
Optimal Pricing and Service Provisioning Strategies in Cloud Systems:
A Stackelberg Game Approach

Valerio Di Valerio
University of Roma “Tor Vergata”

di.valerio@ing.uniroma2.it

Valeria Cardellini
University of Roma “Tor Vergata”

cardellini@ing.uniroma2.it

Francesco Lo Presti
University of Rome “Tor Vergata”

lopresti@info.uniroma2.it

Abstract—In this paper we consider several Software as a
Service (SaaS) providers, that offer a set of applications using
the Cloud facilities provided by an Infrastructure as a Service
(IaaS) provider. We assume that the IaaS provider offers a pay
only what you use scheme similar to the Amazon EC2 service,
comprising flat, on demand, and spot virtual machine instances.
We propose a two stage provisioning scheme. In the first stage,
the SaaS providers determine the number of required flat
and on demand instances by means of standard optimization
techniques. In the second stage the SaaS providers compete,
by bidding for the spot instances which are instantiated using
the unused IaaS capacity. We assume that the SaaS providers
want to maximize a suitable utility function which accounts
for both the QoS delivered to their users and the associated
cost. The IaaS provider, on the other hand, wants to maximize
his revenue by determining the spot prices given the SaaS
bids. We model the second stage as a Stackelberg game, and
we compute its equilibrium price and allocation strategy by
solving a Mathematical Program with Equilibrium Constraints
(MPEC) problem. Through numerical evaluation we study the
equilibrium solutions as function of the system parameters.

I. INTRODUCTION

Cloud computing has recently been experiencing a high
rate of growth, mainly due to the ability of realizing highly
scalable and reliable infrastructures for running software
applications in an efficient and cost-effective way. Industrial
companies and research communities have started using
commercially available infrastructures provided by Infras-
tructure as a Service (IaaS) providers to run their appli-
cations, that can scale up or down as demand changes
by allocating or deallocating virtual computing and storage
resources almost instantaneously. In their turn, customers of
IaaS providers can rapidly offer their innovative applications,
thus becoming Software as a Service (SaaS) providers,
but without needing to own and maintain development or
production infrastructures.

Among the different methods to deliver Cloud services,
an IaaS provider can sell resources in the form of Virtual
Machine (VM) instances to customers, that generally rent
the resources by using a pay-as-you-go model on a per-hour
basis at a fixed price (also called on demand price). When re-
source utilization can be planned in advance, IaaS customers
can also reserve flat resources in advance, paying a long-
term reservation fee plus a per-hour price which depends on

the effective resource usage and is lower than the on demand
price. In order to achieve high utilization in data centers that
are often under-utilized, IaaS providers can also sell their
spare capacity in form of spot instances by organizing an
auction where customers bid, providing a maximum per-hour
price they are willing to pay. On the basis of the bids and his
spare capacity, the IaaS provider sets the spot instances price.
For IaaS customers spot instances represent an attractive and
cost-effective solution to deal with unexpected load spikes
and run compute-intensive applications but at the risk of a
lower reliability than flat and on demand instances, since the
IaaS provider can revoke spot instances without notice due
to price and demand fluctuations.For example, Amazon’s
Elastic Cloud Computing (EC2) service offers three types
of VM instances (i.e., flat, on demand, and spot VMs) [1],
with different pricing and reliability.

From an IaaS perspective, selling resources to multiple
customers requires to determine efficient service provision-
ing and pricing strategies, in order to maximize the IaaS
resources usage and the provider profit and to satisfy the
customers. On the other hand, the customers compete among
them to acquire the resources and are interested in saving
money. Developing such strategies in the Cloud environment
is a challenging task, mostly because the Cloud environment
is inherently competitive and dynamic. In this context,
game theoretic methods can help to analytically model and
understand the service provisioning and pricing problem and
to devise adequate strategies. Game theory has been already
successfully applied to networking problems like Internet
congestion control and pricing, e.g., [2] and in the Cloud
computing environment, e.g., [3], [4], [5]. In most works, the
solution concept of Nash equilibrium has been extensively
applied (a set of players’ strategies is a Nash equilibrium
if no player one can improve his revenue by changing its
strategy unilaterally, i.e., while the other players keep theirs
unchanged).

In this paper, we consider a Cloud scenario where an
IaaS provider sells his resources to several SaaS providers,
offering flat, on demand, and spot VM instances. In their
turn, SaaS providers offer to their end users Web applica-
tions with Quality of Service (QoS) guarantees, using the
IaaS facilities to host and run the provided applications.

Revenues and penalties of each SaaS provider depend on
the provisioning of an adequate performance level, which
is specified in a Service Level Agreement (SLA) contract
that each SaaS stipulates with his end users. Therefore,
each SaaS provider has to face the problem of determining
the optimal number of VMs to satisfy the SLA with his
end users while maximizing his revenue. However, a proper
solution cannot be accomplished in isolation, since the SaaS
providers compete among them and bid to acquire the spot
IaaS resources. On the other hand, the IaaS provider aims
to maximize his revenue and therefore wants to properly
choose the price of his resources. In other words, each player
strategy influences what the other players do.

To model this conflicting situation we recur to a Stack-
elberg game [6]. In this class of games, one player (i.e.,
the leader, in our case the IaaS provider) moves first and
commits his strategy to the remaining players (i.e., the
followers, for us the SaaS providers), that consider the
action chosen by the leader before acting simultaneously to
choose their own strategy in a selfish way through a standard
Nash game. Stackelberg games are commonly used to model
attacker-defender scenarios, e.g. [7]. For the considered
Cloud scenario, the adoption of a leader-follower strategy
sounds feasible, since we can reasonably assume that the
IaaS provider fixes the price before the SaaS providers
compete to acquire the VM resources. Furthermore, a Stack-
elberg game help us to devise a revenue-maximizing pricing
scheme for the IaaS provider.

The main contributions of the present work are as follows.
1) We devise a two-stage service provisioning and pricing
strategy. In the first stage, each SaaS provider independently
determines the optimal number of flat and on demand VMs
(which have a fixed price) in such a way to guarantee
the performance level offered in the SLA to his end users
while maximizing his profit. In the second stage, the SaaS
providers bid and compete for the unused IaaS provider
capacity. The goal of each SaaS provider is to determine
the number of spot instances to allocate which maximizes
his profit, given the number of flat and on demand instances
bought in the first stage. The goal of the IaaS provider is to
determine the price of the spot VMs in order to maximize his
profit. While the first stage involves the solution of standard
optimization problems, the second stage requires to compute
the equilibria of the SaaS/IaaS Stackelberg game on spot
instances. 2) We address the solution of the challenging
Stackelberg game by solving a suitable Mathematical Pro-
gram with Equilibrium Constraint (MPEC) problem. 3) We
study through numerical investigation the behavior of the
proposed provisioning and pricing strategy under different
workload and bidding configurations and compare it with
the policy proposed in [3]. Using our proposed strategy, the
IaaS provider can set a price of the spot instances lower than
the maximum price in the bids in order to incentivize SaaS
providers to buy more instances, thus increasing his revenue

with a higher volume of sold instances.
The rest of this paper is organized as follows. In Section II

we define the system model.In Section III we define the two-
stage service provisioning and pricing strategy. We discuss
the solution method of the Stackelberg game that arises from
our problem formulation in Section IV. In Section V we
analyze through numerical experiments the behavior of the
proposed strategy and compare its results to those achieved
by the formulation in [3]. In Section VI we discuss related
works. Finally, in Section VII we conclude the paper.

II. SYSTEM MODEL

We consider a set U of SaaS providers that offer a set
of Web applications Au, u ∈ U , using the cloud facilities
offered by a IaaS provider. We assume that each application
k ∈ Au is characterized by a SLA which stipulates the
application QoS levels, i.e., response time, and the associated
cost/penalty for its use.

Web applications are hosted on virtual machines instan-
tiated by the IaaS provider. For the sake of simplicity, we
assume that the IaaS provider offers only one type of VMs,
i.e., all the VMs have the same capacity. Each VM hosts only
one application; on the other hand, each application can be
distributed on multiple VMs and in that case we assume the
workload to be evenly split among them.

The IaaS provider manages an infrastructure which can
provide to his users up to S VMs which are offered to
users as flat, on demand, and/or spot instances. Flat instances
are characterized by one-time payment plus a payment of
ϕ unit per hour of actual use. On demand instances have
no one-time payment and are charged at a price δ, which
we assume to be strictly larger than ϕ. Spot instances are
charged at a price σu,k, which we assume it may vary
from SaaS provider to SaaS provider and from application
to application, and which depends on the users bids and
competition for the unused resources and the IaaS provider
optimal pricing strategy.

Given the number of flat fu,k, on demand du,k, and spot
instances su,k and their prices σu,k allocated to application
k ∈ Au, u ∈ U , the associated per-hour IaaS revenue is:

ΘI =
∑
u∈U

∑
k∈Ak

(ϕfu,k + δdu,k + σu,ksu,k) (1)

Each SaaS provider determines for each application k the
number of flat fu,k, on demand du,k, and spot su,k VMs
to be allocated which maximizes his revenue, given the
predicted arrival rate Λu,k and the application SLA.

We assume that SLA takes the form of an upper bound
on the application response time Rmax

u,k . The SLA also
specifies the user per-request cost Cu,k = Cu,k(1 − Ru,k

Rmax
u,k

),
which we assume to be a linear function of the application
response time Ru,k. We denote with mu,k = − Cu,k

Rmax
u,k

the
slope of this function. Observe that the application cost is
a decreasing function of the response time and it becomes

negative (hence, the SaaS provider incurs a penalty) when
Ru,k > Rmax

u,k . We adopt such a simple model since linear
costs allow to implement a soft constraint on the response
time, which enables the SaaS provider to trade-off revenues
and infrastructural costs [4].

We model each Web application hosted on a VM as
an M/G/1/PS queue with an application dependent service
rate µu,k. Under the assumption of perfect load sharing
among multiple VMs assigned to the same application, the
application k average response time is given by:

E[Ru,k] =
fu,k + du,k + su,k

µu,k(fu,k + du,k + su,k)− Λu,k

provided the stability condition Λu,k

µu,k(fu,k+du,k+su,k)
< 1

holds. Taking into account the infrastructural per hour cost
for the allocated VMs, the per-hour SaaS profit is:

Θu =
∑
k∈Au

Λu,kCu,k −
∑
k∈Au

(ϕfu,k + δdu,k + σu,ksu,k)

(2)

where the first term is the sum of the average per applica-
tion revenues Λu,kCu,k = Λu,kCu,k(1 − E[Ru,k]

Rmax
u,k

) and the
remaining terms the VMs costs.

III. SERVICE PROVISIONING: A STACKELBERG GAME
APPROACH

We assume that SaaS providers every hour allocate and
deallocate VMs relying on a prediction of the next-hour
future workload. In this paper we consider a two-stage
allocation procedure. In the first stage, each SaaS provider
independently determines, for each offered application, the
number of flat and on demand instances1 which guarantee
the performance level defined in the SLA to its prospective
users and maximize his profit. In the second stage, the
IaaS provider sells the unused capacity as spot instances.
The SaaS providers compete for these additional resources
by submitting, to the IaaS provider, a bid specifying the
maximum per VM price they are willing to pay. The IaaS
provider, given his residual capacity and the submitted bids,
determines the spot instances prices which maximize his
profit.

A. First Stage: Flat and on Demand VM Allocation

In the first stage, each SaaS provider independently
determines the optimal number of flat and on demand
VMs necessary to sustain the predicted load for the next
hour which maximizes his profit. We assume that the IaaS
provider always has enough resources to accomodate all flat
and on demand instances the users may require. For each

1In case of flat instances, this number represents the number of allocated
flat instances, among the already reserved ones, which will be used to offer
the applications.

SaaS provider u ∈ U we have the following optimization
problem:

max Θu (3)

subject to:
∑
k∈Au

fu,k ≤ fu (4)

Λu,k

µu,k(fu,k + du,k)
≤ Umax

u , ∀k ∈ Au (5)

fu,k, du,k ≥ 0, ∀k ∈ Au (6)

Constraint (4) ensures that the flat instances allocated to
SaaS provider u are less than or equal to the number of
reserved ones fu. Constraint (5) guarantees that resources
are not saturated, in particular that their utilization is less
than a threshold Umax

u . As in [3], [4], we do not impose to
the variables to be integers as in reality they are, because
the problem would have been much more difficult to solve
(NP-hard). Therefore, throughout the paper we deal with a
relaxation of the real problem. We believe that, nonetheless,
our findings apply to the actual problem as well.

B. Second Stage: Spot Instances Allocation

In the second stage, the SaaS providers compete for the
unused IaaS provider resources made available via a bidding
mechanism. The idea is that the SaaS providers can increase
their revenues by accessing additional resources, while the
IaaS provider can make profit from the otherwise unsold
resources. We assume that, nevertheless, the Iaas provider
sets a minimum price σL for spot VMs.

The goal of each SaaS provider is to determine the number
of spot instances to allocate which maximizes his profit
given the number of flat and on demand instances bought in
the first stage. In the second stage, we assume that each SaaS
provider u specifies σU

u,k, the maximum time unit cost for
spot VMs for application k he is willing to pay (see the IaaS
problem), and solves the following optimization problem:

Problem SaaSOPT

max Θu = max
∑
k∈Au

mu,kΛu,k(f̄u,k + d̄u,k + su,k)

µu,k(f̄u,k + d̄u,k + su,k)− Λu,k
− su,kσu,k

subject to:
∑
u∈U

∑
k∈Au

su,k ≤ sU (7)

su,k ≥ 0, ∀k ∈ Au (8)

where f̄u,k and d̄u,k represents the number of flat and
on demand instances already bought and sU = S −∑

u∈U
∑

k∈Au
(f̄u,k + d̄u,k) the amount of unused IaaS

capacity, being S the total amount of VMs the IaaS provider
manages and

∑
u∈U

∑
k∈Au

(f̄u,k + d̄u,k) the amount of
VMs instantiated after the first stage. In this optimization
problem, constraint (7) ensures that the total number of
spot VMs allocated to the SaaS providers are less than
or equal to the ones available at the IaaS provider. Note
that, differently from the flat and on demand provisioning

problem the SaaS providers solve in the first stage, we now
have a constraint which involves the decision variables of all
the SaaS providers and which is parametrized by the spot
instances price σu,k, which is a IaaS decision variable.

The goal of the IaaS provider is to determine the cost
σu,k of the spot VMs for each application k of every SaaS
provider u in order to maximize his profit. The IaaS provider
optimization problem is:

Problem IaaSOPT

max ΘI = max
∑
u∈U

∑
k∈Au

su,kσu,k

subject to: σL ≤ σu,k ≤ σU
u,k, ∀u ∈ U , ∀k ∈ Au (9)

In this setting, the decisions of the SaaS providers and the
IaaS provider depend mutually from each other. Indeed, the
objective function of the IaaS provider depends on su,k, the
decision variables of the SaaS providers, while the objective
function of each SaaS provider depends on σu,k, the prices
of the spot instances, which are the decision variables of
the IaaS provider. Moreover, the decision of each SaaS
provider depends also on what the others providers do, since
constraint (7) couples the variables of all the SaaS providers.

We model such a conflicting situation as a Stackelberg
game [6]. Stackelberg games are a particular type of non-
cooperative game whereby one player (the leader) takes its
decision before the other players (the followers). Given the
leader decision, the followers then simultaneously take their
own decision. The leader can thus take advantage of the
fact that the followers react to its decisions, which leads to
a follower subgame equilibrium (if any exists), and drive the
system to its own optimum. In our model, the IaaS provider
acts as a leader by deciding the spot instances prices σu,k.
The SaaS providers act as followers which must decide the
number su,k of spot instance to buy. Given the spot prices,
the SaaS providers thus compete (the SaaS subgame) for the
shared pool of available instanced sU .

IV. SOLUTION METHOD

The first stage of our provisioning strategy involves the so-
lution of a set of independent convex optimization problems
which can be addressed by means of standard techniques.
The second stage requires the computation of the equilibria
of the SaaS/IaaS spot instance Stackelberg game. This is a
challenging problem for which no general solution exists. In
this paper, we take advantage of the structure and properties
of the SaaS provider subgame, and we compute the Stackel-
berg equilibria by solving a suitable Mathematical Programs
with Equilibrium Constraint (MPEC). In this section, we
first study the SaaS providers subgame and establish some
important game properties; then, we present an algorithm to
compute an equilibrium of the Stackelberg game.

We denote with su = (su,k)k∈Au the strategy of a SaaS
provider u ∈ U and with σ = (σu,k)

N
u=1 the strategy of the

IaaS provider, where N = |U|. Furthermore, we indicate
with s = (su)

N
u=1 the set of strategies of all the SaaS

providers and with s−u the set of the strategies of all the
SaaS providers except the SaaS provider u. For the sake of
simplicity, we also rewrite the SaaS providers optimization
problem SaaSOPT in compact form as follows:

max Θu(s;σ)

subject to: gu(s) ≤ 0

where gu(s) is a vector function that represents the problem
constraints. We define with Ku = {s |gu(s) ≤ 0} the SaaS
provider u feasible strategies set and we further define Ω ={
s
∣∣∑

u∈U
∑

k∈Au
su,k ≤ sU

}
. Hence, we can define the

vector function g(s) = (gu(s))
N
u=1 that represents the set

K = (K1 × K2 . . .KN) ∩ Ω of the feasible strategies of
all the players. Note that the set K is compact, since each
variable su,k is bounded by sU .

A. SaaS Providers Subgame

We first consider the followers subgame, i.e., the SaaS
providers competition that arises once the IaaS provider fixes
his strategy (the spot prices σ). Since the SaaS providers
act simultaneously, this subgame can be modeled as a
Generalized Nash game [8]. Generalized Nash Equilibrium
Problems (GNEPs) differ from Nash Equilibrium Problems
(NEPs), in that, while in a NEP only the players objective
functions depend on the other players strategies, in a GNEP
both the objective functions and the strategy sets depend on
the other players strategies. In our problem, the dependence
of each player strategy set on the other players strategies
is represented by constraint (7) which includes all SaaS
providers decision variables σu,k. Specifically, our problem
is a Jointly Convex GNEP [8]. Convexity follows from
concavity of the objective function of each SaaS provider in
his own decision variable and the convexity of the strategy
set; furthermore, it is jointly convex because the constraint
involving all players variables is the same for all players.

The solution of jointly convex GNEP problems can
be computed by solving a proper variational inequality
(VI)2. In particular, under the condition that the objec-
tive function of each player is continuously differentiable,
every solution of the V I(K,F (s;σ)), where F (s;σ) =
−[(∇suΘu(s;σ)

N
u=1), is also an equilibrium of the GNEP

[8]. Such equilibrium is known as variational equilibrium.
In general, a GNEP has multiple or even infinite equilibria,
and not all of them are also a solution of the VI. However,
the variational equilibrium is more “socially stable” than
the other equilibrium of a GNEP and therefore it represents
a valuable target for an algorithm [8]. We now establish
two key properties of the V I(K,F (x;σ)), namely that the

2Given a subset K of <n and a function F : K → <n, the VI problem,
denoted by V I(K,F), consists in finding a point s∗ ∈ K such that (s−
s∗)TF (x∗) ≥ 0 ∀s ∈ F .

function F is strongly monotone3 and the existence of the
generalized Nash equilibrium of the followers subgame.

Theorem 1: Function F (s;σ) = −[(∇suΘu(s;σ)
N
u=1) is

strongly monotone.
The theorem proof can be found in [9].

Theorem 2: There exists at least one generalized Nash
equilibrium of the followers subgame.

Proof: Such existence directly follows from the strong
monotonicity of F (s;σ) [10].

B. Stackelberg Game as MPEC

We now turn our attention to the IaaS (leader) problem
of determining the optimal pricing strategy. We solve the
Stackelberg game using a Mathematical Programs with
Equilibrium Constraint (MPEC) [11]. An MPEC is an
optimization problem whose constraints include variational
inequalities. The MPEC arising from our IaaS optimization
takes the following form:

max
∑
u∈U

∑
k∈Au

su,kσu,k

subject to: σL ≤ σu,k ≤ σU
u,k ∀u ∀k (10)

F (σ)−∇sg(s)λ = 0 (11)

g(s) ≤ 0, λ ≥ 0, λT g(s) = 0 (12)

where the constraints (11)-(12) are Karush Kuhn Tucker
(KKT) conditions [12] associated to the SaaS subgame
variational inequality (λ ∈ <l is the vector of Lagrangian
multiplier, with l the number of constraints that define K).
Observe that this basically the IaaS optimization problem
IaaSOPT with the additional constraint that s must be a

Generalized Nash equilibrium of the SaaS subgame.
The MPEC cannot be directly solved because the con-

straints do not satisfy any standard constraints qualifica-
tion and the complementary-type constraints in (12) are
very complicated and difficult to handle. Following [11],
we consider a sequence of smooth and regular problems,
obtained by perturbing the original problem, the solutions of
which converge to a solution of the original problem, under
the assumption that function F (s;σ) is strongly monotone.
Specifically, we consider the pertubated problem P(µ) with
parameter µ:

Problem P(µ)

max
∑
u∈U

∑
k∈Au

su,kσu,k

subject to: σL ≤ σu,k ≤ σU
u,k, ∀u ∀k (13)

F (σ)−∇sg(s)λ = 0 (14)
g(s) + z = 0 (15)√

(z − λ)2 + 4µ2 − (z + λ) = 0 (16)

3F is strongly monotone on K if there exists a constant c > 0 such that
for all pairs s, y ∈ K (s− y)T (F (s)− F (y)) > c‖ s− y‖2

where z ∈ <l is an auxiliary variable. In P(µ), con-
straint (15) and (16) replace constraints (12). It is easy
to realize that P(µ) corresponds to the original problem
when µ = 04. We refer the reader to [11] for further details.
Problem P(µ), µ 6= 0, is a smooth regular problem which

Algorithm 1 Algorithm S [11]
Let {µk}, µk 6= 0, be a sequence with limk→∞ µk = 0.
Choose w0 = (σ0, x0, z0, λ0) ∈ <3N+l+l, and set k = 1
while ||e|| > ε do

Find a stationary point wk of P (µk)
e = wk − wk−1

k = k + 1
end while

can be solved using standard optimization tools. Let σ∗(µ)
denote a stationary point of P(µ). From [11], we have that
σ∗(µ) converges to a stationary point of the IaaSOPT as
µ → 0. To compute a solution we use Algorithm S in [11]
(see Algorithm 1), which solves a sequence of problems
P (µ). The algorithm stops when the Euclidean distance
between two successive iterations is lower than a suitable
threshold ε. We verified that in practice the algorithm
converges very quickly. In our experiments, the algorithm
converged in no more than 3 iterations using ε = 10−4.

The proposed algorithm can be executed by the IaaS
provider under the assumption that each SaaS provider
supplies also the incoming workload prediction Λu,k and
the function slopes mu,k. Function slopes, in particular, are
publicly available because they are advertised by the SaaS
providers to their end-users.

V. EXPERIMENTAL RESULTS

We now investigate through numerical experiments the be-
havior of the proposed provisioning and pricing strategy. We
first compute the system equilibria in different scenarios and
study the VMs allocation and the associated spot instances
prices under different workload and bidding configurations.
Then, we compare our strategy with that in [3].

For the analysis, we implemented the algorithms in Sec-
tion IV as well as those in [3] in MATLAB. For the solution
of the MPEC problem via Algorithm S, the parameter µ is
initially set to 0.0001 and reduced by a factor of 100 at each
iteration and the stopping parameter ε is set to 10−4.

A. Provisioning and Pricing Strategies Analysis

We consider one IaaS provider which sells his resources
to ten SaaS providers and assume that each SaaS provider
offers only one Web service. If not differently stated, we set
S = 160, ϕ = 0.24$, δ = 1.24$, fu = 4, µu,1 = 10 req/s,

4Observe that for µ = 0, if s ∈ SOL(σ) is a solution of the original
problem then either g(s) < 0 and λ = 0, in which case constraint (16)
reduces to

√
(z)2−z = 0 or g(s) = 0, which implies that z = 0, and (16)

reduces to
√

(−λ)2 − λ = 0.

Λu,1 (req/s) 20 40 60 80
flat 4 4 4 4

on demand 0 3.59 7.38 11.18
spot 2 3.59 4.61 0.81

spot price ($) 0.25 0.31 0.36 0.5
spot available 120 80 46.1 8.1

spot unsold 100 44.1 0 0

Table I
VMS ALLOCATION AND SPOT PRICE WITH RESPECT TO SAAS
PROVIDERS PREDICTED LOAD IN HOMOGENEOUS SCENARIO

mu,1 = −1, Umax
u = 0.9, σL = 0.15$ and σU

u,1 = 0.5$, for
all u ∈ {1, . . . , 10}. These parameters correspond to those
adopted in [3] for the sake of comparison.

We first consider a homogeneous scenario where the SaaS
providers parameters are set as described above. In this
scenario, by symmetry, all the SaaS providers obtain the
same number of VMs and the same price for spot instances.
The results are summarized in Table I for different values of
the SaaS providers predicted load Λu,1. In the first stage, the
SaaS providers determine the amount of flat and on demand
instances: in this example, flat instances are always used up
to the maximum value fu = 4, independently from the load
Λu,1; on the other hand, the number of bought on demand
instances grows from 0 to 11.18, because more instances are
needed to satisfy the QoS constraints when the predicted
load increases. This is reflected in the amount of unsold
resources after the first stage, which decreases from 120
VMs when Λu,1 = 20 down to 8.1 VMs when Λu,1 = 80.
In the second stage, the SaaS providers compete for the
unsold IaaS capacity. When the demand is high (Λu,1 = 80),
the IaaS provider is able to sell the small fraction of
unused resources at the maximum price σU

u,1 = 5$. As
the demand decreases, the IaaS provider decreases the spot
price, to sell more VMs and to increase his revenue. Observe
that, when the demand is low (Λu,1 ≤ 40) some capacity
remains unsold even after the second stage, because the SaaS
providers reach equilibrium between the cost charged on
the users (which is a function of the response time) and
the cost of additional VMs. At the same time, the IaaS
provider has no incentive to further reduce the price. Only
when resources are scarce, the IaaS provider maximizes his
revenue by charging the maximum price σU

u,k; otherwise, it
is more profitable for the IaaS provider to lower the spot
prices thus selling additional VMs.

We now turn our attention to the provisioning and pric-
ing solutions in heterogeneous scenarios. For the sake of
simplicity, we consider only two classes of users. We first
consider the case where the SaaS providers have different
predicted load. In the second column of Table II we show
the results when half of the SaaS providers have a predicted
load Λu,1 = 20 req/s and the other half a predicted load
Λu,1 = 80 req/s. Observe that the number of purchased flat

Λu,1 (req/s) σu,1 ($)
20 80 0.5 0.3

flat 4 4 4 4
on demand 0 11.18 7.38 7.38

spot 2 7.18 3.65 5.57
spot price ($) 0.25 0.31 0.43 0.3
spot available 64 46.1

spot unsold 18.1 0

Table II
VMS ALLOCATION AND SPOT PRICES FOR SAAS PROVIDERS IN

HETEROGENEOUS SCENARIOS

and on demand instances is the same as in the previous
homogeneous example. This can be explained by observing
that in the first stage the SaaS providers independently
determine the amount of flat and on demand instances to
buy (under the implicit assumption that the IaaS provider
has enough resources to allocate all the requested flat and
on demand instances) and the final allocation only depends
on the provider parameters. Looking at the spot allocation
and price, instead, we observe that while SaaS providers
with the lower load are charged a relatively low price and
buy only a small number of spot VMs, SaaS providers with
the higher load are charged a higher price and buy more
spot VMs. We observe that also in this case, at equilibrium,
the IaaS provider maximizes his profit by charging less than
the maximum price so that overall, the lower per VM profit
is compensated by the higher volume of sold instances.

The third column of Table II shows the results when
we consider two classes of SaaS providers with different
maximum price: five providers have σU

u,1 = 0.5$ while the
rest have σU

u,1 = 0.3$. We assume that the SaaS providers
have the same predicted load Λu,1 = 60 req/s. Because
all the providers have the same parameters, except for the
bid which impacts only on the second stage, they buy the
same number of flat and on demand instances. However, as
expected, given the different maximum price, the price and
and number of purchased spot instances differs for the two
classes of users. It is interesting to compare this to the first
scenario we considered, where all the SaaS providers had
the same maximum price σU

u,1 = 0.5$; in that case, when
the load was Λu,1 = 60 req/s the optimal strategy for the
IaaS provider was to set σu,1=0.36$ for all the users. In this
scenario, however, the maximum price for half of the SaaS
providers is only 0.3$. So, it is no surprise that the optimal
pricing strategy for the IaaS provider is to set σu,1=0.3$
for these providers, and a higher price, σu,1=0.43$, for the
others. In other words, the revenue that is lost by the IaaS
provider by selling spot instances at 0.3$ is recovered by
increasing the spot price for those who bid 0.5$.

B. Comparison with the Provisioning Scheme in [3]

We now compare the proposed provisioning and pricing
scheme with the one presented in [3]. Ardagna et al. study

a provisioning problem very similar to that in this paper.
Differently from our two stage allocation strategy, they
consider a one stage provisioning problem, where, at the
same time: the SaaS providers determine the number of
flat, on demand and spot instances to buy as to maximize
their revenue given the service SLA; the IaaS provider
determines the spot instances price σu,k as to maximize
his profit, taking into account that each SaaS provider is
characterized by a maximum cost σU

u,k for spot instance per
hour. The conflicting situation is modeled as a GNEP and the
service provisioning and pricing policy are derived from the
game equilibrium. In particular, given the specific problem
structure, they show that the dominant IaaS provider strategy
consists in setting σu,k = σU

u,k, i.e., in charging each SaaS
user always the maximum price. They present a general
solution method and evaluate the proposed scheme under
different scenarios.

Comparing the two approaches, we expect that in our
scheme the SaaS providers are more likely to buy a higher
number of flat and especially of on demand instances,
which are more expensive (but also more reliable as the
IaaS provider cannot terminate them) since these type of
instances are allocated first. This should result in higher
cost for the SaaS provider and higher profit for the IaaS
provider. Moreover, in the second stage, since competition
for the spot instances is modeled as a Stackelberg game,
we expect the IaaS provider to experience higher profits
from the spot instances auction characterized, as observed
in the previous examples, by lower than the maximum
allowed on spot prices, larger volumes and higher overall
profit. For the sake of comparison, we simulated a dynamic

SaaS µu,1 fU
u σU

u,1 SaaS µu,1 fU
u σU

u,1

1 11 5 0.38 6 12 3 0.23
2 5 5 0.49 7 12 3 0.44
3 13 3 0.16 8 8 4 0.3
4 14 5 0.83 9 11 5 0.54
5 11 4 0.28 10 6 5 0.42

Table III
SAAS PROVIDERS PARAMETERS

scenario using the two different policies. We considered 10
SaaS providers, each offering a single service. Every hour,
each SaaS provider, given the forecasted load for the next
hour determined the number and type of VMs to allocate
while the IaaS provider determined the price of the spot
instances. The predicted load Λu,1 of each SaaS provider
is each time randomly generated uniformly in the interval
[20, 80] req/s. We set for all the providers, Rmax

u,1 = 2s,
Cu,1 = 2$ (corresponding to mu,1 = −1) and Umax

u = 0.9.
The other parameters are shown in Table III and were kept
constant during the simulation. Since in [3] the variable sU

is fixed a priori and is independent from the amount of
flat and on demand instances sold, we fixed sU = 30 for

the whole simulation for both policies. We run a simulation
corresponding to a period of one week (168 hours). Table IV

flat on demand spot total
Stackelberg 6961.75 8706.31 5040 20708.06

GNEP 6961.75 3910.19 5040 15911.94
Stackelberg 1670.82$ 10795.82$ 1734.65$ 14201.29$

GNEP 1670.82$ 4848.63$ 1575.48$ 8094.93

Table IV
TOTAL NUMBER OF VMS SOLD AND RELATIVE REVENUE

shows the breakdown of the number of allocated VMs and
IaaS revenue per type of instance. As expected, the revenue
obtained using our service provisioning and pricing policy
is greater than the revenue obtained using the policy in
[3]. In particular, the average increment obtained using our
policy is 36.3474$ against an average revenue of the IaaS
provider obtained using the policy in [3] equal to 48.1842$.
As anticipated, our scheme results in a higher number of on
demand instances (more than twice as much). The number of
spot instances is the same but this is actually a consequence
of having a fixed σU 5. Nevertheless, our scheme yields
higher spot VMs revenues to the IaaS provider. As shown
above, this is a consequence of the fact that in our policy
the IaaS provider, by setting a price lower than the SaaS
provider maximum bid, incentivates the SaaS providers to
buy more spot instances.

SaaS Stackelberg GNEP SaaS Stackelberg GNEP
1 73.96 75.55 6 75.44 78.5
2 56.1 55.76 7 79.96 80.31
3 78.04 80.79 8 73.4 78.75
4 81.79 81.54 9 74.86 74.49
5 71.36 73.84 10 62.2 64.86

Table V
AVERAGE SAAS PROVIDERS PROFIT ($).

Table V shows the profit for the different SaaS providers.
We can observe that our approach results in a higher
number of VMs bought by the SaaS providers and a cor-
responding higher cost, which justifies the significant larger
IaaS provider profits (+64%). Interestingly, the SaaS profits
decrease only by a small fraction and in some cases (SaaS
2, 4 and 9) even increase. This is not completely unexpected
since, as the number of VMs per service increases, the
service response time decreases which in turn, given the
SaaS revenue function, yields higher revenues.

VI. RELATED WORK

Game theory is a useful tool to deal with those situations
where the interaction across players has to be taken into

5For a more detailed comparison we should have modified the model
in [3] to reflect our scheme where the number of available spot instances
depends on the number of allocated flat and on demand instances.

account and thus can be successfully applied to typical
ICT problems, like resource allocation, QoS, pricing, and
load balancing. For example, it has been largely applied in
networking research, as surveyed in [2].

Game theoretical approaches in Cloud computing have
been proposed mainly to deal with resource allocation and
pricing issues.A QoS-constrained resource allocation, where
Cloud users submit intensive computation tasks is in [13];
however, only a single type of VM instances is considered.
The perspective of a IaaS provider is pursued in [5] to
determine the optimal suggested prices by the provider
and the optimal user demands. In their model the provider
suggests differentiated prices according to demand and users
update their requests and the problem is formulated as a
Stackelberg game. However, the model does not consider
spot instances and QoS constraints of SaaS providers. The
works in [3], [4] are most closely related to our proposal and
we have compared their strategy to ours in Section V-B.

Pricing and performance issues related to spot instances
have been recently addressed by works that apply a variety
of methodologies different from game theory, such as check-
pointing and work migration strategies to minimize the cost
and volatility of resource provisioning [14]. Those studies
focus on helping the users to better use spot instances,
while we aim to maximize the IaaS provider revenue while
satisfying the QoS constraints of the SaaS providers.

Some studies have investigated the prices of Amazon
EC2 spot instances. A reverse engineering analysis in [15]
found that Amazon sets their prices at random from within
a tight price interval via a dynamic hidden reserve price.
A statistical analysis and modeling of Amazon spot price
dynamics is in [16]. Differently from our assumption, EC2
spot instances are priced the same to all its users.

Although still only one IaaS provider offers spot VMs,
many argue that market economies will be increasingly
prevalent in order to achieve high utilization in data centers
and the first public marketplaces for unused capacity such
as SpotCloud are already on the scene.

VII. CONCLUSIONS

In this paper we presented a service provisioning and
pricing strategy for a Cloud system based on a game
theoretical approach. We considered several SaaS providers
that offer a set of applications with QoS constraints using the
Cloud facilities provided by an IaaS provider. We proposed
a two stage service provisioning policy: in the first stage,
the SaaS providers buy VMs at a fixed price, while in the
second stage they bid and compete to buy VMs instantiated
on the unused IaaS provider capacity. The spot instances
price is dynamically determined by the IaaS provider, which
aims to maximize his revenue given the bids. We modeled
the second stage conflicting situation as a Stackelberg game
and computed its equilibrium price and allocation strategy by
solving an MPEC problem. Our numerical results revealed

the ability of the IaaS provider to set a price lower than the
bids to incentivize the SaaS providers to buy more instances.
We also compared our strategy with that in [3] and found
that using our strategy the IaaS provider revenue increases,
at the expense of a lower profit for the SaaS providers.
However, the latter can offer more reliable services and
better performance to their users.

As a future work we intend to study a distributed version
of the proposed strategy and to investigate a different sce-
nario, where the IaaS provider offers the same spot instance
price to the SaaS providers.

ACKNOWLEDGMENTS

We would like to thank Prof. F. Facchinei for very fruitful
discussions on Stackelberg games and MPEC.

REFERENCES

[1] Amazon Web Services LLC, “Amazon Elastic Compute
Cloud (Amazon EC2),” 2012, http://aws.amazon.com/ec2/.

[2] E. Altman, T. Boulogne, R. El-Azouzi, T. Jiménez, and
L. Wynter, “A survey on networking games in telecommu-
nications,” Comput. Oper. Res., vol. 33, no. 2, 2006.

[3] D. Ardagna, B. Panicucci, and M. Passacantando, “A game
theoretic formulation of the service provisioning problem in
cloud systems,” in Proc. of WWW ’11, 2011, pp. 177–186.

[4] ——, “Generalized Nash equilibria for the service provision-
ing problem in cloud systems,” IEEE Trans. Serv. Comput.,
2013, to appear.

[5] M. Hadji, W. Louati, and D. Zeghlache, “Constrained pricing
for cloud resource allocation,” in Proc. of IEEE NCA ’11,
Aug. 2011, pp. 359–365.

[6] D. Fudenberg and J. Tirole, Game Theory. MIT Press, 1991.
[7] Y. A. Korilis, A. A. Lazar, and A. Orda, “Achieving net-

work optima using stackelberg routing strategies,” IEEE/ACM
Trans. Netw., vol. 5, no. 1, pp. 161–173, Feb. 1997.

[8] F. Facchinei and C. Kanzow, “Generalized Nash equilib-
rium problems,” 4OR: A Quarterly Journal of Operations
Research, vol. 5, pp. 173–210, 2007.

[9] V. Di Valerio, V. Cardellini, and F. Lo Presti, “Optimal
pricing and service provisioning strategies in cloud systems: a
Stackelberg game approach,” Univ. Roma Tor Vergata, Tech.
Rep. DICII RR-13.01, Feb. 2013.

[10] F. Facchinei and J.-S. Pang, Finite-Dimensional Variational
Inequalities and Complementarity Problems. Springer, 2003.

[11] F. Facchinei, H. Jiang, and L. Qi, “A smoothing method
for mathematical programs with equilibrium constraints,”
Mathematical Programming, vol. 85, pp. 107–134, 1999.

[12] D. G. Luenberger and Y. Ye, Linear and Nonlinear Program-
ming. Springer, 2008.

[13] G. Wei, A. V. Vasilakos, Y. Zheng, and N. Xiong, “A
game-theoretic method of fair resource allocation for cloud
computing services,” J. Supercomput., vol. 54, no. 2, 2010.

[14] S. Yi, A. Andrzejak, and D. Kondo, “Monetary cost-aware
checkpointing and migration on amazon cloud spot in-
stances,” IEEE Trans. Serv. Comput., vol. 5, no. 4, 2012.

[15] O. Agmon Ben-Yehuda, M. Ben-Yehuda, A. Schuster, and
D. Tsafrir, “Deconstructing Amazon EC2 spot instance pric-
ing,” in Proc. of IEEE CloudCom’11, Dec. 2011, pp. 304–311.

[16] B. Javadi, R. K. Thulasiram, and R. Buyya, “Characterizing
spot price dynamics in public cloud environments,” Future
Gener. Comput. Syst., vol. 29, no. 4, pp. 988–999, Jun. 2013.

