
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2017; 00:1–25
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cpe

Optimal Operator Deployment and Replication for
Elastic Distributed Data Stream Processing

Valeria Cardellini1∗, Francesco Lo Presti1, Matteo Nardelli1, and Gabriele Russo Russo1

1Dept. of Civil Engineering and Computer Science Engineering, University of Rome Tor Vergata, Italy

SUMMARY

Processing data in a timely manner, Data Stream Processing (DSP) applications are receiving an increasing
interest for building new pervasive services. Due to the unpredictability of data sources, these applications
often operate in dynamic environments, therefore they require the ability to elastically scale in response to
workload variations. In this paper, we deal with a key problem for the effective runtime management of
a DSP application in geo-distributed environments: we investigate the placement and replication decisions
while considering the application and resource heterogeneity and the migration overhead, so to select the
optimal adaptation strategy that can minimize migration costs while satisfying the application Quality
of Service (QoS) requirements. We present Elastic DSP Replication and Placement (EDRP), a unified
framework for the QoS aware initial deployment and runtime elasticity management of DSP applications.
In EDRP, the deployment and runtime decisions are driven by the solution of a suitable integer linear
programming problem, whose objective function captures the relative importance between QoS goals and
reconfiguration costs. We also present the implementation of EDRP and the related mechanisms on Apache
Storm. We conduct a thorough experimental evaluation, both numerical and prototype-based, that shows the
benefits achieved by EDRP on the application performance. Copyright c© 2017 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: Data stream processing, elasticity, deployment, replication, stateful migration, Apache
Storm

1. INTRODUCTION

The advent of the Big Data era and the diffusion of the Cloud computing paradigm have renewed
the interest in Data Stream Processing (DSP) applications. Exploiting on-the-fly computation, i.e.,
without storing data, DSP applications are widely used to process unbounded streams of data and
extract valuable information in a near real-time fashion. As such, they enable the development of
new intelligent and pervasive services that can improve our everyday life in several domains, e.g.,
health-care, energy management, logistic, and transportation.

A DSP application is represented as a directed acyclic graph (DAG), with data sources, operators,
and final consumers as vertices, and streams as edges. Each operator can be seen as a black-box
processing element, that continuously receives incoming streams, applies a transformation, and
generates new outgoing streams. An operator can be either stateless (e.g., filtering, projection) or
stateful (e.g., aggregation), the latter meaning that it stores a state built upon past processing steps.

In the Big Data era, DSP applications should be capable of seamlessly processing huge amount
of data, which requires to dynamically scale their execution on multiple computing nodes. To
deal with the fact that some operators in the application can be overloaded and thus become a

∗Correspondence to: V. Cardellini, Dept. of Civil Engineering and Computer Science Engineering, University of Rome
Tor Vergata, via del Politecnico 1, 00133 Rome, Italy. E-mail: cardellini@ing.uniroma2.it

Copyright c© 2017 John Wiley & Sons, Ltd.
Prepared using cpeauth.cls [Version: 2010/05/13 v3.00]

macbook
Casella di testo
This is the accepted version of the following article: "Optimal Operator Deployment and Replication for Elastic Distributed Data Stream Processing", which has been published in final form at https://doi.org/10.1002/cpe.4334. This article may be used for non-commercial purposes in accordance with the Wiley Self-Archiving Policy [https://authorservices.wiley.com/author-resources/Journal-Authors/licensing-open-access/open-access/self-archiving.html].

2 V. CARDELLINI ET AL.

bottleneck, a commonly adopted stream processing optimization is data parallelism [1], which
consists of scaling-out or scaling-in the number of parallel instances (i.e., replicas) for the operators,
so that each replica can process a subset of the incoming data flow in parallel (e.g., [2, 3]).
Due to the unpredictable rate at which the sources may produce the data streams, a static or
manual configuration of the operator replication degree (which in literature is also referred to as
parallelization degree) does not allow to effectively manage changes that can either occur in the
execution environment (e.g., workload fluctuations) or in the Quality of Service (QoS) requirements
of the DSP application (which is typically long-running). Therefore, a key design choice in a
DSP framework is to enable it with elastic data parallelism, where the replication degree is self-
configured at run-time. As expected, it is more complex to achieve elasticity for stateful operators.

Furthermore, since data sources can be geographically distributed (e.g., in Internet of Things
scenarios), the deployment and execution of DSP applications can also take advantage of the ever
increasing presence of distributed Cloud and Fog computing resources, which can reduce latency
by moving the computation towards the network edges, closer to data sources. Nevertheless, such
geo-distributed infrastructures pose new challenges to deal with, including the heterogeneity of
computing and networking resources and the non-negligible network latencies [4].

This paper focuses on the initial deployment and run-time reconfiguration of DSP applications
over geo-distributed computing nodes. We propose Elastic DSP Replication and Placement
(EDRP), a unified general formulation of the elastic operator replication and placement problem.
EDRP takes into account the heterogeneity of infrastructural resources and the QoS application
requirements and determines the number of replicas for each operator and where to deploy
them on the geo-distributed computing infrastructure. Moreover, EDRP takes into account the
reconfiguration costs, which arise when an operator is migrated from one computing resource to
another, as well as when a scaling-in/out decision changes the replication degree of an operator.
These costs are significant in case of stateful operators, which require the relocation of the internal
state on a different node in such a way that no state information is lost. As in most recent research,
e.g., [2], we consider partitioned stateful operators, for which the internal state can be decomposed
into partitions based on a partitioning key and each partition can be assigned to a distinct replica.

Differently from most works in literature [5, 6, 7, 8], EDRP can jointly determine the application
placement and replication of its operators, while optimizing the QoS attributes of the DSP
application. At run-time, by modeling the reconfiguration costs of migration and scaling operations,
EDRP can be used to determine whether the application can be more conveniently redeployed.

The main research contributions of our paper are as follows.

• We model the EDRP problem as an Integer Linear Programming (ILP) problem (Sections 3,
4, and 5) which can be used to optimize different QoS metrics. Specifically, in this paper
we minimize the response time, defined as the critical path delay to traverse the application
DAG, and the monetary cost of all the computing and networking resources involved in the
processing and transmission of the application data streams. We propose a general formulation
of the reconfiguration costs caused by operator migration and scaling in terms of application
downtime. The latter depends on the fact that most DSP frameworks do not support seamlessly
reconfiguration, since the ongoing computation is interrupted while the migration and/or
scaling operations are being carried out.

• Leveraging on our extension of Apache Storm [9], which supports partitioned stateful operator
migrations, we develop a prototype scheduler named S-EDRP. S-EDRP can replicate and
place the DSP application operators according to the EDRP solution (Section 6). To this
end, we adapt the reconfiguration costs in order to consider the migration protocol used for
relocating stateful operators.

• We extensively evaluate our proposal through numerical experiments as well as experiments
based on our S-EDRP prototype (Section 7). The former aims to investigate the effectiveness
of EDRP in taking the reconfiguration decisions under different scenarios of reconfiguration
costs. The latter aims to evaluate the prototyped solution in a real setting; to this purpose, we
use a DSP application that solves the DEBS 2015 Grand Challenge [10].

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/cpe

OPTIMAL DEPLOYMENT AND REPLICATION FOR ELASTIC DATA STREAM PROCESSING 3

2. RELATED WORK

In this section, we review the research results and development efforts related to placing and
deploying a DSP application on the computing infrastructure, including the approaches devoted
to reconfiguring the deployment at runtime.

Placement and Replication Problem. The decisions about placing the operators of a DSP
application and determining their replication degree can be taken at two different stages of the
application lifecycle, that is at the initial deployment of the application on the distributed computing
infrastructure and at run-time. Furthermore, the operator placement and operator replication can be
either taken as independent and orthogonal decisions or can be jointly considered.

The DSP placement problem [11] has been widely investigated in literature under different
modeling assumptions and optimization goals, e.g., [5, 8, 12]. In [12], we propose a general
formulation of the optimal DSP placement which takes into account the heterogeneity of computing
and networking resources and which encompasses different solutions proposed in the literature.
Since the placement problem is NP-hard, several heuristics have been proposed, e.g. [13, 14, 15].
They aim at minimizing a diversity of utility functions, such as DSP application latency, inter-node
traffic, and network usage. Although in this paper we focus on application latency and execution
cost, our problem formulation can be easily extended to take into account different utility functions.

Most works in literature consider DSP operator placement and replication as independent and
orthogonal decisions, where the placement is first carried out without determining the optimal
number of replicas for each operator. Then, in response to some performance deterioration, the
operators to be replicated and their new replication degree are identified. This two-stage approach
requires to reschedule the DSP application in order to enact the new application configuration.
Since most existing DSP frameworks require to restart the application to adapt its deployment (e.g.,
Apache Storm [16]), performing a reconfiguration may incur in a significant downtime. In [17] we
proposed a single-stage approach to jointly define both the placement and the replication degree
of the operators in a DSP application. With respect to the problem studied in [17], which only
considered the initial DSP deployment, in this paper we deal with the elastic run-time adaptation.

Elasticity is a key feature for DSP systems that is attracting many research efforts. Most
approaches that enable elasticity are intrinsically organized according to the MAPE (Monitor,
Analyze, Plan and Execute) reference model for self-adaptive systems [18]. Following this model,
the current placement and replication is adapted by scaling-in/out the amount of operator replicas
and possibly rescheduling the application in response to changes, either observed or predicted, in
some monitored performance metric. Some works, e.g., [9, 19, 20, 21], exploit best-effort threshold-
based policies based on the utilization of either the system nodes or the operator replicas. Different
approaches can be identified for the threshold definition. A single statically-defined threshold is
used, e.g., in [20] to limit load unbalance among computing nodes. Multiple statically-defined
thresholds are used, e.g., in [19] to customize the behavior of each individual node within the system.
A dynamically set threshold improves the system adaptivity, e.g., in [21] where a reinforcement
learning approach is proposed. Overall, when the utilization exceeds the threshold, the replication
degree of the involved operators is modified accordingly.

Other works, e.g., [2, 6, 7, 22], use more complex policies to determine the scaling decisions.
Lohrmann et al. [6] propose a strategy that enforces latency constraints by relying on a predictive
latency model based on queueing theory; nevertheless, their solution manages only stateless DSP
applications. Mencagli [7] presents a game-theoretic approach where the control logic is distributed
on each operator. Stela [22] relies on throughput-based metric to identify those operators that need
to be scaled; it has been integrated into Storm, but stateful operators do not appear to be managed.

The works most closely related to ours have been presented in [3, 23, 24]. Heinze et al. [3, 23]
propose a model to estimate latency spikes caused by operator reallocations, and use it to define a
placement heuristic. It results a solution that places only the newly added operators and minimizes
the latency violations. Our approach differs in that we propose an optimal problem formulation
which deals with the reconfiguration costs of the entire DSP application. Moreover, it represents
a benchmark against which heuristics can be compared. Madsen et al. [24] formulate a MILP
optimization problem aimed to control load balancing and horizontal scaling, which works in

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/cpe

4 V. CARDELLINI ET AL.

combination with a heuristic in charge of collocating operators on computing nodes. Similarly to
our work, their solution considers operator collocation (in our case, it follows from minimizing the
response time) and state-migration overheads. However, we further consider the network among
computing nodes, which impacts on placement, replication, and also on migration costs.

Differently from the above cited works that present reactive scaling strategies, De Matteis and
Mencagli [25] propose a proactive strategy for a DSP distributed environment that takes into account
a limited future time horizon to choose the reconfigurations. Differently from our solution, their
approach is not integrated in an existing DSP framework.

As regards the placement and deployment of DSP applications in geo-distributed environments,
we have extended Storm with a self-adaptive QoS-aware distributed placement heuristic [14].
Similarly to our proposal, the recently presented SpanEdge approach [26] is implemented in Storm,
but it does not support operator migrations. Saurez et al. [27] propose Foglets, a programming
model specifically designed for the Fog computing environment, which supports the migration of
application components. Our EDRP formulation could be integrated into Foglets, as it is designed
to operate in a geo-distributed infrastructure.

Stateful Operators. While scaling-in/out stateless operators can be achieved by just turning
off/on operator replicas, elasticity of stateful operators requires state migration and repartitioning
among the replicas, because the system needs to preserve the consistency of the operations [2]. State
management in DPS systems is nicely surveyed by To et al [28]; in the following we focus on the
issues that are more closely related to our work.

Operator state migration is a challenging task, because it should be application-transparent and
with a minimal footprint (i.e., amount of migrated state). The most common solutions are the pause-
and-resume approach (that we adopt in this paper) and the parallel track approach [29]. In the pause-
and-resume approach, the current state is extracted from the old operator instance, which is paused to
ensure a semantically correct migration; then, the state is moved to the new instance and the buffered
tuples are rerouted and replayed within the new instance. Its drawback is a peak in the application
latency during the migration. To migrate in a more gradual fashion, in the parallel track approach,
the old and the new operator instances run concurrently until the state of both is synchronized
and the new instance can safely take over. While this approach does not entail a latency peak, it
requires enhanced mechanisms [19], e.g., to avoid incorrect results, which can increase the cost
of state migration. Furthermore, this approach is more suitable for window-based operators [30].
This latter work also models the time cost of the two approaches for partitioned stateful operators.
To improve the efficiency of the pause-and-resume approach, some works [19, 31, 32] exploit the
checkpoints that are already backed up for failure recovery. A checkpoint allocation problem is
defined by Madsen et al. [31] with the goal to maximize the checkpoints reuse for migration.

The second challenge posed by stateful operators regards the stream partitioning and load
balancing among the replicas. When a stateful operator scales out, its processing state must be
split across the number of replicas and this restricts the exploitation of elasticity only to partitioned
stateful operators. Fernandez et al. expose an API to let the user manually manage the state [19],
while Gedik et al. [2] propose a stream partitioning method based on consistent hashing and a state
management API to support transparent elastic replication. Nasir et al. [33] propose partial key
grouping, an elegant solution relying on two hash functions where a key can be sent to two different
replicas instead of one. In our approach, the minimum unit of migratable state is defined by the user
through the Storm execution model and the load is distributed according to key partitioning.

DSP Frameworks. Aside the specific functionalities, the most popular open-source DSP
frameworks (Storm, Spark Streaming, Flink, and Heron) use directed graphs to model DSP
applications. They provide an abstraction layer where to execute DSP applications and allow
their users to focus solely on the application logic, being the tasks related to the application
placement, distribution, and execution managed by the frameworks themselves. As regards the
operator elasticity, in most cases these frameworks require their users to manually tune the number
of replica per operator. Since the user might over-/under-estimate the expected load, this approach
can lead to a sub-optimal provisioning of resources. Furthermore, these frameworks are equipped
with elasticity mechanisms in an embryonic stage; indeed, they dynamically scale the application

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/cpe

OPTIMAL DEPLOYMENT AND REPLICATION FOR ELASTIC DATA STREAM PROCESSING 5

in a disruptive manner, because they enact reconfigurations by killing and restarting the whole
application, thus introducing a significant downtime.

We provide an overview of Storm in Section 6.1. Leveraging on Trident [34], Storm supports
stateful applications. Differently from our extension, that manages an operator-related state, Trident
can persist a state which is obtained by applying a sequence of Trident transformations on the input
data. However, this approach requires to play the stream as a sequence of micro-batches, processed
in a commit-like fashion, thus causing a constant latency overhead. In [9] we extend Storm to
support the elastic run-time adaptation of DSP applications, by introducing new system components
that allow the elasticity and stateful migration of the DSP operators. In this paper, we combine that
extension with our Distributed Storm [35] to exploit the distributed monitoring capabilities of the
latter. We present in Section 6 the resulting enhanced framework. An approach to support elastic
scaling of DSP applications in Storm has been also presented at the same time in [36]; interestingly,
their proposal reduces the interruption due to scaling operations by keeping the application running
while scaling, instead of shutting down the application operators and restarting them. However,
they considered a clustered architecture and their improved version of Storm has not been released
publicly. Therefore, in our experiments we use the standard rebalancing command of Storm.

Developed by Twitter as the successor of Storm, Heron [37] preserves Storm’s abstraction layer
while introducing some improvements and a multi-layer architecture. Dhalion [38] is a newly
presented framework on top of Heron that provides elastic capabilities to the underlying streaming
system; it also addresses the overhead related to restarting the topology by allowing its updating.
However, at the time of writing Dhalion has not yet been open-sourced and details on the elasticity
strategy are not yet available. Spark Streaming [39] is an extension on top of Apache Spark
that enables data stream processing. It is throughput-oriented, whereas Storm can minimize the
application latency and can thus be preferable in latency-sensitive scenarios. From version 2.0,
Spark Streaming supports elastic scaling through the dynamic allocation feature, which uses a
simple heuristic where the number of executors is scaled up when there are pending tasks and is
scaled down when executors have been idle for a specified time. Another emerging framework is
Apache Flink [40], which provides a unified solution for batch and stream processing. Although
Flink supports the manual scaling of stateless operators and checkpointing of stateful operators
for fault tolerance, it does not yet provide any mechanism for autonomic operator scaling and for
stateful operator migration. We also observe that, despite the recent efforts towards elasticity in some
frameworks, all those cited are not designed to efficiently operate in a geo-distributed environment.

DSP systems are also offered as Cloud services. Google Cloud Dataflow† provides a unified
programming model to process batch and streaming data. Amazon offers Kinesis Streams‡ to
process near real-time streams of data. Both of them abstract the underlying infrastructure and
support dynamic scaling of the computing resources; however, it appears that they execute in a
single data center, conversely to the geo-distributed environment we investigate in this paper.

Several research efforts use Storm to evaluate operator placement algorithms or some
architectural improvements (e.g., [13, 15, 16, 36, 41] and, from our group, [9, 12, 35]). In this
paper, we also implement the proposed EDRP strategy into Storm.

3. SYSTEM MODEL

In this section we present the system resource, deployment and reconfiguration models. For the sake
of clarity, in Table I we summarize the notation used throughout the paper.

3.1. Resource Model

Computing and network resources can be represented as a labeled fully connected directed graph
Gres = (Vres, Eres), where the set of nodes Vres represents the distributed computing resources,

†https://cloud.google.com/dataflow/
‡https://aws.amazon.com/kinesis/

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/cpe

https://cloud.google.com/dataflow/
https://aws.amazon.com/kinesis/

6 V. CARDELLINI ET AL.

Table I. Description of main symbols used in the model.

Symbol Description Symbol Description

Gdsp Graph representing the DSP application Resi Required resources to execute i ∈ Vdsp
Vdsp Set of vertices (operators) of Gdsp IS,i Internal state size of i ∈ Vdsp
Edsp Set of edges (streams) of Gdsp IC,i Operator code size of i ∈ Vdsp
Ci Cost of deploying i ∈ Vdsp λ(i,j) Avg. tuple rate on (i, j) ∈ Edsp

Ri Latency of i ∈ Vdsp λi Avg. incoming tuple rate on i ∈ Vdsp
Gres Graph representing computing resources d(u,v) Network delay on (u, v) ∈ Eres

Vres Set of vertices (comp. nodes) of Gres r(u,v) Transfer rate on (u, v) ∈ Eres

Eres Set of edges (network links) of Gres C(u,v) Cost for data unit on (u, v) ∈ Eres

Resu Resources available on u ∈ Vres ts,u Time for instance spawning on u ∈ Vres
Su Processing speed-up of u ∈ Vres tsyn Synchronization time for reconfiguration

V i
res ⊆ Vres Subset of nodes where to place i ∈ Vdsp xi,U Placement of i ∈ Vdsp on nodes in U
S @ S Multiset of elements in set S U0,i Current deployment for i ∈ Vdsp
P (S; k) Set of all multisets with elements taken

in S and cardinality no greater than k
y(i,j),(U,V) Placement of (i, j) ∈ Edsp on network

paths between U and V

and the set of links Eres represents the logical connectivity between nodes. Observe that, at this
level, links represent the logical links across the networks corresponding to the network paths
between nodes (as determined by the network operator routing strategies). Each node u ∈ Vres
is characterized by: Resu, the amount of available resources; and Su, the processing speed-up
on a reference processor. Each link (u, v) ∈ Eres, with u, v ∈ Vres is characterized by: d(u,v), the
network delay between node u and v; r(u,v), the transfer rate between node u and v; and C(u,v),
the cost per unit of data transmitted along the network path between u and v. This model considers
also edges of type (u, u) (i.e., loops); they capture network connectivity between operators placed
in the same node u, and are considered as perfect links, i.e., always active with no network delay.
We assume that the considered QoS attributes can be obtained by means of either active/passive
measurements or through some network support (e.g., SDN).

3.2. DSP Deployment Model

A DSP application can be represented at different levels of abstraction; we distinguish between a
user-defined abstract model and an execution model, used to run the application.

The DSP abstract model defines the streams and their characteristics, along with the type,
role, and granularity of the stream processing elements. At this level, the DSP application can be
regarded as a network of operators connected by streams. An operator is a self-contained processing
element that carries out a specific operation (e.g., filtering, aggregation, merging) or something more
complex (e.g., POS-tagging), whereas a stream is an unbounded sequence of data (e.g., packet, tuple,
file chunk). Moreover, we distinguish between stateless and stateful operator whether the operator
computes the output data using only the incoming data or also some internal state information,
respectively. A DSP abstract model can be represented as a labeled directed acyclic graph (DAG)
Gdsp = (Vdsp, Edsp), where the nodes in Vdsp represent the application operators as well as the data
stream sources (i.e., nodes without incoming links) and sinks (i.e., nodes without outgoing links),
and the links in Edsp represent the streams, i.e., data flows, between nodes. Due to the difficulties
in formalizing the non-functional attributes of an abstract operator, we characterize it with the non-
functional attributes of a reference implementation on a reference architecture: Resi, the amount
of resources required for running the operator; Ri, the average operator instance latency (which
accounts for the waiting time on the input queues as well as the execution time of a data unit);
and Ci, the cost of deploying an operator instance. We characterize the stream exchanged from
operator i to j, (i, j) ∈ Edsp, with its average tuple rate λ(i,j). To model load-dependent latency,
we assume that Ri is a function of the operator input tuple rate λi, that is, Ri = Ri(λi), where
λi =

∑
j∈Vdsp λ(j,i); without loss of generality, we also assume that Ri is an increasing function

in λi. In this paper, we assume that Resi is a scalar value, but our placement model can be easily
extended to consider Resi as a vector of required resources (e.g., CPU cores, memory).

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/cpe

OPTIMAL DEPLOYMENT AND REPLICATION FOR ELASTIC DATA STREAM PROCESSING 7

At any give time, the DSP execution model is obtained from the abstract model by replacing
each operator with the current number of operator replicas, that is operator instances each of which
processes a subset of the incoming data flow. By partitioning the stream over multiple replicas,
running on one or more computing nodes, the load of each replica is reduced, which, in turn, yields
lower operator (and overall application) latency. Since the load can vary over time, the number
of replicas in the execution model can change accordingly as to optimize some non functional
requirements, e.g., response time.

3.3. Reconfiguration Model

When a DSP application is launched, an initial number of replicas and their placement is determined
based on the current (expected) load and QoS requirements. Then, at run-time, changes of QoS
attributes of the application and the execution environment (e.g., load, latency) can call for the
application reconfiguration. The latter aims to preserve high application performance, facing the
dynamism of the run-time environment. A DSP application can be reconfigured by combining
migrations and scaling operations. A migration moves an operator replica to a different computing
resource, so to optimize resource utilization and, in turn, application performance. A scaling
operation changes the replication degree of an operator. Specifically, a scale-out decision increases
the number of replicas when the operator needs more computing resources, whereas a scale-in
decreases the number of replicas when the operator under-uses its resources.

To perform a reconfiguration while preserving the application integrity in terms of extracted
information, we assume a simple pause-and-resume approach, as introduced in Section 2. Its
drawback is the application downtime for the entire duration of the reconfiguration process, which
negatively impacts on the application perceived QoS.

Replica Migration. Migrating an operator replica using the pause-and-resume approach involves
the following operations. First, the DSP system terminates the replica running on the old
location and stops the related upstream operators from emitting data towards the operator under
reconfiguration. Then, the operator code§ is copied from an external repository to the new location,
if the latter does not hold it, i.e., if no other replica is currently deployed there. Moreover, if the
replica is an instance of a stateful operator, the DSP system has to migrate the replica internal state
from the old location to the new one. Finally, the DSP system starts the new replica and resumes
the application execution. We consider that the DSP system performs the code and state migrations
leveraging on a storage system, named DataStore. The DataStore acts as repository for the operators
code and allows replicas to save and restore their state during reconfigurations.

Scaling Operation. The complexity of changing at run-time the replication degree of an operator
depends on the presence of its internal state. If the operator is stateless, a scaling operation involves
only adding or removing replicas. When a new replica is added, the DSP system also determines
where the replica should be executed; as a consequence of this decision, the operator code may be
transferred from the DataStore to the new location. If the operator is stateful, a scaling operation
has also to redistribute the operator internal state among its replicas, so to preserve the application
integrity. Similarly to most of the existing solutions (e.g., [2, 16, 20, 31, 32]), we model the operator
internal state as a set of key-value pairs, where the key identifies the smallest and indivisible state
entity. These keys are partitioned and assigned to the operator replicas. After a scaling operation,
the keys are redistributed with the help of the DataStore.

4. ELASTIC OPERATOR REPLICATION AND PLACEMENT MODEL

In this section, we present the EDRP elastic replication and placement model and derive the
expressions of the QoS metrics of interest.

§We use the term code to refer to the entity that encapsulates the execution logic of an operator. Depending on the specific
system implementation, it can correspond, e.g., to Java classes, executables, or container/virtual machine images.

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/cpe

8 V. CARDELLINI ET AL.

1

2

3 4

65

2

2 4

3 5

6

1

decreasing workload

4

2

2

2
2

4

4

3 3 5

6

1

increasing workload

2

2

2 4

4

3 3 5

6

1

sinkoperatorsource

Figure 1. Elastic replication of the application operators and their placement. The right part of the figure
shows: (top) scale-in of operators 2, 3 and 4 due to load decrease, (bottom) scale-out of operators 2 and 4

due to load increase. The figure does not differentiate between stateful or stateless operators.

4.1. Operator Replication and Placement

The EDRP problem consists in determining, for each operator i ∈ Vdsp, the number of replicas
and where to deploy them on the computing nodes in Vres. EDRP can evaluate the application
deployment either periodically or in response to changes on the execution environment (e.g.,
workload variations), so to execute application with high QoS even in dynamic running conditions.
EDRP can identify the optimal reconfiguration strategy and evaluate its convenience in terms of
application downtime. Figure 1 represents a simple instance of the problem. The operator replication
and placement can be represented by a function map which maps an operator i ∈ Vdsp to a multiset
of computing nodes in V ires, where V ires ⊆ Vres denotes the subset of nodes where an operator
can be deployed¶. We resort to multisets because a deployment can place multiple replicas of the
same operator on the same computing node. For instance,map(i) = {u, u, v}, i ∈ Vdsp, u, v ∈ V ires,
indicates that operator i deployment consists of 3 replicas, two of which on node u and one on
node v. A multiset S over a set S, which we denote as S @ S, is defined as a mapping S : S → N
where, for s ∈ S, S(s) denotes the multiplicity of s in S. Hence, s ∈ S if and only if S(s) ≥ 1.
The cardinality of a multiset S, denoted |S|, is defined by the number of elements in S, that
is |S| =

∑
s∈S S(s). Hereafter, without lack of generality, we assume that in a deployment each

operator i ∈ Vdsp can be replicated at most ki times. We also define the power multiset P(S) of a
set S as the set of all multisets with elements taken from S and the subset P(S; k) ⊂ P(S) of the
multiset over S with cardinality no greater than k, that is P(S; k) = {S ∈ P(S)|

∑
s∈S S(s) ≤ k}.

We model the EDRP problem with binary variables xi,U , i ∈ Vdsp and U ∈ P(V ires; ki): xi,U = 1
if and only if map(i) = U , that is, i is replicated in |U| instances with exactly U(u) copies deployed
in u, with u ∈ U . We also find convenient to consider binary variables associated to links, namely
y(i,j),(U,V), with (i, j) ∈ Edsp, U ∈ P(V ires; ki), and V ∈ P(V jres; kj), which denotes whether the
data stream flowing from operator i to operator j traverses the network paths from nodes in U to
nodes in V . By definition, we have y(i,j),(U,V) = xi,U ∧ xj,V . For short, in the following we denote
by x and y the placement vectors for nodes and edges, respectively, where x = 〈xi,U 〉, ∀i ∈ Vdsp,
∀U ∈ P(V ires; ki), and y = 〈y(i,j),(U,V)〉, ∀xi,U , xj,V ∈ x.

¶ A DSP operator cannot be usually placed on every node in Vres, because of physical (i.e., pinned operator) or other
motivations (e.g., security, privacy). Being application-dependent and without impact on the problem formulation, we do
not explicitly formalize the function that, given i ∈ Vdsp and Vres, identifies V i

res. By default, we consider V i
res = Vres

for unpinned operator i, and V j
res ⊆ Vres, |V j

res| = 1, for pinned operator j, where the node in V j
res is defined a-priori.

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/cpe

OPTIMAL DEPLOYMENT AND REPLICATION FOR ELASTIC DATA STREAM PROCESSING 9

4.2. QoS Metrics

In this paper, we consider as QoS metrics of interest the application response time and deployment
cost. Since DSP applications are usually employed in latency-sensitive domains (e.g., [10]), a
desired placement should minimize the response time resulting from the operators deployment.
However, if on the one hand a higher replication degree leads to lower response time, on the
other hand it incurs in higher resource wastage, which leads to a higher deployment cost. We first
formulate these metrics for operators and streams in isolation, then derive the expressions for a
DSP application. The analysis can be easily extended to include other QoS metrics, as application
availability and network related metrics (e.g., see [17]).

4.2.1. Operator QoS Metrics. For each i ∈ Vdsp, the QoS of the operator depends on the hosting
resources, that is its deployment U . Let Ri,U and Ci,U denote the maximum latency ‖ and the cost
experienced when i runs on U , respectively. We readily have:

Ri,U = max
u∈U

Ri

(
λi
|U|

)
Su

(1)

Ci,U =
∑
u∈U
U(u)CiResi (2)

under the assumption that the traffic is equally split among the different operator replicas. Good load
balancing can be achieved even for stateful operators relying on the stream partitioning schemes
mentioned in Section 2, e.g., [2, 33]. It is worth pointing out that here we do not make any
particular assumption on the actual expression of Ri. We can adopt either a queuing model closed-
form expression, e.g., the response time of a M/M/1 queue (as in Section 7.2), or an experimental
characterization of the operator response time as function of the load (as in Section 7.3).

4.2.2. Stream QoS Attributes. For a stream (i, j) ∈ Edsp, the QoS depends on the upstream and
downstream operators deployments U and V . Let d(i,j),(U,V) and C(i,j),(U,V) denote the maximum
latency∗∗ and the cost experienced when i runs on U and j on V , respectively. We readily have:

d(i,j),(U,V) = d(U,V) = max
u∈U,v∈V

d(u,v) (3)

C(i,j),(U,V) =
∑

u∈U,v∈V
λ(i,j),(U,V)Cu,v (4)

where λ(i,j),(U,V) =
λ(i,j)

|U||V| u ∈ U , v ∈ V is the amount of stream (i, j) traffic exchanged between
two replicas for the deployments U and V .

4.2.3. DSP Application QoS Metrics. We derive the following expressions for a DSP application.
Response Time: For a DSP application, with data flowing from several sources to several
destinations, there is no unique definition of response time. For any placement vector x (and
resulting y), we consider as response time R(x,y) the critical path average delay. We define the
critical path of the DSP application as the set of nodes and edges, forming a path from a data
source to a sink, for which the sum of the operator computational latency (Ri,U) and network delays

‖This definition of the operator response time might appear counter intuitive. It is nevertheless consistent with our
definition of the DSP application response time (see (5)-(7) below) which we define as the expected delay along the
critical path of the DSP application. It is indeed easy to verify that with this definition of operator response time Ri,U ,
since different replicas can experience different average response time, (5) corresponds to the average latency along the
DSP critical path. We omit the formal proof for space limitation.
∗∗Similarly to the response time definition (1), this definition might appear counter intuitive. Nevertheless, it is easy
to verify that it is consistent with the DSP application response time definitions, (5)-(7). We omit the proof for space
limitation.

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/cpe

10 V. CARDELLINI ET AL.

(d(i,j),(U,V)) is maximal; hence, the critical path average delay is the expected traversal time of the
critical path. Formally, we have:

R(x,y) = max
π∈Πdsp

Rπ(x,y) (5)

where Rπ(x,y) is the end-to-end delay along path π and Πdsp the set of all source-sink paths in
Gdsp. For any path π = (i1, i2, . . . , inπ) ∈ Πdsp, where ip and nπ denote the pth operator and the
number of operators in the path π, respectively, we obtain:

Rπ(x,y) =

nπ∑
p=1

Rip(x) +

nπ−1∑
p=1

D(ip,ip+1)(y) (6)

where for any i ∈ Vdsp and (i, j) ∈ Edsp

Ri(x) =
∑

U∈P(V ires;ki)

Ri,Uxi,U and D(i,j)(y) =
∑

U∈P(V ires;ki)

V∈P(V jres;kj)

d(U,V)y(i,j),(U,V) (7)

denote respectively the execution time of operator i when deployed on U and the network delay for
transferring data from i to j when the two operators are mapped on U and V , respectively.
Cost: We define the cost C of the DSP application as the monetary cost of all the resources and
links involved in the processing and transmission of the application data streams. We have:

C(x,y) =
∑
i∈Vdsp

Ci(x) +
∑

(i,j)∈Edsp

C(i,j)(y) (8)

where

Ci(x) =
∑

U∈P(V ires;ki)

Ci,Uxi,U and C(i,j)(y) =
∑

U∈P(V ires;ki)

V∈P(V jres;kj)

C(i,j),(U,V)y(i,j),(U,V) (9)

denote respectively the cost of deploying i on the multiset U and the cost of transferring data from
i to j when the two operators are mapped on U and V , respectively.

4.2.4. Reconfiguration-related Metric. The management operations that change the application
deployment temporarily degrade the application performance introducing a downtime.
Application downtime: We express the cost of reconfigurations in terms of application downtime,
so to capture the trade-offs between benefits and costs of changing the deployment. Under the
assumption that different operators can be reconfigured in parallel, the overall application downtime
TD (x) corresponds to the longest operator downtime:

TD (x) = max
i∈Vdsp

TD,i (x) (10)

where TD,i (x) is the downtime duration for operator i ∈ Vdsp, which depends on its new
deployment configuration and can be expressed as:

TD,i (x) =
∑

V∈P(V ires;ki)

tD
(
i,U0,i,V

)
xi,V (11)

where tD (i,U ,V) represents the time needed to reconfigure the operator i from the deployment U
to V , and U0,i represents the current deployment of i. The expression for tD (i,U ,V) depends on
the actual type of operator reconfiguration (i.e., no reconfiguration, operator migration, and operator
scaling). For the sake of readability, the derivation of their expressions is postponed to Appendix A.

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/cpe

OPTIMAL DEPLOYMENT AND REPLICATION FOR ELASTIC DATA STREAM PROCESSING 11

5. EDRP OPTIMIZATION PROBLEM

In this section we present the EDRP optimization problem. We assume that, at each reconfiguration,
the system goal is to optimize a suitable objective function which, depending on the scenario,
could be aimed at optimizing different, possibly conflicting, QoS attributes. We further assume
that each QoS metric must not exceed an application dependent worst case behavior. We use the
Simple Additive Weighting (SAW) technique [42] to define the objective cost function F (x,y) as a
weighted sum of the normalized QoS attributes of the application, as follows:

F (x,y) = wr
R(x,y)

Rmax
+ wc

C(x,y)

Cmax
+ wd

TD(x)

TD,max
(12)

where wr, wc, wd ≥ 0, wr + wc + wd = 1, are weights associated to the different QoS attributes.
Rmax, Cmax, and TD,max are user-defined parameters which denote, respectively, the worst case
bound on the expected response time, cost, and reconfiguration downtime. After normalization,
each metric ranges in the interval [0, 1], where the value 1 corresponds to the worst possible value.

We formulate the EDRP problem as an ILP cost minimization problem as follows:

min
x,y,r,tD

F ′(x,y, r, tD)

subject to:
r ≥ Rπ(x,y) ∀π ∈ Πdsp (13)

tD ≥ TD,i(x) ∀i ∈ Vdsp (14)
R(x,y) ≤ Rmax (15)
C(x,y) ≤ Cmax (16)
TD(x) ≤ TD,max (17)

Resu ≥
∑
i∈Vdsp
U∈P(V ires)

U(u)Resixi,U ∀u ∈ Vres (18)

1 =
∑

U∈P(V ires;ki)

xi,U ∀i ∈ Vdsp (19)

xi,U =
∑

V∈P(V jres;kj)

y(i,j),(U,V)
∀(i,j)∈Edsp,
U∈P(V ires;ki)

(20)

xj,V =
∑

U∈P(V ires;ku)

y(i,j),(U,V)
∀(i,j)∈Edsp,
V∈P(V jres;kj)

(21)

xi,U ∈ {0, 1}
∀i∈Vdsp,

U∈P(V ires;ki)
(22)

y(i,j),(U,V) ∈ {0, 1}
∀(i,j)∈Edsp,
U∈P(V ires;ki)

V∈P(V jres;kj)
(23)

In the problem formulation we use the linear objective function F ′(x,y, r, tD), obtained from
F (x,y) by replacing R(x,y) and TD(x) with the auxiliary variables r and tD, respectively.
Observe that, indeed, while F is nonlinear in x and y, since R(x,y) = maxπ∈Πdsp Rπ(x,y) and
TD(x) = maxi∈Vdsp TD,i(x) are nonlinear terms, F ′ is linear in r and tD as well as in x and
y. Equation (13) follows from (5)–(6). Since r must be larger or equal than the response time
of any path and, at the optimum, r is minimized, r = maxπ∈Πdsp Rπ(x,y) = R(x,y). Similarly,
Equation (14) defines tD that, at the optimum, is tD = maxi∈Vdsp TD,i(x). Constraints (15)–(17)
are the worst case bounds on the QoS metrics. The constraint (18) limits the placement of operators
on a node u ∈ Vres according to its available resources. Equation (19) guarantees that each operator
i ∈ Vdsp is placed on one and only one node u ∈ V ires. Finally, constraints (20)–(21) model the
logical AND between the placement variables, that is, y(i,j),(u,v) = xi,u ∧ xj,v.

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/cpe

12 V. CARDELLINI ET AL.

Theorem 1
The EDRP problem is NP-hard.

Proof
It suffices to observe that the EDSP Replication and Placement problem is a generalization of the
DSP Placement problem which has been shown to be NP-hard [12].

6. STORM INTEGRATION

To enable the usage of EDRP in a real DSP framework, we have developed a prototype scheduler
for Apache Storm, named S-EDRP. We first briefly provide an overview of Storm; then, we present
the prototype design in detail and how EDRP is adjusted to consider the prototype features.

6.1. Apache Storm

Storm is an open source, real-time, and scalable DSP system maintained by the Apache Software
Foundation. It provides an abstraction layer where DSP applications can be executed over a set of
worker nodes interconnected in an overlay network. A worker node is a generic computing resource
(i.e., physical or virtual machine), whereas the overlay network comprises the logical links among
these nodes. In Storm, we can distinguish between an abstract application model and an execution
application model. In the abstract model, an application is represented by its topology (see Figure 4),
which is a DAG with spouts and bolts as vertices and streams as edges. A spout is a data source
that feeds data into the system through one or more streams. A bolt is either a processing element,
which generates new outgoing streams, or a final information consumer. A stream is an unbounded
sequence of tuples, which are key-value pairs. We refer to spouts and bolts as operators.

In the execution model, Storm transforms the topology by replacing each operator with its tasks.
A task is an instance of an application operator (i.e., spout or bolt), and it is in charge of a share of
the incoming operator stream. Therefore, if the operator has some internal state (i.e., it is a stateful
operator), a task handles a partition of it. In Storm, the number of tasks for an operator is statically
defined. Each task processes incoming data with an at-least-once semantic, which can be turned into
an exactly-once semantic relying on the Trident API (not used in this work because of its processing
overhead). For the execution, one or more tasks of the same operator are grouped into executors.
An executor is the smallest schedulable unit; Storm can process large data volumes in parallel by
launching multiple executors for each operator. The number of executors of an operator must always
be less than or equal to the number of tasks of the same operator. From an operational perspective,
Storm implements the executors as threads and also introduces the worker process, that is a Java
process, to run a subset of executors of the same topology. Therefore, there is an evident hierarchy
among the Storm entities: a group of tasks runs sequentially in the executor, which is a thread within
the worker process, that serves as container on the worker node.

Besides the computing resources (i.e., the worker nodes), the architecture of Storm includes two
additional components: Nimbus and ZooKeeper. Nimbus is a centralized component in charge of
coordinating the topology execution; it uses its scheduler to define the placement of the application
operators on the pool of available worker nodes. The assignment plan determined by the scheduler
is communicated to the worker nodes through ZooKeeper∗, that is a shared in-memory service for
managing configuration information and enabling distributed coordination. Since each worker node
can execute one or more worker processes, a Supervisor component, running on each node, starts or
terminates worker processes according to the Nimbus assignments. A worker node can concurrently
run a limited number of worker processes, based on the number of available worker slots.

∗http://zookeeper.apache.org/

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/cpe

http://zookeeper.apache.org/

OPTIMAL DEPLOYMENT AND REPLICATION FOR ELASTIC DATA STREAM PROCESSING 13

6.2. Elasticity in Storm

To elastically adapt the applications deployment in Storm, we resort on Distributed Storm†, which
is our extension of Storm with QoS-aware scheduling capabilities [35], and on S-EDRP, which
is a new custom scheduler for Storm we propose in this work. Distributed Storm enhances the
official Storm architecture by introducing key components that support the execution of the MAPE
control loop. In our case, the MAPE loop controls the run-time reconfiguration of the application
deployment in response to changes in the workload conditions. As shown in Figure 2, we have
designed a partially decentralized control loop, that follows the master-worker pattern presented
in [43]. Specifically, we have centralized the Analyze and Plan phases on Nimbus, and decentralized
the Monitor and Execute phases on Nimbus and on the worker nodes, which contribute with local
components. The Analyze component collects the monitored data from the decentralized Monitors
on the worker nodes and periodically triggers the Plan component. The latter solves the EDRP
model, thus determining if needed the reconfiguration actions (i.e., scale-in, scale-out, migrate) that
improve application performance. In such a case, the decentralized Execute components perform
the corresponding adaptation actions.

...
Data
Store

Network

RNoti�er
E

S-EDRP
EA PNimbus

ZooKeeper
M Monitor

E ExecuteA Analyze

P Plan RWatcher Recon�gurationWatcher

RNoti�er Recon�gurationNotifer

M M

Supervisor
M

RWatcher
E

Worker
Process

Worker
Slot

M M

Supervisor
M

RWatcher
E

Worker
Process

Worker
Slot

Figure 2. Extended Storm architecture.

Monitor. The first phase of the control loop enriches S-EDRP with infrastructure and application
QoS-awareness. Specifically, the monitoring components of Distributed Storm running on each
worker node provide to Nimbus inter-node information, such as network delay and exchanged
data rate. Network latencies are estimated relying on the Vivaldi algorithm [44], a decentralized
and scalable algorithm that creates a network coordinate system. The decentralized nodes send
monitored data to the centralized components through ZooKeeper. Further details on our extension
can be found in [35].

Analyze and Plan. In S-EDRP, the Analyze phase collects the monitored data and periodically
instantiates the EDRP model. The latter has been properly adjusted, as described in Section 6.4, to
represent the DSP and resource models used by Storm. The Analyze phase instantiates the EDRP
model using the collected monitored data to parametrize nodes and edges in Gdsp and Gres and
give value to the average data rate exchanged between communicating operator replicas, λ(i,j), and
the network latencies, d(u,v). When the Plan phase is activated, it resolves the EDRP model relying
on CPLEX c©‡, the state-of-the-art solver for ILP problems. Observe that, to smoothly integrate
our solution with the existing Storm architecture, the Analyze phase uses a time-based triggering
strategy to activate the Plan phase. However, more efficient strategies can be designed to recompute
the deployment only when specific events occur, e.g., when QoS bounds are violated.

Execute. When EDRP devises a new application deployment, S-EDRP needs to accordingly
reconfigure the replication and placement of the application operators. Storm provides an API to
change the operators replication at run-time (i.e., rebalance); nevertheless, this operation restarts

†Source code available at http://bit.ly/extstorm
‡http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/cpe

http://bit.ly/extstorm
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/

14 V. CARDELLINI ET AL.

MIGRATION
NOTIFIED

MIGRATION
MODE

SAVE
STATE

�rst synchronization
barrier

the migrating task
can be terminated

MIGRATION
MODE

RESTORE STATE
(if any)

OPERATIONAL
MODE

new task

second synchronization
barrier

streams are
resumed

time

Figure 3. Sequence of operations involving a task during a reconfiguration.

the application topology, compromising the integrity of stateful operators (which lose their internal
state). To overcome this issue, we further extend the Storm architecture to include mechanisms that
support the migration and replication of stateful operators. In Section 6.3, we describe the newly
introduced components and the adopted stateful migration protocol.

Besides the run-time adaptation, Nimbus uses S-EDRP to determine the deployment of new
applications as well. In such a case, since information on the exchanged data rate is not yet available,
S-EDRP defines an early assignment and monitors the application execution to harvest the needed
information. Then, at the first MAPE execution, S-EDRP can reassign the application by solving
the updated EDRP model and neglecting reconfiguration costs (i.e., wd = 0).

6.3. Stateful Migrations in Storm

In Storm, a task represents the smallest entity that handles a partition of the operator state.
Therefore, the key idea is to introduce, within the Storm architecture, new components that
perform reconfigurations by following the pause-and-resume approach. To this end, a task is
enhanced with the ability to be paused and resumed, and to export and import the managed
operator state. The newly introduced components, represented in red in Figure 2, are DataStore,
ReconfigurationNotifier, and ReconfigurationWatcher. The DataStore provides a staging area for
the operator state during reconfigurations. It is a key-value storage component implemented using
Redis; we could not rely on ZooKeeper, because it is not designed to hold large data values. The
ReconfigurationNotifier is a centralized component that we added on Nimbus in order to coordinate
the reconfiguration actions, in such a way to apply them while preserving the operators integrity (i.e.,
saving and restoring their internal state) during adaptations. This component notifies tasks when a
reconfiguration is going to be performed, so that they can export their state, wait the reconfiguration,
and finally import again their state. On each worker node, the ReconfigurationWatcher handles these
notifications; it is a watchdog component that pauses and resumes the execution of the application
tasks and executes the migration protocol.

To interact with the newly introduced components, we also extend the Storm APIs that define
code of spouts and bolts, introducing the StatefulSpout and StatefulBolt classes. These new entities
should be used when a Storm topology requires elasticity. The new definition of spouts and bolts let
them work either in an operational mode or in a migration mode. The operational mode is associated
to the normal functionality of the task, whereas the migration mode activates the stateful migration
protocol for tasks involved in a reconfiguration.

Stateful Migration Protocol. When the number of executors or the placement for an operator is
changed, the ReconfigurationNotifier publishes a reconfiguration message on ZooKeeper to instruct
the involved worked nodes. As a consequence, on each worker node the ReconfigurationWatcher
activates the migration mode for the application tasks, which, in turn, run the stateful migration
protocol. As represented in Figure 3, the migration protocol performs the following steps. First,
it pauses the outgoing streams, before emitting a special end-of-stream tuple to the downstream
operators tasks. The latter start buffering all the incoming data until the receipt of the end-of-
stream tuple from all the upstream tasks. Second, it exports the state managed by the tasks under
reconfiguration and the buffered data, saving them on the centralized DataStore. To reduce the
amount of data sent over the network, the tasks relocated on the same node use a swapping area
on the local file system. At this point, the tasks reach a synchronization barrier implemented on
ZooKeeper. When all the tasks reach the barrier, the ReconfigurationNotifier gives the control back

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/cpe

OPTIMAL DEPLOYMENT AND REPLICATION FOR ELASTIC DATA STREAM PROCESSING 15

to S-EDRP, which can finally complete the application re-deployment using the rebalance API
provided by Storm. As soon as the new deployment is up and running, the tasks immediately enter
migration mode, retrieve the state and the buffered tuples from the DataStore (or from the swapping
area), and reach a second synchronization barrier. When all the tasks arrive to the barrier, they
come back to operational mode and resume processing, starting from the tuples buffered before
reconfiguration, so to preserve in-order processing and guarantee at-least-once processing. Due to
space limitations, we omit further details on the stateful migration, which can be found in [9].

6.4. S-EDRP: EDRP in Storm

To conclude this section, we present how the EDRP model has been adjusted to represent the
abstractions of Storm. We first describe the representation of applications and resources and then
the modeling of the stateful migration protocol developed in Storm.

DSP and Resource Model of Storm. We have to model the fact that Storm runs multiple
executors to replicate an operator, and that a Storm scheduler deploys these executors on the
available worker slots, considering that at most EPSmax executors can be co-located on the same
slot. Hence, S-EDRP defines Gdsp = (Vdsp, Edsp), with Vdsp as the set of operators and Edsp as
the set of streams exchanged among them. Since in Storm an operator is considered as a black box
element, we conveniently assume that its attributes are unitary, i.e., Ci = 1 andResi = 1, ∀i ∈ Vdsp.
By solving the replication and placement model, S-EDRP determines the number of executors
for each operator i ∈ Vdsp, leveraging the cardinality of U when xi,U = 1, with U ∈ P(V ires; ki)
and ki equals to the number of tasks of i. The resource model Gres = (Vres, Eres) must take
into account that a worker node u ∈ Vres offers some worker slots WS(u), and each worker slot
can host at most EPSmax executors. For simplicity, S-EDRP considers the amount of available
resources Cu on a worker node u to be equal to the maximum number of executors it can host, i.e.,
Cu = WS(u)× EPSmax. To enable the parallel execution of executors, Cu should be equal (or
proportional) to the number of CPU cores available on u.

Modeling the Stateful Migration Protocol. Differently from the generic formulation described
in Section 4.2.4, to model the downtime induced by our the stateful migration protocol we need
to account that, in Storm, the entire application is restarted when a configuration is carried out.
Therefore, to preserve the application integrity, even the replicas of the operators not directly
involved in a reconfiguration need to save and restore the internal state on their local swapping
area. This significantly impacts the application downtime during reconfiguration. For the sake of
readability, we postpone the new downtime expression derivation to Appendix A.2.

7. EXPERIMENTAL RESULTS

In this section, we evaluate EDRP through two different sets of experiments. First, we analyze the
elasticity capabilities of the EDRP model through numerical investigations. Then, we evaluate the
elasticity mechanisms introduced in Storm by our extension and the QoS achieved by the S-EDRP
scheduler. In both cases, we compare the results achieved using EDRP with a baseline solution that
does not consider reconfiguration costs (it suffices to set wd = 0 to ignore the downtime effects).

7.1. Reference DSP Application

As a test-case application, we consider a prototype application that solves the first query of DEBS
2015 Grand Challenge [10]. By processing data streams originated from the New York City taxis,
the goal of the query is to find the top-10 most frequent routes during the last 30 minutes. The
application topology is represented in Figure 4. Data source reads the dataset from DataStore
(Redis in our prototype), and pushes the data towards parser, which parses them and filters out
irrelevant and invalid data. Afterwards, filterByCoordinates forwards only the events related to a
specific observation area, whose extension is about 22 500 Km2. The operator computeRouteID is
in charge of identifying the route covered by taxis, computing the IDs of the starting and destination
cell (500 m× 500 m squares on the map). CountByWindow counts the route frequency in the last

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/cpe

16 V. CARDELLINI ET AL.

Table II. Parameters of the experimental setup.

Service rate expressed in tuples per second (tps) and internal state size in bytes per operator
Operator µi (tps) State (B) Operator µi (tps) State (B)

data source 284 82 metronome 300 328
parser 233 - countByWindow 335 1376

filterByCoordinates 253 - partialRank 2371 1536
computeRouteID 253 - globalRank 3000 480

Default values used for metrics computation
Parameter Value Parameter Value

Ci 1 $/h r(u,DS), r(DS,u) 100 Mbps
C(u,v) 0.02 $/tps IC,i 300 KB
ts,u 500 ms tsyn 250 ms

30 minutes; the notion of time is managed by a coordinator component, called metronome, which
pulses when the time related to the dataset events advances. The next operators, partialRank and
globalRank, compute the top-10 most frequent routes using a two-step approach that computes the
ranking in a distributed and parallel manner. Finally, globalRank publishes the top-10 updates on a
message queue, implemented with RabbitMQ.

We assume that data source and globalRank are pinned operators. In the experiments, we define
that each operator can be replicated at most three times (i.e., ki = 3, ∀i), except for the pinned ones
(i.e., data source and globalRank) and the metronome, which cannot be easily parallelized. If not
otherwise specified, we use the configuration parameters reported in Table II.

7.2. Evaluation of EDRP Model

This set of experiments evaluates the behavior of the EDRP optimization model for the reference
DSP application through numerical investigation. We have implemented EDRP in CPLEX c©

(version 12.6.3) and we have executed the experiments on an Amazon EC2 virtual machine
(c4.xlarge with 4 vCPU and 7.5 GB RAM). In these experiments, Gres models a portion of
ANSNET, a geographically distributed network where 15 computing nodes are interconnected with
non-negligible network delays (whose average is 32 ms). Within this network, we assume that a
logical link (u, v) ∈ Eres between any two computing resources u, v ∈ Vres always exists; each
logic link results by the underlying physical network paths and a shortest-path routing strategy. We
assume that each computing node u hasResu = 2 available resources and provides a unitary Su = 1
processing speed-up. Additionally, in this scenario, we assume that each operator can be replicated
at most twice (i.e., ki = 2,∀i ∈ Vdsp), except for the pinned ones (i.e., data source and globalRank)
and the metronome, which cannot be easily parallelized. EDRP estimates the response time Ri for
operator i subject to the incoming load λi/|U| by modeling the underlying computing node as an
M/M/1 queue, i.e., Ri(λi/|U|) = (µi − λi/|U|)−1, where µi is the service rate of i measured on a
reference processor. The operators service rate has been obtained through preliminary experiments
and it is shown in Table II. We assume that the network latency to and from DataStore is constant
and set to 5 ms, and the data transfer rate between all the pairs of nodes is 100 Mbps. We consider
a 1 hour experiment during which the data source emission rate linearly increases from 70 to 220
tuples per second, during the first half of the experiment, and then decreases down to 70 tuples per

sinkoperatorsource

RabbitMQRedis
computeRouteID

metronome

lterByCoordinates countByWindow globalRankdatasource parser partialRank

Figure 4. Reference DSP application.

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/cpe

OPTIMAL DEPLOYMENT AND REPLICATION FOR ELASTIC DATA STREAM PROCESSING 17

second, during the second half. We solve EDRP periodically, every minute, possibly reconfiguring
the application deployment. The initial placement is computed by EDRP as well, ignoring the
downtime-related metrics, with a balanced objective function having wr = wc = 0.5. Considering
the execution environment, we impose the following bounds on the QoS metrics: Rmax = 175 ms,
Cmax = 30 $/h, and TD,max = 7.5 s.

We consider different objective function configurations by changing the weights wX , X ∈
{r, c, d}, which translate to different QoS optimization goals into the model. We first consider the
case whereby we do not account for reconfiguration costs, i.e., wd = 0, and assign equal weights to
response time and cost, i.e., wr = wc = 0.5. Then, we consider a balanced scenario with wd = 0.4
and wr = wc = 0.3. Finally, we consider configurations which focus on either response time or
deployment cost: wr = 0.6, wd = 0.4, and wc = 0.6, wd = 0.4.

Results. We first study the DSP application behavior when we do not consider reconfiguration
cost, with wr = wc = 0.5 and wd = 0. In the initial deployment at t = 0 minutes of simulated time
(min), each component gets exactly one instance. As shown in Figure 5a, as load starts growing,
EDRP repeatedly migrates components to exploit better operator placement configurations. At
t = 7 min, a second instance of partialRank is eventually launched. Then, at t = 24 min, the model
scales-out at once other components: parser, filterByCoordinates, and computeRouteID. A third
scale-out is performed when the input rate reaches the peak, and countByWindow is replicated
as well. In the second half of the experiment, EDRP progressively comes back to the initial
configuration. Table III summarizes the experiment results, reporting the mean response time and
cost, and total downtime. Observe that, although the application achieves good performance, it
suffers appreciably longer downtime than other scenarios (from 240% to 500% higher values).

We now turn our attention to the scenarios where EDRP accounts for the reconfiguration costs.
In the following experiments we set wd = 0.4 and vary the other weights. Figure 5b illustrates
the results for the balanced scenario with wr = wc = 0.3 and wd = 0.4. Compared to the previous
case, here we have only three reconfigurations overall. First, as the input rate grows, after 8 min
EDRP launches a second replica for partialRank. This new instance is placed on the same node
where partialRank is already running along with countByWindow, which minimizes the amount of
state moved across the network. The latter operator is concurrently migrated to a different node.
Then, at t = 27 min, since response time is approaching the user-defined threshold, EDRP scales-
out the parser, filterByCoordinates, and computeRouteID operators, while also migrating others.
some components. When the load decreases, EDRP is quite conservative and does not immediately
scale-in operators. After 46 min, the model terminates all the replicas launched at t = 27 min. So all
the operators are left with just one replica, except for partialRank because, according to the model,
terminating this extra replica is not worth more downtime. We observe that the scale-in operation
also results in a reduction of the application latency. This can be explained by observing that, along
with the scale-in, EDRP takes advantage from co-locating communicating operators on the same
node, which reduces network latency and, in turn, overall application latency.

If we focus on response time optimization, setting wr = 0.6 and wd = 0.4, we get results which
are similar to the previous balanced objective scenario with better latency but higher cost. As shown
in Figure 5c, EDRP scales-out operators in two phases in the first part, and performs a single scale-in
after 50 min. Finally, we consider the deployment cost minimization, settingwc = 0.6 andwd = 0.4.
As expected, we experience lower cost and higher response time with respect to the previous cases.
As shown in Figure 5d, EDRP scales-out partialRank at t = 8 min, similarly to other settings.
However, it delays other scaling operations until it is forced to use more replicas to satisfy the latency
bound; EDRP progressively launches new instances from t = 26 min to t = 30 min. Nevertheless,
consistently with the cost minimization objective, EDRP immediately terminates those replicas as
input rate decreases. Finally, at t = 53 min, EDRP scales-in partialRank, leaving each operator with
a single running instance.

Scalability. For any given topology and number of computing nodes, the EDRP optimization
problem complexity depends on the maximum degree of operator replication ki, which impacts
the number of operator configuration alternatives, that is the cardinality of the sets P(V ires; ki) and
thus the number of operator and link variables, xi,U and y(i,j),(U,V), respectively. We computed the

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/cpe

18 V. CARDELLINI ET AL.

 60

 80

 100

 120

 140

 160

 180

 200

 220

 0 10 20 30 40 50 60

 60

 80

 100

 120

 140

 160

 180

 200

 220

R
e
s
p
o
n
s
e
 t
im

e
 (

m
s
)

S
o
u
rc

e
 d

a
ta

 r
a
te

 (
tu

p
le

s
/s

)

Simulated time (min)

Response time
Rmax

Source data rate
Scaling

Migration

(a) Baseline (wr = 0.5,wc = 0.5,wd = 0): minimization
of response time and cost, with no reconfiguration costs.

 60

 80

 100

 120

 140

 160

 180

 200

 220

 0 10 20 30 40 50 60

 60

 80

 100

 120

 140

 160

 180

 200

 220

R
e
s
p
o
n
s
e
 t
im

e
 (

m
s
)

S
o
u
rc

e
 d

a
ta

 r
a
te

 (
tu

p
le

s
/s

)

Simulated time (min)

Response time
Rmax

Source data rate
Scaling

(b) Balanced (wr = 0.3, wc = 0.3, wd = 0.4): minimiza-
tion of response time and cost, with reconfiguration costs.

 60

 80

 100

 120

 140

 160

 180

 200

 220

 0 10 20 30 40 50 60

 60

 80

 100

 120

 140

 160

 180

 200

 220

R
e
s
p
o
n
s
e
 t
im

e
 (

m
s
)

S
o
u
rc

e
 d

a
ta

 r
a
te

 (
tu

p
le

s
/s

)

Simulated time (min)

Response time
Rmax

Source data rate
Scaling

(c) Response time (wr = 0.6, wd = 0.4, wc = 0):
minimization of response time, with reconfiguration costs.

 60

 80

 100

 120

 140

 160

 180

 200

 220

 0 10 20 30 40 50 60

 60

 80

 100

 120

 140

 160

 180

 200

 220

R
e
s
p
o
n
s
e
 t
im

e
 (

m
s
)

S
o
u
rc

e
 d

a
ta

 r
a
te

 (
tu

p
le

s
/s

)

Simulated time (min)

Response time
Rmax

Source data rate
Scaling

(d) Cost (wc = 0.6, wd = 0.4, wr = 0): minimization of
deployment cost, with reconfiguration costs.

Figure 5. EDRP model: application response time under different optimization configurations.

Table III. Mean response time and cost, and total downtime with different EDRP objective configurations.

Objective Resp. time Cost Downtime
Baseline (wd = 0, wc = wr = 0.5) 120.8 ms 9.6 $/h 12.0 s

Balanced (wd = 0.4, wc = wr = 0.3) 121.7 ms 9.9 $/h 2.4 s
Response time (wd = 0.4, wr = 0.6) 121.5 ms 10.3 $/h 2.4 s

Cost (wd = 0.4, wc = 0.6) 136.0 ms 9.2 $/h 4.9 s

number of variables and measured the EDRP resolution time for our reference DSP application
for an increasing number of computing nodes and maximum replication degree k. The results are
shown in Table IV (at the left of the slash sign /). We can observe that the number of variables and
resolution time rapidly grow even for k = 2 and small number of nodes and it is not possible even
to generate the entire instance for k = 3 but for the smallest network size. This is due to the huge
number of link variables which is O(|E

dsp
||V

res
|2k) and thus exponentially grows with k.

These results clearly show that EDRP can be directly applied only for small instances and
limited replication degree. Therefore, in order to support runtime operation computationally efficient
heuristics are required. In this respect, EDRP nevertheless represents a benchmark against which
the performance of heuristics solutions can be assessed. To address this limitation, we can take
advantage of the fact that, as confirmed by our experiments, most of the times an operator
reconfiguration entails a single scale-out, scale-in operation or a migration. As a consequence, in
practice, for each operator i we do not need to consider all possible configurations V ∈ P(V ires; ki),
but only a (significantly smaller) subset. For example, given the current operator i deployment
U , we can consider, as a heuristic, the set of configurations P(V ires; ki;Ui,0) ⊂ P(V ires; ki) which
only comprises the deployments V which differ from the current deployment Ui,0 by only one
element (one more node u ∈ V ires for a scale-out operation, one less node u ∈ Ui,0, U(u) > 0 for
a scale-in operation, and a node replacement u ∈ Ui,0, Ui,0(u) > 0 replaced by a node v ∈ V ires for
a migration). More formally, P(V ires; ki;Ui,0) = {V ∈ P(V ires; ki) | ∧v∈V ires (|Ui,0(v)− V(v)| ≤
1) ∧

∑
v∈V ires

|Ui,0(v)− V(v)| ≤ 2 ∧
∑

v∈V ires
(Ui,o(v)− V(v)) ·

∑
v∈V ires

(V(v)− Ui,0(v)) ≤ 0}.

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/cpe

OPTIMAL DEPLOYMENT AND REPLICATION FOR ELASTIC DATA STREAM PROCESSING 19

Table IV. Number of variables and execution time under EDRP and rEDRP (expressed as EDRP / rEDRP).

Max Replication Degree = 2 Max Replication Degree = 3 Max Replication Degree = 4
|Vres| Variables Resolution Time Variables Resolution Time Variables Resolution Time

(×103) (s) (×103) (s) (×103) (s)
8 9.4 / 1.6 3.7 / 0.8 113.7 / 1.8 298.0 / 0.7 994.5 / 1.8 - / 1.0
12 37.3 / 2.8 30.5 / 0.6 848.7 / 3.3 - / 0.9 - / 3.4 - / 0.8
16 103.2 / 5.5 122.6 / 1.1 - / 6.1 - / 1.2 - / 6.3 - / 1.2
20 231.6 / 8.8 415.2 / 1.6 - / 10.0 - / 1.9 - / 9.7 - / 2.5
24 453.3 / 12.7 593.7 / 3.1 - / 13.8 - / 3.9 - / 13.9 - / 4.2

We call this approach restricted EDRP problem, rEDRP for short. As shown in Table IV, rEDRP
(at the right of / sign) is characterized by a much smaller set of variables (it is easy to verify that the
number of variables is O(|Vres |2|Vdsp ||Edsp |), which is only quadratic on the number of nodes) and
order of magnitudes faster execution times. The results with rEDRP (not shown for space limitation)
are very close to the optimal behavior but require a fraction of the computational costs.

7.3. Evaluation of S-EDRP Scheduler

We perform the experiments using Apache Storm 0.9.3 on a cluster of 5 worker nodes, each with 2
worker slots, and a further node to host Nimbus and ZooKeeper. Each node is a machine with a dual
CPU Intel Xeon E5504 (8 cores at 2 GHz) and 16 GB of RAM. To better exploit the presence of
independent CPU cores, we configure the system so that a worker slot can host at most 4 executors,
i.e., EPSmax = 4; therefore, a worker node can host at most 8 operator replicas, one for each
available CPU core. In S-EDRP, the Analyze phase triggers every 60 s the Plan phase, which solves
the ILP problem using CPLEX c© (version 12.6.3).

As regards the model parameters, we rely on the same configuration used in the numerical
investigation (see Table II) upon which we introduce the following adjustments. First, in these
experiments we do not rely on a closed formula expression, e.g., the response time of an M/M/1
queue, to compute the response time as function of the input load. Instead, we conducted a
preliminary set of experiments to measure the response time of each operator for different values of
the input load§. Then, we increase the synchronization overhead tsync from 250 ms to 6 s, accounting
for the execution time of Storm rebalance command.

In these experiments we use a portion of the real dataset provided by DEBS for the 2015 Grand
Challenge. We replay the taxi dataset 60 times faster than the original dataset, thus obtaining that
1 minute of the original dataset time is equal to 1 second of time in our experiments. In particular,
we feed the application with data collected during 4 days, characterized by different load levels
during the various parts of the day: the tuple emission rate ranges from about 20 to 300 tuples per
second. We impose the following bounds on the QoS metrics: Rmax = 150 ms, Cmax = 15 $/h,
TD,max = 60 s. We compare different configurations for the objective function. Similarly to the
numerical investigation, we first consider the baseline case that neglects reconfiguration costs, then
we consider a balanced scenario withwd = 0.4, and finally we consider the configurations that focus
on either response time or deployment cost. Table V provides a summary of the obtained results in
the different settings, showing mean response time (computed excluding tuples buffered during
reconfigurations) and monetary cost, and total application downtime during each experiment.

Figure 6a shows the results for the baseline scenario, where S-EDRP reconfigures the application
at almost every scheduling round. It adjusts the parallelism of partialRank, which appears to be a
bottleneck in our application, following the variations of the input rate. The total number of replicas
ranges from 8 (i.e., one per operator) to 10. Moreover, S-EDRP frequently migrates operators when
the load is high, in order to exploit more promising deployments. As consequences of this behavior,
we note that (i) the application downtime lasts for 10.18% of the experiment duration, and (ii) the

§Our earlier experiments revealed that a M/M/1 queue approximation provide a poor approximation of the operator
response time. For a more realistic response time modeling, for each operator i we measured the average response time
for a set of possible inputs and then derived closed expressions forRi(λ) through Least Squares polynomial interpolation.

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/cpe

20 V. CARDELLINI ET AL.

Table V. Mean response time and cost, and total downtime with different S-EDRP objective configuration.

Objective Resp. time Cost Downtime
Baseline (wd = 0, wc = wr = 0.5) 103.6 ms 9.3 $/h 10.18%

Balanced (wd = 0.4, wc = wr = 0.3) 90.0 ms 9.8 $/h 2.36%
Response time (wd = 0.4, wr = 0.6) 88.8 ms 9.9 $/h 1.27%

Cost (wd = 0.4, wc = 0.6) 116.6 ms 8.9 $/h 4.00%

latency and the source data rate present frequent spikes, which are caused by the buffering of tuples
during the reconfigurations at both the source and operators.

Figure 6b shows the results obtained with a balanced objective function, which equally weights
response time and cost, and limits downtime (i.e., wr = wc = 0.3, wd = 0.4). In this setting, the
number of performed reconfigurations is significantly smaller. The balanced objective configuration
allows to achieve a 75% reduction of the total application downtime. The mean response time,
90 ms, is lower with respect to the baseline scenario, whereas the deployment cost is slightly higher,
amounting to 9.8 $/h. We observe that, after 2000 s, S-EDRP finds more convenient to run with a
higher number of replica, so to avoid the downtime introduced by a possible scale-in operation.

When S-EDRP focuses on response time minimization (i.e., wr = 0.6, wd = 0.4), the scheduler
does not need to keep the number of replicas as low as possible. Nevertheless, it does not blindly
scale-out operators, because a larger number of replicas would require using more nodes, thus
involving a higher network delay in exchanging data streams. Indeed, S-EDRP scales-out only the
bottleneck operator, partialRank. As shown in Figure 6c, S-EDRP achieves a lower mean latency,
88.8 ms, launching two extra replicas as input rate begins to grow. Then, other reconfigurations
are driven by slight changes in the measured network latency, which make S-EDRP enact a few
migrations to exploit better placement configurations. Running with a total of 10 replicas for most
the time, the monetary cost of executing the topology is the highest with respect to the other
scenarios (its mean value is equal to 9.9 $/h). The cumulative application downtime is the 1.27% of
the experiment duration.

Figure 6d reports the source rate and the application latency when S-EDRP minimizes the
deployment cost and downtime (i.e., wc = 0.6, wd = 0.4). In this setting, S-EDRP keeps the
operators replication as low as possible. The number of replicas goes up to 10 when the load is high
(with partialRank running up to 3 replicas), but, as the load significantly decreases, the scheduler
scales-in the operator, restoring the initial count of 8 replicas. The mean deployment cost is indeed
lower, amounting to 8.9 $/h. The application latency is not minimized throughout the experiment,
and ranges from 40 ms to 300 ms (except for the spikes soon after the reconfigurations). The
cumulative application downtime is 4% of the experiment duration. Observe that, in this experiment,
S-EDRP performs scale-out operations only when the bounds are violated: the violation of Rmax

and the minimization of cost lead to scale-out and subsequent scale-in operations, respectively.

8. CONCLUSIONS

In this paper, we have presented and evaluated EDRP, an ILP formulation that jointly optimizes
the replication and placement of DSP applications running in geo-distributed environments. At run-
time, by monitoring the application deployment, EDRP can identify the optimal reconfiguration
strategy and evaluate its convenience in terms of application downtime. Our formulation of EDRP
is general and flexible, thus it can be easily extended or customized for considering different needs.
In this paper, we have shown how it can be adapted and integrated in Apache Storm, one of the
most used open-source DSP frameworks. Then, relying on an application that processes real-time
data generated by taxis moving in a urban environment, we have conducted a thorough experimental
evaluation. The latter has shown the benefits on the application performance that steam from a joint
optimization of operators replication and placement and the detailed modeling of the reconfiguration
costs. In particular, our results show the importance of taking into account reconfiguration cost
to the overall application performance. In the considered scenario, which can be regarded as a
best case scenario as far as reconfiguration is concerned, being executed on a local cluster, the

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/cpe

OPTIMAL DEPLOYMENT AND REPLICATION FOR ELASTIC DATA STREAM PROCESSING 21

 0

 100

 200

 300

S
o
u
rc

e
 d

a
ta

 r
a
te

 (
tu

p
le

s
/s

)

 0

 100

 200

 300

 400

 500

R
e
s
p
o
n
s
e

ti
m

e
 (

m
s
)

 6

 8

 10

 0 1000 2000 3000 4000 5000

T
o
ta

l
n
u
m

b
e
r

o
f
re

p
lic

a
s

Time (s)

Scaling Migration

(a) Baseline (wr = 0.5, wc = 0.5, wd = 0): minimization
of response time and cost, with no reconfiguration costs.

 0

 100

 200

 300

S
o
u
rc

e
 d

a
ta

 r
a
te

 (
tu

p
le

s
/s

)

 0

 100

 200

 300

 400

 500

R
e
s
p
o
n
s
e

ti
m

e
 (

m
s
)

 6

 8

 10

 0 1000 2000 3000 4000 5000

T
o
ta

l
n
u
m

b
e
r

o
f
re

p
lic

a
s

Time (s)

Scaling Migration

(b) Balanced (wr = 0.3, wc = 0.3, wd = 0.4): minimiza-
tion of response time and cost, with reconfiguration costs.

 0

 100

 200

 300

S
o
u
rc

e
 d

a
ta

 r
a
te

 (
tu

p
le

s
/s

)

 0

 100

 200

 300

 400

 500

R
e
s
p
o
n
s
e

ti
m

e
 (

m
s
)

 6

 8

 10

 0 1000 2000 3000 4000 5000

T
o
ta

l
n
u
m

b
e
r

o
f
re

p
lic

a
s

Time (s)

Scaling Migration

(c) Response Time (wr = 0.6, wd = 0.4, wc = 0):
minimization of response time, with reconfiguration costs.

 0

 100

 200

 300

S
o
u
rc

e
 d

a
ta

 r
a
te

 (
tu

p
le

s
/s

)

 0

 100

 200

 300

 400

 500
R

e
s
p
o
n
s
e

ti
m

e
 (

m
s
)

 6

 8

 10

 0 1000 2000 3000 4000 5000

T
o
ta

l
n
u
m

b
e
r

o
f
re

p
lic

a
s

Time (s)

Scaling

(d) Cost (wc = 0.6, wd = 0.4, wr = 0): minimization of
deployment cost, with reconfiguration costs.

Figure 6. S-EDRP and different optimization configurations: evolution of the application response time and
operators replication under a varying source data rate.

reconfiguration downtime were as large as 10% of the overall experiment duration, and with EDRP
we were able to achieve up to a tenfold reduction of the system downtime. Moreover, by adjusting
the metric weights, we were able to trade-off the different performance metrics stressing latency
and/or resource utilization. Since reconfiguration costs are expected to be significantly higher in
a distributed scenario due to non negligible network delays and limited bandwidth, these results
clearly show that importance of taking into account reconfiguration costs in the operation of self-
adaptive DSP platforms.

As future work, we plan to develop solutions that address the critical points of runtime
deployment strategies: the scalability and the identification of efficient reconfigurations. The
investigated EDRP problem is NP-hard, therefore we need efficient heuristics to deal with large
problem instances. By identifying the optimal deployment and run-time reconfiguration, EDRP can
provide useful information for designing new heuristics that, not only reduce the resolution time, but
also identify solutions as close as possible to the optimal one. To further increase the scalability of
the system components in charge of computing the deployment, we also plan to investigate how the
application placement and replication problem can be efficiently decentralized. This need rises from
the emerging edge computing environment, where a plethora of IoT devices usually operate within
a limited geographic area. Regarding the identification of efficient reconfigurations, we observe that
the approach proposed in this paper determines reconfigurations relying on a single snapshot of the
system, i.e., the system status when the optimization model is executed. Such an approach inherently

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/cpe

22 V. CARDELLINI ET AL.

computes greedy reconfiguration strategies which might be sub-optimal if the overall performance
over a period of time is of interest. To this end, we will consider optimization approaches which
explicitly take into account intervals of time. This will include model based optimization, e.g.
Markov Decision Processes and Model Predictive Control if the system dynamic is known (or
estimated) and model free optimization when the model is not available, e.g., Reinforcement
Learning. Another direction along which we plan to continue our work regards how to deal with
percentiles of QoS attributes, e.g., generalizing the approach we adopted in the field of composite
services [45] to Data Stream Processing.

REFERENCES

1. Hirzel M, Soulé R, Schneider S, Gedik B, Grimm R. A catalog of stream processing optimizations. ACM Comput.
Surv. Mar 2014; 46(4).

2. Gedik B, Schneider S, Hirzel M, Wu KL. Elastic scaling for data stream processing. IEEE Trans. Parallel Distrib.
Syst. 2014; 25(6):1447–1463.

3. Heinze T, Roediger L, Meister A, Ji Y, et al.. Online parameter optimization for elastic data stream processing.
Proc. ACM SoCC ’15, 2015; 276–287.

4. Shi W, Cao J, Zhang Q, Li Y, Xu L. Edge computing: Vision and challenges. IEEE Internet of Things J. 2016;
3(5):637–646.

5. Eidenbenz R, Locher T. Task allocation for distributed stream processing. Proc. IEEE INFOCOM ’16, 2016.
6. Lohrmann B, Janacik P, Kao O. Elastic stream processing with latency guarantees. Proc. IEEE ICDCS ’15, 2015;

399–410.
7. Mencagli G. A game-theoretic approach for elastic distributed data stream processing. ACM Trans. on Autonomous

and Adaptive Systems 2016; 11(2).
8. Thoma C, Labrinidis A, Lee A. Automated operator placement in distributed data stream management systems

subject to user constraints. Proc. IEEE ICDEW ’14, 2014; 310–316.
9. Cardellini V, Nardelli M, Luzi D. Elastic stateful stream processing in Storm. Proc. HPCS ’16, 2016; 583–590.

10. Jerzak Z, Ziekow H. The DEBS 2015 grand challenge. Proc. ACM DEBS ’15, ACM, 2015; 266–268.
11. Lakshmanan GT, Li Y, Strom R. Placement strategies for Internet-scale data stream systems. IEEE Internet

Computing 2008; 12(6):50–60.
12. Cardellini V, Grassi V, Lo Presti F, Nardelli M. Optimal operator placement for distributed stream processing

applications. Proc. ACM DEBS ’16, 2016; 69–80.
13. Aniello L, Baldoni R, Querzoni L. Adaptive online scheduling in Storm. Proc. ACM DEBS ’13, 2013; 207–218.
14. Pietzuch P, Ledlie J, Shneidman J, Roussopoulos M, et al.. Network-aware operator placement for stream-

processing systems. Proc. IEEE ICDE ’06, 2006.
15. Xu J, Chen Z, Tang J, Su S. T-Storm: traffic-aware online scheduling in Storm. Proc. IEEE ICDCS ’14, 2014;

535–544.
16. Toshniwal A, Taneja S, Shukla A, Ramasamy K, et al.. Storm@Twitter. Proc. ACM SIGMOD ’14, 2014; 147–156.
17. Cardellini V, Grassi V, Lo Presti F, Nardelli M. Optimal operator replication and placement for distributed stream

processing systems. ACM SIGMETRICS Perform. Eval. Rev. May 2017; 44(4):11–22.
18. Kephart J, Chess D. The vision of autonomic computing. IEEE Computer Jan 2003; 36(1):41–50.
19. Fernandez RC, Migliavacca M, Kalyvianaki E, Pietzuch P. Integrating scale out and fault tolerance in stream

processing using operator state management. Proc. ACM SIGMOD ’13, 2013.
20. Gulisano V, Jiménez-Peris R, Patino-Martı́nez M, Soriente C, Valduriez P. StreamCloud: An elastic and scalable

data streaming system. IEEE Trans. Parallel Distrib. Syst. 2012; 23(12):2351–2365.
21. Heinze T, Pappalardo V, Jerzak Z, Fetzer C. Auto-scaling techniques for elastic data stream processing. Proc. IEEE

ICDEW ’14, 2014; 296–302.
22. Xu L, Peng B, Gupta I. Stela: Enabling stream processing systems to scale-in and scale-out on-demand. Proc. IEEE

IC2E ’16, 2016; 22–31.
23. Heinze T, Jerzak Z, Hackenbroich G, Fetzer C. Latency-aware elastic scaling for distributed data stream processing

systems. Proc. ACM DEBS ’14, 2014; 13–22.
24. Madsen KGS, Zhou Y, Cao J. Integrative dynamic reconfiguration in a parallel stream processing engine. Proc.

IEEE ICDE ’17, 2017; 227–230.
25. De Matteis T, Mencagli G. Elastic scaling for distributed latency-sensitive data stream operators. Proc. PDP ’17,

2017; 61–68.
26. Sajjad HP, Danniswara K, Al-Shishtawy A, Vlassov V. Spanedge: Towards unifying stream processing over central

and near-the-edge data centers. Proc. 2016 IEEE/ACM Symp. on Edge Computing, 2016; 168–178.
27. Saurez E, Hong K, Lillethun D, Ramachandran U, et al.. Incremental deployment and migration of geo-distributed

situation awareness applications in the fog. Proc. ACM DEBS ’16, 2016; 258–269.
28. To Q, Soto J, Markl V. A survey of state management in big data processing systems. CoRR 2017; abs/1702.01596.

URL http://arxiv.org/abs/1702.01596.
29. Heinze T, Aniello L, Querzoni L, Jerzak Z. Cloud-based data stream processing. Proc. ACM DEBS ’14, 2014;

238–245.
30. Madsen KGS, Zhou Y, Su L. Enorm: Efficient window-based computation in large-scale distributed stream

processing systems. Proc. ACM DEBS ’16, 2016; 37–48.
31. Madsen KGS, Zhou Y. Dynamic resource management in a massively parallel stream processing engine. Proc.

ACM CIKM ’15, 2015; 13–22.

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/cpe

http://arxiv.org/abs/1702.01596

OPTIMAL DEPLOYMENT AND REPLICATION FOR ELASTIC DATA STREAM PROCESSING 23

32. Wu Y, Tan KL. ChronoStream: Elastic stateful stream computation in the cloud. Proc. IEEE ICDE ’15, 2015;
723–734.

33. Nasir MAU, Morales GDF, Garca-Soriano D, Kourtellis N, Serafini M. The power of both choices: Practical load
balancing for distributed stream processing engines. Proc. IEEE ICDE ’15, 2015; 137–148.

34. Trident API overview 2015. URL http://storm.apache.org/releases/1.1.0/
Trident-API-Overview.html.

35. Cardellini V, Grassi V, Lo Presti F, Nardelli M. Distributed QoS-aware scheduling in Storm. Proc. ACM DEBS ’15,
2015; 344–347.

36. Li J, Pu C, Chen Y, Gmach D, Milojicic D. Enabling elastic stream processing in shared clusters. Proc. IEEE
CLOUD ’16, 2016; 108–115.

37. Kulkarni S, Bhagat N, Fu M, Kedigehalli V, et al.. Twitter Heron: Stream processing at scale. Proc. ACM SIGMOD
’15, 2015; 239–250.

38. Floratou A, Agrawal A, Graham B, Rao S, Ramasamy K. Dhalion: self-regulating stream processing in Heron.
Proc. VLDB ’17, 2017.

39. Zaharia M, Das T, Li H, Hunter T, Shenker S, Stoica I. Discretized streams: Fault-tolerant streaming computation
at scale. Proc. ACM SOSP’13, 2013; 423–438.

40. Carbone P, Katsifodimos A, Ewen S, Markl V, et al.. Apache Flink: Stream and batch processing in a single engine.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering 2015; 36(4).

41. Peng B, Hosseini M, Hong Z, Farivar R, Campbell R. R-Storm: Resource-aware scheduling in Storm. Proc.
ACM/IFIP/USENIX Middleware ’15, 2015; 149–161.

42. Yoon KP, Hwang CL. Multiple Attribute Decision Making: an Introduction. Sage Pubs, 1995.
43. Weyns D, Schmerl B, Grassi V, Malek S, et al.. On patterns for decentralized control in self-adaptive systems.

Software Engineering for Self-Adaptive Systems II, LNCS, vol. 7475. Springer, 2013; 76–107.
44. Dabek F, Cox R, Kaashoek F, Morris R. Vivaldi: A decentralized network coordinate system. SIGCOMM Comput.

Commun. Rev. 2004; 34(4):15–26.
45. Cardellini V, Casalicchio E, Grassi V, Lo Presti F. Adaptive management of composite services under percentile-

based service level agreements. Proc. ICSOC ’10, LNCS, vol. 6470, Springer, 2010; 381–395.

A. RECONFIGURATION METRICS

In this appendix we present the detailed expressions of the reconfiguration cost metrics. In
Section A.1, we derive the expressions for the reconfiguration downtime metric under the pause-
and-resume approach. Then, in Section A.2, we provide the detailed downtime expressions for our
implementation of the stateful migration protocol in Storm.

A.1. Reconfiguration Downtime

As shown in Section 4.2.4, the reconfiguration downtime of the operator i ∈ Vdsp is defined as:

TD,i (x) =
∑

V∈P(V ires;ki)

tD
(
i,U0,i,V

)
xi,V (24)

where tD (i,U ,V) represents the time needed to reconfigure the operator i from the deployment U to
V , and U0,i represents the current deployment of operator i. The expression for tD (i,U ,V) depends
on the actual type of reconfiguration to be enacted when the deployment of i changes from U to V:

tD (i,U ,V) =

0 if U = V
tsyn + tD,MI (i,U ,V) if |U| = |V|,U 6= V
tsyn + tD,SO (i,U ,V) if |U| > |V|
tsyn + tD,SI (i,U ,V) if |U| < |V|

(25)

where tsyn is a constant synchronization overhead, tD,X (i,U ,V), with X ∈ {MI, SO, SI},
represents the time needed to perform a migration, a scale-out, and a scale-in operation on i,
respectively. Since each type of reconfiguration requires data transfers between multiple pairs of
nodes, which can be concurrently executed, the time to complete the reconfiguration corresponds to
the longest of any such operation, that is:

tD,X (i,U ,V) = max
u∈U,v∈V
u 6=v

{
τD,X (i, u, v,U ,V)

}
(26)

where τD,X (i, u, v,U ,V), X ∈ {MI, SO, SI} represents the time required to exchange data
between node u to node v when the operator i is migrated, scaled out, or scaled in, respectively,
during the reconfiguration from deployment U to deployment V .

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/cpe

http://storm.apache.org/releases/1.1.0/Trident-API-Overview.html
http://storm.apache.org/releases/1.1.0/Trident-API-Overview.html

24 V. CARDELLINI ET AL.

τD,X (i, u, v,U ,V) has the following general expression:

τD,X (i, u, v,U ,V) = max
{
τdwlC (i, v) · 1{U(v)=0}, τ

upl
S,X(i, u, v,U ,V)

}
+

+ τdwnS,X (i, u, v,U ,V) + ts,v · 1{V(v)>U(v)} (27)

where 1{.} is the indicator function. The expression of τD,X (i, u, v,U ,V) accounts for: 1) τdwlC (i, v),
the time to download time the operator code to node v, if there was not a replica of operator i in v in
the (current) deployment U , i.e., if U(v) = 0; 2) τuplS,X(i, u, v,U ,V), the time to upload the internal
state of the replicas present in u to the DataStore; 3) τdwnS,X (i, u, v,U ,V), the time to download
the internal state of replicas from the DataStore to node v; and 4) ts,v, the time to (concurrently)
initialize new replicas in v, if any, i.e., if V(v) > U(v).

The time needed to transfer the operator code, i.e., tdwlC (i, v), and the time needed to redistribute
the replicas state, i.e., tuplS,X(i, u, v,U ,V) and tdwnS,X (i, u, v,U ,V), are function of: 1) the round-trip
network delay between the DataStore and the related computing resource, dx,DS + dDS,x, with
x ∈ {u, v}; 2) the amount of data to transfer data from or to the DataStore, that is, the code IC,i
to be downloaded to node v, the state IuplS,X,(i,u,v,U,V) to be uploaded from u to the DataStore and
the state IdwnS,X,(i,u,v,U,V) to be then downloaded to v, respectively; and 3) the data rate r(x,DS) and
r(DS,x), with x ∈ {u, v}, to and from the DataStore. We readily get the following expressions:

τdwnC (i, v) = d(v,DS) +
IC,i

r(DS,v)
+ d(DS,v) (28)

τuplS,X(i, u, v,U ,V) = d(u,DS) +
Iupl
S,X,(i,u,v,U,V)

r(u,DS)
+ d(DS,u) (29)

τdwnS,X (i, u, v,U ,V) = d(v,DS) +
IdwnS,X,(i,u,v,U,V)

r(DS,v)
+ d(DS,v) (30)

We conclude by deriving the expressions for the amount of state that has to be redistributed,
which depends on the specific reconfiguration action. When a migration is performed, i.e., X =
MI , a replica first stores and then retrieves its portion of the state on the DataStore during the
reconfiguration. A scaling operation redistributes the operator state among its replicas. Specifically,
when a scale-out is performed, i.e., X = SO, each replica provides a uniform fraction of its internal
state to the new ones; similarly, when a scale-in is performed, i.e., X = SI , the internal state of
the terminated replicas is redistributed among the other operator replicas. Let IS,i denote operator
i state size. Under the assumption that the state is uniformly redistributed among replicas, we have
the following expressions:

IuplS,X,(i,u,v,U,V) =

IS,i
[
δ−u (U,V)
|U| + U(u) |V|−|U||U||V|

]
if X = SO

IS,i
δ−u (U,V)
|U| otherwise

(31)

IdwnS,X,(i,u,v,U,V) =

IS,i
[
δ+v (U,V)
|V| + min {U(v),V(v)} |U|−|V||U||V|

]
if X = SI

IS,i
δ+v (U,V)
|V| otherwise

(32)

where δ+
u (U ,V) (and δ−u (U ,V)) denotes the number of replicas to be added (and removed) in

node u ∈ Vres when the configuration changes from U to the deployment V , that is: δ+
u (U ,V) =

max{V (u)− U (u) , 0} and δ−u (U ,V) = max{U (u)− V (u) , 0}, respectively. In (31)-(32), δ
−
u (U,V)
|U|

is the percentage of state uploaded from the node u to the DataStore during a migration or scale in
operation, which is function of the number of terminated replicas δ−u (U ,V). Similarly, δ

+
v (U,V)
|V| is

the percentage of new state transfered to v from the DataStore, going from deployment U to V .
The terms proportional to |U|−|V||U||V| represent the amount of state that is redistributed among the other
operator replicas after a scaling operation.

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/cpe

OPTIMAL DEPLOYMENT AND REPLICATION FOR ELASTIC DATA STREAM PROCESSING 25

A.2. Stateful Migration Downtime in Storm

As mentioned in Section 6.4, in Storm we need to take into account that, for any reconfiguration,
the entire application must be restarted. In this case we can rewrite (24) as:

TD,i (x) = max

 ∑
V∈P(V ires;ki)

tD
(
i,U0,i,V

)
xi,V , tD,R(i,U0,i) · 1{∑i

∑
V6=U0,i

xi,V>0}

 (33)

where the first term is the time needed to reconfigure the operator i from the deployment U to V ,
U0,i is the current deployment of i, whereas tD,R (i,U) is the time needed to restart i, should any
configuration occurs in the application (condition expressed by

∑
i

∑
V6=U0,i xi,V > 0).

Since our Storm migration protocol does not distinguish the different reconfiguration actions (i.e.,
migration or scaling), we have a single expression for tD (i,U ,V), i.e., the time to reconfigure the
operator i from U to V . It needs to account for a constant synchronization overhead, tsyn, and the
longest downtime over any possible replica reconfiguration. Thus, we have:

tD (i,U ,V) = tsyn + max
u∈U,v∈V
u6=v

{τD (i, u, v,U ,V)} U 6= V (34)

where

τD (i, u, v,U ,V) = τ dwlC (i, v)1{v/∈
⋃
i U0,i} + τ uplS (i, u, v,U ,V) + τ dwnS (i, u, v,U ,V) + V(v)ts,v, (35)

and tD (i,U ,V) = 0 if U = V . Comparing the expression above to (27), we note that: (i) we need
to consider the sum of the different terms in place of the maximum, because the pause-and-resume
approach serializes the different phases; (ii) the time to download the operator code on v, τ dwlC (i, v),
needs to be considered only if no replica of any operator is currently deployed on that node, because
Storm packages the code of the whole application in a single archive, which is transferred to each
worker node the first time it has to execute a component of the topology; (iii) the whole application
is restarted after a reconfiguration, thus all the V(v) replicas deployed on v have to be launched at
the end of the migration process, as expressed by the last term. We also obtain slightly different
expressions for the time spent moving state and code as well:

τ dwnC (i, v) = d(v,DS) +

∑
i∈Vdsp IC,i

r(DS,v)
+ d(DS,v) (36)

τ uplS (i, u, v,U ,V) = d(u,DS) +
IS,i
U(u)
|U|

r(u,DS)
+ d(DS,u) (37)

τ dwnS (i, u, v,U ,V) = d(v,DS) +
IS,i
V(v)
|V|

r(DS,v)
+ d(DS,v) (38)

where we model that, differently from the general formulation (28)–(30), in Storm: (i) a node has
to download the whole topology code; and (ii) each node has to save (and restore) the internal state
for all the hosted replicas, because the entire application is restarted during a reconfiguration.

Finally, we consider tD,R (i,U), the time needed to restart i on the same location. This term
accounts for a constant synchronization overhead, tsyn, and the restart time of any replica. We have:

tD,R (i,U) = tsyn + max
u∈U

{
τD,R (i, u,U)

}
(39)

where

τD,R (i, u,U) =
IS,i
U(u)
|U|

r(u,LS)
+
IS,i
U(u)
|U|

r(LS,u)
+ U (u) ts,v (40)

models the time to store and retrieve the state from the swapping area and restart the replicas of i.

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/cpe

	1 Introduction
	2 Related Work
	3 System Model
	3.1 Resource Model
	3.2 DSP Deployment Model
	3.3 Reconfiguration Model

	4 Elastic Operator Replication and Placement Model
	4.1 Operator Replication and Placement
	4.2 QoS Metrics
	4.2.1 Operator QoS Metrics.
	4.2.2 Stream QoS Attributes.
	4.2.3 DSP Application QoS Metrics.
	4.2.4 Reconfiguration-related Metric.

	5 EDRP Optimization Problem
	6 Storm Integration
	6.1 Apache Storm
	6.2 Elasticity in Storm
	6.3 Stateful Migrations in Storm
	6.4 S-EDRP: EDRP in Storm

	7 Experimental Results
	7.1 Reference DSP Application
	7.2 Evaluation of EDRP Model
	7.3 Evaluation of S-EDRP Scheduler

	8 Conclusions
	A Reconfiguration Metrics
	A.1 Reconfiguration Downtime
	A.2 Stateful Migration Downtime in Storm

