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ABSTRACT

Content transformation (or transcoding) proxies have been
recently proposed to tailor Web content to device charac-
teristics of Web clients. In this paper, we address the prob-
lem of distributing the computational load caused by object
transcoding throughout a collaborative proxy system orga-
nized in a hierarchical network. We evaluate through simu-
lation the impact of load distribution and caching policies on
users’ response time. We find that the simple global policy
that captures the proxy load information along the request
path can provide reasonably good load sharing, and that, to
effectively share the load, it is necessary to provide the edge
proxies a mechanism to push up some transcoding load. On
the caching policy, we examine policies that allow different
versions of an object to be cached. Our study shows that
the demand based caching policy which has the transcoding
proxy cache the transcoded version performs better than the
coverage based caching policy that caches the more detailed
version and the anticipatory caching policy that caches both
of these versions.

1. INTRODUCTION

Many emerging network appliances, such as hand-held PC,
personal digital assistants, smart cellular phones, and other
pervasive computing devices, are increasingly gaining ac-
cesses to the Internet, either by wired or wireless connec-
tions. These new diverse platforms, that will constitute
a predominant fraction of Internet clients in a few years,
compose with today’s PCs a highly heterogeneous client en-
vironment. They differ in network connection bandwidth,
processing power, storage, display and format handling ca-
pabilities. Additionally, more and more Web content is be-
coming of a multimedia nature. Therefore, the ever increas-
ing requirements of clients and the diversity in page com-
position demand techniques to adapt the same content to
diverse devices.
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The process of converting a multimedia object from one form
to another is called transcoding and can apply to transfor-
mation either within media types (e.g., from JPEG to GIF
format), between media types (e.g., speech to text or video
item to image set) or to both of them. The development of
XML and XSL, that allow the same document to be pre-
sented on a variety of Web devices using structured docu-
ments with style sheets, will facilitate the presentation of
multiple versions of a Web site. Since separate style sheets
can be developed for diverse client devices, XML and XSL
adoption will simplify the transformation process. However,
it will not eliminate the need for content transcoding.

Web content adaptation may be deployed either at the client,
or at the server, or at an intermediate proxy, or even at any
combination of the three. Client’s computing power and
connection bandwidth are continuously improving. How-
ever, the limited capabilities and low bandwidth of network
appliances make content adaptation at the client time con-
suming, if not impossible at all. In both server-based and
proxy-based approaches, specific information can be associ-
ated with the client request, such as device and network con-
straints, or user preferences. The server-based approach [10]
is designed to add content adaptation by extending the func-
tionalities of a traditional Web server. The content transfor-
mation is usually generated off-line; the different transcoded
versions of the same object are stored in the server disk and
selected to match the client specification [10].

In the proxy-based approach [5, 7, 8, 9, 14], a Web proxy,
located in the network between the client device and the
content server, can also analyze and transcode the requested
object on-the-fly, before delivering the result to the client.
The proxy server can cache the result of the transcoding [8].
The dynamic content adaptation performed by the proxy
is transparent to content users and providers. The proxy-
based approach can be used to address dynamic variations
in network traffic and to reduce end-to-end response time,
especially for mobile devices. A transcoding Web proxy can
reduce the size of a Web object while maintaining most of
its semantic value [5, 7, 9]. Being the proxy generally placed
at the border between clients and the rest of the network,
object compression significantly improves response time for
weakly-connected clients. Proxy transcoding also eliminates
the need of content providers to rewrite and maintain multi-
ple versions for different device types. A single transcoding



service located at the network level can also tailor contents
coming from different Web servers.

If object transformation is entirely done on the edge proxy
that directly connects to the clients (or a cluster of prox-
ies [8]), the proxy may become overloaded, as transcoding is
computation intensive [5, 9]. In this paper, we analyze how
a network of proxy servers can work collaboratively in con-
tent transcoding and caching to improve Web response time.
Our main goal is to study techniques that can distribute the
computational load caused by transcoding throughout a col-
laborative proxy system organized in a hierarchical network.
In this way, the object transcoding task is not concentrated
in any specific proxy but distributed in an adaptive fashion.
The selection of which proxy will perform the content adap-
tation is done in a fully distributed way. Additionally, we ex-
plore priority-based request scheduling to guarantee quality-
of-service (QoS) to requests that do not require transcoding.
A secondary aim of this paper is to analyze proxy caching
techniques in such a new collaborative environment. In par-
ticular, we explore which object version is more valuable to
cache. To analyze the proxy system, we develop a detailed
simulation model that include most recent results regard-
ing Web workload characterization. Our results show that
distributing the transcoding task can considerably reduce
the overall retrieval latency, especially when priority request
scheduling is applied. We also find that the more valuable
objects to cache are transcoded ones. The software require-
ments of the proposed collaborative proxy system are fully
compatible with existing Web protocols and standards.

The paper is organized as follows. Section 2 provides an
overview of the system environment. Section 3 explores how
to share the load generated by transcoding requests in the
collaborative proxy system. In Section 4 we describe our
model for analyzing the proxy system. Section 5 presents
the simulation results. Last, Section 6 concludes the paper.

2. SYSTEM ENVIRONMENT

In a highly heterogeneous client environment, users are con-
nected to the Internet through a wide variety of platforms
with different resource constraints. Each client device con-
nects to the Internet using an assigned proxy. The collab-
orative proxy system is composed of several homogeneous
proxy servers organized in a hierarchical network.

2.1 Client devices

Network appliances vary widely in their features such as
screen size and color, processing power, storage, user in-
terface and software. Client’s access links to Internet also
range from wired networks such as LAN, DSL, ISDN, and
telephone modems, to wireless networks such as cellular,
CDPD, and GSM. The client can include the object data
type it can consume as a meta-information in the HTTP re-
quest header. The proxy that processes the request cannot
send an object that requires more capabilities than the client
has, but it has to fit the client needs as much as possible.

Since we consider caching of transcoded objects, multiple
versions of the same object can be in the cache at the same
time. An object which was already transcoded may be fur-
ther transcoded to yield a less detailed (or lower-resolution)
object. In particular, each version may be transcoded from

a subset of the higher-resolution versions. To represent dif-
ferent versions of the same object and the allowed transcod-
ing operations between them, we define a transcoding re-
lation graph G(V,E) for each object. The set of nodes
V = {V1,...,Va} represents different versions of the ob-
ject; the nodes are ordered according to the version quality
they represent, i.e., V; is a more detailed version of Vj if
i < j. V4 and V,, are the original and the least detailed ver-
sion, respectively. A direct edge from V; to V; (where i < j)
exists if V; can be directly transcoded from V;. In the latter
case, V; is called a transcodable version for V;.

If each less detailed version can be transformed from each
more detailed version, the corresponding graph (called com-
plete transcoding relation graph) resembles the one shown
in Figure la. For example, JPEG images with higher qual-
ity factor can be subsequently transcoded to obtained lower
quality versions. When too much information has already
been lost in previous transcoding operations, the proxy needs
the original version of the object to produce the new lower-
resolution one. This situation is shown in Figure 1b, where
the less detailed versions V3 and Vj cannot be transformed
from V. The following example illustrates the latter in-
stance. A JPEG image V7 and a color bitmap V> obtained
from Vi are cached; a lower resolution color bitmap V3 has
to be produced. If V3 is not a trivial divisor of the number
of pixels in V5, the proxy may spend a lot of resources inter-
polating V> to yield a decent V3, without getting any good
result. Using V1, the proxy can directly produce a good V.
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Figure 1: Transcoding relation graph: (a) complete
graph, (b) incomplete graph.

2.2 Collaborative proxy system

The hierarchical caching architecture [6, 12, 15] assumes
a hierarchy of K levels of caches, where the bottom-level
proxies, named edge proxies, serve client requests directly.
In such a cooperative system, a client request is forwarded
up the hierarchy until a cache hit occurs; if none occurs at
any level, the requested object is retrieved from the content
server by the root proxy. When the object is found, either
at a cache or at the content server, it then travels down the
hierarchy and a copy is stored in all caches along the request
path. The top-level cache in the hierarchical architecture is
a potential bottleneck. However, this scheme is not inferior
to others, especially in wide-area environments [15]. In the
hierarchical architecture we consider, the information flow is
only between different levels of caches, i.e., sibling caches do
not cooperate. Figure 2 illustrates the hierarchical caching
scheme and the network information flow.

The hierarchical organization we propose is an extension of
the traditional one, in that multiple versions of the same ob-
ject can be present at the same time in the caches. Further-
more, the proxy nodes not only store static objects, but also
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Figure 2: Hierarchical caching architecture.
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perform the computation intensive transcoding task, unlike
previously studied cooperative caching schemes [6, 15].

The proxy that receives a request, upon serving an object,
first has to determine the capabilities of the client device.
The accomplishment of this task depends on the role that
the proxy plays in the hierarchy network. An edge proxy
can obtain the information regarding client capabilities by
accessing a table wherein the characteristics of the various
client devices are stored. The table entry for a particular
client device can be stored when the device first registers
with the edge proxy. Then, this entry can be transmitted
by the edge proxy to the upper-level proxy by including it
in the client request. Therefore, if the proxy is located at an
intermediate level, the information regarding client capabil-
ities is provided by a lower-level proxy with the object re-
quest. Hereafter, we will refer to the information describing
the capabilities of the requesting client as requester-specific
capability information (RCI).

Once the proxy has determined the client capabilities, it has
to look for a copy of the requested object in its cache. As
requests originated from diverse client devices can reach the
same proxy, one of the following events can occur: (1) the
cache contains a less detailed or untranscodable version of
the requested object; (2) the cache contains the exact ver-
sion of the requested object; (3) the cache contains a more
detailed and transcodable version of the requested object;
(4) the cache does not contain any version of the requested
object. As a more detailed and transcodable version can be
transformed to obtain a less detailed version that meets the
client request, it is referred to as a useful version. A less de-
tailed or untranscodable version does not satisfy the request
and leads to a traditional cache miss. The same happens if
no version is found in the cache. In both cases, the object
request is forwarded up through the caching hierarchy, until
a useful version of the object is found. If the object is not
retrieved along this path, the request reaches the proper con-
tent server. However, even if object transcoding is needed,
the content server does not perform it, but returns the orig-
inal object version to the root proxy. If the proxy owns
the exact version of the requested object, its copy can be
directly passed down the hierarchy, leaving a copy at each

intermediate cache, until it reaches the client. We define
this kind of hit as ezact cache hit.

Since a more detailed and transcodable version available in
the cache does not completely fulfill the client request but
imposes some processing overhead on the system, we define
this event as useful cache hit. Applying the selected load
distribution policy, the proxy can decide either to perform
the transcoding task locally based on the RCI associated
with the request (thus returning to the lower-level proxy
or the destination client the completely transcoded object),
or not to perform the required transcoding and return its
cached version to a lower-level proxy.

3. POLICIES

In this section we present some strategies that allow each
proxy to decide whether to perform locally or not the task of
transcoding a retrieved object. This decision is made when
the proxy either finds a useful object version in its own cache
or receives it from an upper-level proxy or from the content
server. We also examine policies that allow different versions
of an object to be cached.

3.1 Dynamicload distribution policies

The load distribution policies considered can be grouped on
the basis of the amount of system information being used,
assuming that all proxies hold software capable of perform-
ing the transcoding required by any type of client device:

NOINFO. The proxy uses no system information to decide
about transcoding. The object is processed locally, if
the proxy finds a useful version in its cache or obtains
it from a content server. Otherwise, the proxy sends
the client request to an upper-level proxy. So, the
proxy located at the root of the proxy hierarchy is
often heavily utilized, as frequent cache misses in lower
levels cause the root proxy to get the original object
from the content server and then transcode it.

THR (Threshold). This policy considers only local load
information. The proxy decides to delegate to a lower-
level proxy the transcoding task of a retrieved object
if its utilization exceeds a given load threshold; other-
wise, the proxy transcodes the object locally.

LL (Least Loaded). This policy represents the case of us-
ing global load information. Specifically, we consider
a simple global policy that uses the load information
along the request path. The proxy performs the object
transcoding locally only if its load index is the lowest
among all lower-level proxies on the request path. For
example, the root proxy, after retrieving a useful ver-
sion, compares its load index to those of the edge and
intermediate proxies located on the request path and
transcodes the object only if its index is the lowest.
Otherwise, the root proxy returns the useful version
to the closest intermediate proxy on the request path.
The load index can be either the utilization evaluated
over a short interval, or the instantaneous CPU queue
length periodically observed. To provide the load in-
formation to upper-level proxies, each proxy inserts its
load index in the RCI of any request that travels up



the hierarchy. Thus, there is no additional overhead
needed for periodical exchange of load information in
the network. Furthermore, the staleness of load infor-
mation is highly reduced, as the load information is
updated with every new request that reaches a proxy.

Both THR and LL strategies have a drawback. The decision
about whether to transcode a useful object version locally
or to pass the processing down to a lower-level proxy does
not apply to edge proxies, as the edge proxy performs the
transcoding if it finds a useful version in its cache. Further-
more, since the object that needs transcoding flows down the
hierarchy, the edge proxy is the last server that can adapt
the object before it is delivered to the client. As a result,
an edge proxy cannot effectively shift away the transcoding
overhead. To alleviate the computational load caused by
performing transcoding at the edge proxies, an alternative
is to allow the edge proxy to delegate the transcoding of
a useful version found in its cache to an upper-level proxy.
Both the request and the version retrieved by the edge proxy
are forced to travel up the hierarchy, if the proxy load in-
dex exceeds a given threshold. In this case, the edge proxy
determines which upper-level proxy on the path has to per-
form the transcoding, selecting the proxy with the least load
index. Load information regarding upper-level proxies can
be piggybacked to edge proxies within the header of each re-
sponse that flows down the hierarchy. When such a pushing
feature is added to the load distribution policy, the suffix
push is appended to the policy name.

When client requests have distinct computational require-
ments, it is worth investigating priority-based scheduling of
incoming requests. In fact, should all requests be handled
in a first-come first-served manner, those requests that need
transcoding would occupy the server’s resources for a long
time and lengthen the response time of lighter requests. We
identify two classes of priority based on the request type. A
low priority is assigned to requests that have been selected
for transcoding on the current proxy (and therefore impose
a much higher computational load), while a high priority
is assigned to all other requests. When the proxy resource
is assigned using the priority discipline, the suffix prior is
added to the policy name.

3.2 Caching policies

Due to storage capacity limitations, cache misses can occur.
As the main goal of this paper is not to design cache re-
placement policies, we adopt the standard LRU. This is the
most widely-used Web cache replacement policy, even if it
is not the best performing one [1]. Other policies will be
investigated in future work.

Our interest is focused on evaluating which version of the ob-
ject is more useful to cache. To avoid repeating transcoding
operations at the same proxy, every transcoded object can
be cached. We analyze three alternative selections about
which object version is more valuable to cache, after the
proxy has performed the transcoding task. Under the first
policy, referred to as the demand based caching policy, the
proxy caches the object version resulting from transcoding.
It aims at caching the version that is being demanded by the
clients, or at least the version close to it, if the demanded

version is not available. Under the second policy, referred to
as the coverage based caching policy, the proxy caches the
object version on which the transcoding process has just
been applied. This is the retrieved version which might
have been retrieved from the local cache of the transcod-
ing proxy or received from an upper-level cache. The goal
is to provide maximum coverage on subsequent requests so
as to cover various versions that are transcodable from the
cached version. Both choices have advantages and draw-
backs. Caching the transcoded version may avoid future
processing overhead. However, this version, being less de-
tailed than the original one, can be useful for requests origi-
nated from a smaller number of devices. On the other hand,
the retrieved version, being a more detailed version of the
object, may be useful to satisfy a greater number of devices;
its caching, however, may make the proxy repeat some re-
cent object transcoding operations. The third alternative,
referred to as the anticipatory caching policy, is to cache
both the transcoded and the retrieved versions. It antici-
pates the more detailed version that may also be requested
in the future. In this paper, all objects were considered
as cacheable and no expiration modeling was made; future
work can address these aspects.

4. SIMULATION MODEL

A detailed simulation model has been developed to evaluate
the system performance. The model is designed to reflect
the focus of this paper, which is a collaborative proxy system
accessed by a highly heterogeneous client environment. In
this section, we explore the major Internet components that
affect the performance of the proxy system.

41 Client mod€

In this paper, the client devices are classified according to
their capabilities of displaying different objects and connect-
ing to the assigned proxy. We have identified the following
classes of devices:

e HIGHPC: a high-end workstation/PC whose network
link ranges from Ethernet to ISDN; it can consume ev-
ery object in its original form.

e MIDPC: a midrange PC or a laptop connected through
a fast/medium wire-connected modem.

e HPC: a hand-held PC connected through a modem;
it can display color images with different resolution.

e PDA: a personal digital assistant using a wireless CDPD
connection; it is not capable of displaying colorful and
large images.

e SMARTPHONE: a cellular smart phone using a wire-
less GSM connection; the HTML text is summarized,
while images are converted to a brief textual descrip-
tion that can be scrolled on the small screen.

Table 1 shows the different capabilities for handling HTML
and image objects and the bandwidth of the network link.
As to images, we show the color space and size reduction
needed. In this paper, we consider transcoding operations
only on HTML and image objects, as more than 85% of



Table 1: Client device types.

[ Device | HTML | Image color | Image scaling | Bandwidth
HIGHPC original color (24 bit) 0% 128 Kbps - 10 Mbps
MIDPC original color (16 bit) 25% 28.8 Kbps - 56 Kbps
HPC original color (16, 8 bit) 50% 28.8 Kbps - 56 Kbps
PDA summarization | gray, b&w (4, 2 bit) | 75% 19.2 Kbps
SMARTPHONE | summarization | to text to text 9.6 Kbps

the transferred Web objects belongs to these types [2]. The
probability of accessing to the system for a given type of
device is defined a device vector, device[i] where

i € {HIGHPC,MIDPC,HPC,PDA,SMARTPHONE}.

4.2 Workload model

The model incorporates the most recent results on Web
workload characterization. The high variability and self-
similar nature of Web access load is modeled through heavy-
tailed distributions such as Pareto, lognormal and Weibull
distributions [2, 3, 4, 11, 13].

The number of consecutive Web pages a user requests from
the Web system during a session follows the inverse Gaus-
sian distribution [11]. The client’s silent time between the
retrieval of two successive Web pages (user think time) is
modeled through a Pareto distribution [3, 11]. The self-
similarity of Web traffic requests is explained with the su-
perimpositions of heavy-tailed ON-OFF periods. The num-
ber of objects that make up a whole Web page, including
the base HTML object and its in-line referred files, also fol-
lows a Pareto distribution [3]. The function that models the
distribution of the object size requested to the proxy system
varies according to the object type. For HTML object, it
is obtained from a hybrid distribution, where the body fol-
lows a lognormal distribution, while the tail is given by a
heavy-tailed Pareto distribution [2, 3]. The size distribution
of in-line objects in a page is obtained from the lognormal
distribution [3]. The relative frequency with which Web ob-
jects are requested follows a Zipf-like behavior [4]. Zipf-like
distribution is largely believed to be a good estimate of real
Web usage patterns. Table 2 provides a summary of the
distributions and parameters value for the workload model.

Table 2: Workload model.

[ Category | Distribution | Parameters |
Pages per session Inverse Gaussian | u = 3.86, A = 9.46
User think time Pareto a=14,k=1
Objects per page Pareto a=1.245 k=2
HTML object size | Lognormal pw="7.630, c = 1.001

Pareto a=1, k=10240
In-line object size | Lognormal u=8.215, 0 = 1.46
Object popularity | Zipf a=20.15

4.3 Network and proxy system model

We model the underlying proxy network topology as a full
O-ary tree, where O is the nodal out-degree. The proxies
communicate using a network, whose link capacity is set
to 45 Mbps and 34 Mbps at regional and national level,
respectively. We also consider the delay experienced by the
root proxy in retrieving the original object from the content
server. The client-proxy bandwidth depends on the type of
device, as described in Section 4.1.

The Web proxy system consists of Np servers with homoge-
neous processing and storage capacity. The cache size is set
to contain 85% in bytes of original objects. We also model
the CPU overhead for processing HT'TP messages. The sys-
tem utilization varies in the range [0.45, 0.75] of the capacity
of the entire proxy system. New client sessions are generated
with exponential interarrival time [13]. When the load in-
formation is used in the decision making process, each proxy
evaluates its own information every 8 seconds.

An important issue is how clients are assigned to edge prox-
ies. We assume that clients are partitioned based on a Zipf-
like distribution. In most experiments, the clients are parti-
tioned among 9 edge proxies with parameter a = 0.35, that
corresponds to a skewed function. The sensitivity analysis
in Section 5.3 shows that the main conclusions of the paper
are not affected by the choice of parameters such as client
distribution and proxy cache size. Table 3 summarizes some
parameters used in the simulation experiments.

Table 3: Parameters of the system model.

[ Category | Parameter Value (default)

Web proxy | Number of proxies (Np) | 13
Levels of caches (K) 3
Nodal out-degree (O) 3
HT'TP processing time 0.001 sec.
Disk transfer rate 10 MB/sec.
Transcoding rate 20 KB/sec.
Bandwidth 34 Mbps - 45 Mbps
Content server delay Exp. (B =1 sec.)
Client Interarrival time Exp. (8 = 0.5 sec.)
Edge proxy Zipf (a = 0.35)
Device vector [0.15, 0.1, 0.35,
0.25, 0.15]

5. EXPERIMENTAL RESULTS

The main objective of this study is to understand the impact
on the user response time of distributing the transcoding
task among the collaborative proxy system with the aim to
minimize it. We use the Mean Response Time of requested
objects as the main performance measure. It corresponds to
the object retrieval latency elapsed between the submission
of the client request and its completion at the client.

Transcoding requests may require a fair amount of process-
ing. Compared to the processing time to access the exact
object stored in the cache, the processing time required to
adapt the original object obtained from the content server
can be orders of magnitude larger [5, 9]. Therefore, we also
use as an alternative metric the Stretch Factor, defined as
the ratio of the response time of a sequence of requests over
the service time of these requests at the different proxies they
flow through. This metric relates the client waiting time to
the service demand. User devices that require transcoding



may be willing to wait longer to complete their requests,
while more powerful devices expect that their requests are
completed quickly. Both Mean Response Time and Stretch
Factor can be defined either for every client issuing requests
to the proxy system, regardless of the device it represents,
or for every class of device.

The simulator, based on the independent replication method,
was implemented using the CSIM18 package. Each value
is the result of ten simulation runs with different seeds.
Confidence intervals were estimated for all simulation re-
sults, and the 90% confidence interval was estimated to be
within 10% of the mean. In this paper, we assume that the
proxy transcodes the Web object to best fit client character-
istics, not exploring object compression to reduce transmis-
sion time [7, 9]. We also consider almost complete transcod-
ing relation graphs, except for images destined to phones
that can only be transcoded from the original version.

5.1 Performance of load distribution policies
In the set of experiments comparing load distribution poli-
cies, the proxy that performs the transcoding task adopts
the demand based caching policy. As shown in Section 5.2,
this is the best performing alternative. Figure 3 shows the
system mean response time against the client interarrival
time of the load distribution policies where all requests are
scheduled in a first-come first-served (FCFS) manner. The
LL policy outperforms the THR scheme, even when the best
performing load threshold value is selected for the latter.
Since the THR policy considers only a local load informa-
tion, a proxy can delegate its transcoding task to a more
critically loaded lower-level proxy. Therefore, edge proxies
can be overwhelmed by transcoding tasks not accomplished
by upper-level proxies. The results of the NOINFO policy
are not shown, since this scheme causes the system to be
unstable with a mean response time always above 250 sec-
onds. Under this policy, all transcoding tasks end up at the
root proxy, that does not have the capacity to handle the
offered load. Figure 3 also shows the impact of the proxy
load index on the performance. Two variations on the load
index are considered: LLutil, based on the proxy CPU uti-
lization, and LLglen, based on the number of requests in the
proxy queue. The result indicates that the queue length is
the most useful load index.
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Figure 3: Mean response time of load distribution poli-
cies without priority.
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Figure 4: Mean response time of load distribution poli-
cies with priority.

In Figure 4, we evaluate the performance of different load
distribution schemes when a priority-based scheduling dis-
cipline is adopted. Two classes of priority are considered:
requests requiring transcoding on the current proxy are as-
signed a low priority, while all the other requests are given
a high priority. As in the case of no priority shown in Fig-
ure 3, the LL policy outperforms the THR scheme and the
load index based on the queue length allows to achieve better
results. The mean response time of the NOINFO policy is
always above 70 seconds, that is even with priority schedul-
ing the system is still highly unstable. Nonetheless, we can
note that the priority discipline improves the performance.

In the following experiments, the client interarrival time is
set to 0.5 seconds, and the LL policy uses as load index
the queue length. Figure b5 shows the stretch factor of the
LL policy with FCFS and priority discipline for the diverse
types of client devices. We see that the priority discipline
can provide a better QoS as expected by more powerful de-
vices that do not require transcoding and should not be
blocked by requests requiring transcoding.
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Figure 5: Stretch factor of different client devices for
LL policy without or with priority.

We now evaluate the effect of pushing the transcoding to
an upper-level proxy when the load is too high, even if a
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path.

more detailed transcodable version of the required object is
available locally. In Figure 6, the proxy decides to push up
the object if its queue is longer than a pre-specified thresh-
old (in this case 35 pending requests). We see that letting
the proxy forward a transcoding task improves slightly the
response time perceived by the users. When the edge proxy
delegates the transcoding task to upper-level proxies, the
time the request spends at the edge proxy is greatly reduced;
however, the request incurs in a higher network latency, as
it has to travel up and down the proxy hierarchy. Figure 7
shows the advantage achieved by the push strategy from the
load sharing point of view. The performance index we use
to measure the system load level is the mean utilization of
each of the three proxy servers on the most congested path
that is, the path from the most skewed edge proxy to the
root proxy. The push strategy outperforms the other poli-
cies in sharing the load on the most congested path, as it
alleviates the edge proxy from the task of processing locally
every transcoding request generated from a useful cache hit.

5.2 Caching strategies

In Figures 8 and 9 we use the percentage of cache hit and
miss for the different device types to show the tradeoffs be-
tween the demand based policy caching the transcoded ver-
sion and the coverage based policy caching the retrieved ver-

sion. We observe (in not shown results) that for the cover-
age based policy the mean response time is above 40 seconds
under LLqlen_prior_push, while the same load distribution
policy achieves a response time equal to 1.93 seconds un-
der the demand based policy, as shown in Figure 6. This
result can be explained by considering the diverse process-
ing load imposed on the system by the two caching strate-
gies. If we compare Figures 8 and 9, we note that under
the coverage based policy, the percentage of useful cache hit
improves considerably as a more reusable version is cached,
while the number of exact cache hits decreases for classes of
devices that require transcoding. As a consequence, heav-
ier transcoding requests are generated and their processing
causes an overutilization of the system. We conclude that
even if the choice of caching the transcoded version increases
the percentage of cache miss, it is still better than caching
the more detailed original version. We also considered the
anticipatory caching policy where both the transcoded and
retrieved versions are cached and found that the cache miss
increases due to cache size limitation and the response time
is worse than just caching the transcoded version.
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Figure 8: Cache hit and miss percentage under demand
based caching policy.
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Figure 9: Cache hit and miss percentage under coverage
based caching policy.

5.3 Sensitivity analysis
Figure 10 shows the sensitivity to the client distribution
among the edge proxies. Specifically, it plots the mean
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Figure 10: Sensitivity of response time to client distri-
bution among edge proxies.
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Figure 11: Sensitivity of response time to proxies cache
size.

response time against the Zipf parameter a. In previous
figures the Zipf parameter a was set to 0.35. (The most
skewed function corresponds to a = 1) As one could ex-
pect, the performance of all the policies improves as the edge
proxy popularity is less skewed, that is when client requests
distribution resembles more like the uniform function. We
observe that the LLqlen_prior_push policy is the least sensi-
tive to this parameter. Even if not shown in this figure, the
result achieved by the NOINFO policy does not improve as
the client distribution becomes less skewed.

Another interesting aspect is the sensitivity to the cache size.
Figure 11 shows that the relative order of the policies does
not change for different size of proxy caches. The default
cache size used in the previous figures is set to contain 85%
(in bytes) of the original objects.

6. CONCLUSIONS

In the coming pervasive computing environment, the same
content may have to be transcoded in different forms ac-
cording to device capabilities. In this paper, we described
how a hierarchical collaborative proxy network can adapt
objects to client specifications and cache diverse object ver-
sions. We found that any load distribution policy that only

takes into account the local load condition or no load infor-
mation at all is not able to spread the computational load
caused by transcoding across the proxy nodes. For global
type policies, even the simple policy that captures the load
information along the request path can provide reasonably
good load sharing. Furthermore, to effectively share the
load, it is not sufficient just to tune the amount of process-
ing load passing down the proxy hierarchy to the lower-level
proxies. We found that it is necessary to provide the edge
proxy a mechanism to push up some transcoding load. On
the caching policy, we examine policies that allow differ-
ent versions of an object to be cached. Our study showed
that the demand based caching policy, where the transcod-
ing proxy only caches the transcoded object, performs better
than the coverage based caching policy that caches only the
more detailed source object of transcoding and the anticipa-
tory caching policy that caches both the transcoded object
and the more detailed object.
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