rabbitmq.com/
5http://line-solver.sourceforge.net/
6https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
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Fig. 6: Trace arrival rate (LM trace shown in Fig. 2).
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Fig. 7: IATs autocorrelation for the used traces.

trace (LM), we consider the BC-pAug89 (BC) trace from the
Internet Archive7, which is a network traffic trace, widely used
in the context of workload characterization (Fig. 6b). As shown
in Fig. 7, arrivals in the LM trace are the most correlated;
BC trace also shows significant IATs autocorrelation, with
SYNT being the least correlated one. We do not include the
uncorrelated NYC Taxi trace from Sec. II in the evaluation,
because it does not represent a challenge for auto-scaling (see
Fig. 3), and thus the results would not contribute any novel
analysis to the state-of-the-art, e.g., [4].

Parameters. We consider two types of performance re-
quirements. We first impose a constraint on the mean applica-
tion response time. Specifically, having observed in prelimi-
nary experiments that the different characteristics of the traces
lead to sensibly different response times, we pick a set of
values for Rmax for each trace as follows: 0.1, 0.2 and 0.3s
for the SYNT trace; 0.3, 0.5 and 0.75s for the BC trace; 1.5, 3,
and 5s for the LM trace. In the second evaluation scenario, we
express the performance requirement in terms of 95th response
time percentile, and, specifically, we set Rmax as follows: 0.5
and 0.75s for the SYNT trace; 0.5 and 1s for the BC trace;
7 and 10s for the LM trace. We set the same target response
time for both the source-to-sink paths in the application graph.

For CPU scaling, we define five cgroup configurations X =
{1, . . . , 5} where the CPU share allocated to operators ranges
between 40% for x = 1 and 100% (i.e., not limited) for x = 5.
We let the resource configuration cost c(x) simply correspond
to the CPU share associated with the configuration x. When
the application is started, every operator gets the maximum
available CPU share, i.e., x̄ = 5.

The Workload Monitor uses a window with capacity
NE,1 = 50, 000 events, and for fitting we use an additional
window with size NE,2 = 25, 000. For comparison, we will

7ita.ee.lbl.gov



also consider the case where the second window is not used.
For each fitting window, the best 5 fitted MAPs are used for
performance analysis. Workload and performance analysis are
performed periodically, every TA = 60 seconds. The choice
of these parameters is done based on preliminary tests, where
we verified that these values allow MEAD to satisfy given
requirements with acceptable overhead (i.e., benefits of fitting
more MAPs or with higher frequency are not evident).

For the threshold-based policy, we set UH = 0.7 and
UL = 0.5. As this policy is purely reactive, it would be pe-
nalized by triggering scaling actions with the same frequency
of MEAD. Therefore, we increase the auto-scaling frequency,
letting TA = 10 seconds in this case.

A. Mean response time requirement

We first consider the case where performance requirements
are specified in terms of mean response time. Table I reports
the mean measured application response time and allocated
CPU shares for these experiments. Having observed that the
matcher operator is much more loaded than the counter,
hereafter we only report the response time value associated
with the source-to-sink path containing the bottleneck operator.
Nonetheless, we verified that the response time along the other
path is always kept within the imposed bound.

We first look at the synthetic workload. Setting the maxi-
mum response time to 0.1s, we observe that both the M/G/1-
and GI/G/1-based models lead to resource under-provisioning
and do not satisfy the performance requirement. Looking at
Fig. 8a, it is clear how the GI/G/1 model correctly predicts
a low response time in the first part of the experiment and,
consequently, avoids scale-up actions. However, as soon as
the workload gets more bursty, estimates become inaccurate
and response time exceeds the target value. Conversely, using
the MAP-based model, MEAD is able to achieve a 0.056s
mean response time, while allocating less than 55% of the
CPU to the operators on average (Fig. 8d). A similar behavior
is observed for larger values of Rmax, where MEAD with
the M/G/1 model never manages to satisfy the performance
requirement. The GI/G/1 model leads to acceptable perfor-
mance only with the loosest requirement, where the MAP-
based policy still achieves a lower response time using slightly
less resources.

The inaccuracy of auto-scaling policies based on M/G/1 and
GI/G/1 models is even more evident when looking at the ex-
periments with the BC workload, which shows more burstiness
than the synthetic trace. In this scenario, those models lead to
performance violation for all the considered values of Rmax

(see, e.g., Fig. 8b). The MAP-based model instead is able to
meet the expected response time requirements, while saving
up to 50% of the CPU capacity on average (see, e.g., Fig. 8e).

Looking at the experiments in which we use the LM trace,
we can observe again the same behavior, with the gap between
baseline models and MEAD getting even larger. The burstiness
of this trace is not captured by the M/G/1 and GI/G/1 models,
leading to performance violation for all the considered values
of Rmax (see, e.g., Fig. 8c). Conversely, the MAP-based

policy satisfies the response time requirement while saving
a significant amount of CPU capacity. The CPU resource
allocation indeed ranges from 54% for Rmax = 5s to 61%
for Rmax = 1.5s (Fig. 8f).

We also compare MEAD to a threshold-based auto-scaling
policy (see results in Fig. 9). Reacting to increases in the
CPU utilization, this policy is able to respond to bursts by
scaling up the allocated CPU share. In particular, for the SYNT
workload, the mean response time is equal to 0.122s, using
on average 49% of the CPU capacity. For the BC trace, we
observe a 0.310s response time, with 49% CPU allocation.
For the LM trace, the response time is 2.4s, using 48% of
the available CPU capacity. We can thus note that this widely
adopted heuristic policy leads to better auto-scaling behavior
than overly simple queueing models in face of burstiness.
Nevertheless, compared to MEAD approach, this policy does
not allow users to express a performance requirement, and
instead relies on utilization-based thresholds. Therefore, in
order to trade-off performance with resource usage we can
only adjust the scaling thresholds following a trial-and-error
approach. MEAD instead is able to adapt the auto-scaling
policy based on the response time requirement.

B. Response Time Percentile Requirement

In this set of experiments, we consider performance require-
ments specified in terms of 95th response time percentile.
We only compare the auto-scaling policies relying on M/G/1
and MAP/G/1 queue models, because (i) Kingman’s formula
cannot be used to obtain information about the response time
distribution of GI/G/1 queues, and (ii) the threshold-based
policy is not aware of the response time requirement.

The results of these experiments are summarized in Tab. II.
We can note that, for all the considered traces, only the MAP-
based model guarantees satisfaction of the performance re-
quirements. The inaccuracy of the M/G/1 model is particularly
evident on the real traces. For instance, as shown in Fig. 10a,
using the BC trace with Rmax = 0.5s, MEAD with the MAP-
based policy keeps the 95th percentile below 0.3s, whereas
with the M/G/1-based policy it is higher than 3.8s. Similarly,
as shown in Fig. 10b, using the LM trace with Rmax = 7s,
the measured response time value is 4.8s for the MAP-based
model and 30s with the M/G/1. These results confirm the
significant inaccuracy of simpler yet popular workload models
in presence of burstiness.

C. Impact of the Monitoring Window Size

To assess the benefits of fitting MAPs using multiple win-
dows (see Sec. IV), we now consider the case where a single
monitoring window is used. We consider settings where the
size of the window NE is set to 25,000, 50,000, and 100,000
events. Clearly, in the first part of the experiments, until the
monitoring window gets filled up, there is no difference in
changing the window size. When windows start being full,
the smaller the window, the sooner the temporal memory of
past events will decay.



TABLE I: Results with the mean response time requirement.

SYNT Trace BC Trace LM Trace
Model Rmax RT (s) CPU (%) Rmax RT (s) CPU (%) Rmax RT (s) CPU (%)
M/G/1 0.1 0.254 46.4 0.3 0.906 46.9 1.5 7.499 45.4
GI/G/1 0.1 0.177 46.4 0.3 0.820 47.0 1.5 6.077 45.5
MAP/G/1 0.1 0.056 53.2 0.3 0.035 55.8 1.5 0.751 61.2
M/G/1 0.2 0.393 46.4 0.5 2.101 46.8 3 7.931 45.0
GI/G/1 0.2 0.208 46.4 0.5 1.194 46.9 3 6.344 45.4
MAP/G/1 0.2 0.127 50.2 0.5 0.158 53.1 3 1.580 56.9
M/G/1 0.3 0.609 46.5 0.75 2.800 46.9 5 9.382 45.4
GI/G/1 0.3 0.263 48.3 0.75 2.210 46.8 5 6.311 45.4
MAP/G/1 0.3 0.142 48.1 0.75 0.368 50.3 5 2.698 53.8
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Fig. 8: Response time and CPU allocation with the mean response time requirement. For the SYNT trace, Rmax = 0.1s; for
the BC trace, Rmax = 0.3s; for the LM trace, Rmax = 1.5s.
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Fig. 9: Response time and CPU allocation with the threshold-based policy.

We report the results of these experiments in Tab. III. We
can note that, using the synthetic trace, which has abrupt work-
load variations, setting NE = 100, 000 leads to performance
violation, as changes are not quickly identified by the Work-
load Analyzer. A negative impact of the largest window is also
experienced using the BC trace, with reduced error though.
Using the LM trace, we instead notice a less evident impact
of the window size, with the performance goal being met in
all the considered cases. However, it is worth observing that
for this trace larger windows lead to slightly better solutions,
i.e., the response time requirement is satisfied using less CPU

resources. These results show that identifying the best value
for the window size is difficult, as this choice depends on
the workload characteristics, which are not known in advance.
MEAD overcomes this issue by considering multiple sub-
windows within the overall monitored trace, and producing
more than a single workload model accordingly.

D. Computational Cost

As regards MEAD overhead, we remark that the auto-
scaling controller is executed asynchronously with respect
to the data processing and possibly on a different machine,
hence it does not interfere with operator execution. The



TABLE II: Results with the RT percentile requirement.

Trace Model Rmax RT P95 (s) CPU (%)
SYNT M/G/1 0.5 1.478 46.6
SYNT MAP/G/1 0.5 0.371 60.0
SYNT M/G/1 0.75 1.184 46.6
SYNT MAP/G/1 0.75 0.590 49.7
BC M/G/1 0.5 3.871 47.1
BC MAP/G/1 0.5 0.195 58.6
BC M/G/1 1 3.711 47.1
BC MAP/G/1 1 0.274 54.5
LM M/G/1 7 30.057 45.5
LM MAP/G/1 7 4.830 60.2
LM M/G/1 10 29.642 45.7
LM MAP/G/1 10 9.546 55.9
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Fig. 10: Response time CDF with different auto-scaling poli-
cies and workloads.

Workload Monitor, as explained, fetches input data in parallel
with the application. We verified that the overhead incurred
by RabbitMQ for handling the exchange and the additional
consumer is limited: running the application with and without
MEAD, we observed no change in the memory usage of
RabbitMQ (about 200MB in both cases) and an increase in
the CPU utilization that overall is still negligible (from 3% to
5%) compared to the resource savings enabled by MEAD.

We identified MAP fitting as the most computationally ex-
pensive task in MEAD, requiring on average 12s for the SYNT
trace, 14s for the BC trace, and 20s for the LM trace.8 As we
used two fitting windows, MEAD spent between 25 and 40
seconds for workload analysis at each iteration. We considered
this time acceptable in our scenario, where MEAD is activated
every 60 seconds. Nevertheless, it is worth observing that, if
necessary, by tuning algorithm parameters (e.g., parameters of
the nonlinear solver used in KPC-TOOLBOX, or maximum
number of MAP states) it is possible to trade-off accuracy
with speed.

The resolution of the queueing model is much faster than
fitting, especially when focusing on the mean response time,
with each invocation taking about 200 ms (50 ms with the
baseline M/G/1 model). When the response time percentiles
must be computed, the resolution time increases to about 2.5 s
(1.5 s with the M/G/1 model).

8The execution time differs under the various workloads, because KPC-
TOOLBOX picks a different number of states depending on the trace charac-
teristics.

TABLE III: Results varying the fitting window size Ne.

Trace Ne Rmax RT (s) CPU (%)
SYNT 25,000 0.2 0.126 49.9
SYNT 50,000 0.2 0.141 48.7
SYNT 100,000 0.2 0.468 47.6
BC 25,000 0.5 0.175 53.0
BC 50,000 0.5 0.217 51.2
BC 100,000 0.5 0.516 49.8
LM 25,000 3 2.126 54.2
LM 50,000 3 2.415 52.3
LM 100,000 3 2.267 53.0

VIII. RELATED WORK

DSP operator auto-scaling has attracted significant interest
within the research community, especially as regards horizon-
tal scaling. As surveyed in [1], scaling policies have been de-
vised using several techniques, including, e.g., threshold-based
policies [2], [16], queuing theory [3], [17], game theory [18],
control theory [19], reinforcement learning [4], [20]. Some
effort has also been spent exploring mechanisms to reduce the
often significant overhead of horizontal scaling (e.g., in [21]).

So far, vertical auto-scaling has been mainly adopted in
the field of software containers, e.g., in ElasticDocker [22],
which employs a threshold-based policy to scale CPU and
memory for each container, and in Autopilot [23], which uses
machine learning techniques to control both horizontal and
vertical scaling for jobs in the Cloud. In the context of DSP,
the work closest to ours is Q-Flink [24], where authors exploit
cgroups to dynamically allocate CPU and memory to Flink
operators so as to mitigate resource contention. They propose
a policy based on model-predictive control (MPC), where
GI/G/N queues, which do not capture burstiness, are used to
estimate operator response time. De Matteis and Mencagli [19]
also exploit MPC for elastic DSP on multi-core systems: they
rely on horizontal scaling for performance, whilst vertical
elasticity enables energy savings through CPU voltage and
frequency scaling. They assume independent arrivals, relying
on Kingman’s formula for response time estimation.

ChronoStream [25], an elastic DSP system for the cloud,
also leverages both horizontal and vertical auto-scaling, where
vertical elasticity is achieved by scaling up the core usage of
resource containers; no detail is provided about the scaling
policy. In StreamMine3G [26], a distributed data streaming
engine, vertical elasticity is achieved through a thread pool
that can be expanded and shrunk; also in this case, the scaling
policy is not detailed.

Besides the already mentioned ones, other works adopt
queueing theory for DSP performance evaluation. Kingman’s
approximation is also used by Lohrmann et al. [3] to drive
horizontal scaling, and by Truong et al. [9] for performance
analysis of large-scale cloud DSP systems. Fu et al. [17]
instead propose a horizontal elasticity solution that relies on
extended Jackson networks, where independent arrivals are
assumed as well. Tolosana-Calasanz et al. [27] study a VM
auto-scaling solution for cloud DSP systems, which is based
on feedback-control and relies on Little’s Law for performance
estimation.



Mencagli et al. [28] present a tool for static optimization
of DSP applications that relies on queueing networks and
consider the backpressure effect due to finite operator buffer
capacity. However, their analysis is limited to application
throughput, whereas we focus on response time optimization.
Recently, Cooper et al. [29] proposed a queueing model of
single streaming operators, where the cost of batched data
transfers from an external queue is considered. However,
differently from our work, they rely on the assumption of
Poisson arrivals. We plan to extend MEAD in the future
considering these backpressure and batching dynamics, as well
as integrating more complex models for the analysis of stream
forks and joins (e.g., [16], [30], [31]).

Differently from MEAD, none of the works referenced
above considers workload burstiness, whose effects have been
mostly neglected in DSP performance management. Excep-
tions to this trend are [5] and [6]. Drougas and Kalogeraki [5]
cater for bursts impact on application throughput in their
auto-scaling solution, but do not consider burstiness effects
on response time. Mencagli et al. [6] instead consider the
different problem of dynamic stream routing, taking into
account burstiness in their control-theoretic solution. They use
MAPs to generate traces for experiments, whereas burstiness is
only measured by means of the index of dispersion of arrivals.

IX. CONCLUSION

We have presented MEAD, a framework for vertical auto-
scaling of DSP operators, which exploits Markovian Arrival
Processes to characterize workloads online and estimate per-
formance. Having implemented MEAD in Flink, we evaluated
our framework using both synthetic and real-world workloads.
Our experiments show that MEAD is able to satisfy response
time requirements under burstiness, whereas other models are
highly inaccurate in this scenario.

Future research directions include the integration of hori-
zontal auto-scaling as a complementary mechanism, which is
necessary, on a larger time-scale, to scale operator processing
capacity beyond the limits of single CPUs. We will also extend
MEAD with models that specifically target stream fork-joins
and the blocking effects due to finite operator buffers.
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